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ABSTRACT

This article established a fact on the order of difference of integral powers of all sets of natural
numbers. The analysis was proof by use of established property of difference operator and principle
of mathematical induction. The result proved conclusively that “if the elements of an arithmetic
progression of set of natural numbers with positive common difference are raised to positive power k,
then the k' difference is equal to the product of the common difference raised to power k (d¥) and k
factorial (k!).
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| INTRODUCTION

A set of positive integers is a set of natural numbers. A set is a collection of well-defined
elements. A set of natural number is a sequence, defined with respect to a constant value
called a common difference (d). The terms of a sequence are defined with respect to three
parameters, the first term (a), the numbers of terms in the sequence (n) and the common
difference (d). The sequence of natural numbers expressed mathematically as:

London Journal of Research in Science: Natural & Formal

Tpo=a+(M-1)d ., I

Foralla=1,d>1,ne€ (0, )
Any sequence generated with the above formular is called an arithmetic progression.

A perfect power is a rational root chase.lll An integral perfect power is the irrational root that
is an integer. A finite difference is a mathematical expression of the form, f(x + b) - f(x + a)
and a forward difference is of the form Ah[f](x) = f(x + h) = f(x)2

This article investigates all Arithmetic Progression of set of natural numbers with positive
common difference. Further investigation reveals that there is a significant relationship
between the difference of powers of set of natural numbers and factorial, which is
represented symbolically as:

A a+ (n—1)d]* = dEK e 1
Foralla=1,d>1,k>1and

(© 2024 Great Britain Journals Press Volume 24 | Issue 10 | Compilation 1.0
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For some N € (0, )

The implication of equation (II) is on the coefficient of the kth factorial, which sows the value
of kis the power of the common difference and at the same time is the power of the sequence
under consideration for which the kth difference of the set is equal to the product of the
common difference raised to power k and k!.

An examination of any set of natural numbers having common difference greater than 2 e.g.
{2, 5, 8, 11, 14, 17, 20, 23, 26, 29} reveals that the pattern is sustained (See Table I and
Appendix A).

The set of perfect squares of the set is {4, 25, 64, 121, 196, 289, 400, 529, 676, 841}. The
actual set of the first difference is {21, 39, 57, 75, 93, 111, 129, 147, 165}. Furthermore, the
set of the second difference is {18, 18, 18, 18, 18, 18, 18, 18} = {18}, a singleton set. Clearly,
the set of differences of the above second difference set is {0}. The emerging pattern motives
the investigation of whether the pattern will persist for all set of natural numbers with
positive common difference d > 2. The set of the second difference of the set of perfect
squares clearly shows that the element of the singleton set 18 = 32(2!).

This shows that ford = 3, k= 2.
A% [a+ (n—1)d)]? = dX.K!, where
a=2,d=3,k=2,andne (0,9)
S A%[a+ (n—1)d)]? = 18 = 32(2))

In their contribution in Exponential Diophantine Equations, Shorey and Tijdeman
investigated perfect powers at integral values of a polynomial with rational integer
coefficients and obtain in particular the following. Let f(x) be a polynomial with rational
coefficients and with at least two simple rational zeros.

Suppose b # 0, m 2 0, xand y with /Y/ > 1 are rational integers. Then the equation f(x) = by™
implies that m is bounded by a computable number depending only on b and f. Also in their
contribution Ladan, Tanko, Aliyu, Ahmad and Kabirul4], they investigated integral powers of

polynomials with Binomial coefficients. The result of their investigation shows that “the
disposition of powers of polynomials with binomial coefficients generates even positive

factorial (2k)!

Also in a research work by Ladan, Aliyu, Tanko, Ahmad and Kabirul®], on the location of points
on the plane and the order of disposition of sum of powers of cardinal coordinates. The result
of their work proved conclusively that “the sum of the powers of cardinal points is equal to
the coefficients of the Binomial expansion with respect to the Pascal triangle pattern and

entries”. In their contribution in the difference of perfect powers of integers, Ladan, Ukwu
and Apinel®l investigated order of integral perfect powers and proved that “if any number of

consecutive integers are raised to a positive integral power k, then the kth difference is equal

An Investigation of the Order of Integral Powers of Set of all Natural Numbers
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to k! Based on the generalization of the theorem in this article, it shows that Ladan, Ukwu
and Apine work has common difference d = 1, for all k > 1.

Similarly, in a research conducted by Ladan, Emmanuel and Tanko!’], investigated order of
product of perfect powers and proved conclusively that if any number of consecutive integer
are raised to a positive power k, then the (2k)t difference of the product of the kth power of
two consecutive integers is equal to (2k)!. This established a relation between difference of
powers of natural numbers and factorial. For more definitions, see [8, 9, 10 ......].

There was no discussion on the relationship between the difference of powers of set of all
natural numbers and factorial with respect to the common difference which is pertinent to
this article. Review of literature shows that no such investigation has been undertaken. Thus,
this article adds to the existing body of knowledge.

.~ METHODS

2.1 Preliminary Definitions
In what follows, the difference of finite order will be defined.

211  Differences of Order One (1)

Given a sequence {f;}7°, defined the difference of order one at j with respect to the sequence
by:

A(fj) = fj+1 — fj, for every j

212  Higher Order Differences

Higher order differences can be defined recursively by:
A*(f;) = A () )= A1 (A()) = A [fj41 — fi] for 2 2

. RESULTS AND DISCUSSION

London Journal of Research in Science: Natural & Formal

3.1 Preliminary Theorem

Suppose f; = j for all j belong to set of natural numbers.

Then:

(i) Af? is natural number
()  A2(f?)=18=32(2)
(iii) A*(f?) =0, ke{3,4....}

An Investigation of the Order of Integral Powers of Set of all Natural Numbers
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Proof
Letj={2,5,8,11, 14,17, 20, 23, 26, 29}

Then Table I below yields value of A¥ (fjp) for selected values of k and p in the set {0, 1, 2, 3}
and {1, 2} respectively, when Ao(fjp) = fjp

Table I: Difference Order Table for Selected Elements of Set of Natural Numbers

AC) N ,
0
0]
0]
11 121 75 18 0
14 196 93 18 0
17 289 111 18 0
20 400 129 18 0
23 529 147 18 0
26 676 165 18
29 841

It is clear that A*(f/) = d*K! Where d = 3,k = 2,and j € {2, 5, ... 26, 29}.
That is A?(f?) = 32(2!) = 18

Obviously, the theorem is valid for j € {2, 5, 8, 11, 14, 17, 20, 23, 26, 29} as observed from
column 4. The proofs of (i), (ii) and (iii) are direct.

) A(» =15, — 7 ={j + 1)2-j2 = 2j + 1, which is natural number for all j, proving (i).
(i) A(AF?) =32 A(2) + 1) = 32(A2j + A1) = 32(24)) = 32[2( + 1 — )] = 3%2[1] = 32(2)
= 32.2 =18, for d = 3, proving (ii).

The principle of mathematical induction is needed in the proof of (iii).

For k =3, A3(f?) = A(A%(f?)) =A (18) = 18 - 18 = 0

Consequently A*(f?) = A=3(A3(f?)) = A¥3(0) = 0

For all k 2 4, proving A*(f?) = 0, for all positive integer k > 3. This established the proof of
(iii).

An Investigation of the Order of Integral Powers of Set of all Natural Numbers
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3.2 Main Theorem

Letf; =
Let {j};°be a sequence defined by j, =a + (n — 1)d, foralln>1,d>1anda> 1.

Let[jy]* = [a+ (n — 1)d]*, fork={1,2,3, ..}.

We shall consider the case for the power of k = {1, 2, 3} to establish the proof of the
theorem.

Case (1), k=1,n={1,2,3, ..}

[in]® = [a + (n — 1)d]¥, k = 1 are constant.
= [ju]* = [a + (n — 1)d]? is the sequence.
The first difference is given as:
A'fja]* =Ata+ (n — Dd]*,
Alj,] =A(a+dn—-4d)
=Aa + Adn — Ad
= Adn
=d[(n+ 1) — n]
=d(1)
=d
=d1(1)
Therefore, fork =1
Alfjn]' =A'a+ (n — Dd]' =d*(1)

London Journal of Research in Science: Natural & Formal

Case (2),k=2,n={1,2,3, ..}

[in]> =[a+ (n—1)d]?is set of perfect squares.

A?[j,]? =A%[a + (n — 1)d]?,

A[AR] = A2[a + dn — d]
=A?[(a+dn—d)(a+ dn—d)]
= A?[a + adn — ad + adn + d*n? — d’n — ad — d*n + d?]
= A?[a? + 2adn — 2ad + d*n? — 2d*n + d?]

An Investigation of the Order of Integral Powers of Set of all Natural Numbers
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A(a? + 2adn — 2ad + d?n? — 2d*n + d?)]

Aa? + 2adAn — A2ad + d?A(n?) — 2d*A(n) — Ad?]

2ad((n+ 1) — (n) +d?((n+ 1)? — (n)?) — 2d*((n+ 1) — (n)]
2ad(1) — d2((n? + 2n — 1) — ()% — 2d%(1)]

=A[2ad + d?(2n — 1) — 2d?)

=A2ad + A2d?*n — A3d?

=4[
=4[
=4[
=4[

= A2d*n
=2d%A(n)
=2d*(n+1-n)
= 2d2(1) = d22!
Therefore,
A*[j]? = A2[a + (n — 1)d]? = d2(2!), satisfied.
Case (3),k=3,n={1,2,3, ..}
A%[jL]3 =A3[a+ (n—1)d]?

=A3[(a+dn — d)3]
A3[(a+ dn—d)(a+ dn—d)?]
=A3[(a + dn — d)(a? + 2adn — 2ad — 2d?*n + d*n? + d?)]

= A3[a® + 2a%dn — 2a?d — 2ad?n + ad?n? + ad? + a*dn + 2ad?n? — 2ad?*n? —
2d3n? + d3n3 + d3n — a%d — 2ad?*n + 2ad? + 2d3n — d3n? — d3]

= A3[a3® + 3a%dn — 3a%d — 6ad?n + 3ad?*n? + 3ad? — 3d3n? + d3n3 + 3d3n — d3]

= A?[A(a® + 3a%dn — 3a?d — 6ad?n + 3ad?n? + 3ad? — 3d3n? + d3n3 + 3d3n —
d*)]

= A?[A(a® + A3a%dn — A3a*d — A6ad?n + Aad?n? + A3ad? — A3d3n? + Ad3n3 +
A3d3n — Ad?)]

= A?[3a’dAn — 6ad?An + ad?An? + 3d3An? + d3An3 + 3d3An]
=A%[3a’d(n+1—n)—6ad*(n+1—n)+ad?*((n+1)> —n?) = 3d3((n + 1)? -
n?)+d3*(n+1)>—n3®)+3d3(n+1—-n)]

=A?[3a’d — 6ad*(n*+2n+1—-n?) —-3d3*n?*+2n+1-n*+d3(n+ H(n* +
2n+1—n3+ 3d3]

=A%[3a%d — 6ad? + ad?(2n+1) - 3d3Q2n+ 1)+ d*(n® +3n?2+3n+1) —n3 +
3d3]

An Investigation of the Order of Integral Powers of Set of all Natural Numbers
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= A?[3a%d — 5ad? + 2ad?n — 3d3n — 2d3 + 3d3n? + 3d3]
= A[A(3a*d — 5ad? + 2ad?n — 3d3n — 2d3 + 3d3n? + d3]
= A[A3a?d — A5ad? + A2ad?*n — A3d3n + A3d3n? + Ad3]
= A[2ad?An — 3d3An + 3d3An?]
=A[2ad’*(n+1—-n) —3d3(n+1—n) + 3d3(n?+ 2n+ 1 —n?)]
=A[2ad?® —3d3 + 3d3(2n + 1)]
= A[2ad?® — 3d3 + 6d? + 3d3]
= A2ad® — A3d3 + A6d3 + A3d3]
= A6d3n
= 6d3An
= 6d3
=d®(6)
= d33!
Therefore,
A3[jL]3 =A3[a+ (n—1)d]?=d3(3))
Thus, the proof of the theorem is established for the values integral power of k = {1, 2, 3}.

This clearly reveals that the pattern is sustained for the values of k belong to natural numbers
foralld >2 andn e (1, o).

Assume the validity of the theorem of k = {4, 5, ... m} for some natural number m = 4.

Inductively, the theorem holds for k = 1, see case (1) A[j,] =Ala + (n — 1)d] = d. 1!

The truth of theorem for k = 1, implies is true for all positive k > 1, that is A¥[j,]¥ = A¥[a +
(n — 1)d]* = d*. k!, for some k > 1. (See Case 2 and 3).

Thus by induction hypothesis, the truth of the theorem for k implies the validity of the
theorem for k + 1.

Therefore, AX*1[j,]¥*1 = A*1[q + (n — 1)d]**+?
A a + (n — 1)d]**t = d** 1 (k + 1)!

This completes the proof, that is the pattern is sustained for all powers of set of natural
numbers, forallk>1andd=>1,a=1,ne{1,2,3,..m},m > 1.

The theorem is established.

An Investigation of the Order of Integral Powers of Set of all Natural Numbers
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3.3 Corollary

AX[j,]¢ = d¥. k! for every arithmetic progression of set of natural numbers j, and for any
positive integer k, for all d = 2. In other words, for any positive integer k, the kth order
difference of the kth power of a sequence of natural numbers is equal to d¥. k! where d is the
common difference, d = 1.

By implication, the theorem states that “if the elements of an arithmetic progression of the
set of natural numbers with positive common difference are raised to a positive power Kk,
then the kth difference is equal to the product of the common difference and k factorial

[d¥. k1.

34 Remarks

The following strong relationship exist between the difference operator A and D operator
(differential operator).

D¥(KP)=0ifk>p
Dkxk = k!
The coefficient of xP~*

D¥(KP) = %xl"k fork =2,k <piseven.

V. CONCLUSION

This article established the structures of finite difference orders with respect to the powers
of set of natural numbers. The result reveals a startling relationship between the common
difference of the sequence and k!, as reflected in the theorem.

Competing Interests: Authors have declared that no competing interest exist.
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APPENDIX A

Table1:d=3,k=2

i 2 2 2.2 3.2

]n ]71 A]Tl A ]n A ]n

2 4 21 18 0

5 25 39 18 0

8 64 57 18 0

11 121 75 18 0

14 196 93 18 0

17 289 111 18 0

20 400 129 18 0

23 529 147 18 0

26 676 165 18

29 841

We have that: AzjfL =18 = 3%(2!)
Table2:d=3,k=2

i 3 3 2.3 2.3 43
]71 ]n A]n A jn A ]n ]n
2 8 117 270 162 0
5 125 387 432 162 (¢}
8 512 819 594 162 0
11 1331 1413 756 162 0
14 2744 2169 918 162
17 4913 3087 1080
20 8000 4167
23 12167

We have that: Agji =162 =3%(3))
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Table3:d=3, k=2

J
0
0
49 51 18 o
10 100 69 18 0
13 169 87 18
16 256 105
19 361

We have that: Azji =18 =3%(2!)

Table 4.d =3,k =4

J
2 0
5 3471 7074 6156 1944 0
8 4096 10545 13230 8100 1944 o}
11 14641 23775 21330 10044 1944 0
14 38416 45105 31374 11988 1944
17 83521 76479 43362 13932 1944
20 16000 119841 57294 15876
23 279841 177135 73170
26 456976 250305
29 707281

We have that: A4jj; =1944 = 3%(4!)

Table5:d=3,k+=5

6.5
J
2 32 30903 26550 72090 77760 29160 o}
5 3125 20643 98640 149850 106920 29160 o}
8 32768 128283 248490 256770 136080 29160 o}
11 161051 376773 505260 392850 165240 20160 0
14 537824 882033 898110 558090 194400 20160
17 1419857 1780143 1456200 752490 223560
20 3200000 3236343 2208690 976050
23 6436343 5445033 3184740
26 11881376 8629773
29 20511149

We have that: Asji = 29160 = 35(5!)
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Table 6:d =4,k =2

We have that: Azji =32 =4%2!)

Table 7:d = 4,k =3

3 2.3 3.3 ]

]n ]n A] Ajn A]n A]n

2 8 208 576 384 (o}

6 216 784 960 384 0

10 1000 1744 1344 384 0

14 2744 3088 1728 384 0

18 5832 4816 2112 384 0

22 10648 6928 2496 384

26 17576 0424 2880

30 27000 2304

38 39304

We have that: A4ji =43(3!)
Table 8:d =4,k =4

) I, b, 85, || 87, | &5, | 47,
2 16 1280 7424 12288 6144 0
6 1296 8704 19712 18432 6144 0
10 10000 28416 38144 24576 6144 0
14 38416 66560 62720 30720 6144 0
18 104976 129280 93440 36864 6144 0
22 234256 222720 130304 43008 6144
20 456976 353024 173312 49152
30 810000 526336 222464
34 1336336 748800
38 2085136

We have that: A4j: = 6144 = 4*(4!)
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Tableg.d=4,k=5

1 1 52800 203520 276480 122880
3125 55924 256320 480000 399360 122880
9 59049 312244 736320 879360 522240 122880
13 371293 1048654 1615680 1401600 645120 122880
17 1419857 2664244 3017280 2046720 | 768000
21 4084101 5681524 5064000 2814720
25 9765625 10745524 7878720
29 20511149 18624244
33 39135393
We have that: Asji =122880 = 4°(5!)
Table10.d=7,k=2
Iy J; Af° A%
2 4 77 98
9 81 175 98
16 256 273 98
23 527 271
30 900
We have that: Azji =98 = 7(2)
Table11:.d=7,k=3
Jy I A A A Y
2 8 721 2646 2058 0
9 729 3367 4704 2058 Y
16 4096 8071 6762 2058 0
23 12167 14833 8820 2058 0
30 27000 23653 10878 2058
37 50653 34531 12936
44 85184 47467
51 132651

We have that: A3jr31 =2058 = 7(3!))
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Table12:d =7,k =14

],
2 16 6545 52430 102900 | 57624 0
9 6561 58975 155330 160524 | 57624 0
16 65536 214305 315854 218148 5 0
23 279841 530159 534002 275772 | 5 o
30 810000 1064161 809774 333396
37 1874161 1873935 1143170
44 3748096 3017105
51 6765201
We have that: A‘ljfl = 57624 = 7'(4!)
Table 13:d =19,k =13

Ja i, nj, Ay 8’y Y

2 8 9253 45486 41154 o

21 0261 54739 86640 41154 0

40 64000 141379 127794 41154 o

59 205379 269173 168948 41154 o

78 474552 438121 210102 41154 0

97 912673 648223 251256 41154 0o

116 1560896 899479 202410 41154

135 2460375 1191889 333564

154 3652264 1525453

173 5177717

We have that: A3ji = 41154 = 193(3!)

An Investigation of the Order of Integral Powers of Set of all Natural Numbers
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On the Well-Posedness for the 3-D Micropolar
Fluid System in Critical Fourier-Besov-Morrey
Spaces

Fatima Ouidirne®, Mohamed Oukessou® & Jalila El ghordaf ®

ABSTRACT

In the present paper, we study the Cauchy problem of the incompressible micropolar fluid
system in R3. We show that this problem is locally well-posed in Fourier-Besov-Morrey
spaces TNy, for1 <g<-e, and is globally well-posed in these spaces with small initial data.

Keywords: 3-D micropolar fluid system, Fourier-Besov-Morrey spaces, well-posedness.

Author a o p: Laboratory LMACS, FST of Beni-Mellal, Sultan Moulay Slimane University, Morocco.

| INTRODUCTION

In this paper, we are intersted the following initial value problem for the system of partial differential
equations describing the motion of incompressible micropolar fluid:

O — (X +V)Au+u-Vu+Vr—2xV x @ =0 inR3 xR,

0,0 —uA®+u-Vo+4yo—kVdivo—2xVxu=0 inR3 xR+, W
divu=0 inR3 x R+,

(u,®)],_o = (uo,00) in R3,

where u = u(x,t),m = n(x,t) and ® = ©(x,) are unknown functions representing the linear velocity
field, the pressure field of the fluid and the micro-rotation velocity field, respectively. «,u,v and
X are positive constants reflecting various viscosity of the fluid. Throughout this paper we only
consider the situation withk =py=1landy=v=1/2.
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Theory of micropolar fluid was proposed by Eringen [8] in 1996, his idea allows us to consider
several physical phenomena which cannot be treated by the classical Navier-Stokes system for the
viscous incompressible fluid, then the problem (1) was presented as a necessary modification to the
traditional Navier-Stokes equations in order to better characterize the motion of real-world fluids
consisting of rigid but randomly oriented particles (such as blood) by examining the influence of
micro-rotation of the particles suspended in the fluid.

There are several results on the weak and strong solvency of the micropolar fluid system and
some related topics. The weak solution of (1) was firstly considered by Galdi and Rionero [11].
The existence theorem of the micropolar fuid system with sufficiently regular initial data has been
showed by Lukaszewicz [15]. Inoue et al. [12] proved similar result for the magneto-micropolar fluid
system. Many authors obtained the well-posedness of the problem (1) in various function spaces.
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O
For instance in the Besov spaces Bp,q+" for p € [1,6) and g = oo, Chen and Miao [5] obtained
global well-posedness of the problem (1) for small initial data. Zhu and Zhao [21] proved that

3
the Cauchy problem (1) is locally well-posed in the Fourier-Besov spaces F B;:r; forl <p<oo
and 1 < g < o and globally well posed in these spaces with small initial data. Recently, Weipeng
Zhu [22] considered a critical case p = 1 and showed that this problem is locally well-posed in
F Bl’; for 1 < g <2, and is globally well-posed in these spaces with small initial data. Also, Zhu

proved the ill-posedness of (1) in F B;; for 2 < g < oo. In addition, by using a similar argument Zhu

established the ill-posedness of (1) in Besov spaces B;’Iq with 2 < g < oo. The well-posedness of a
more general model than (1) is established by Ferreira and Villamizar-Roa [9] in pseudo-measure
spaces. For the other studies of the problem (1), we refer to the monographs [6,16,17,20] .

We remark that if ¥ = 0 and ® = 0, then we have the classical Navier-Stokes equations:

u—puAu+ (uVu+Vp=0 (t,x) e RT xR3
V-u=0,
u(0,x) = up(x) x€R3,

The local and global well-posedness of the classical Navier-Stokes equations have been established
by a lot of researches in various function spaces, we refer to [13, 14] and references cited therein.

In the present paper, we show that the problem (1) is locally well-posed in Fourier-Besov-Morrey

spaces F Nﬁjq for 1 < g < oo, and globally well-posed in these spaces with small initial data.
Before stating the main result of this paper, we first recall the definitions of Morrey spaces, Besov-
Morrey spaces and Fourier-Besov-Morrey spaces and present some properties about these spaces.
Our results on well-posedness of solutions are stated in Section 3. In Section 4, we obtain the needed
linear and nonlinear estimates and we prove the well-posedness result.

ll.  GENERAL NOTATION

Before stating our main result, we shall introduce the notations used throughout this paper.

We denote by C a positive constant such that whose value may change with each appearance, x <y
means that there exists a positive constant such that x < Cy, we write (a,b) € X fora € X and b € X
and ||-||gnr = ||| +|-||F. The symbol § (R?) is the usual Schwartz space of infinitely differentiable
rapidly decreasing complex-valued functions on R3.

By ¢ we denote the Fourier transform of ¢ € § (R3) in the version

R 1 .
O(x) == Fo(x) = W/R? e lxé(P(&)dé, xeR3.
and we define its inverse Fourier transform by

0&) =7 0@ =0t [ Eowdx

For two complex or extended real-valued measurable functions f, g on R3, the convolution f * g
is given by

(fxg)(x) = /R3f(x—y)g(y)dy, forx e R?.

On the Well-Posedness for the 3-D Micropolar Fluid System in Critical Fourier-Besov-Morrey Spaces
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. PRELIMINARIES AND MAIN RESULTS

Let us introduce some basic knowledge on the Littlewood-Paley theory and Fourier-Besov-
Morrey spaces.

Let @,y be two radial positive functions such that supp(¢) C {§ € R®: 3 < €| < $} and supp(y) C

{EeR3: g <3}

e %(p(fj&) =1, forall&#0
i€
and
vE)+ Y 9(27%) =1 forall £ € R?.
We denote .
0;€) =0 (278), ;)= k;‘il(pk(é)
and -

hx)=F~'o(x), glx)=F "y(x).

We define the homogeneous dyadic blocks A; and S; for all u € §'(R?) as follows:

Aju:=F " (92778 F () =2% /]R h(27y) u(x—y)dy,

Sju= Y, Mf=F (W2 IO F (u) =2% /ng (27y) u(x—y)dy,

k<j—1

where A; = §; — S is a frequency projection to the annulus {|§| ~ 2/} and S; is a frequency to
the ball {|§] <2/1.

Then for any u € S'(R*)/P(R?) wehre P(R?) is the set of polynomials (See. [19] ) we have the
Littlewood-Paley decomposition:

u= ZAju and S‘ju: Z Ayu.
jez k<j—1

London Journal of Research in Science: Natural & Formal

By using the definition of A ; and S}, one easily obtains that
Aihu=0, if|j—kl>2
Aj (SkflfAku) :07 1f|]—k| 25
Now, we define the Morrey spaces M’ (R?) .

Definition 3.1. ( [22]) For 1 < p < 0,0 <A < 3, the Morrey space M} = M} (R?) is defined by
M3 (R?) = {f € L], (R%): | fllyg, < oo, where

On the Well-Posedness for the 3-D Micropolar Fluid System in Critical Fourier-Besov-Morrey Spaces
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£l = sup supr F 1l )

xg€R3 r>0

Remark 3.2. ([10])

1) The space M% equipped with the norm || - |2 is a Banach space.
P

2) If1<p1,p2,p3<oo, 0<Ap,A,A3 <3 with —
p
the Holder inequality

141 — MM
+ and p o + D then we have

3 3

£8lyzs < 1o gl
3) For1 <p<eand 0 <A <3,
@+ gl < [1elze 8l 2
forall € L' and g € M,’;

Lemma3 3. ([10]) Let 1 < py < p1 < 0,0 < Ap, A <3, 3/)?‘1 < % and let y be a multi-index. If

supp(f) C {|&| < A2/}, then there is a constant C > 0 independent of f and j such that

(3 M
, <, G)
P2

Then, we define the function spaces 9\@ » (R?).

Definition 3.4. ( [7]) (Homogeneous Besov-Morrey spaces) Let s € R,1 < p < +o0,1 < g < o0,
and 0 <A < 3. The space R3) is defined b R3) = {u czZ (R ullis (R <
p %x ( y%x ( (R%): | HN;M( )

oo}, where

/g
{ ) 2/‘”HA ”‘HM* , forg < oo,
”u”N[f‘x‘q(Rﬂ = jez

sup2/¢ "AjM’|M7~’ for g = oo,

JEZ P

with appropriate modifications made when g = oo. The space Z/(IR3) is the dual space of
Z(R?) = { feS®3): (3PF)(0) =0, for every multi-index [3} .

Definition 3.5. ([7]) (Homogeneous Fourier—Besov—Morrey spaces) Lets e R,O<A<3,1<p<
+o0, and 1 < g < +o0. The space ,‘7’9\[], g (R?) denotes the set of all u € Z' (R?) such that

1/q
k} < oo, 4)
17

Au‘

H"‘ngg\( 2q(R? :{Zzﬂp

JEZ

with appropriate modifications made when g = co.

Note that the space T 57@, 1.4 (R?) equipped with the norm (4) is a Banach space. Since M), = L?,

. . - 1 . .
we have ,‘F?\G,’O’q =FB),, 9—':7\[1 04 TB = B, and 9717\[17071 ="', where B;, is the Fourier-
Herz space, and ! is the Lei-Lin space.

Now, we give the definition of the mixed space-time spaces.
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Definition 3.6. ([7) Lets € R, 1 <p <o, 1 <g,p<o0,0<A<3andT € (0,00]. The space-time

norm is defined on u(,x) by
g 1/q
u(t,x . 5 = /4 AuH .
lee(, )] (0.1:79G,04) {Je% J Lp(o,T;M},)}

We denote by LP (0, T, F N;M) the set of distributions in ' (R x R?) /P(R?) with finite

H . ”LP(O.,T;TN;,M) norm.

We will use the next lemma to prove our main theorem.

Lemma 3.7. ( [22]) Let X be a Banach space, *B a continuous bilinear map from X x X to X, and
€ a positive real number such that

1
€< ——— with | B||:== sup |[|Bu,v)].
413 vl <1

For any y in the ball B(0,¢) (ie., with center 0 and radius € ) in X, then there exists a unique x in
B(0,2€) such that

x=y+B(x,x).

Below, we shall present our main result that establishes the local and global existence.

Theorem 3.8. Let g € [1,+o0, o€ (0,1) and 0 < X < 3.
Al

(1) For any initial data (up,®g) € _‘FNJM (R3) satisfying div ug = 0, there exists a positive T such
that the system (1) has a unique mild solution such that

(u,0) € LT <0,T;79\£?Xff, (R3)) nL™a <0,T;79§£?,xff, (R3)> :

- A—1
(2) There exists a positive constant € such that for any initial data (uy, o) € F Nuw (R3) satisfying
div ug = 0 and

10, @0) | <&,

FAh g (B)

the system (1) has a unique global mild solution such that

(u,0) € LT <o,oo;ﬂ&c?;f’; (R3)) nLra (o,oo; FA (Rs)) ,

Before proving our main result we will present the corresponding linear system of the nonlinear
system (1).

diu—Au—Vxmw=0

00— A®O+20—Vdivow—V xu =0,
divu =0,

(uam)‘t:() = (M070)()).

(&)

The solution operator of the above problem is denoted by the notation G(¢), i.e., for specified
initial data (1, o) in suitable function space, (i, )7 = G(t) (uo, )" is the unique solution of the
problem (5). The operator G(¢) has the following expression, as shown by a simple calculation:
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—

(GO)f)(E&) = MFE)  for f(x) = (fix), 2(x)

where
_ [ g B(&)
A= 5e) (EP+2)7+cE |
with
0 & & &2 Ei& &i&s
BE)=i| -& 0 & |andCE)=| && &> &¢&s
& & 0 €& && &

On the other hand, by applying the Leray projection P to both sides of the first equations of (1), one
can eliminate the pressure T and one check

ou—Au+Pu-Vu) - Vxw=0
00—A0+u-Vo+20—Vdivo—V xu=0
divu=0

(”7 w)'t:(} = (”070)0)7

(6)

where P=T + V(—A)_l div is the 3 x 3 matrix pseudo-differential operator in R® with the symbol

g
(5,1 e )i,j:l' We denote

and

- U @u ~ - PV -(u1®u
Ui®U; = ( u1®0)22 >, PV'(U1®U2)_< V-(§t11®0)22)) )

To solve system (6) it suffices to find the solution U of the following integral equations:
t ~
U(t) = G(t)Uy */ G(t—1)PV-(U®U)(t)dr. (7)
0

A solution of (7) is called a mild solution of (1).

IV.  PROOF OF MAIN RESULT

In this section, we will establish the local and global existence and uniqueness of solution for the
problem (1). For that, we prove some estimates for the semigroup G(-).

4.1 Linear estimates
Firstly we give the property of semigroup G(+).

Lemma 4.1. [9] Fort > 0 and |§| # 0. We have

e 2O < 8 i o720 = sup [l ®
fll<t
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Here || f|| = max; |a;| with || f|| = Zaivi,vl,vz, ..., Ve are the eigenvectors for A(E).
i=1
Next, we present the linear esimates for the semigroup G(-).

Lemma 4.2. Let g € [1,+0], 0 < A < 3. Then there exists a positive constant C such that

1G( )Uo|| idsL <C||Uo|| )

,?n,q

- e
forallt >0 and all Uy € FN(, 7.,

Proof. By Lemma 4.1, we have

1
e e D ] AUoH!@)

Lhgq icZ

P e [a,00]] ) ‘

1

1
q
S par e s
=/ 1
1
S L2l )
JEZL
S
Mg
This completes the proof of Lemma 4.2 . O

Lemma 4.3. Let g € [1,+o|, 0 <A <3, € (0;1) and T € (0,00]. Then there exists a positive
constant C = C(o) such that

< C||U e 10
Llia(OT??\[}"ﬂ( )>_ I O”.‘TN}f,x‘lq’ (19)

- A—1
forallt >0 and all Uy € TNIJM'

Proof. From Definition 3.6, it is easy to see that

IGOUN, e o7t o) = X 20| 7 (G AUO”’LQOTW)

LTEG (0135 N1 g (R°) jez

q
_ (Ata)j —tA(&)
= jeziz Jqu T[A Uo]‘ 2 (0TM)>

1
q
5 Z 2 (Ata) jg ” —122] Hf [A Uo} ’|M7“ Hq R )
JEZ LTEC (0,7) O
1
s gani sl ol )
jez. M
1
q
s gl )
=7/ !
<
S ||U0||7N7;}q

This completes the proof of Lemma 4.3 .
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4.2 Bilinear estimates and product laws

Lemma 4.4. Let T >0, s € R and p,q,y € [1;+] and 0 < A < 3. Then there exists a positive
constant C such that

t
|[et-vr@a] <an g
0 LYOT:F Ny 0.) LUOT:F N 5,)
L2
forall f € LY (0T FA, ;1 ).
Proof. By Young’s inequality, we obtain
t
|[ct-nrma|
0 LUOT;F N 5)
. 1 . q %
— Yo / e MO g [A;£] (1)dr
jez 0 LY(0.7:M%)
1
<C szqs /t —(t—1)2% ,‘F[A f] (T)’ dn q !
B U HEEIM oy

<c Yy 2/4(3—%) |17 [Aif] (O[], (O,T;M%)>
JeZ

<C|fll A
LY 0T F A V)

Mg

Which finish the proof. O

In the framework of homogeneous Fourier-Besov-Morrey spaces, we now gather an essential
multiplication estimates.

Lemma4.5. Let p,g € [1. 4], 0 <A <3, T € (0,400] and o € (0,1). Then there exists a positive
constant C such that

) <||u . v Al
D077y S Hw%w,r;mﬁi‘n” ”Lﬁm,r;mhi)

+ vl

v

LH%(O,TJN.KK%JH ! ”Lﬁ@sﬂﬂ"iﬁz) .

Proof. We introduce some notations about the standard localization operators. We set

uj:Aju, Sju: Z Aku, Aju: Z Aku, JEZ.
k<j-1 lk—j|<1

Bony’s decomposition for A;(uv) reads

Aj(uv): Z Aj(Sk,luAkv)—l— Z Aj(Sk,lvAku)—i— Z Aj(Akugjv)
lk—j|<4 k—jl<4 k>j=3

=h+bL+15.
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Then by the triangle inequalities, we have
1 1

q q
o (orgi ) S B2 + M,
| ”Ll (0,T:79\£1LM) o jgz Hip (0.7:M}) j)e:’z 2|l (0.7:M})

quH HIIUIVI
J€ )

=J1+h+ /5.

Y

The terms I; and I, are symmetrical. Using Young’s inequality and Holder’s inequality we have

2

Sk 1uAkv) ‘

< TGS
Lormy) — ‘<4

<2/
|k§’<4||Vk||Lm oMk 1<§'2” z||LW (072)

<t ¥l 2

|k—j|<4

L(0,r.m})

1
<2/t n 2(-lg ‘ 2/
SV L ISP S Ml LTRSS LI ¥

[k—jl<4 1<k—2 1<k—2
<2]}\. z(lk
<2 B2, g W, i
20(-‘1-}\. kzj —k)A i N
|k§’<4 [k IILM(OTMX) [Jul e o alT)
Taking ¢9—norm we get
Ji1 <||v L 2
0 e o a1 e sy
and in a similar way we obtain
D <l||lu L L .
el 2 0.7, Nﬁo;)ll vl 2 = 15T
To estimate I3 , let
I Z Ak/vAku Z AkuAk+k/V
\k’ k] =1
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First we use Young’s inequality (2) in Morrey spaces, and Lemma 3.3 with |y |= 0, to obtain

25 <2* ¥ ]
3 L1(0,1.m}) k;’ L1(0,1,0m})
<2/ x| 2 Vel 2
k>§’3|k/zk\’<l L1- “( M) L”“(OTU)
<2/ 2M 10|
k§ 3|kf%<1 e (0.1.) LT (0.} (12)

1

q
<2/t i T 2%l o
kZ]Zi3 1% Zk\<1 L (0.7.m}) LT (0.7.m})

S Cllv L 2 (Aa) kz)u( k) |uk Y
T (2 ESPR
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taking ¢¢—norm on both sides in the above estimate, we get

J3<| vl 2 a U] 2 : )
| HL]*“(O-,T;W\CT,A?;)” ”Lw(o,T;mﬁff,)

Which gives the result. O

Below, we shall prove our result.

4.3 Proof of Theorem 3.8

1) Let T > 0 and o € (0; 1) we define the space X{* as

2 - Ao 2 - A—o
X = {U :Ue LT <0,T;T.‘7\[M’q (R3)> NLT (O,T;T.‘?\CLM (R3)) }
and equipped with the following norm:

U [lxg=IlU |l L( g >+||U||

L1+ O,T;TNL)M{(Rg) Lﬁ <07T;IFN?,;»Z(R3)> .

For all U € X7 we define ¢(U) as follows
0(U) = G(r)Up — / "Gt — DBV - (UBU) (1), (13)
0

Our goal is to show that U is a fixed point of ¢.
Considering

B(U.U) = /0, G(t — )PV - (U, 3Us) (t)dx. (14)

vy |
Then, by Lemma 4.4, Lemma 4.5 and the embedding F NLM — F .‘7\[1,;%, we have

1 ~ ~
B(U.,U. a = /Gt—tPV-U Uy)(t)dt o
1800102 g =1, G0 —OPY - B0 o)

+ ||/0t G([ — T)l;V~ (U1®U2)(T)dTI|L1%a (O,T;TN?;Q (R3))

< ||PV-(U1<§~§U2)||L1(O_T?Nﬁ1 )
e g

< ||PV.(U1<§~§U2)||L1(0,TJH-\&K |
N A

<|U e || U e U o 1U e
SO s 192 e gty P10 ciaoragy) VO N oaoragisy
< Ci||Un[|xe || U2l xg-
(15)
Then, by (13) and (15), one concludes
[0(U)|xe < |G(1)Vollxg + Ci[|Utl|xe U2 ]| xg-
By Lemma 4.3 , we get
G Uyllxe < G ||U Al . 16
1G(1)Uol[xg < G| OHT?\C?J\L (16)
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Now, consider the norm ||G(7)Up|| xy - Using the given expression for G(r) and the definition of X7,
we can write:

1G()Vollxg = IG(1)Uol| e oy HIGOUl 2.

2 I
LT5a (0,17 A5 (RY) (0,75 Ay s (R3))

Now, let’s analyze each term separately. First, note that G(z) is a linear operator, so we can factor
out Uy from the norm:

G(1)U, e <O rre G(t
GOV 2, s o, < 100l e g 1G]

2 .
LTFE(0,T:F ) 3 4(R3 LTF0(0,T)

Similarly for the second term. Now, for sufficiently small 7, e A®) tends to I (the identity operator)
as t approaches 0. Therefore, for small 7, ||G(¢)|] 2 tends to 0.

L1+0(0,T)
Then ||G(t)U0HX% —0as T — 0, hence o # 1, and there exists T > 0 such that HG(t)UoHX% < ﬁ.

Using Lemma 3.7, system (1) admits a unique mild solution U € X7 with [|U|[xa < %

For 2) we replace X;* by X% and we get

| B(U1,U2) [lxe< C1||U1||xe[|U2]|xe- (17)
Then, by (16) and (17), one obtaines
[0(U)lxe <C2||Uoll, a1 +Cil|Ut]lxe||U2]|xe-
7Nl,h,q

Then, by applying Lemma 3.7 , with ”UOHTNK_I < ﬁ. Then, system (1) admits a unique global
1.Mq

mild solution U € X2 with ||U||xe < ﬁ This completes the proof of Theorem3.8 (2).
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ABSTRACT

This article analysed the order of difference of integral perfect powers of the set of even and odd
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|, INTRODUCTION

A perfect power is a number which has a rational root. Chase . An integral perfect power is the
irrational root that is an integer. A finite difference is a mathematical expression of the form, f (x + b)
— f(x + a) and a forward difference is of the form Ah [f] (x) = f(x + h) — f(x)=L

London Journal of Research in Science: Natural & Formal

In this article, an examination on the set of even numbers: {0, 2, 4, 6, 8, 10, 12, 14, 16, 18} and the set
of odd numbers: {1, 3, 5, 7, 9, 11, 13, 15, 17, 19} reveals that the first difference of the square of
consecutive elements of both the set of even and odd numbers is even. The second difference of the
two distinct sets is {8, 8, 8, 8, 8, 8, 8, 8, 8} = {8}, a singleton set.

Clearly, the third difference is {0}. The emerging pattern motivates the investigation of whether or
not this pattern persists for all perfect squares of elements of even and odd sets, resulting from
integers. In their contribution in Exponential Diophantine Equations, Shorey and Tijdeman's!
investigated perfect powers at integral values of a polynomial with rational integer coefficients and
obtain in particular the following.

Let f(x) be a polynomial with rational coefficients and with at least two simple rational zeros.

Suppose b # 0, m > 0, x and y with |y| > 1 are rational integers. Then the equation f(x) = by™ implies
that m is bounded by a computable number depending only on b and f. Also, in their contribution in
the difference of perfect powers of integers, Ladan, Ukwu and Apine'# investigated order of integral
perfect powers and proved that “if any number of consecutive integers are raised to a positive integral
power k, then the k' difference is equal to k!

(© 2024 Great Britain Journals Press Volume 24 | Issue 10 | Compilation 1.0
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More generally, the question at the heart of the matter is the following. What is the computational
disposition of the orders of difference of integral perfect powers of successive elements of set of even
and odd numbers? The Review of Literature shows that no such investigation has been undertaken.
Thus, this article adds to the existing body of knowledge, by providing answers to the above question.

ll. METHODS

2.1  Preliminary Definitions

In what follows, the difference of finite order will be defined.
2.1.1 Difference of Order One (1)

Given a sequence {Uj}oo , define the difference of order one at j with respect to the sequence by:
j=0

A(Uj) = Uj;1 — Uj, for every integral j.

2.1.2 Higher Order Difference
Higher difference can be defined recursively by:
AK(U)) = A A(U;) = 4%t A(U) = AR U, — U fork= 2.
. RESULTS AND DISCUSSION
31 Preliminary Theorem
Suppose that U; = j and U; = j, for integral j.

Let «; Uj = o j be the set of even numbers and «; Uj + B; =%; j + B; be the set of odd
numbers.

Where ;=2 fixed, j =0, B = 1, fixed.
Then,
D1 A U]-)2 =u? (odd) for even case
D, Al T+ B)Z =u? (even) for odd case
() A% Uy)" = A2(c 0+ B)" = 8= 22(21)
(i) A%(eq; U)* = A%(o; U, +B;)° = 0,k e (3,4,....}

Proof:

Case 1. (even)

Let (o U;)?_o=(cx; j)?0 = {0,2,4,6,8,10,12, 14, 16,18}

An Investigation into the Order of Integral Powers of Consecutive Elements of Set of Even and Odd Numbers
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Then, the table below display the values of A¥(; U)® for selected values of k and P in
the set {0, 1, 2, 3} and {1, 2} respectively when A°(; Uj)pz (e Uj)p.

Table I: Difference Order Table for Selected Consecutive Positive Integers.

1 N\ 2 \2 2 2\ 2 3 2\ 2
W ) | alg) | ae) | A=)
0 0 4 8 o
2 4 12 8 0
4 16 20 8 o
6 36 28 8 o
8 64 36 8 o
10 100 44 8 o
12 144 52 8 o)
14 196 60 8 o
16 256 68 8
18 324

Itis clear that AX(c j)2 =0,forallk =3, j={0,2,4,6,8, 10,12, 14, 16, 18}.
Obviously the theorem is valid for j = 0 as observed from columns 4 and 5.

Case II. (odd)
Let (o¢;+ B);-, = {1,3,5,7,9,11,13,15,17,19}.

Then the table below displayed the values of Ak(ocj+ Bj)pfor selected values of k and
p in the set {0, 1, 2, 3} and {1, 2} respectively when A°(e; j + Bj)p= (o) + Bj)p.

Table II: Difference Order table for selected Consecutive Positive Integers

1 1 8 8 0]
3 9 16 8 0
5 25 24 8 0
7 49 32 8 0
9 81 40 8 0
11 121 48 8 0]
13 169 56 8 0
15 225 64 8

17 289 72
19 361

Similarly, it is clear that Ak(oc]- ﬁj + B]-) =0, forallk>3, ¢+ B={1,3,57,9, 11, 13,
15,17, 19}. The theorem is valid as observed from column 4 and 5.

The proof of (i), (ii) and (iii) are direct.

An Investigation into the Order of Integral Powers of Consecutive Elements of Set of Even and Odd Numbers
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(11) U] =j = X U] = o(] = (OC Uj)2= oc2 j2
> (22 =o? A2 =o? [(+ 1) — 2] = o2 [ + 2j + 1 — 7]
=oc? (2j + 1) = < (odd) = even.

0+ B)"=(U;+ B)"=(e;)"+ 2e¢ B; + B

Al T+ B)) = A(o? 2 + 2 < By + B2)
= o Aj* + 2 « BA; + B2
=o? [+ 1)? —j?] + 2 B[G+ 1) —j] + O
=o? (P+2j+1—-j)+2x B (1)
=oc? (2j+1) + 2 B
= 20¢? j+ oc? + 2 B
=oc? (2j+1) + 2 B

= A« G]-+B]-)2:0C2 (2j + 1) + 2 B = even

Foreveryj=20,x=2,5=1.

()  A2(eccUp)’  =A(Ax D)’ = Al? (2 + 1]
= A(2 oc? j+oc?) =2 o Aj + Acc?
=2 «? [G+1)—j]l+0
=2 o2 (1) =2 oc?

> A2(xU)" =202

Similarly:

A« T+ B)° =A[A(x+ B)?]
=Aloc? (2 +1) + 2 « B]
=A[2 o j 4 o2+ 2 o B]

An Investigation into the Order of Integral Powers of Consecutive Elements of Set of Even and Odd Numbers
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=2 oc? Aj + Ao+ 2Ax B
=2 [G+1)—jl+0+0
=2 o?(1) =2 «?
= A?( U; +B) =2 oc?
= A%(o U;)’= A2(ox T; + B)= 2 o2 proving (ii)
The principle of mathematical induction is needed in the proof of (iii).
Fork = 3, A3(x; U;)* = A3(ec )% = A[A%(x )?] = A2 o2) = 0
. = 2 . .
Similarly, A%(oc U + B)" = A3(ec j + B)?= A[A% (o j + B)?] = A2 x?) = 0
Consequently, A¥( Uj)z = AK3[A3 (¢ j)?] = A*3(0) = 0
and A¥(cc T + B) = AK3[A% (e j + B)2] = AK3(0) = 0
proving Ak(oc U]-)2 = Ak(oc Uj + B)Z = 0, for all positive integer k = 3. This
established the proof of (iii).

Thus, we have seen clearly that:

Theorem3.1=>  A(«x U]-)2 and A(o 0 + B)Z ATE EVEIN .ot st ene e (i)
A%(o U))* and A2(oc T + B)” = o? (21), 0= 2 wovcervciemes (i)
A3(oc U))” and 23 (o T; + B)* = 0 #K 2 3 oo (iii)

In the sequel, we examine the computational disposition of Ak(oc U]-)pand

for every integral j and positive integral k and p. The results are summarized as in the
following theorem.

3.2 Main Theorem
Let x Uj = «j and ﬁj + B = «j+ B, where j is any integer. Then for arbitrary
positive integer k and p, A¥( o U]-)pand A%(oc U + B)" is given by:
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(0, ifk>p (a)

p
(Ii))ji, fork = 1 (b)
A (c U))” = A T; +8)°{ 1=
oK k!, ifk=p (©)
even, forp =21 (d)
\ even, for2<k<p (e)

3.21 Proof of (a)
A%(oc Up) = A(Ae ) = Aloc AG] = A[(G + 1) — )]
=Alx (1)] =A(x) =0
Similarly,
A%(oc U + B) = A[A(x j + B)] = Aloc Aj + AB]
=Afec (G + 1) =] = Alec (1)]
=A(x)=0
= A*(«cU))  =A%(cUj+B) =0.
So (a) is valid for k = 2 and p = 1, which are the least values for the respective
exponents. Assume that (a) is valid for all pairs of integers k, p for whichk +p <k +p

for some positive integers k and p such thatp =1, k=2, p <k.

Then A¥(ex U;)” = A[a¥(« U; + B)°] = A(0) = 0

and A1 (o Uj + B) = A[A¥ (e U; + B)] = A(0) = 0

(by induction hypothesis hypothesis) = 0. Therefore, the validity of (a) is established.

3.2.2 Proof of (b)

p p-1
G+or=) (D)= ) (Di+()r
1=1 - 1=1
=  (+DP-jP= Z (1?)1'i proving (b)
i=1

An Investigation into the Order of Integral Powers of Consecutive Elements of Set of Even and Odd Numbers
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> A ) = e (a07) = o2 ) (55

p-1 p-1
and (U +B)" = Y (D) @prt = w0 Y (D)1

Observe that, since § = 1, implies that:

p-1 p-1
@iepr = () eprip =y (7) er

For simplicity of complexity of the odd form, we can logically express it as a single
form with respect to even form, since they have same characteristic structures.

Claim that proof of even case is necessary and sufficient for the proof of the odd case.
Considering the even form for the remaining part of the proof - proof even & proof
of odd.

We have that:

(e 0 = (w0 U7) =0 (407) = (8
= [+ 1P -P] = o« ) (D)

i=1

3.2.3 Proof of (c)

London Journal of Research in Science: Natural & Formal

We examine AX(oc Uj)p k=1
= (cU))=c (@)= (+1—]) = (1) = o= 2!
k=2,02(xU)" =02 A2U7 = Aoc® (A7) = o A + 1)* — 2]
=2 A(P+2j+1—-j3) =x2AQ2j+ 1)
=2 A(2j + 1)
=2 o2 Aj + Aoc?
=202 (j+1-))=0
=2 o?=o? 21 = 22.2!

= A%(o Uy)” = 22(o T + B) = o? 21 = 22.21 = 8,
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by (ii) of theorem 3.1 = the theorem is valid for k € {1, 2}. Assume the validity of the
theorem for k € {3,..,q} for some integer q = 4. Then A?(x1Uj%) = x9q! =
Al(x? Uj9) = «9 (x9 Uj9) = «9q!

by induction hypothesis. Finally, we need to prove that:

AT+ (*1 [Jja*1) = oc9+1 (q + 1)!

Claim A" is reproductive. Reproductive is understood to mean the following:

n n

Arz &; gi(x) = z &; Ar(g]-(x))

=1 =1
Where o; are arbitrary constants.
3.2.4 Proof of Claim
: ~ ki o ok
Consider A"(&; U;* +&;, U;?),r = {1,2.....}.
~ ki s ik ~ ki o K
forr=1,A(&, Uj' +&; U;?) = A(&; U* +&; U;?
=&, (j+105 +&, + K% —&, U - &, U.°
~ [, -k ~ T .k
=&y [Go + D =it ] + & [G2 + D2 = 7]
~ K - -k
=& A(j;) + &2 A()*)
=&, A(UM) + &, A(Ujk)
= Ais areproductive = the claim is valid for 2 <r < t, for some integer t > 3.
~ ki o ik - k - k
Then AY(&, U™ +&, U;?) = & AY(U;") +&, A*(U;?)
Finally,
~ ki o ik ~ ki o ok
A (&, Ut +&, Uj?) = AT[A(&, U +&; U?)]
~ Ky | o Kk 2~ K - Kk
= AY(&, AU +&; AU;?) = &, AY(AU;T) +&, AY(AU;?)
(by induction hypothesis)
~ K -~ k
=&, At+1(U]-11) +&, At+1(U]-22)
So the theorem is valid for r = t+1 and hence valid for all positive integer r.
NOW, Aq+1(ocq+1 qu+1) — Aq[ocq+1 A(qu+1)]
= A[oc®*t ((j + DI = j9T )]
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Therefore, AX(ock Ujk) = oK kI
For every positive integer k, proving (c).

3.25 Proof of (d)
Al )" = oP [ + 1P — ]

D [(: p_ i _ [even —even = even for even case
= o 1G+1) i { odd — odd = odd for odd case

So in all cases A(oc U]-)p and A(oc ﬁj + B)pare even, proving (d).

3.2.6 Proof of (e)
Consider Ak(oc U]-)p fork= 2,k <p.Ifk =2, then the conditionk<p = p = 3.

A?(ec Up)"= A[A (e Up)”]
p—1
=P A (11)) i | = A (an even)from (a)and (b)
i=1
= ocP A[( + 1P —jP] = [A[G + 1)P] = A[P]] P
(by the reproductive property.
=oP [G+2)P -G+ 1) — [+ 1P —jr]]

even — even + even = even (for even case)

= ocP [(G P _ 2( P_ipl =
<P 1G+2)P =2+ 1P — 7] {even — even + even = even (for odd case)
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So in all cases, Az(oc U]-)p and Az(oc ﬁj + B)p is even forp = 2.
Assume the validity of (e) for all positive integer k and p such that k + p < m, for some

positive integer m.

Then
A (o Uy)° = Ak(A(e U)")
= A¥ocP [[( 4+ 2)P — 2( + 1)P +jP]]
= A%ocP [+ 2)P] — 28K[( + 1)P] + AX[P] |

(by the reproductive property of AK)

(Ak (uh,) — 28k (UP,, ) + A% (Ulp)) *

= even — even + even = even.

= o® AK[UP,,| —20P AK [UP

fua] e 4 [u7]

Finally, we examine:

Ak(OC U]')p+1.

AR (o U))P = AR (o PHE = ARI[ACec )P+
— Ak_l[O(p+1 (] + 1)p+1 _ 2(] 1+ 1)p+1 1+ jp+1]

_ pk-1 [Ocp+1 [U]_P+2] _ 9 P+l pk-1 [U]_p++11] pocPH1 pk-1 [Ujp+1”

= even - even + even = even.
(by the induction hypothesis). Sincek-1+p+1=k+p<m.
This completes the proof, that is the relation (e) hold for all +ve integers k and p for

which k < p, k 2 2. Thus, the theorem is established.

3.3 Corollary
For any integer j and for any positive integer k.

In other words, for any set of even and odd integers (o« U; and « ﬁj + 3), the kth

order difference of the kth power of any integers is equal to 2kk!

An Investigation into the Order of Integral Powers of Consecutive Elements of Set of Even and Odd Numbers

Volume 24 | Issue 10 | Compilation 1.0 © 2024 Great Britain Journals Press



The implication of (c) in theorem 3.2 is the following: “if any number of consecutive
even or odd integers are raised to a positive integral power k, then the kt order

difference is equal to 2kk!

34 Remarks
The existence of the triddle between the difference operator A and the D operator

(differential operator).
DX(xP) = 0ifk>p
DX¥(x¥) = k!

DX (ock xk) =ock k!

The coefficient of xP~K in D¥(xP):

DK(xP) = (pi)lxp_k fork > 2,k <p iseven.
p
= P DK(xP) = (E_i!),xp_k,Z <k<p iseven

V. CONCLUSION

This article established the structures of finite orders with respect to powers of consecutive elements
of even and odd sets. Specifically, the results reveal a similarity between the difference orders and the
D operator powers of monomials with positive integral powers as reflected in (a) and (c) of theorem
3.2 and (I) and (II) of remark 3.4.
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G. A. Grigorian

ABSTRACT

The method of comparing the solutions of a system of linear equations with solutions of such a
system with piecewise constant coecients (the discrete ordinates method) and Rtccati equation
method is used for estimating solutions of systems of two rst order linear equations. Two
principal (essentially dierent) cases have been considered, for which some explicit estimates in
terms of coecients of linear systems have been obtained. By examples the obtained results are
compared with the results obtained by methods of Liapunov, Yu. S. Bogdanov, T. Wazevski,
estimates of solutions by logarithmic norm of S. M. Lozinski and the method of freezing.

Keywords. systems of equations with piecewise constant coecients, the Riccati equation, normal
and extremal solutions, main, nonprincipal and ordinary solutions of the system, the theorem of
Wazevski.

l. INTRODUCTION

Let a;,(t) (j,k = 1,2) be complex-valued continuous functions on the interval [ty, +00).
Consider the system

¢'(t) = ann(t)o(t) + ar(t)P(t);
V'(t) = asi (t)p(t) + azz(t)(t),

—
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(1.1)

t > to. Study of the question of stability of solutions of differential equations and systems of
differential equations, in particular of system (1.1), is an important problem of qualitative
theory of differential equations and many works are devoted to it (see [1], [2] and cited
works therein |3 - 10]). The fundamental theorem of R. Bellman (see [2]|, pp. 168, 169)
reduces the study of boundedness of solutions of wide class of nonlinear systems to the
study of stability of linear systems of differential equations. Many problems of mechanics,
physics and other natural sciences are connected with the study of stability of the linear
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systems of differential equations (in particular of the linear differential equations) too
(see for example [6,7]). One of ways to study the mentioned above question is the use of
different methods of estimations of solutions of systems of being studied equations (see

[4])-

In this paper some estimates of solutions of the system (1.1) in terms of its coefficients
are obtained. To obtain them it was used the method of approximation of solutions of
(1.1) by solutions of system with piecewise constant coefficients (the discrete ordinates
method).

t t
Denote: P(t) = ais(t) exp{f[agg(T) - an(T)]dT}, Q(t) = an(t) exp{f[an(ﬂ —
to to
aga (T )}dr}. In this article we will study the following two principal cases:

A) P(t) >0, Qt) <0, t>to;
B) P(t)>0, Q) >0, t>t

(the case P(t) < 0, Q(t) >0, t > tg, is similar to the case A), and the case P(t) < 0,
Q(t) < 0, t > tg, is reducible to the case B) by the simple substitution ¢(t) — —¢(t)).
The case A) can be geometrically interpreted as a case, when the origin of coordinates
of phase plane of variables u, v is a "center” or a "focus” and the case B) as a a "saddle”
with respect to the curves {(u(t),v(t))}, t > to, where {(u(t),v(t))} are the solutions of
the system

(1.2)

t > to. On examples the obtained results are compared with the results obtained by
methods of Liapunov, Yu. S. Bogdanov, T. Wazevski, estimates of solutions by logarithmic
norm of S. M. Lozinski and of freezing.

. AUXILIARY PROPOSITIONS

Lemma 2.1. For each solution (¢(t),1(t)) of the system (1.1) and for each € > 0 and
t1 > to there exists piecewise constant functions aji, t > to, j,k = 1,2, such, that the

solutions (¢(t), (t)) of the system

¢'(t) = an(t)o(t) + arn(t)P(t);
V() = Qo1 (t)p(t) + ana(t)Y(t),

(2.0)
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t > to. with bto) = dlto), W(to) = w(to) satisfy the inequalities: |p(t1) — (t1)] < e,
[W(t) — ()| <e.

The proof of this lemma is not difficult, and we omit it.

Remark 2.1. By a solution of the system (2.0) we will mean a pair of absolutely
continuous functions ¢(t) and Y(t), satisfying (2.0) almost everywhere on [ty, +00).

Let to < t; < ... <t, < ... be a finite or infinite sequens, and let p(t) = p; > 0, q(t) =
=q; >0, t€[tj;tjt1), 7=0,1,2,.... Consider the Cauchy problem

u'(t) = p(t)o(t);
V(1) = ~(yu(t); (2.1)
u(to) = uo); v(to) = v (),

t > to. Any solution of this system we will seek in the form

u(t) = Ajsin(y/Iit +w;),  o(t) = Aj/hycos(VIit +w;),  tE [t ti1), (2:2)

where l; = p;q;, h; = % and Aj;, w; are the sought constants, j =0, 1,2, .... By virtue of
J

initial conditions of problem (2.1) the unknowns Ay and wy we determine by solving the

system

Ay sin(\/Eto + wo) = U(0);

London Journal of Research in Science: Natural & Formal

(2.3)
Aov'ho COS(\/Eto + wo) = V(0)»
and the remaining unknowns by successive solving of the systems
Aj+1 Sin( lj+1tj+1 + UJj.H) = Aj Sin(\/Eth + (JJ]');
(2.4)
Ajiy/hjsrcos(Viatin + win) = Aj/hy cos (It + w)),
j=1,2,..... From (2.3) it follows
2
Yo
Ag =1y + h(—; (2.5)

Denote: Q; = \/l_jtj—i-l + Wy, 6]‘ = lj+1tj+1 + Wi+t1, j = O, 172, .... From (24) it is easy
to derive the equalities:

B+ i By =y

hy+his | Dyt =
2N 2hj 41

2h; 2h,

A?H - AJQ. CoS 204]} , A? = A?H [ J cos 253} )
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7 =20,1,2,.... From here it follows

J

h.
451 < 1Aj] < 4 h,j |Aj| - for hy =y (2.7)
j+1

j=0,1,2,.... From (2.2) it follows:

h;
[Aja| < [4;] < ;;1 [Ajra]  for hy < hjps (2.6)

1
u2(t)ﬁ +0%(t) = A3, teltytiz), 1=0,1,2,... (2.8)

J

Let the initial values u () and v be real. Then u(t) and v(t) will be real valued. Therefore,
from (2.8) we will have:

min{1, hj} A3 < u?(t) + 0*(t) < max{1,h;} A%, t € [t;,t;1), (2.9)
where h; = %, j=0,1,2,....

Definition 2.1. We shall say, that a continuous on the interval [to; +00) function
f(t) belongs to the class C. = C.[to, +00), if there exists an infinitely large sequence
Eo =t <& < ... <&, < ...such, that f(t) is a nondecreasing on the interval [£a,,, £2541]
and nonincreasing on the interval [£3,11,&2,42] function, n = 0,1,2,.... The numbers
&n, m=0,1,2, ... we shall call points of possible extremums of the function f(¢).

Let S(t) € C., and let &,, n=0,1,2,... be the points of possible extremums of S(t).
Note, that if &o,11 = a2, n = 0,1,2,..., then S(¢) is a nondecreasing function and if
Eon = &ont1, n =0,1,2 ..., then S(t) is a nonincreasing function. Let S(t) > 0, t > to.
Consider the functions

(1, t € [£o; &l

S
e, te & &l

rs(t)

Il
ol
==

nn
K
o
= |
=

t € [Son;onpa), n=1,2,..;

n—1
S(é2k-1) S(&2n—1) . _
VSV '€ il =23,
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(

S

S t € [§os &1l

S
T;@) = H (5252:1 te [§2n+1; £2n+2], n = 0, 1, e
n—1
S(€ak-1) S(t) . B

K |:k1;[9 \/ S(ZI;k)l :| \/S(£2n)7 t € [6271? €2n+1]7 n = 1, 2, ceey

)dT}, n=012,..

t
Let S(t) be absolutely continuous. Then % = exp{—%g [ =L
2n-+4

&k,
sészk_l) _ exp{_% s (T)dv}, k=1,2,... Therefore

rs(t) :exp{%/tsg%g)m}’ t > to, (2.10)

{ —S(t), if exists S'(t) > 0;

where S(_)(t) 0, otherwise,

t > to. By analogy it shows, that

r(t) ZGXP{%/tSE;()T()T)dT}, t > t, (2.11)

to

S(t), if exists S'(t) > 0;
0, 0therw1se

= S(H(t) + S )(t) in all the points of existence of S'(t). From here,
11)

t > to. It is clear that S'(t) = S(,,(t) —

London Journal of Research in Science: Natural & Formal

where S, ()z{
|

(o), [5°(t)

from (2 10) and (2. 1t follows

TS(t):“%exp{i |g<(77__>)|d7'}, > 1o, (2.12)
g(t)—“g((;))exp{i ’gg))’df}, t > to, (2.13)
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Let p(t) and ¢(t) be positive and continuous functions on the interval [to; +00). Consider
the system of equations

w'(t) = p(t)v(t);
(2.14)
v'(t) = —q(t)u(t),
t > to. Let us introduce some notations, necessary in the sequel: h(t) = Z(—g, hi(t) = 8,
g9(t) = min{{/h(t), \/4 ha(t)}, G(t) = max{y/h(t), Va()}, |[(x(t),y@)[ =
= ]z(t)]2+ [y(t)]?, = exp{ f ‘Z(T |d7} t > to, where x(t) and y(t) are continu-

ous functions on the interval [ty; +00), z(¢) is a absolutely continuous and positive function
on the interval [ty; +00) with locally finite variation.

Lemma 2.2. Let h(t) be an absolutely continuous function with locally finite variation.
Then for every solution (u(t),v(t)) of the system (2.14) the following inequalities hold:

T u(to), ot < I1((0), ()| < Gl)G O (wlto), o(to))lra(t), (2.15)

t> 1.

Proof. Let us consider first the case, when h(t) has the additional property: h(t) € C..
Let (uo(t),vo(t)) be a nontrivial real valued solution of the system (2.14), and let & =
to < & < ... <&, < ... be the possible extremums of the function h(t). Let ¢;(> to) and

£(> 0) be fixed. By virtue of Lemma 2.1 there exist piecewise constant functions p(t) and
q(t) such, that the solution (u(t),v(t)) of the system

t > to, with u(tg) = uo(to), v(to) = vo(to) satisfies the inequalities:

|’Zj(t1) - Uo(tl)l S g, ‘5@1) - Uo(t1)| S £. (216)

Without loss of generality we will assume that p(fk) = p(&), q(&) = q(&), k= 0,1,

L p(t) = p(t), qt) = q(ty); p(t) > 0, q(t) > 0, t > to; the function ? is

nondecreasing on the intervals [€x, &2x11] and nonincreasing on the intervals [{ox41, Eoxr2),
k=0,1,2,.... Then by (2.5) - (2.7), (2.9) the following inequalities hold

91(to)g1(t1)!|(uo(to), vo(to))l| ZE%; < |[(u(ty), v(t)|] < G1(to)G1(t1)|[(uo(to), vo(to))l],
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ift; € [0, &l

h(&o)
h(t1)

< Gl(to)Gl(tl)H(Uo(to)aUo(to))H\/ Ziiza if €[, 6]

1{t0)gn (12 (uo(t) o) | [H h’éf))] \/ e < i) sl <

91(to)g1(t1)|[(uo(to), vo(to))] < [[(u(t), v(t)]| <

< Gh(to) G ()| (uo(to), vo(to))I T | h}(jzz;)l)’ if t € [&on, Cnn], n=1,2,.;
k=1
h(&ar)

< |J(u(ty), v(t)[| <

91(to)g1(t1)|[(uo(to), vo(to))ll H h(&ak+1)

< Gilt0) G (11t vt [ﬂ, J ZEE;] \/ !

n =1,2,..., where g;(t) = min{1, \/hi(t)}, Gi1(t) = max{l,\/hi(t)}, t > to. It follows

from here, that

g1(to)g1(t1)||(uo(to), vo(to))l|
ry (t1)

< [[(u(t), v(t)]] <

London Journal of Research in Science: Natural & Formal

< Gi(to)Gi(t)|] (uo(to), vo(to))l|r, (tr)- (2.17)

By analogy (making the substitution w(t) — —u(t), interchanging p(t) and ¢(¢), as well
as interchanging u(t) and v(t)) we come to the inequalities

92(to)ga(t1)||(uo(to), vo(to))|l
ry (t)

< [[(u(t2), o(t))I] <

< Ga(to)Ga(t1)|[(uo(to), vo(to)) |7, (£1),
where ¢o(t) = min{l,\/h(t)}, Ga(t) = max{1l,\/h(t)}, t > tyo. From here and from
(2.17) we obtain:

\/91(t0>91(t1)92(t0)92(t1>

ry (t)ry (t)

[1(uo(to), vo(to))|] < [[(u(ta), o(t1)[] <
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<V Gi(to)Gi(t1)Ga(to) Ga(tr)]| (uo(to), volto)) ||/, (t)ry, (t1).  (2.18)
Obviously,

gi()ga(t) = g*(t), Gi(t)Ga(t) = G*(t),  t >to. (2.19)

Note (due to (2.12) and (2.13)), that r; (t) = r;f(t), ¢ > to. Then rj (t1)ri (t1) = ri(t1).
From here, from (2.18) and (2.19) we obtain:

g(t0)g(t)ll(uolto). voltoDIl |

), ()| <
rh(tl) 1 ( 1)||
< G(to)G(t1)|[(uo(to), vo(to))||rn(t1)-
From here and from (2.16) it follows:

9lto) gl Cuolto), bl /5 < 1ot wo(t)]] <

’f‘h(tl)

< G(to)G(t1)||(uo(to), volto))|rn(tr)+v 2.

By the arbitrariness of (> 0) from here we will have:

g(to)g(t1)|](uo(to), vo(to))l

’I"h(tl)

< [I(uo(t), vo(t1)]] <
< G(to) G ()] (uo(to), volto))[Ira(ty).  (2.20)
Let (u(t),v(t)) be an arbitrary (complex) solution of the system (2.14). Since (u(t),v(t)) =

= (u1(t),v1(t)) + i(ua(t), va(t)), where (u;(t),v;(t)), (j =1,2) are some real solutions of
the system (2.14), by (2.20) we will get:

jotolatu) | Z (u5(10), (1) ”2<21H“a (t). vy () <

< [G(to)G(ty)rn(ty)]? i 1w (to), v; (to)) |-

=1
Taking into account the equality ||(u(t),v(t))|]* = Z [|(w; (£),v;()]]?, t > tog, from here

we will have:

9llo)g(t)ll(utto). ooDIl ) 01,). w(tr)]] < Glt) 0] ulto). wlto))Iralty).

rr(t1)
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By virtue of arbitrariness of t;(> to) from here it follows (2.15). Thus, we have proved
(2.15) under the additional assumption h(t) € C.. Let us prove it in the general case.
Let Ac[to; T] be the space of absolutely continuous functions f(¢) of finite variation on

T

the interval [to; 7] with the norm || f(¢)|| = max, |f@®)]+ [|f'(T)|dr. Obviously the set of
t€|to; to

rational functions is everywhere dense in Ax[t, T|. In view of this we choose polynomials

p1(t) and ¢i1(t) such, that p1(t) > 0, ¢ (t) > 0, t > to, and such, that for each fixed

t1 € (to,T] and e(> 0) the following inequalities hold

‘g(to)g(tl) g(to)g(t1)
ru(th) ry(t1)

<« ‘G(to)G(tl)rh(tl) - é(to)é(tl)ﬁ(tl)‘ <e o (221)

where g(t) = min{%, m}’ é(t) = max{f/%, M}’ E(t) = fﬁ%,

hi(t) =289 ¢ > ¢ as well as (by Lemma 2.1) the following inequalities hold

lu(ty) — u(ty)| <e, lv(ty) —o(ty)| < e, (2.22)

where (u(t),v(t)) is the solution of the system

t > to, with u(ty) = u(ty), u(ty) = u(ty). Since obviously E(t)][to;Jroo) € C., by already
proven

AT XD < ). 500 < Gl o) 00D 1)

From here, from (2.21) and (2.22) it follows

London Journal of Research in Science: Natural & Formal

glto)g(t)lltutto), W0l /54 uto), wlta))l e < Il(u(tr), vt <

T’h(tl)

< G(to)G(t1)l|(ulto), v(to))lra(t) + [V2 + [[(ulto), v(to))|[Je.

By virtue of arbitrariness of ¢; € (to; T], T(> to) and (> 0) from here it follows (2.15).
The lemma is proved.
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Let us consider the Cauchy problem

v'(t) = q(t)u(t); (2.23)
u(ty) = U(0), v(to) = V(0),
t > to. Its solution we will seek in the form
u(t) = Ajy/b; exp{\/ljt} + Bjy/p; exp{—+/I;t};
v(t) = Aj /g5 exp{\/lit} — B; /@ exp{—+/1jt},

(2.24)

teltyitiv1), j=0,1,2,.... The unknowns Ay and By we can find by solving the system

Ao/Do exp{vIot)o} + Boy/Do exp{—vloto} = u(o)
(2.25)

Ao\/%exp{\/%to} — Bo\/%exp{—\/%to} = V(0)

and the remaining unknowns A;, B;(j = 1,2,...) we can find by successive solving the
systems

Ay /i exp{y/lit;} + Byy/bj exp{—/Ijt;} = u(ty)
A; /T exp{\/Iit;} — B; /35 exp{—+/1;t;} = v(t;)

7 =1,2,.... We have:

)G o)y _ult)VEG ) VE e
A= N exp{—+/1;t;}, Bj= N p{—/1jt;}.

From here, from (2.24) and (2.25) it follows

ult) = u(t;) ch{\/I;(t — t;)} + vt \/Esh{\/‘t—t

(2.26)
t;) ch{\/L;(t — t;)} + u(t; ,/q] sh{/L;(t —
t € [tj;tjv1), j=0,1,2,.... From here it is easy to derive the equalities
Vazu(t) + v/ro(t) = [Vagulty) + /pyo(t)] exp{y/I;(t - t€[tyitin), (2.27)
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7 =20,1,.... From here it follows

h.
z ! \/pj?f(tj)> X
j+1

x ch{\/l;(tj1 — 1)} +< \/ h]i qu(t;) + pj”(%’)) shi{y/L(tj1 — tj)}] , (2.28)

J=0,1,2,.... Let u(ty) >0, v(ty) >0, u(te)®+ v(tp)? # 0. Then from (2.26) it follows
that

Vairu(tj)+y/pirv(ti) = \/% [(\/Q_J“(ta) +

u(t) >0, () >0, t>t. (2.29)

From here, from (2.27) and (2.28) we get

7
\ Jqﬂ[ Gru(ty) + /pot;)] exp{/1;(tis1—t;)} < Vamutis)Hy/Prmv(tie) <
J

p<
< —;jl[ qiu(ty) + po(t)] exp{\/li(t;1 — t;)}, (2.30)
J

for h]’ Z hj+17 ] = O7 1, ...and

Pj+1
pj

[ qju(ty) + /pjo(t ] eXp{\/_ (tjr1—t)} < V@ru(tj)+y/Piv(t) <

<, /q;—jl [Vaju(t;) + /go(t }exp{\/_ (tjs1 — (2.31)

for h; < hjy1, j=0,1,.... Let us consider the system

London Journal of Research in Science: Natural & Formal

u(t) = p(t)o(t);
v'(t) = q(t)u(t),
t > to. Denote: e(t) = exp{tft \/p(T)q(T)dT}, t > to.

Lemma 2.3. Let h(t) be absolutely continuous and has a local finite variation. Then
for each solution (u(t),v(t)) of the system (2.32) with u(ty) > 0, v(ty) > 0 the following
inequalities hold

(2.32)

< VaWu(t) + /p(b(t) < )“_w), L2 1, (233)
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where d(u,v) = \/q(to)u(to) + +/p(to)v(to)-

Proof. We prove the lemma only in the particular case when h(t) € C. The proof in
the general case by analogy of the last part of the proof of Lemma 2.2. Let (> 0) and
t1(> to) be fixed, and let { = to < & < ... < &, < ... be the possible extremums of the
function h(t). Let (u(t),v(t)) be a solution of the system (2.32) with u(ty) >0, wv(ty) > 0.
By virtue of Lemma 2.1 there exist piecewise constant functions 5(25) and E(t) such, that
the solution (u(t),v(t)) of the system

t > to, with u(tg) = uo(to), v(to) = vo(to) satisfies the inequalities

|u(ty) — u(ty (2.34)

ty) — O(ty)
vt = 1‘_\/ph +\/qt1

€
)| < -
Vo(t) +/q(th)
Without loss of generality we will assume that 'p?(fk) = p(&), E(fk) =q(&), k=0,1,
o 5(751) = p(t1), Z];(tl) = ¢(t1); the function % is nondecreasing on the intervals

[Eok; Eok+1) and nonincreasing on the intervals [{ori1;okr2), £ =0,1,..;

)e(t)/p(t) — d(u,v)e(th) 935

w/— ~(t) i -

d(u, v)e(t)/q(t)ry, (1) d(u,v) v I ()| (2.36)
Va(to) V4 -

¢
where €(t) = exp{ [ \/p(7)q(T)dr}, t > to. Then by (2.30) and (2.31) we will have:
to

u*; ) /o) < V@it + /o @) < \/)—e Valh), if ty € [Sol&i);

u Utotl / \/p tl < \/Q1 tl + pl() (tl)g zj/,UTO “ \/ tl

if tl € 60) 61

e (H ) st AT <
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q(to) h(&art1)

< dwv)Elh) (H 52’““) g(h), if t € [EmiConn), n=1,2,.5

d(w,v)e(t1) [ [h(Eopsr) i
( 0 h k ))\/ (§2n+1 \/p (t1) < Va@®)a(t)+v/m)o(t) <

(
p(to) s (Eakto

d(u, v)e(t) 7 h(&ak+2) h(fans1) /< . ) _ )
= Vi) Val(to) (ko h(&ak+1) )\/ h(ty) q(t1), if t1 € [fant15&amra], n=1,2,...;

Therefore

d(u,v)e(t \/_ o d(u,v)e(ti)v/q(t)
\/—Th (t1) ulta) + (1)olh) < q(to) g (t).

From here and from (2.34) - (2.36) it follows that

q(t1)u(ts) + v/p(t)v(tr) < L (ty) + 2.

By virtue of arbitrariness of (> 0) and ¢;(> to) from here it follows (2.33). The lemma
is proved.
Consider the Riccati equation

Yy () +p)y*(t) —a(t) =0, >t (2.37)

The solutions y(t) of this equation, existing on the interval [t1,5)(tg < t1 < ty < +00)
are connected with the solutions (u(t),v(t)) of the system (2.32) by equalities (see [11],
pp. 153, 154):

t

u(t) = u(ty) exp{/p(T)y(T)dT}, v(t) =y(t)u(t), t€E [t1,ts). (2.38)

to

Let yo(t) be a solution of Eq. (2.37) with yo(to) > 0. It follows from Theorem 4.1 of
work [12] (see [12],p. 26) that yo() exists on the interval [ty, +00) and

w(t) >0, t=>to (2.39)

Since p(t) > 0, ¢(t) > 0, t > to, then from Theorem 3.1 of work [13] (see [13], p. 4) it
follows that

yo(s) > ot s>t >t (2.40)
1+ yo(t) {p(C)dC
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Consider the integral

—+o00 T

vy, (8) = /p(f) exp{—Q/p(f)yo(i)di}dT, t > to.

t t

From (2.39) and (2.40) it follows that

—+00 T

(s)yo(t) 1
vy, (t) < | p(7)expq —2 P . ds pdT = .t >t (2.41)
/ { / L+ (1) [ (O fir=

The function y.(t) = yo(t) — Vyl(t), t > to, is an extremal solution of Eq. (2.37) (see [14],

p. 194, Theorem 4). From (2.4?) it follows that

y.(t) <0, t>to. (2.42)

Let us show that
(1) <0, >t (2.43)

Suppose that y.(t1) = 0 for some t; > ¢y. Then by virtue of Theorem 4.1 of work [13] the
following inequality holds y.(t) > 0, ¢ > t;. From here and from (2.42) it follows that
y«(t) = 0 on the interval [t;, +00), which is impossible. The obtained contradiction proves
(2.43). Since yo(tp) > 0, then from (2.42) ( (2.43)) and from Theorem 4 of work [14] it
follows that yo(t) is a normal solution (a solution y(¢) of Eq. (2.37) is said to be normal if
there exists a neighborhood of the point y(ty) such that every solution of Eq. (2.37) with
initial value from this neighborhood exists on the interval [to, +00)). Then (see [14], p.
195)

+oo

/p(T)[y()(T) — Y (7)]dT = F00. (2.44)

to

Definition 2.1. The solution (u.(t),v.(t)) of the system (2.32), satisfying the initial
conditions u.(to) = 1, v.(to) = y«(to), will be called the canonical main solution of Eq.
(2.32). The (a) solution (ug(t),vo(t)) of the system (2.82), satisfying the initial conditions
ug(te) = wvolte) = 1 (ug(te) > 0, wo(te) > 0, ud(ty) + vi(te) # 0), will be called the
canonical nonprincipal (a real nonprincipal) solution of the system (2.32). The solutions
AMug(t),v(t)) and A(ug(t),vo(t)), where X is an arbitrary constant and (ug(t),vo(t)) is
an real nonprincipal solution of the system (2.32), will be called a main and a principal
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solutions of the system (2.32) respectively. A solution of the system (2.32), which is not
main solution will be called an ordinary solution of the system (2.32).

From (2.43) it follows that the canonical main and nonprincipal solutions of the system
(2.32) are linearly independent. Therefore for general solution (u(t),v(t)) of the system
(2.32) the following representation holds

(u(t),v(t)) = Ao(uo(t), vo(t)) + A(us(t), vi(t)), Ao = const, A\, = const, t>1t,. (2.45)

On the strength of (2.38) we have
t
u.(t) = exp{ / p<r>y*<r>dr}, n) = nOu), 2l (246)
to
t

up(t) = exp{/p(T)yo(T)dT}, t > to, (2.47)

to

where yo(t) is the solution of eq. (2.37) with yo(ty) = 1. From here and from (2.44) it
follows that

u.(t)
() — 0 for t — +o0. (2.48)

Let us show that

V. (1)

Vo (t)

— 0 for t — +o0. (2.49)

In Eq. (2.37) we make the change y(t) = ﬁ We will come to the equation

London Journal of Research in Science: Natural & Formal

Z(t) +qt)2(t) —p(t) =0, t>t. (2.50)

To prove (2.49) we need to the following
+o0 +oo
Lemma 2.4. Suppose [ p(t)dt = +oo or [ q(t)dt = +oo. Then z,(t) = y*;(t)’ t > to,
to

to
is the extremal solution of Eq. (2.50), where y.(t) is the extremal solution of Eq. (2.37).
Proof. Above it was shown that y.(tf) < 0, ¢ > to. Therefore z.(t) is defined correct.

+o0
Obviously z.(t) is a solution to Eq. (2.50). Suppose [ p(t)dt = +oo. Let Z.(t) be the
to
extremal solution of Eq. (2.50). Suppose z.(t) # Z.(t). Then the solution zy(t) of Eq.
(2.50) with zy(to) = M is a normal solution to Eq. (2.50). and zy(t) <0, t >t
(the graph of zx(t) is between the graphs of z,(t) and Z,(¢)). Therefore yy(t) = #(t), t>
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to is a normal solution of Eq. (2.37). Hence v, (ty) < +00. On the other hand since

400
yn(t) < 0, t > to we have v, (to) > [ p(t)dt = +oo. The obtained contradiction

to
+o00
shows that z.(t) is extremal. Suppose now [ ¢(t)dt = +o0. Let z.(t) not be extremal.
t
400 N
the the integral [ g(t) exp{ fq ds}dt is convergent. On the other hand since
to
+oo
z(t) < 0, t > to, we have [ ¢(t) exp{ fq ds}dt > f q(t)dt = +oo. The
t

0 0

obtained contradiction completes the proof of the lemma.

Obviously z(t) = yolt) is a normal solutions of Eq. (2.50). Then since z,(t) is extremal
we have
+oo
/ 4(T)[z0(7) — 2u(r)]dr = +oo, (2.51)
to
Let v(t) = exp{j q(T)zo(T)dT}, wo(t) = zo(t)vo(t), v (t) = exp{fq )dT}
t ty

U (t) = z:(t)0s(t), t > to. By virtue of (2.38) (wo(t),vo(t)) and (u.(t),v.(t)) are solutions
of the system (2.32). From (2.51) it follows that

v.(t)
vo(t)

—0 for t — +o0. (2.52)

Since ug(ty) = vo(to) = wo(to) = wo(te) = 1, w.(ty) = ﬁto)’ Ui(tg) = 1, we have

(@o(t), Bo(t)) = (uo(t),v0(t)), (W(t),0x(t)) = 55 (us(t), vu(t)), ¢ > to. From here and
from (2.52) it follows (2.49). From (2.44), (2.48) and (2.49) it follows

(u(t), v(t)) = Mo(uo(t), vo()[L + 0(1)], ¢ — +oo. (2.53)

By (2.32) from (2.43) and (2.46) we will have

0 < us(t) < ug(to), V. (to) < wi(t) <0, t>t. (2.54)
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. ESTIMATES OF THE SOLUTIONS OF THE SYSTEM (1.1)

In the system (1.1) we make the substitutions

o(t) = exp{/tall(T)dT}u(t), Y(t) = exp{/tam(r)dr}v(t), (3.1)

0 to

We will come to the system (1.2). In the sequel we will assume that the function % is

absolutely continuous and has a locally finite variation. Denote:
i)
alg(t) ’

m(t) = min{i‘/ ZEE;; ‘} M(@t) = max{f/
| JJi () g e

/[Re CLH( ) Re a22( dT
to

Theorem 3.1. Let the condition A) be satisfied. Then for each solution (¢(t),v(t)) of

the system (1.1) the following inequalities hold

alg(t)
921 (t) ’

alg(t)
agl(t) ’

F(t) =

dr, t>to.

m(to)l|(@(to), ¥ (to))lIm(t m{/[zpmﬂ]m>f@}gwwwmm§

M (to)[[(6(to), (ko)) || M (t exp{/[ ZRe% ]dr+]—"()} t>t.  (3.2)

London Journal of Research in Science: Natural & Formal

Proof. Let (¢(t),1(t)) be a solution of the system (1.1), and let (u(t),v(t)) be the
solution of the system (1.2), satisfying the initial conditions u(tg) = ¢(to), v(to) = Y(to).
Then by virtue of (3.1) we have

lo(t)| = exp{/tRe a11(7'>d7'}|u(t)|, [Y(t)| = exp{/tRe a22(7)d7}|v(t)|, t > to.

to to

From here it follows

oo, w00l = [exp{2 [ Reantriar o + expl2 [ Reanryir floe, o2 0
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Therefore

t t

explmin{ [ Rean(rar, [ Reanriir i o)l < o0, <, 2 n

to to

<expima {/R dT/Ream arlie@ooll, ez 63
DenoteH()z’ﬂ Hl(t)z P

20 Gl =min{\/H(t), /Hi(t)}, W(t
= max{/H(t), v Hi(t)}, to. By virtue of Lemma 2.2 from the condition of the
theorem it follows

(t)

w(to)H(Cb(to),w(to))H:)H—(w < [(u(®), @) < W)W D)[(S(t0), ¥ (b)) |ru(t), > to.

From here and from (3.3) we will get

w<t0>|r<¢<to>,w<to>m%exp{mm{ / Rean (r)dr, / Reammm}} < 11(6(t), v(1))l| <
W (to)|[(o(to), ¥ (to))||W (t) exp{max{/tRean(T)dT,/tReagg(T)dT}}TH(t), t>t.

Since w(ty) = m(to), Wi(to) = M(to),

t t
m(t) exp{min{f Re a11(T);Re a22(7) dT, f Re agg(f);Re a11(7) dT}} < U)(t),

to to

¢
W(t) < M(t) exp{max{f Rean(r )2R6“22 f Re aza(r)— Rea“(T)dT}} t > to,

to to
taking into account the equalities

min{ /t Re a1 (7)dr, j Reagg(T)dT} -

to to
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t t
max{/Rean(T)dT,/Re a22(7—)d7—} =
to to
¢

. { /t Rean(r) ~ Rean(r) /t Re as(7) — Rean(7) dT} B

to to

t

. { / Rean(r) — Rean(r) /t Re as(7) — Re an (7) dT} B

2

to to

t > to. from (3.4) we will get (3.2). The theorem is proved.

Remark 3.1. Let a(t) and b(t) be some continuous functions on [tg;+00) and let
b(t) >0, t >ty. Consider the system

¢'(t) = a(t)o(t) + b(t) Y1);
P'(t) = =b(t)e(t) + a(t)¥(t), t=to.

London Journal of Research in Science: Natural & Formal

For this system we have F(t) =0, m(t) = M(t) = 1. Therefore by Theorem 3.1 for its
general solution (P(t),1(t)) the inequalities

t

H<¢<to>,w<to>>uexp{ / Reamch} < (), v(0))]] < \|<¢<to>,w<to>>|rexp{ / Reade},

to to

t > tg, are fulfilled. Hence

t

(o), v ()| = ||(¢(to),w(to))||eXp{/Rea(T)dT}7 t > to,

to
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and in this sense the estimates (3.2) are sharp.
Example 3.1. Consider the system

¢'(t) = (=X +sint)o(t) + t*Yt);

W(t) = —t7¢(t) + (—p+ cost)i(t),

(3.5)

t > %, where A, u, a and (3 are some real numbers For this system m(t) = ¢~ ezl 5|

la—p]
M) = 5%, F(t) = |VE+A—u+ (=t + |
w/4
t > 7. Using Theorem 3.1 it is easy to find the following regions of values of the parameters

O‘4Tﬂ 42 SE 4 ‘[cos(7+ )\ dr,

A, p, «, f for which the system (3.5) is asymptotically stable:
Or={(\pa,B) i A+ pu>3A—pul+v2, A>0, >0}
0y = (A, B): A= p> L2},
O3 = {0t B) : At > 3 — | > 3V2, A>0, 1> 0};
Os = {(\p,a,8) : A+ p >3\ —pu =3v2, >0, u>0, a=p} and the following
regions of values of parameters A\, u, «, [ for which system (3.5) is unstable:
052{(/\ o, B) >\+u+3|>\ pl+v2<0, A<0, pu<0};

(A, B) < ——}

O\ 1, B) - >\+u+3\)\ pl <0, [A—pl>vV2 A<0, p<0}:

Ay, B) i X+ 43N —pl <0, A=—pl=v2, A<0, p<0, a=p}

~— ~— ~— “—

{
z{
{

It is not difficult to verify that the application of the estimates of Liapunov (see [4], p.
432), Yu. S. Bogdanov (see [4], p. 433) and estimate by freezing method (see [4], p 441)
to the system (3.5) give no result. The estimates by logarithmic norms ~; and ~;; of S.
M. Lozinski (see [4], pp. 435, 436) give result only for A > 0, >0, a< -1, < —1.
For comparison now we use the theorem of Wazevski to the system (3.5) (see [4], p. 434).
By virtue of this theorem for each solution (¢(t),(t)) of the system (3.5) the following
inequalities hold

t

H(fb(t),w(t))HeXp{/W—(T)dT} < [[(o(1), ()| <

/4

t

< \|<¢<t>,w<t>>||exp{ / w+<r>d7},

/4

~
v
=13

(3.6)
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—A— t t+4/(A— t—sint to—th)2
where wy = posin tcos “+cos sint)?+( Ma#5>0o0r B # a >0, then

from (3.6) does not follow nelther asymptotic stablhty nor instability of the system (3.5)
for every values of A and p.

Definition 3.1. A solution (¢(t),1¥(t)) of the system (1.1), satisfying the condition
B), is said to be a main (a nonprincipal, an ordinary) solution of the system (1.1), if
o(to) = ulty), V(to) = v(to), where (u(t),v(t)) is a main (a nonprincipal, an ordinary)
solution of the system (1.2).

Theorem 3.2. Let the condition B) be satisfied and let

C) Zooau(t) exp{t{t [@2(8) — an(s)] ds}dt = 400 or
Jrfooam(t) exp{t{t [all(s)—a22<8)]d8}dt = +oo0.

to

Then if:
i) (o(t),9(t)) is a nonprincipal solution of the system (1.1), then

Do, omit)exp { / E ZReaﬂ +Vaa | ¢ - 7o)} < lolo)] + ¥(0)] <

D(6, )M exp{ / [ ZReaﬂ a12(7')a21(7')}d7‘+.7:(t)}, V>t (37)

ai2(to)
a21(to)

(121
(l12

where D(¢p, 1) = ¢

et + {

[9(to);

London Journal of Research in Science: Natural & Formal

i) (o(t), (1)) is a main solution of the system (1.1), then

[P+ (@) <

< (1(to)] + [¥(to)| exp{/[ ZReaH }dw‘/Re““ — Rean(r )df‘}, (3.8)

t > to;
iii) (P(t), (1)) is an ordinary solution of the system (1.1), then

cymi(t exp{ / { ZR@@N am(T)am(T)} dT—f(t)} < |o(t)|+[P(t)] <

to
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< e, M(#) exp { j BiRe a;(7) + am(T)am(r)]dT +]—"(t)}, F>t, (3.9)

where c; = const >0, j =1,2.

Proof. Let (¢(t),1(t)) be a solution of the system (1.1), and (u(t),v(t)) be the solution
of the system (1.2) with u(tg) = ¢(to), v(to) = PY(tp). Then by (3.1) we have

lo(t)| + |¥(t)| = exp{/tRe an(r)dr}|u(t)| + exp{/tRe agg(r)dr}]v(t)\, t > 1.

) to

From here it follows

exp{min / Re any(r)dr, / Rean(r)dr | ) +1o(0) < 1000+ uto)] <

to to

t t

< exp{max{/Re an (7)dr, / Re am(T)dT}}qu(m @), >t

to to

or, which is the same,

oo / Eiﬂ’eaﬁm} - [ Feantr)~ Fee2 D gr b ute+1ot0) <

to - to

< @) + [P(1)] <

t

< exp{/[%i;Reajj(T)] dr + ‘/tR”H(T)gRW?(T)dT

to - to

}<|u<t>| @), (3.10)

t > to. Let (ugp(t),vo(t)) be a real nonprincipal solution of the system (1.2). Then by virtue
of Lemma 2.3 and (2.29) we have

DRI < Qi)+ VPO < S, 2w, @)
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where D = VQ(to)uo(t) + +/P(to)vo(t) = v/ a2 (to)d(to) + +/ar2(to) Ylto),
= exp{ft \/P(T)Q(T)dT} = exp{j \/alz(T)&zl(T)dT}, t > to. Obviously

min{ /P(£), v/Q(0) Huo (1) +u0(1)] < /(D)o (t)++/P(B)uo(t) <
< max{\/ \/ } UQ —|— U(] ] t> to.

Therefore,

min{\/%,@}{\/_ )4/ P(t)vo( ]<u0 )+ug(t) <

Smax{\/l_ \/Q_H\/Q_ o) + VPt |,  t >t

From here and from (3.11) we will get

P .o t E(t)
Dmm 00 t TR0t ) < ug(t)+uvo(t) <

Therefore,

{ ‘/Rean Rea22( >d7'
V/ @12 to a1 to

{‘/Reall — Reaxn(r) ‘}E(t)m(t), >t
v/ 12 to a1 to

Taking into account the equalities (u(t),v(t)) = Ao(uo(t),vo(t)), Ao = const #0, |p(to)] =

London Journal of Research in Science: Natural & Formal

= |)\0|U0(t0), |l/)(t0)| = |)\0|U0(t0) from here we will get

D(¢,) exp{ ‘/Reau _ — Re ag(T )dT
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< D(¢, 1) exp{‘ /t Reall(T);Rea22(7)d7‘}M(t)E(t)rH(t), t>to. (3.12)

From here and from (3.10) it follows (3.7). The assertion i) is proved. Let us prove ii). Let
(o(t),1(t)) be a main solution of the system (1.1). Then by (3.1) we have

o) = styesn{ [ ourir Yoo, 400 ~wioye{ [ antrrar b, 019

to to

t > to, where (ug(t),vo(t)) is the canonical main solution of the system (1.2). By (2.54)

from C) it follows [¢o(to)[u () + [o(to)[[v« ()] < |po(to)us(to) + [do(to)lv«(to)], T = to.
By (3.10) from here and from (3.13) it follows (3.8). The assertion ii) is proved. Let us
prove iii). Let (4(t),%(t)) be an ordinary solution of the system (1.1). By (3.1) we have

o0 = so [ anorar ot 4 r0]. 1z o

to

t

(t) = exp{ / an(f)df} {AOUO@ + /\*v*(t)] Lt (3.15)

to

where (u.(t),v.(t)) and (uo(t),vo(t)) are the canonical main and canonical nonprincipal
solutions of the system (1.2) respectively, and Ay # 0. Then by (2.29) and (2.52) we
can deduce from C) that ¢ [ug(t) + vo(t)] < [Aowo(t) + Aeuo(t)| + |Aovo(t) + Asus(t)| <
< Glug(t) + vo(t)], t > to, ¢; = const, j = 1,2. By virtue of (3.10) from here, from
(3.14) and (3.15) we obtain

t 2
- 1
C1 eXp{/[§ZReagy }dT—‘/ Rean(r ReaQQ(T)dT
to J=1

< [o(®)] + [¥(1)] <

saexp{/[ ZR@@M }m'/t Re“““);Re“ﬂ(”m‘}[UO@HUO@)},

to

}[uo<t>+vo<t>1 <

Yt > to. By (3.12) from here it follows (3.9). The assertion iii), and therefore, the theorem
are proved.
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Remark 3.2. Let a(t) and b(t) be the same as in Remark 3.1. Consider the system

¢'(t) = a(t)o(t) + b(t) Yi);
Y (t) = b(t)p(t) + a(t) Yt), t > t,.

For this system we have F(t) =0, m(t) = M(t) = 1. Therefore by Theorem 3.2 for its
each nonprincipal solution (¢(t),1(t)) the inequalities

6(0) + [(1)] = (16(t0)] + |w<to>|>exp{ [Rea(r) +b(r)] dr} < 16(8)| + [9()| <

~
=}
o~

t

<ot +1 (exof [[Reatr) +b(r]ar}. 12

to

are fulfilled. Hence

t

0]+ 19001 = o) + pitaDexpd [ [Reatr) + o] ar, 12

to

and in this sense the estimates (3.7) are sharp.
Example 3.2. Let us consider the system

¢'(t) = (=X +sint)p(t) + t*9(t);
P/ (t) = 76 (t) + (—p + cost)i(t),

(3.16)

London Journal of Research in Science: Natural & Formal

t > 7, where A\, p, a and (3 are some real constants. For this system the functions
m(t), M(t) and F(t) are the same, which are in the example 3.1. Applying Theorem 3.2
to (3.16) it is easy to find the following regions of parameters A, pu, «, [ for which Eq
(3.16) is asymptotically stable

OV ={( M\, B): A+ p>3A—pl+v2, A>0, p>0, X#pu, a+p <0}

O ={(\ gy, B) A+ pu>3N—p| +2+vV2, A>0, p>0, X#p, a+B=0}

Oy ={( M\, B) : A+ p>3A—pu|>3vV2, A>0, p>0, AN#p, a+p <0}

O ={( M\, B) : A+ >3N—p|+2>3V2+2, A>0, >0, X#£p, a+p=0}
O ={(\ g, 0, B) : A+ pu>3A—pu|=3vV2, A>0, p>0, X#p, a=p<0}

O ={( M\, B) : A+pu>3A—pl+1=3V2+2, A>0, p>0, AX#pu, a=p=0};

and the following regions of parameters A\, pu, «, S for which eq. (3.16) is instable:
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O ={( A\ pa,B) : X#p, a+ >0}
Oy ={(A\ 0, B) : A+ pn+3A—pl+v2<2, A<0, p<0, a+p=0}
O3 = {(\pa,B): A=p< L}

0% ={(\ o, B) A+ pu+3A—pl <2, (A—pul>v2, a+pB=0}

As in the case of the system (3.5) the application of the estimates of Liapunov, Yu.
S. Bogdanov and estimate by freezing method to the system (3.16) give no result and
the estimates by logarithmic norms v; and ~;; of S. M. Lozinski give result only for
A>0, >0, a<—1, < —1. For the case a« > 0 or # > 0 it is impossible by use of
the theorem of Wazevski to verify neither asymptotic stability nor instability of system
(3,16).
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