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Professionalization of Agricultural Work in Benin

Guy Armand Onambeélé®, Alexandre Biaou °, Dominique Dedegbe®, Gildas Nangbe™
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ABSTRACT

Food availability is influenced by the means of
production. A decrease in production affects
market prices. In Benin, food production is
changing. This paper seeks to analyze the
influence of the professionalization of work, the
use of new technologies, and individualism on
agricultural production. Two data sources are
used: the National Agricultural Census core
module and the Harmonized Framework based
on the World Food Programme food security
survey, the results of the 2021-2022 agricultural
season, the caloric proxy, shocks, historical
variations in agricultural  production,
agricultural commodity prices, access to
drinking water and improved toilets, and the
seasonal calendar. Contributing factors related
to food availability and access influence food
consumption and livelihoods. On farms, 81.6% of
farms are part-time, with 2/12 months for
non-professionals, and 7-8/12 months for
professionals. Respectively 2.0%, 6.9% and 11.9%
keep accounting, have access to credit, and are

affiliated  in agricultural  producers'
organizations.
Keywords:  professionalization, farm  work,

farming, tools, productivity.

Author a: Applied Anthropology Research Group.

o: Direction of Agricultural Statistics of Benin.

p CO: Technical Unit for Monitoring and Support of
Food Security Management.

¥: Departmental Directorate of Agriculture, Livestock
and Fisheries Zou-Collines.

I INTRODUCTION

Agricultural policies primarily affect farmers'
income (Jacques R., 1987). To implement them
and hope for a positive outcome, it is necessary to
identify who is a farmer. A clear answer to this

© 2023 Great Britain Journals Press

question remains a challenge in many African
countries. Although the majority of African
managers have emerged from the agricultural and
peasant environment where they spent their early
childhood, they do not spontaneously accept to
practice as professionals in agriculture. Even
when they have a degree in agronomy, becoming
an agricultural professional is not always a
priority option. Is this a deliberate choice or a
situational constraint? The explanations must be
sought in their daily lives. The shortcomings of
the agricultural sector to date are rooted mainly in
the lure of profit.

Population growth translates into a growing need
for food and agricultural products, amplified by
changes in diets and the types of products
consumed, induced by economic development and
its rapid urbanization (Pauline Marty, 2015).
African countries are doing enough to establish
this causality. Governments have become aware of
the backlog in rural and agricultural development.
For several decades, oil rents, advances in
communications and tourism made sourcing from
world markets easier than increasing local
production and improving transport and
distribution channels between hinterlands and
capitals (Chantal Le Mouél, 2015). Multinational
companies are supporting massive imports to
southern countries; pushing some agricultural
sectors are substituted by cash crops without
taking into account the career profile of the
farmer. Benin is not on the fringe of this dynamic.

In Benin, agricultural production is in deep
mutation. It is increasingly documented and
receives special attention from public authorities.
This contribution aims to analyze the influence of
the professionalization of work, the use of new
technologies, and individualism on agricultural
production. The direct effects on food security, in
general, are not omitted. The characteristics of
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professional agrarian work, and its configuration
in Benin should be investigated. Identifying the
factors that influence it will also lead to the
perverse effects of a lack of professionalism in the
agricultural sector. Two data sources are used: the
National Agricultural Census and the Harmonized
Framework based on the WFP food security
survey.

ll.  DATA AND METHODS

An orthodox analysis leads to a search for the
determinants of the professionalization of
agricultural work among different factors. These
factors are

a. The profile of the agricultural family (sex of the
farmer, age, level of education, marital status,
parity, number of members in the family, type
of land owned by the household
(gift/inheritance/rental/lease/metay age/other);

b. Bookkeeping;

c. Access to credit;

d. Membership in an Agricultural Producers'
Organization;

e. Average farm size with the possibility of plot

rotation;

f. The type of farm (crop/animal/fish
production);

g. Control of the value chain (production,

processing, marketing);
h. Work tools and means of operation.

national census of agriculture in Benin was made
public in the first quarter of 2022. It exhaustively
collected all the variables of interest to analyze
the Agro-Sylvio-Pastoral sectors in the 77
Communes of the country. The variables collected
made it possible to draw up a profile of agrarian
households and to identify the sectors of activity,
the means of operation, the types of activities, the
level of professionalization, the wuse of
mechanization, the areas sown, etc.

As the analysis of the basic module of the national
agricultural census is still in progress, the option
has been taken to present in this paper the effects
associated with the low professionalization of
agricultural work in Benin. It will be done through
the Harmonized Framework (HF), which maps

vulnerability to food insecurity. The analysis of
the Harmonized Framework of March 2022 was
conducted with the contribution of government
technicians, and civil society actors such as NGOs.
The March 2022 HF session analyzed all 77
communes in Benin. The analysis consisted of an
inventory of available evidence. It consisted of
outcome indicators from the WFP's Global
Analysis of Vulnerability, Food Security and
Nutrition (GIVSAN), contributing factors related
to hazard and vulnerability, and the four (4)
dimensions of food security. The food security
indicators are food consumption score, household
dietary diversity score, source of food consumed,
coping strategies, livelihoods and income sources,
household expenditure structure and access to
credit, shocks and vulnerability. Subsequently, the
evidence was analyzed and reliability scores were
assigned to the various pieces of evidence,
communes and populations were classified in
their current and projected situations,
food-insecure populations were estimated and
maps and results were produced.

. RESULTS

Benin has 926,539 agricultural households,
according to the first national agricultural census.
80.6% of non-professional workers in the
agro-silvicultural sector work part-time, i.e., two
months out of twelve. Professionals work annually
for seven months out of twelve. The
characteristics that limit the professionalization of
agricultural work in Benin have an impact on
household food security.

3.1 Limits to the professionalization of agricultural
work

The limits to the professionalization of
agricultural work have their sources in the
structural, social, cultural, environmental,
technological and economic spheres.

3.2 The structural sphere

Control of the means of production is the primary
factor in professionalization. 95.6% of agricultural
households are involved in crop production, and
65.4%, 5.4%, 0.4% and 6.2%, respectively are
engaged in animal production, fishing,

Professionalization of Agricultural Work in Benin
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aquaculture or forestry. Access to inputs and
small agricultural equipment is a constraint for
small producers. The government of Benin,
through its new guidelines, wants to take up this
challenge by encouraging civil society to give itself
the means to access them. The rate of
mechanization of soil work is 12.4%. Of the total
exploitable land, 43.9% are sown, with an average
size of 3.3 ha per farming household. Of the total
exploitable land, 6.2% is fallowed, and 1.76% is
irrigated (MAEP, RNA, 2019). The prices of
agricultural products on the market are not very
remunerative when the farm is small, is not
structured, and is because of the current economic
situation.

3.3 Social Aspects

The average age of the heads of agricultural
households is 43.5 years (MAEP, RNA, 2019). At
this age, the home society must have proof of
contribution from its non-disabled members.
Usually those who have not completed primary or
secondary school return to work the land. The
school orientation towards agricultural fields is
not widespread in Benin. The opening of a
national university of agriculture in Kétou will
undoubtedly change this situation.

Benin has been subdivided into seven (7)
agricultural development poles (PDA). The size
and scope of the farms vary according to the
poles. PDAs 7, 4 and 5 have more farms (PDA 7
Ouémé, Atlantique, Mono, Littoral : 222,078;
PDA 4 Borgou Sud, Donga, Collines : 221,201;
PDA 5 Zou, Couffo: 177,639) than the other four
(4) (MAEP, RNA, 2019). These are essentially
areas that offer more outlets for agricultural
products. They are close to areas where
cross-border trade is very dynamic. Crossed from
North to South, and from East to West by
international roads, these areas benefit from
significant  investments in trade and
communication infrastructure.

3.4 The Cultural

15.7% of agricultural households are headed by
women (MAEP, RNA, 2019). This statistic calls
into question the cross-cutting themes of
"Gender", "Cross-cutting protection"”, "Positive

discrimination" and "Inclusion". One of the
characteristics of farms in Benin is that they are
the result of individual initiatives at the family
level, with a heritage/land capital transferred
from generation to generation. There is little room
for the association of energies in the form of
collective entrepreneurship or consortium.

3.5 The Environment

The agricultural calendar, with its rainy seasons,
is  associated with professionalization. The
agroecological ecosystem and soil mapping, which
are poorly documented, also have an impact.
There are four seasons in the South and two
seasons in the North. There is a long and short
rainy season and a long and short dry season in
the south. In the northern zone, there is only one
rainy season and one dry season. The lack of
water control is a result of climatic variations and
rainfall breaks.

3.6 Technology

The use of information and communication
technologies in Benin is increasing and covers
very little of the agro-sylvo-pastoral sphere. A
platform bringing together research centers in
this area has been set up under the leadership of
the National Institute of Agricultural Research of
Benin (INRAB), which acts as its secretariat. One
of the goals of this platform is to disseminate
innovations in the agricultural field to producers.
Despite these efforts, only 2% of farms in Benin
keep accounts. The processing of agricultural
products is the work of 25.0% of farm households
(MAEP, RNA, 2019). Few farms use a full-time
skilled labor force. Instead, they use seasonal
workers and sharecroppers. This personnel has no
formalized contractual relationship with their
employers. This leaves room for violations of
several rights. Graduates of agricultural schools
often prefer salaried jobs far from the farms. In
addition, they often need additional training in
technology, project management, and the use of
agricultural machinery.

3.7 The Economy

For various reasons, 22.8% of farm households
manage to market their products. In terms of the

Professionalization of Agricultural Work in Benin
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rate of banking in the West African Monetary
Union zone, Benin leads with 31.2%, followed by
Togo (27.0%), Burkina Faso (20.6%), Cote
d'Ivoire (20.4%) and Senegal (19.6%) (Wadagni
Romuald, Economie, 2020). Despite the
proliferation of microfinance institutions, 6.9% of
farmers have access to credit. 11.9% of agricultural
households are affiliated with an OPA (MAEP,
RNA 2019). Although they are plural, the limits of
agrarian professionalization are not
insurmountable.  However, until effective
solutions are found, different levels of life in
society suffer.

3.8 Effects of non-professionalization

The analogies of the non-professionalization of
agricultural work affect the basic social unit, the
micro-economy, and the macroeconomy.

3.9 In the Basic Social Unit

37.7% of Beninese have a relatively acceptable
index of accessibility and quality of services. They
are more concentrated in Cotonou (UNDP, 2022).
The lack of professionalization of agricultural
work limits the access of agricultural households
to a substantial remuneration and therefore to
basic sanitary/social infrastructures: drinking
water, improved toilets, health care, education for
children, decent housing, appropriate means of
communication, etc. According to the latest Benin
Sustainable Human Development Report (UNDP,
2022), access to basic sanitation and hygiene was
32.2% for ECOWAS in 2020, while in Benin, the
same indicator was 17% (WFP/INSTAD,
AGVSAN, 2017). The main reason is low
purchasing power. 47% of Benin's population
experiences extreme poverty and material
deprivation (UNDP, 2022). This translates into
poor access to food. As a result, 9.6% of
households have a moderate to severe food
security index. Of these households, 15.2% spend
more than 65% of their income on food and 27.8%
use crisis or emergency coping strategies
(WFP/INStAD, AGVSAN, 2017). Access to
technology and innovations is a luxury for them.
2/10 Beninese have a broadband internet
subscription (UNDP, 2022). This places Benin

among the last four (4) countries in the
sub-region in this area.

3.10 At the Microeconomic Level

The lack of professionalization is declining
production and productivity in the
agro-sylvo-pastoral sectors. Low production
naturally leads to a limited supply of markets and

their dysfunction. Limited income leads
households to renew their means of existence
without, however, guaranteeing significant

purchasing power.

3.11 At the Macroeconomic level

The low level of professionalization of agricultural
work affects GDP and tends to increase imports
while limiting formal exports. Observation of
agricultural statistics over the last three decades
shows historical variations in agricultural
production.

3.12 Forthe meta-analysis

According to the harmonized framework exercise,
the mapping of food insecurity makes it possible
to classify the analysis zones into phases:
minimal, pressure, crisis, emergency, famine. In
the current situation (March to May 2022), eleven
communes (Aplahoué, Klouékanme, Lalo,
Toviklin, Dogbo, Djakotomey, Athiéme, Toffo,
Allada, Bassila, and Glazoué) are in phase 3
"Crisis”. These communes have been exposed to
shocks (drought, floods) that have weakened their
resilience. The populations in the Crisis to Worst
phase at the national level are estimated at
1,225,957 people (or 9.49%). 41 communes are in
phase 2 with 2,754,478 people in borderline food
security. 25 communes are classified as minimal
phase with 8,934,565 people in food security. In
the projected situation (June to August 2022),
one (01) Commune is in the Crisis phase (Bassila),
32 Communes are in Phase 2 (Under Pressure)
and 44 are in the Minimum phase. At the national
level, the food-insecure population is estimated at
830,150 people. The number of borderline
food-insecure people is 2,318,231. The estimated
food-insecure population is 9,766,619 people
(MAEP, CH, March 2022).
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Overall, the contributing factors of availability
(overall increase in production compared to the
average of the past five years) and access (increase
in the price level of staples compared to the
average of the past five years) have affected the
majority of municipality food consumption and
livelihoods, therefore household food security
(APRM, CH, March 2022).

V. DISCUSSION & CONCLUSION

This contribution provides evidence of the
profitability of agricultural work linked to
professionalism in this sector in Benin. The
temporal limits observed in the sector can be
explained either structurally or cyclically,
individually or collectively, or by the family sphere
or the physical environment. The consequences of
the low professionalization of agricultural work
are visible in the daily life of the basic social unit,
the family. They are reflected in the dynamics of
the local economy and in the economic
aggregates. The meta-analysis carried out through
the Harmonized Framework provides an
up-to-date and factual mapping of the severity of
food insecurity due in part to the limited
availability of food, essentially linked to the
professionalism of the work that should produce
it.

This study is trying to combining empirical
analysis with meta analysis. It does not pretend to
present a cause-and-effect relationship between
the professionalization of agriculture and food
security. Still, it attempts to identify the
explanatory elements of the level of profitability of
the agro-sylvo-pastoral domains. This is part of
the roots of current food security situation in
Benin. The present contribution provides updated
statistics that open up avenues of research in
fields as varied as rural sociology, agronomy,
technology, human resource management, rural
development, etc. The results presented are
comparable to previous work.

In Madagascar, the average age of farmers is
higher than in Benin (48 years versus 43.5 years)
(Razafimahatratra Mamy Hanitriniaina et al.,
2017). In France, this age is even higher. Over half
of farmers are ranged 50 years old or older

(Olivier Chardon et al., 2020). In 2019,
three-quarters of French farmer-operators were
men, a proportion that has been increasing over
the past forty years. In this country, on average,
farmers work longer hours per week than all
employed people, and they usually work in the
wek-end :Saturdays or Sundays. Four times fewer
farmers work than forty years ago. While in
Benin, the working time in the agricultural sector
is decreasing. On an annual basis, professionals
work only 7/12 months.

If in Benin individualism seems to be more
important, in Madagascar, farms associate several
members of the siblings. This guarantees labor
and ensures a good redistribution of the farm's
income as well as self-support (Razafimahatratra
Mamy Hanitriniaina et al., 2017).

The encouragement to invest in agriculture is
underway in Benin to the benefit of economic
liberalization. Indeed, it is an asset for boosting
the agricultural sector, but it should not be
misunderstood because, at times, it fuels more
non-agricultural growth, exerts land pressure,
aggravated locally by unequal access to land,
water and value added. Such a structural
transformation calls for adapted institutional and
technical innovations (Bruno Dorin and Claire
Aubron, 2016). In India, for example, we are at
0.65 ha/agricultural asset, whereas in Benin, we
are already at 3.3 ha per farm. This also seems
high in contrast to the average size of farms in
Madagascar which is 215.6 ares (Razafimahatratra
Mamy Hanitriniaina et al., 2017).

The low professionalization of agricultural work is
not only the case in Benin. Dumont Antoinette
has, in her PhD thesis, shown that the contracts
and statuses of agricultural workers are very
variable in Wallonia Belgium: 37% seasonal, 20%
CDI, 12% undeclared, 10% local aid employment
contracts, 9% CDD, 5% students, 7% independent.
(Dumont, Antoinette, 2017). Such a quantification
of the agricultural labor market in Benin is not yet
a reality. It would be utopian to address the issue
of contracts in the agricultural sector. However, it
is the document that formalizes the links between
the employer and the employee. In the absence of
such evidence, it is difficult to distinguish career
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prospects, nor to guarantee full enjoyment of the
rights of agricultural workers.

In essence, the agricultural sector requires several
types of profiles depending on the requirements of
the positions: mechanical positions with repetitive
acts, coordination positions, thinking positions
that require initiative and creativity, surveillance
and security positions, positions that require
gentleness and sensitivity. In Benin, it is common
to find the same person performing several of
these functions on farms. This person is
sometimes paid in kind. The problem of
continuous training in the agricultural sector is
thus raised.

Given the average age of Beninese farmers (43.5
years), there are opportunities. If a farmer has
ambition, he must cultivate himself to produce
differently. Tommy Collin-Vallée et al. have posed
fundamental questions for the professionalization
of the farm worker: how to produce differently?
how to learn to do so? what to learn? who should
learn? under what  conditions? = What
consequences can be drawn from new learning?
(Tommy Collin-Vallée, Maryvonne Merri, 2020).
It is by identifying the appropriate answers to
these questions that the professionalization of
agricultural work in Benin can become an
undeniable reality.
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ABSTRACT

The study was carried out in February, March and August 2021, using a questionnaire intended for
the professionals working for the benefit of the marine artisanal fishery located at Sassandra. The
interviewees (220 persons) were approached at the landing site and principal marketplace of
Sassandra. After a brief inquiry about the different types of activities in which they engaged and the
number of people within their respective corporations, each interviewee was to give personal view on
health conditions and safety at work, financial support displacement for his/her activity, as well as
on childhood education. The results indicated that people who engaged in fishery-related activities
comprised experienced men and women having knowledge and skill acquired over many years. They
served their apprenticeship with members of their family. They would also work with apprentices of
the same ethnic group or with fellow countrymen and countrywomen. A large part of the fishery 's
workforce rests in the family circle. Work environment was shaped by ethnic patterns. This situation
opens the way for a setting of a strong tendency towards informal work, making the fishery prefer
functioning and working in splendid economic and social isolation, which does not draw help in any
form from financial Institutions. Instead, all respondents expressed their desire to welcome schooling
and literacy-oriented initiatives while calling for more health and safety-work conditions; but they
had a pretty low opinion of Bank support as regards help in any financial form to further their
activities.

Keywords. ethnic patterns, financial support displacement, fishery’s workforce, health conditions,
landing site, members of family, safety-work conditions, sassandra.

Author: Department of Research on the Biology, Ecology and Population Dynamics of Aquatic Living Resources,
Centre for Oceanographic Research, Fishers Road, Treichville, Tel : (225) 20 21 35 58 80, BP V18 Abidjan, Cote
d’Ivoire. E-mail: Ibahoucrothon@yahoo.fr

| INTRODUCTION

As component parts of activities of vital importance to food security and employment generation,
fishing and post-harvesting tasks plainly contribute to people”s welfare and the economy of the African
countries. Yet, they do not always benefit from financial support, since they would lack consistent
financial displacement in any form. In Cote d’Ivoire, fishing and aquaculture are believed to generate
up to 70000 direct jobs, while about 400000 people and more would make a livelihood, essentially
with artisanal fishing and processing of fishery products (Document COMHAFAT, 2014).

Unfortunately, in the coastal areas of Céte d’Ivoire, particularly those in the southwestern part such as
Sassandra and San-Pédro, marine artisanal fishing has long been considered as unpopular profession
by the natives. It can currently be regarded as an area of activity over which migrant fishers of
Ghanaian-origin have influence. Today, a progressive change in people’s thinking and behaviour is
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quite noticeable about the previous commonly-held opinion on fishing at sea. For the substantial
revenue derived from fishing and trading for fish aroused the natives” consciousness in such a way that
they would resort to fishing as a promising way out for their increasing needs for animal proteins of
fishery source. Delaunay (1991) recalled a certain number of historical events (in the eastern, central
and western parts of Cote d’Ivoire) that contributed to the setting of influence of Ghanaian migrant
fishers on the marine artisanal fishing domain, comparing such a situation to a « colonization of
fishery-kind » (Delaunay, 1989). Additional facts are presented by Bahou et al. (2022), enhancing
readers” comprehension of the particular set of circumstances that existed at a period of time starting
from 1893, especially when European countries established a former colony in Cote d’Ivoire. That
situation led to the Ghanaian migrant fisher flocks becoming dominant in the field of marine artisanal
fishing.

Sassandra, southwestern Cote d’Ivoire, is known for its virtually thriving fishery-related facilities
region-wide. However, the lack of financial support, which can be viewed as an impediment to
fishery-related activities” takeoff, created persistent setbacks that need be dealt with. The overall
objective of the current study was to show that problems facing the fisher flock and the professionals
working for the benefit of the marine artisanal fishing sector of Sassandra are real. A specific goal was
to enumerate the facts, which generally account for reasons for financial Institutions” cautiousness.

. MATERIALS AND METHODS

Study design was not quite different from the previous ones by Bahou (2022) and Bahou et al
(2022). The study was carried out, arranging for individual interviews, using a questionnaire to which
the professionals of the marine artisanal fishing sector of Sassandra submitted themselves. In
particular, people were to answer the following questions: 1. How long have you been carrying out this
type of activity? 2. Do you work on your own? 3. With whom did you serve your apprenticeship? 4. How
many apprentices do you have? 5. What is your nationality? People were asked extra questions about
problems facing them in their efforts to carry out their fishery-related activities. Those series of
questions, which were wishes-like, were recorded in a Table as shown below:

Type of wishes intended for the professionals Would rather benefit from.... / Get constructed

of the marine artisanal fishing sector of nearby work places....
Sassandra

Wish Number 1......ccooeeieiiiniiniiiieeeeees An Hospital / A free health centre

Wish Number 2........ccocoviiiiiiiiiiiiiceeee A primary school constructed for your kids”
benefit

Wish NUumber 3.......ccoovvveieiiiiiieieecereeee e, Benefit from Insurance services

Wish Number 4........cocovvveeeiiiieiiecieeeeeeeee, Benefit from Bank services / Get financial
support

Wish NUMDbEr 5......ooovieiiiiieciieeieeceeeeeeieee Get life jackets for fishers” safety at sea

Respondents” answers were taken in note form on duly-designed sheets of paper. In total, 220 people
submitted themselves to the questionnaire. Yet, 206 respondents did participate in the interview
throughout, answering all questions and giving helpful additional details to enhance the interviewers”
comprehension. These people talked about their fishery-related activities and year of experience,
indicating their age and what they needed most to further their activities. The estimated age at which
the professionals commenced their jobs was determined making a subtraction between their present
age and year of experience. Age classes of 5 intervals were determined. The data collected were
registered in an Excel file to facilitate processing the data and making calculations, while figures and
tables were used as illustrations.
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Sassandra, Southwestern Cote d’Ivoire

Volume 23| Issue 4 |Compilation 1.0 © 2023 Great Britain Journals Press



3.1 Work Environment

RESULTS

Table 1 indicates that 60% of smoke-curing agents, 30.49% of retailers and 27.03% of wholesalers
served their apprenticeship with their mothers. Likewise, 59.52% of the marine artisanal fishers did
learn fishing working at their fathers” sides, while 19.05% of them served their apprenticeship with
their uncles. However, some other professionals got involved in fishery-related activities on their own
initiative, without the guidance of anyone for their early beginnings. That was the case of male and
female wholesalers as well as retailers, of whom 51.35% and 52.43% among the interviewees
respectively confirmed the fact (Table 1). Overall, fathers and mothers undoubtedly played key roles in
teaching and showing guidance to 13.11% and 30.10% of early beginners respectively, when these ones
started their activities, based on the four types of activities listed in Table 1. Some other 37.38% of the

professionals, however, admitted that they just started working on their own to reach the current stage

of their careers.

Table 1: Professionals” opinions about their early beginning and the persons with whom they served
their apprenticeship in the marine artisanal fishing sector of Sassandra, southwestern Cote d’Ivoire

=
£
2
g
&
Admitted that Responses Percentages Percentages g
Professionals  they served their  obtained from the  relating to obtained, =
apprenticeship interviewees the considering a total of 3
with corporations 206 respondents §
Aunt 1 2.22 - A
Smoke-curing « Fanti » people 1 2.22 - 8=
agents (N =45) Sister 3 6.67 - §
Ol 13 28.89 — §
Mother 27 60.00 - &
Aunt 2 2.44 — E
« Fanti » people 2 2.44 1.46 g
Retailers (N = Friend 2 2.44 0.97 2
82) Sister 8 9.76 - 2
Mother 25 30.49 - 3
Ol 43 52.43 — g
"Father's marriage-mat# 1 2.70 0.49
Cousin 1 2.70 0.48
Male and Sister 1 2.70 5.83
Female Father 2 5.41 —
Wholesalers Aunt 3 8.11 2.91
(N=37) Mother 10 27.03 30.10
Ol 19 51.35 —
Brother-in-law 1 2.38 0.48
Ol 2 4.76 37.38
Artisanal Friend 2 4.75 0.97
fishers Brother 4 0.52 1.94
(N=42) Uncle 8 19.05 3.88
Father 25 59.52 13.11

Note: O I = the interviewees admitted that they started their activities (or their jobs) by their own initiative.
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Figure 1 shows in each corporation the approximate age the professionals reached when they engaged
in their fishery-related activities. For instance, smoke-curing agents ranged in age from 7 to 48 years,
while retailers were 5 to 54 years old, as beginners. In addition, some wholesalers engaged in their
activities when they turned ten, while others completed their 58 years old. Likewise, fishers got
involved in fishing activity at early age (sometimes when they were 7 years old) to learn how to make
their first appearance in a job that is premised on the knowledge that older fishers pass on to younger
ones, so that they may likely become fully competent before they reach 56 years old. Overall, age range
varied according to type of activity, but it was not necessarily linked up to the age of the people. For
instance, 13 smoke-curing agents admitted that they started that job when they were 20 to 25 years old,
in stark contrast with what other 2 smoke-curing agents said; for they made their first appearance in
that job when they were 7 and 10 years old, respectively. A large number of retailers (16+16) admitted
that they began their activities when in the age brackets of 15-20 and 20-25, respectively. Only one
person of that corporation said that he started that job when he was 49. A female wholesaler revealed
that she started the business of buying the fish in large quantities and selling them especially to
retailers for resale, when she was 10; whereas another wholesaler told that she began showing interest
in that business when she turned her 58. Four persons revealed that they began learning fishing at an
early age (when 7 to 10 years old), while more than half of fishers (9+8+9) started fishing when in the
age bracket of 20-35 (Figure 1).
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(N = 206)
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Figure 1. Histograms showing the approximate age in each category of professionals when they started
their fishery-related activities in the marine artisanal fishing sector of Sassandra (southwestern Céte
d’Ivoire). Note: SA = smoke-curing agents; RT =retailers; WS = wholesalers; AF = artisanal fishers.

Figure 2 shows years of experience of the people working for the benefit of the marine artisanal fishing
sector of Sassandra, as revealed by the interviewees. Overall, year of experience varied from 1 to 50.
Within each corporation, people with greater years of experience were fewer than those who had less
experience. For example, smoke-curing agents ranged in experience from 2 to 45 years, with many
people (11 + 10 + 9) who had 5 to 20 years of experience. A large number of retailers (26 + 30) had 2 to
10 years of experience while years of experience within that corporation ranged from 1 to 35. A large
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majority of wholesalers (7 + 10 + 8) had between 4 and 15 years of experience, though years of
experience within that corporation varied from 2 to 45. Younger fishers (and consequently the less
experienced) were more numerous than older ones who were more experienced. Based on the four
fishery-related activities, fishers represented the only corporation that had the highest year of
experience (50 years), whereas wholesalers and smoke-curing agents, in addition to retailers, had the
lowest years of experience (1 to 2 years, Figure 2).
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Figure 2: Histograms showing the year of experience in each category of professionals who engaged in
fishery-related activities in the marine artisanal fishing sector of Sassandra (southwestern Cote
d’Ivoire). Note: SA = smoke-curing agents; RT = retailers; WS = wholesalers; AF = artisanal fishers.

3.2 Behaviour and social characteristics

Table 2 indicates the responses of the professionals while they were telling about their work conditions.
Those responses can be likened to scores. Surprisingly, we expected that all respondents rush the
opportunity to express wishes, without someone to show no interest in the wishes listed as a proposal.
Overall, the interviewees responded favourably, enabling us to rank their wishes this way: W1 > W2 >
W4 > W3 > W5, taking into account the number of people who showed a remarkable interest in the
wishes. In fact, the scores attributed to wishes were the more so high that the wish included the
ambitions and desires of professionals of all kinds. Therefore, wishes W1 and W2 had the highest scores
and percentages (Table 2). In addition, wish W4, which deals with the commonest desire all the
professionals have in focus (i.e. get financial support from the Bank or from any other financial
Institution), gained collective interest because it seems more inclusive. However, the specific nature of
some other wishes, which seem exclusive, like wish W5 dealing with an equipment intended for fishers
and canoe-owners, allows for a distinction to be made as regards safety-work conditions. All
respondents told us about the Bank and Insurances’ cautiousness, the former refraining from placing
financial support at their disposal, and the later generally seeking more trust.

Facts Accounting for an Impediment to Financial Sustenance in Favour of Marine Artisanal Fishery-Related Activities at
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Table 2: Professionals” opinions about issues concerning their health and security at work, schooling of
their children, Insurance services, financial support displacement and fishers” safety at sea

Opinions of people engaged in the Number of  Percentages Percentages
different types of activities observed at responses  (P;) relating to obtained,

Sassandra type of considering a total
responses of 220 respondents

People who showed no interest in the

wishes 4 1.82 0.79

Positive responses to the 5 wishes at a time 8 3.64 1.57

Positive responses to the first 4 wishes at a 21 9.55 4.13

time

Positive responses to the latest 4 wishes at 4 1.82 0.79

a time

People who showed interest in wish 149 67.73 29.27
Number 1

People who showed interest in wish 121 55.00 23.77
Number 2

People who showed interest in wish 74 33.64 14.54
Number 3

People who showed interest in wish 103 46.82 20.23
Number 4

People who showed interest in wish 25 11.36 4.91

Number 5

Note: Percentages in the fourth column were obtained respectively, dividing each percentage (P;) by the sum of
all percentages (XP;). Wish (W1): An Hospital / A firee health centre ; Wish (W2): A primary school
constructed for your kids” benefit ; Wish (W3): Benefit from Insurance services; Wish (Wg):
Benefit from Bank services / Get financial support ; Wish (W5): Get life jackets for fishers” safety
at sea.

Figure 3 shows the number of collaborators in each corporation. Overall, number of apprentices or
collaborators is dependent on type of activity. For instance, smoke-curing agents, retailers and
wholesalers would work with 1 to 4 persons. In stark contrast, fishers would work with as much as 2 to
18 collaborators, though number of collaborators would vary according to factors such as the type of
fishing gear, which may need that fishers work as a team or not (e.g. line, hooks, gillnet, or seine) and
according to title of the fisher (e.g. chief of fishers, canoe-owner, a mere member of the fishing-crew).
Nearly all smoke-curing agents (80% of them) worked with 1 or 2 persons, as 92.68% of retailers and
81.08% of wholesalers did (Figure 3). However, cases in which the professionals worked alone were
reported among smoke-curing agents (35.56% of them), retailers (53.66% of them), and wholesalers
(21.62% of them). Overall, 68 persons (33.01% of the interviewees) admitted that they usually work
alone.
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Figure 3: Histograms showing the number of apprentices or collaborators in each category of
professionals who engaged in activities relating to the marine artisanal fishing sector of Sassandra
(southwestern Cote d’Ivoire). Note: SA = smoke-curing agents; RT = retailers; WS = wholesalers; AF
= artisanal fishers.

V. DISCUSSION

Some specific circumstances people go through generally served for a driving force behind their
choosing a particular type of fishery-related activity. As for the youths, their early beginnings taking on
the fishery-related activities were a manner for them to serve as a helping hand for their mothers and
fathers, especially when those youths who were scholars spent a holiday. In such a case, their
involvement in fishery-related activities is on a part-time job basis. However, some other youths”
taking part in those activities was dictated by their parents” will to early initiate their offspring into
them. It is obvious that at an early age, the choice for a particular activity may not be definitive. Adult
men and women would however willingly decide for themselves and choose the type of activity they
prefer. Talking of artisanal fishing in Guinea (a West African country), Koita (2017) said that it is
carried out by men and women, even by teenagers engaged in such an occupation as a job, describing it
as a type of activity where knowledge is passed on from a father to a son. In fact, for the jobs that do not
require any particular time for training (e.g. smoke-curing, retailing and wholesaling), the hardships
people went through sometimes forced them to make a choice. For some women we interviewed told us
that their choice was dictated by circumstances they faced after they became widows or divorced, in
order to make both ends meet as single parents, being alone to care for their children’s needs and
schooling. In such cases, whether they turned their forties or fifties, people could choose a type of
activity, without prior requirement for training.

To reach the actual stage of their careers, the professionals of the marine artisanal fishing sector of
Sassandra did work hard, seeking guidance and accepting to learn, generally at their parents” side. Yet
some of them did progress by their own efforts. Others acknowledged that some of their first efforts at
retailing or wholesaling were pretty awful. In each corporation, people customary work with members
of family or persons of the same ethnic group. By so doing, the knowledge of fishing for instance rests
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concealed in family circle, being passed on to the new generations with the passing of the years. This
undoubtedly contributed to the success migrant fishers generally had in the fishing activities.
Moreover, as the Ghanaian fisher flock is quite dominant, they do have influence over almost all
fishery-related activities (Delaunay, 1991; Bignoumba, 1998), which confirm the view of
« colonization of fishery-kind » Delaunay (1989) held. It seems that for some types of activity, there
is no need to rely on guidance from former trained-persons. That was certainly what justified the cases
in which the professionals worked alone. Additionally, as in the case of the marine artisanal fishery of
Pointe Noire, Congo (Gobert, 1985), where the fisher flock originated from Benin has influence over
the activities, a large part of the fishery’s workforce at Sassandra rests in the family circle.
Consequently, when the period for fishing for tunas and Sardinellas or that for festivals usually held at
regular intervals in Ghana are drawing closer, many fishers would return to Ghana (their
home-country) with their families. This situation reinforces the unsteadiness of the fishery-related
activities at Sassandra, southwestern Cote d’Ivoire.

Within the fisher flock, the wishes seem to be tied in priorities set by the professionals of the fishing
sector, mainly according to their professional needs and daily life conditions. In fact, most of the
professionals have to care for their families and at the same time pay for their children”s schooling and
face current expenditures; which need be put above all other things. Yet, the professionals are aware
that they can successfully face dependents if only their activities flourish. That is why they look to the
Banks or any financial Institution, expecting them to provide financial support for the furtherer of their
activities. In this regard, are there any sound reasons for financial Institutions” cautiousness? In fact,
financial problems facing people working in the artisanal fishing sector are widespread in West Africa,
as discussed by Bignoumba (1998), referring to the marine artisanal fishery of Gabon. The lack of
financial support displacement for activities was the main problem the professionals of the fishing
sector of Sassandra have in share. Apparently, people carrying out the four types of fishery-related
activities the current study deals with are unaware that features pertaining to their behaviour and work
conditions are the main reasons for financial Institutions” and Insurances” cautiousness. For instance,
work condition was shaped by three outstanding facts: (i) unsteadiness of the fishery-related activities,
(ii) a strong tendency towards informal work, and (iii) equipments for fishing are very expensive and
fishers prefer to buy cheaper ones in Ghana. As regards behaviour and social characteristics, three
remarkable facts generally occur: (i) the high proportion of migrants, (ii) the lack of truthfulness and
reliability, and (iii) most professionals regard themselves as temporary residents, preferring making
investments in their home-country (i.e. Ghana). Overall, these are the main reasons why the Banks and
Insurances are cautious, refraining from engaging their responsibility and money in a risky adventure
(i.e. fishery-related activities) that is not constant in purpose or actions, lacking reliability as a result,
and showing no steady and maximum profits ahead.

Finally, features we discussed in the current study are not specific to the marine artisanal fishery of
Sassandra, southwestern Coéte d’Ivoire. They are common elsewhere, namely in Gabon (a West African
country), where the artisanal fishery is mainly characterized by the weakness of its production tool, the
supremacy of migrant fishermen and a strong tendency towards informal work (Bignoumba, 2011).
Additionally, involvement of members of family in the fishing business was observed elsewhere. In
Senegal (another West African country), Cormier (1981) noticed that within the “Lébou” community,
fishers at times would trade for the fish, which was an activity ordinarily carried out by their sisters or
by fishers” wives.

V. CONCLUSION

The professionals of the marine artisanal fishing sector of Sassandra, southwestern Céte d’Ivoire,
actually range in year of experience, according to type of fishery-related activity. They generally worked
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Sassandra, Southwestern Cote d’Ivoire
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alone or with few people as collaborators, except the fishers. Most of them have served their
apprenticeship with members of their family, or tried to work on their own initiative to achieve goals.
As the professionals prominently worked with members of family, the fishery”s workforce would rest in
the family circle, making the work environment be shaped by persistency of ethnic patterns.
Consequently, this situation resulted in an impediment to financial sustenance in favour of the
fishery-related activities as regards financial help from the Banks and other financial Institutions
whose cautiousness was plainly supported by actual facts.

10.
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ABSTRACT

A recursive method of martingale measures construction for a wide class of evolutions of risky
asset is proposed. An integral representation for each equivalent martingale measure is obtained.
A complete description of all martingale measures is established. The formulas for both infimum
and supremum for the average values of payment functions of call and put options with respect
to all equivalent martingale measures are established. The invariance of the set of all martingales
with respect to a certain class of evolutions of risky assets is proved. A parametric class of
evolutions of risky asset is introduced, which includes ARCH and GARCH models and their
generalizations. A parameter estimation method for the introduced parametric models is
proposed.

Necessary and sufficient conditions are obtained under which the martingale measure is unique. A
significant number of examples of the discounted evolution of risky assets are presented for
which the existence of a single martingale measure is established. An explicit construction of a
single martingale measure in these cases is given. Formulas for fair price of options contracts
and investor hedging strategies are provided. A parametric model of evolution of risky asset is
introduced so that the single martingale measure does not depend on the entered parameters. A
complete description of the family of martingale measures is given for multinomial models of the
evolution of risky asset. Each martingale measure is a finite sum of the introduced spot measures.
The attractive side of such models is that the lower and upper price of the interval non arbitrage
prices are, respectively, the minimum and maximum of the average values of the payment
functions on a set of spot measures.

A class of parametric models is introduced that describe the multinomial evolution of risky asset
such that the family of martingale measures does not depend on the entered parameters.

Keywords: random process; spot set of measures; parametric model of evolution; unique martingale
measure; martingale; assessment of derivatives.

Author: Bogolyubov Institute for Theoretical Physics of NAS of Ukraine.

. INTRODUCTION

This paper continues the papers [1] - [5] and generalizes them to the case of different
evolutions of risky assets. These examples of evolutions are quite realistic because
they contain the memory of the past and describe the phenomenon of clustering
and other effects. Our results concerning construction of risk neutral measures are
quite general relative to volatility evolution and therefore they contain a wide class
of evolutions of risky asset. The construction of the set of martingale measures for
the above class of evolution of risky asset is based on the result of the work [4]

(see Lemma 5) where, for a given random variable and a measure on an abstract

1This work was partially supported by the Program of Fundamental Research of the Department
of Physics and Astronomy of the National Academy of Sciences of Ukraine ” Construction and
research of financial market models using the methods of non-equilibrium statistical physics and
the physics of nonlinear phenomena” N 0123U100362.
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probability space, the set of all measures equivalent to the original one and such that
the average value over such measures of the considered random variable is equal to
zero is described. The notion of consistency of a family of measures with filtration
introduced in this paper and the proven Lemma 5 [4] made it possible to propose a
new method for constructing a family of martingale measures equivalent to a given
measure, which is different from the Escher transformation and generalizations of
Girsanov’s theorem. The ideas proposed in this paper [4] made it possible to propose
a recursive method for constructing a set of risk neutral measures and to give a
complete description of them for a certain class of evolutions of risky asset. It turned
out that it is possible to introduce a set of spot martingale measures in a recurrent
way and prove that any equivalent martingale measure to the original measure is
an integral over the set of spot martingale measures. The latter made it possible
to establish formulas for the boundaries of non-arbitrage prices for nonnegative
contingent claims, as well as a formula for the fair price of a complete hedging of
systematic risk. In the paper [3], formulas for the interval of non-arbitrage prices
for put and call options are found for the evolution of a risky asset occurring in
accordance with the geometric Brownian motion. The work [2] contains a general
construction of building risk-neutral measures by the recursive method.

In the present paper, a significant generalization of the class of evolutions of

risky assets is made, which contains ARCH and GARCH processes and their gener-
alizations.

The study of non-arbitrage markets was begun for the first time in Bachelier’s
work [6]. Then, in the famous works of Black F. and Scholes M. [7] and Merton R.
S. [8] the formula was found for the fair price of the standard call option of Euro-
pean type. The absence of arbitrage in the financial market has a very transparent
economic sense, since it can be considered reasonably arranged. The concept of non
arbitrage in financial market is associated with the fact that one cannot earn money
without risking, that is, to make money you need to invest in risky or risk-free as-
sets. The exact mathematical substantiation of the concept of non arbitrage was
first made in the papers [9], [10] [11] for the finite probability space and in the gen-
eral case in the paper [12]. In the continuous time evolution of risky asset, the proof
of absent of arbitrage possibility see in [13]. The value of the established Theorems
is that they make it possible to value assets. They got a special name ”The First
and The Second Fundamental Asset Pricing Theorems.” Generalizations of these
Theorems are contained in papers [14], [15], [16].

If the martingale measure is not the only one for a given evolution of a risky
asset, then a rather difficult problem of describing all martingale measures arises in
order to evaluate, for example, derivatives.

Assessment of risk in various systems was begun in papers [17], [18], [19], [20].

Statistical studies of the time series of the logarithm of the price ratio of risky
assets contain heavy tails in distributions with strong elongation in the central re-
gion. The temporal behavior of these quantities exhibits the property of clustering
and a strong dependence on the past. All this should be taken into account when
building models for the evolution of risky assets.

In this paper, we generalize the results of the papers [1] - [5] and construct
the evolution of risky assets for which we completely describe the set of equivalent
martingale measures.
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The aim of this study is to describe the family of martingale measures for a
wide class of risky asset evolutions. The paper proposes the general concept for
constructing the family of martingale measures equivalent to a given measure for a
wide class of evolutions of risky assets. In particular, it also contains the description
of the family of martingale measures for the evolution of risky assets given by the
ARCH [21] and GARCH [22], [23] models. In section 2, we formulate the conditions
relative to the evolution of risky assets and give the examples of risky asset evolu-
tion satisfying these conditions. Section 3 contains the construction of measures by
recurrent relations. It is shown that under the conditions relative to the evolution
of risky asset such construction is meaningful. It is proved that the constructed set
of measures is equivalent to an initial measure. In theorem 1, we are proved that
under certain integrability conditions of risky asset evolution the set of constructed
measures is a set of martingale measures relative to this evolution of risky asset. In
section 4, a family of spot martingale measures is introduced and a set of measures
is constructed from it and a family of random variables, and it is shown in Theorem
2 that the constructed family of measures is absolutely continuous with respect to
the original measure. And in Theorem 3, it is proved that the family of measures
constructed in this way is a family of martingale measures which are equivalent to
the original measure. A complete description of all martingale measures is found in
Theorem 4. Theorem 7 establishes that the infimum and supremum of the mean
value of payment functions all over martingale measures equals, correspondingly,
infimum and supremum of the mean value of payment functions all over spot mar-
tingale measures. Theorem 8 establishes that the constructed class of martingale
measures is invariant with respect to a certain class of evolutions of risky assets.
This statement is important and makes it possible to build parametric models of
financial markets. In Section 5, estimates for both the lower and upper limits of
the interval of non-arbitrage prices are found for the constructed parametric model.
The proposed parametric model based on the canonical model of the evolution of
risky asset (9), which takes into account both memory and clustering, takes into
account the fact that the price of a risky asset cannot fall to zero. As a consequence
of these estimates, explicit formulas for the fair prices of a superhedge in the case of
the payment functions of a standard call and put options are found in Theorems 11,
12. Analogous results are found in Theorems 13 and 14 for the payment functions
of Asian-type call and put options.

Theorem 15 provides estimates for the parameters through realizations of the
random parametric evolution of the risky asset. In Theorems 16 - 19 the formulas
for interval of non arbitrage prices and the fair prices of superhedge are given through
the obtained parameter estimates.

Another parametric model of the evolution of risky assets is considered in Section
6. It differs from the previous one in that it considers the discounted evolution of
risky asset. Theorems 20 - 21 are proved, in which estimates are obtained both from
above and from below and established. Theorems 22 - 23 derive formulas for the
fair price of a superhedge for the payment functions of call and put options, respec-
tively. A similar result is obtained in Theorems 24 - 25 for the payment functions of
Asian-type put and call options. In Theorems 26 - 29, based on the sample for the
evolution of the risky asset, the formulas for the fair price of the superhedge through
parameter estimation are presented. Section 7 establishes Theorem 30, which gives
the necessary and sufficient conditions for the unity of an equivalent martingale
measure.

In Section 8, Proposition 2 proposes a model of the financial market with a sin-
gle martingale measure that is invariant with respect to the evolution of each of the
assets. In Theorems 32 and 33, various examples of discounted evolutions of risky
assets are presented, conditions for the existence of a single martingale measure are
found, and its explicit construction is given. Formulas for fair pricing options con-
tracts and investor hedging strategies are provided. In proposition 3, a parametric
model of the evolution of risky asset is proposed; the single martingale measure
constructed for this evolution does not depend on these parameters. Estimates of
the model parameters were built based on the realizations of the random evolution
of asset.

Risk Hedging in Financial Markets

Volume 23| Issue 4 |Compilation 1.0

London Journal of Research in Science: Natural and Formal




London Journal of Research in Science: Natural and Formal

Section 9 contains a description of all martingale measures for the multinomial
evolution of risk assets. This result is obtained in Theorem 35.

In section 10, models of incomplete financial markets are proposed for which
inequalities are established for the fair price of a superhedge for various models
of the evolution of risky asset. Theorem 37 establishes that for a certain class of
payment functions and for a wide class of evolutions of risky assets, the fair price
of the superhedge is strictly less than the price of the underlying asset. Among
such payment functions is the payment function of the standard call option of the
European type. Theorems 39, 40 give various examples of discounted evolutions of
risky assets that satisfy the conditions of the proved theorems 35 - 37, and find the
conditions under which the family of martingale measures is nonempty. Formulas
for a fair superhedge price have been found. Proposition 5 contains the construction
of a parametric model of an incomplete financial market, a family of martingale
measures of which does not depend on the considered parameters. Proposition 6
provides an estimates of the parameters of the constructed models of incomplete
markets through realizations of the considered evolutions of risky asset.

Il. GENERAL ASSUMPTIONS RELATIVE TO EVOLUTIONS OF RISKY ASSETS

Let {Qx, Fn, Py} be a direct product of the probability spaces {QY, F?, PP}, i =

- N N N

LN, Qv = [19Y, Py = [I P?, Fn = [[ F?, where the o-algebra Fy is a min-
i=1 i=1 i=1

N
imal o-algebra, generated by the sets [[ G;, G; € FP. On the measurable space

i=1
{Qy, Fn}, under the filtration F,,, n = 1, N, we understand the minimal o-algebra

N
generated by the sets [[ G;, G; € F?, where G; = QY for i > n. We also intro-

%
i=1

duce the probability spaces {Q,, F., B.},n = 1, N, where Q, = [[ 0, F, = [] 77,
i=1 =

i=1

P, =[] P?. There is a one-to-one correspondence between the sets of the o-algebra
i=1
F,, belonging to the introduced filtration, and the sets of the o-algebra F,, = [] F?
S i=1
of the measurable space {{,,F,},n = 1, N. Therefore, we don’t introduce new
denotation for the o-algebra F,, of the measurable space {€2,, F,}, since it always
will be clear the difference between the above introduced o-algebra F,, of filtration
on the measurable space {2y, Fy} and the o-algebra F,, of the measurable space

{Q,, F.},n=1,N.

We assume that the evolution of risky asset {S,})_,, given on the probabil-
ity space {Qn, Fn, Py}, is consistent with the filtration F,,, that is, S, is a F,-
measurable. Due to the above one-to-one correspondence between the sets of the
o-algebra F,,, belonging to the introduced filtration, and the sets of the o-algebra
F., of the measurable space {2, F,},n =1, N, we give the evolution of risky assets
in the form

{Sn(wlv ce 7wn)}7]:[:07 (1)
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where S,,(wy, . ..,w,) is an F,-measurable random variable, given on the measurable

space {€,, F,}. It is evident that such evolution is consistent with the filtration F,
on the measurable space {Qy, Fn, Py}
Further, we assume that

P.((wy,...,wy) € Q,, AS, >0)>0,

Po.((w,...,wy) €Q,, AS, <0)>0, n=1N, (2)

where AS,, = S, (w1, ..., wy) — Sn-1(wi, - ywpo1), n =1,

=

Let us introduce the denotations

Q) ={(w1,...,wn) € Dy, AS, <0}, QF ={(w1,...,w,) €, AS, >0}, (3)

AS, = —AS,xq- (W1, -+, Wn), AST = ASpXar (Wi -+, Wn), (4)
V(Wi ooy Woo1, Wi w?) = AS (Wi, v Wne1,wih) + AST(wy, . walg, w2),
(Wi .oy Wne,wl) €0, (Wi, Wpe1, w?) € Q. (5)

Our assumptions relative to Q; and Q are the following

Q) =Q, 1 % Q?;, QZ =0, X Q?f, Q%f, Q?f = Qg, n=1,N, (6)
where

QU =0 n=T,W, (7)

POy >0, PYQY)>0, n=1N. (8)

London Journal of Research in Science: Natural and Formal

Below, we give the examples of evolutions {S, (w1, ...,w,)}_,, for which the con-
ditions (6) - (8) are true. Let us consider the evolution of risky asset given by the
law

Sn(wlv sy Wn1, Wn) = SO H 601‘(“}1,”-,“}1._1)81.(%)7 n = ]-a Na SO > 07 (9)
i=1

relative to which we assume that the conditions

oi(wi, ... wi1) >0) >0, Plgi(w;) >0)>0, Pei(w;)<0)>0, i=1N,

Risk Hedging in Financial Markets
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are true. For the evolution of risky asset (9), we have

ASn((.Ul, ey Who1, wn) =

Sn71<wl, .. ,wn71>(ean(wl,...,wnfﬂen(wn) — 1) = (10)
dp(wy, ... ,wn_l,wn)(e”’%"(w”) - 1),
h
where dn(“ul?"'?wnfl;wn) =

(ean(wl,...,wnfﬂen(wn) _ 1)
Sn_l(wl, NN ,wn_l) (602577,("-771,) — 1) . (11)

It is evident that d,,(wy,...,wy—1,wy) > 0 and for Q,, QF the representations (6)
are true with

Q™ ={w, € W ep(w,) <0}, QO ={w, € Q% e,(w,) > 0}.

The more general example of risky asset evolution, satisfying the conditions (6)
- (8), is given by the formula

Sn(wl, e ,wn) =
So H(l + a;(wi, .., wi)ni(wi))y {wr, . w1, wn} € Qyy, n=1,N, Sy >0, (12)
i=1
where the random values a, (w1, ..., wn_1,Wn), Mu(wy), n = 1,N, given on the

probability space {Q,, F,, P, }, satisfy the conditions

an(Wy, ..y wp_1,wy) >0, sup n,, (W) < 00,
wnEQ%ﬂ?E (Wn)>0

sSup a‘n(wla <o Wne, wn) < _ . (13)
wnEQ%,ﬁE(wn)>0
So, for AS, (w1, ...,ws_1,wy,), n =1, N, the representation
ASn(wla sy Wno1, Wn) -
Sp—1(Wiy ey wp1)an (Wi, e Wity Wy )M (Wn) =
dp(wWiy ey Wone1, W) (wn), n=1N, (14)
is true, where d,(wi,...,wy_1,w,) > 0. From the representation (14) we obtain

Q. =Q,1 xQ, QF =Q, 1 x Q% where Q07 = {w, € 2%, n,(w,) <0}, Q0T =
{wn € Q8 nu(wy) > 0}
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Further, we assume that P2(Q%~) > 0, P%(Q%T) > 0. The measure P’ is a
contraction of the measure P? on the o-algebra F2~ = Q" NF?, P is a contraction
of the measure P? on the o-algebra Fo+ = Q0T N FP.

Below we give an example of discount evolution having the representation (12).
Suppose that risky asset evolution is given by the formula (9) and an evolution of

non risky asset is given by the law

n

Bn:He”, 0<r,<oo, m=1N. (15)
i=1
Let us assume that

Pf({w,- € Q?, a?si(wi) —r; < 0}) >0,

P({wi € ), ojei(w) —ri>0}) >0, i=1,N. (16)

Then for the discount evolution

S’I’L AR n—1» n T AT
SHwi, .. Wpe1, wy) = (r Bw ke ), n=1,N, (17)
the representation (12) is true, where
ai(wl ..... wi_l)si(wi)—ri _ 1
ai(Wis ., Wim1,Wi) = ‘ 0 > 1, mwy) = eI,
€% ei(wi)—r; _ 1
In this case,
_ T T
Q) = {wi € Y, eiw) < 9}7 O = {w; € O, ei(wi) > E}’ (18)
Q; = Qi*l X Q?i, Qj = Qi,1 X Q?Jr (19)

The evolution of risky asset, given by the formula (9), includes a wide class
of evolutions of risky assets, used in economics. For example, under an appro-
priate choice of probability spaces {Q?, F?, P’} and a choice of sequence of in-
dependent random values ¢;(w;) with the normal distribution N(0, 1), we obtain
ARCH model (Autoregressive Conditional Heteroskedastic Model) introduced by
Engle in [21] and GARCH model (Generalized Autoregressive Conditional Het-
eroskedastic Model) introduced later by Bollerslev in [22]. In these models, the

random variables o;(wy,...,w;_1) > oY > 0, i = 1, N, are called the volatilities

)

which satisfy the nonlinear set of equations.

London Journal of Research in Science: Natural and Formal

Further, we do not restrict ourselves only the above considered case of evolutions
of risky assets. We assume that the random variables o;(w,...,w;—1) entering in
the formulas (9) satisfy only the inequalities o;(wy,...,w;_1) > 0¥ >0, i = 1, N,
and the random values £;(w;), i = 1, N, are non correlated between themselves. For

example, they may be independent random values having the normal distribution
with zero mean value and not only.

Risk Hedging in Financial Markets

© 2023 Great Britain Journals Press Volume 23| Issue 4 |Compilation 1.0




London Journal of Research in Science: Natural and Formal

. RECURSIVE CONSTRUCTION OF THE SET OF MARTINGALE MEASURES

In this section, we present the construction of the set of measures on the ba-
sis of evolution of risky asset, given by the formula (1), satisfying the condi-
tions (6) - (8). For this purpose, we use the set of nonnegative random values
an({wi,. . wl ol {w? ... w? [ w2}), given on the probability space {Q. x
QF Fo x Ff Py x P}, n=1,N, where F,, = F,NQ,, Ff=F,NQ. The
measure P is a contraction of the measure P, on the o-algebra F,” and the mea-
sure P is a contraction of the measure P, on the o-algebra F,. After that, we
prove that this set of measures is equivalent to the measure Py. At last, Theorem 1
gives the sufficient conditions under which the constructed set of measures is a set
of martingale measures for the considered evolution of risky asset. Sometimes, we

use the abbreviated denotations {wi, ... wl} = {w}l {w}, ..., w2} = {w}>.

We assume that the set of random values a,({wi,...,wl};{w}, ... ,w?}) =
an({wili {w}?), {w}i{w}?) € Q. x QF, n = 1, N, satisfies the following con-
ditions:

P x B ({}h {w}2) € 9 x O an({whh {w)2) > 0) =
Po() x P(QF), n=T.N: (20)

1 1 1 2
/ XQ;(WI’""wn—hwn)XQj;(wl’""wn—hwn)x
Q0 xQ9

O‘ﬂ({wia e 7w71L—1’ wrlz}; {wfv e 7w721—17w721})><

ASH(wy, .y wn 1, W2)AST (Wi, ey Wy, w)h)

Vn(wla <oy Wn—1, W%, w%)

({wi et 7(")%—1}; {wi e 7w12z—1}) € Qn—l X Qn—h

AP, (w,)d Py (wy) < oo,

(Wi, e ywn1) € A1, n=1,N; (21)
/ XQ;(W%’""wrlz—hw}z)XQj;(w%’""w?z—hw?z)x
Q0 x Q9
O‘n({w%? s 7w711—17w711}; {w% s vwz—lj wi})dpg(wrll)dpg(wi) =1,
Hwiy.oowr  hdw? w2 ) €eQ xQy, n=1,N. (22)

In the next Lemma 1, we give the sufficient conditions under which the conditions
(20) - (22) are valid.

Lemma 1. Suppose that the evolution of risky asset, given by the formula (1),
satisfies the conditions (6) - (8). If the inequalities

LN, (23)

/ AS (wiy .. wy1,wn)dPy <00, n=
Qn
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are true, then the set of bounded random values o, ({w}l; {w}?), satisfying the con-
ditions (20) - (22), is a nonempty set.

Proof. If the random values
0<c <ar({wl,. . ., wil{w? . .. ,w2}) <cy<oo, n=1,N, (24)

are bounded as from below and above, then the random values

an({w%, o ,w}z}; {w%, o ,wi}) =
1 1 1. 2 2
an(fwl,...,lwn},{wzl,...,w;}) =T, (25)
T({wh’"7wn71};{w1="'7wn71})

where ) . ) )
T({wlﬂ te 7wn71}; {wh ce 7wn71}) =

//XQ; (UJ%, tet 7w711)XQI<w%7 te 7("')721)04711({(*)%7 te 7“711}; {wi tee 7w'r21}>><
Q0 Q0
AP, (wy)d Py (wy),
is also bounded as from below and above. Really,

C1

caP2(2, ) P(2))

S O‘n({wi s 7wrlt}; {wfv s 7w72L}) S

C2

cr P8 PR (L)

=Cp<oo, ({whi{wh) €9, xQ), n=1N. (26

It is evident that the random values (25) satisfy the condition (20) - (21). Really,

due to the inequalities (26), the random values a,,({w}l:{w}?}), n = 1,N, are
strictly positive. Therefore, the conditions (20) are true.

Owing to the boundedness of a, ({w}L; {w}?2}) < C,, n =1, N, the inequalities

/ XQ;(ML"‘7wrlLfl7wrlz)XQ$<w%7"‘7wn717wn)x

Q9 xQ0

an({wiﬂ e 7“}%—1’ w}b}; {UJ%, e 7w72L—1>w72¢})X
AST(wry ey wno1, w)AS (W, .oy wp1, W)

dP?(w!)dP’(w?) <
Vn(wlv ey Wh—1, w}” (,UTQL) n(wn) n(wn) —

Cn/ASn(wl, e Wn,wh)dPY(wh) < 0o, m=1,N, (27)
00
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are true for almost everywhere (wi,...,w,—1) € Q,-1, n = 1, N, relative to the
measure P, ;, owing to the inequalities (23) and Foubini Theorem. This proves
the inequality (21). The equality (22) is also satisfied, due to the construction of

an({w}l; {w}?). Lemma 1 is proved.

On the basis of the set of random values a,({w}!; {w}?), n =1, N, constructed
in Lemma 1, let us introduce into consideration the family of measure po(A) on the
measurable space {Qy, Fn} by the recurrent relations

ME\Lfdl,...,wN—l)(A) = / XQ;](wlv ce, WNZT, W}V)XQx(wh e, WNT, W?V)X
Q% x0%,
ay({wi, .- wy-n,wyt; {wr, - whor, Wi ) X
AS]—C'(CL)l, . e ,WN_l, W]QV) (wl,...,wN_l,w]l\,)
T 3 HN (A)+
VN(UJl, s ,(UN_l,CL)N,U)N)
AS&(wl Co L WNZT CUJIV) (W1, WN—1 w?\,)
- ’ ENTENI(A) | dPR (wy)d PR (wh), 28
VN(Wlw--aWNflaw]lVaw]QV)uN ( ) N( N) N( N) ( )

uilw_li”"w"‘l)(A) = / Xoz (Wi - -+ Wn1, Wi)XQi (Wi, .o Woo1, w2) X

09 xQ0
an({wi, .. wnen, Wil {wr, o w1, W) X
2
e
AS, (Wi, ... woe1,w;)

D) AP, 0 =B, (29

1 .,,2\Fn
Vn(wla cee 7wn717wn7wn)

o) = [ oy @hxas an(ulin?)x

QIxQ9
AST(wP) @ AST (W) (@)
1 A. 1 A. dPO ]'dPO 2
Vl(—w%,w%) 1 ( )+—V1(w%,wf) 1 ) 1(“’1) 1(“1)7 (30)
where we put
ME\L,U17"'7wN71’wN)(A) = XA(wl, - ,wN_l,wN), Ae .FN. (31)

Lemma 2. Suppose that the conditions of Lemma 1 are true. For the measure
wo(A), A € Fy, constructed by the recurrent relations (28) - (30), the representation

po(A) = /Hl/)n(wl,...,wn)XA(wl,‘..,wN)HdPio(w,-) (32)
Gy =1 i=1
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is true and po(Qxn) = 1, that is, the measure po(A) is a
equivalent to the measure Py, where we put

probability measure, being

V(Wi -y wn) = Xo (Wi, - -  Wne 1, W )WL (W1, -+ Wi )+
ng(wla e Whe 1, W )YP2 (W, -, W), (33)
lp}q(wh cee 7wn—17wn) -
/XQ;(wl, . ,wn—1,w721)an<{w1, e ,wn_l,wn}; {wl, . ,wn_l,wi})x
Q9
ASHT(wry .oy wpo1,w?)
Vn((jl = lnw1 J2)dp7?(wi)7 (wl, c. ,wn_l) € Q1 (34)
PRI —1yWnH»Wn
YW1y W1, W) =
/XQn (wh o 7wn—17wi)an({wl7 oo 7&)“_1,(,0;}; {wb ) 7wn—17wn})><
Q9
AST (Wi ey Wy, wl)
Vn(gl = 1nw1’ JQ)dP,S(w;), (Wi Wn1) € Q1. (35)
VAR | — 1 n?’ n

Proof. Due to Lemma 1 conditions, the set of strictly positive bounded random
values a,({w}l;{w}?), n = 1, N, satisfying the conditions (20) - (22), is a non
To prove Lemma 2, we need to

empty set. The proof of formula (32) see in [2].
prove that ¥, (wq,...,w,) >0, n =1, N. Really,

lp”ll(wl""’wn—lawn) Z
AST w2
o 1,220 117 wn2) dP,?(wi) >0, (w1,
ca ) Valwr, .o, wpo1,wh w?)
9t
lpi(wl""vwn—lawn) Z
C1 AST: (U)l, e 7wn71’wi) 0 )
Co dP%(w>) > 0 w
Co 0/ Vn(wl,...,wn_l,w%7w%) n( n) 5 ( 1,
00~

London Journal of Research in Science: Natural and Formal

s 7wn71) € anlv

- 7wn_1) € Q1. (37)
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From the inequalities (36), (37) we have what we need. To prove that u(Qn) = 1,
let us prove the equality

/lﬂn(wl,...,wn)dﬂg(wn) =1, (wi,...,wp_1) € Qp_1, n=1,N. (38)

We have
/ Y, (wr, ..., wn)dP2(w,) =
Q)
//Xﬂg(wl,...,wn1,w}l)XQ¢(w1,...,wn1,wi)x
Q9 Qf
an({wla'"7wn—17wrlL};{w17'"7wn—17w72L})><
ASH(wry .oy wpo1,w?)
Volwi, ooy wp1, wh w?)
ASf(wl,.. s Whn—1,W ) 0 0
dP dP
(Wi, W1, Wl w?2) w(wn) P (wr) =
//XQ Wiy ey W1, W )XQ+(w1,.. , Wi 1,w2)><
00 Q0
an({wr, ... ,wn,l,wi}; {wi, ..., Wn_1, wi})dpg(wi)dpg(wi) =1. (39)

The last equality follows from the fact that the set of random values ay, ({w; }L; {w }2),
n = 1, N, satisfies the condition (22). The equalities (38) proves that every measure

(32), defined by the set of random values a,({w;f, ... ,wl}; {w}, ..., w2}),n =1,N,
satisfying the conditions (20) - (22), is a probability measure, being equivalent to
the measure Py.

This proves Lemma 2.

Note 1. Assume that for a,({wi,. .., wl | wit{w? ... w2 |, w?2}), constructed in
Lemma 1, the inequalities

0<cn <an({wi,...,wl L wih{w?, ... W W) <C, < oo,

are true. Suppose that the conditions

AS (wiy ..y wn1,wn) < B, <00, n=1,N, (40)

are valid, where ¢,, C,, B, are constant, then the set of equivalent measures to the
measure Py, described in Lemma 2, is nonempty one.

Proof. Due to Lemma 2 conditions, the equality (20) is true. Further,
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//XQ;(WL cee 7w7lzflaw71L)XQI(w%7 ce ,wi,l,wi)x

Qf Qf,
an({w%,...,wi_l,wi};{wf,...,wi_l,wi})x
AS T (wry .y wno1, w)AS (Wi, -y w1, W)
dP°(whdP°(w?) < B
Vn(wlg--'ywnflaw}wwg) n( n) n( n) — s

({w%, . ,wi_l};{wf,...,WQ e Qg x 1, (wi,...,Wn-1) € U1,

n—1

/ XQ;(wia"'7w711—17w71L)XQ,'1[<w%7"'7w721—17wr2z)><
Q0 xQ0
an({w%, s 7("}711—17("}711}; {wia e 7w72l—1a w?z})dPS(wrll)dPS(wZ) = 1a
{wi, .. wh  B{w? . w2 )) € Dot X Q. (41)

The last inequality and the equality (41) means that the conditions (20) - (22)
are satisfied. Note 1 is proved.

For a nonnegative random value fx(ws,...,wx) let us define the integral relative
to the measure pg(A), given by the formula

N N
EMOfN = / H ¢n(wl, . ,wn)fN(wl, e ,wN_l,wN) HdPlO(wZ) (42)
n=1 =1

Qn

Theorem 1. Suppose that the conditions of Lemma 1 are true. Then, the set of
nonnegative random values a,,({w}l: {w}2),n =1, N, satisfying the conditions

EFIAS, (wry .. ywp_1,wy)| =

N

N
/Hl/)i(wl, o W) |AS (W - Wi, wh) | HdPiO(wi) <oo, n=1,N, (43)
Gy =1

=1

is a nonempty one and the convex linear span of the set of measures (32), defined
by the random values a,,({wl, ... wil;{w?, ... ,w2}), n = 1, N, and satisfying the
conditions (43), is a set of martingale measures, being equivalent to the measure Py.

Proof. Taking into account the equality (38), the right hand side of equality (43)
can be written in the form
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i=1

N N
/ [[wilwr, . w)|AS,(wr - - wnr,wn) | [ [ AP (wi) =
On =1

i=1

/Hlpi(wlw"7wi>|ASn(wl7'"7wn—17wn)|Hd‘PiO(wi) =
G, =1
n—1
2 / Hl/ii(wl,...,wi)//XQ;(wh...?wn1,wi)xﬂx(w1,...,wn1,w2)><
Q) | =1

Qp Qf
an({wla'"7wn717w711};{w17'"7wn717w721})><
ASJ(wl,...,wn_l,w%)ASg(wl,...,wn_l,wﬂl)x
Volwi, ooy wp1, wh w?)
dP%(w})dP?(w HdPO w;), n=1,N. (44)

Since the conditions of Lemma 1 are true, then the set of bounded random val-
ues a,({wi, ... Wil {w?, ..., w?}), n = 1, N, satisfying the conditions (20) - (22),
is nonempty one. From the equality (44) for the set of bounded random values
an({w}l; {w}?), n =1, N, figuring in Lemma 1, we obtain the inequality

N
/sz Wiy ..., W IAS (wla'--awn—17wn)|HdPiO(wi) S

i=1
N
H 262 /AS(wl ey Wp1,wh)dPy <00, n=1,N. (45)
a1 bR Q) PR AR ’ ’
This proves that the set of nonnegative random values o, ({w;, ..., wl}; {w?, ..., w?}),

n = 1, N, satisfying the conditions (43), is a non empty set.

Let us prove that

/¢n(w1, ey Wn)AS, (Wi, - - ,wn)dP,?(wn) =0,

(wla s 7wn71> € anla n= 17N (46)

Really,
/l/)n(wl, oo W) AS, (wr, - ,wn)dP,,?(wn) =

Risk Hedging in Financial Markets

© 2023 Great Britain Journals Press



© 2023 Great Britain Journals Press

//XQ;(WIW"’CUHlawi)XQ:(wla”'awnlawi>x

Qg Qf
an({wla'"7wn—17w711};{w17'"7wn—17wi})x
ASf{(wl, ey W1, w%)
— AS, (Wi, W1, W)+
{ Vi(wiy ooy w1, wl w?) w (@1 net )

AS (@t Wn) Ngry o ] P aPY W) =0, (47)

Vo(wi, .oy wn1, wh w?)

due to the condition (21).

To complete the proof of Theorem 1, let A belong to the filtration F,,_1, then
N
A = B x [] QY, where B belongs to the o-algebra F,_; of the measurable space

{1, ]—"n_z}. Taking into account the equality (39), (47), we have, due to Foubini
theorem,

/1_[1/)Z Wiy wi)Xa(wr, - wn)AS, (W, .. w HdPO (w;)

/Hl/), Wiy wW)XB(WI - wWh1)AS, (W, . w l_IalP0 w;)

n—1

/ Hl,bz Wiy ey XB(wl,...,wn_l)HdPiO(wi)x
=1

/wn(wl, o W) AS, (Wi, we)dPY (wy,) = 0. (48)

The last means that EF{S, (wi1,...,wy)|Fn_1} = Sp_1(wi,...,w,_1). Since every
measure, belonging to the convex linear span of the measures considered above, is
a finite sum of such measures, then it is a martingale measure, being equivalent to
the measure Py. Theorem 1 is proved.

Our aim is to describe this convex span of martingale measures.
V. INTEGRAL REPRESENTATION FOR MARTINGALE MEASURES

In this section we consider the spot measures fig,1 .2}, . 1 2} (4), introduced in [2].
Let us consider the random values

Yn(wi, . wn) = Xq- (Wi, .. W1, W) YL (W1, - oy W)+

Xﬂi(wlv <y Wn—1, wn)lpz(wla cee 7wn)a (49)
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where

lp}l(wl? s 7wnflawn) = XQ$<W17 e 7(«Un71>W72L)><
AS;(wl, e, W1, w?l)
1) EQ _ 50
Vn(wh"wwn—l,W%,w,%)’ (wl’ » Wn 1) n—1, ( )
wi(wl? e 7wn—17wn) = XQ;(wly e 7wn—17w7}z)x
AS;(W1>"->WH—1,W711)
ceyWne1) € Qg 51
Vn<w1’-'-,wn—17w%,w%)’ (wl’ » Wn 1) n—1 ( )

Definition 1. Let the evolution of risky asset, gz’ven by the formula (1), satisfies the
conditions (6) - (8). On the measurable space {H [QV~ x Q9] H [F)~ x F*]}, being
the direct product of the measumble spaces {QO x QU FPT x ]-"0+} for every point

Hwi,wi}, ... {wh,wi}} € E[Q?’ x Q] let us introduce the set of spot measures

(see also [2])
oot ol w2} (A) =

2 2 N
Z . Z H ll)n(wil,...,w;")XA(w?,...,w?{,v), A€ Fu, (52)

=1 in=1n=1
where Y (w1, ..., wy,) is determined by the formulas (49) - (51).

Let us define the integral for the random value fy (wi,...,wn_1,wy) relative to
the measure u{w%’w%}’m’{w}ww%}(A) by the formula

/ fN(wla sy WN-1, wN)d/L{w%,w%},...,{w}\,,w?\,} =

2 2 N
ZZH wl,...,w;j)fN(wil,...,wj{,V). (53)
=1 iy=1j=1

To describe the convex set of equivalent martingale measures, we introduce the

family of a-spot measures, depending on the point ({w{,{w}},...,{wk,{w%}) be-
N
longing to JT[Q0~ x Q%] and the set of strictly positive random values
i=1
an({wl, .. w Lwih{wd Wk W), n=1,N, (54)

at points W, = ({wi,...,wl};{w} ..., w?}), being constructed by the point
{wh,wit, . {wy, wi})-

Let us determine the random values

(Wi, W) = Xo- (Wi, - - -  Wne 1, W )W (W, .. wn )+
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Xot (W1, sy Wno1, Wn)lpi’a(wla s 7wn)7 (55)
lpr,ll7a(wl7 ceeyWp—1, (Un) =
[ o nowDanl b s (6w
Q)
AS T (wiy .y wn1, w?)
n T O T Tl dPY(w?), yee s Wno1) € Qg 56
Vn(wly'--ywn—bw}pwz) n(wn) (wl W 1) 1 ( )
¢3L7a(w17 R wn) =
/XQ; (wlﬂ sy Wn—1, w}l)an({wi, e 7(")711—17 w711}; {wfa cee ,wi_l,wi})x Té‘
Q0 E
.=
AS; (wy Wno1,w}) 0/ 1 g
L L ) , ey Wn1) € Q. 57 =
Vn<w1,' - 7wn71>wrlww72l) n(wn> (wl % 1) 1 ( ) §
>
Let us define the set of the measures on the o-algebra Fy by the formula %
=
N 2
Q
fio(A) = / [Jeslfwi, . whi{wl, . Wi} 2
Z:1 .-
{1 09~ x00*) E
i=1 (a3
5]
(B
N &
1y ot w2y (A) [ d[P? x PP, A€ Fy. (58) °
M{wl,wl},...,{wN,wN} i il N =
i=1 g
=
=
Theorem 2. Suppose that the strictly positive random value g
=
o ({wh, . wid {w? W), n=1,N, (59) 3

N N
given on the measurable space {[[[Q0" x QY] TT[F>-

,WN)dPN

x FPT)Y, satisfies the con-

(60)

=1 i=1
ditions of Lemma 1, then for the measure uo(A), given by the formula (58), the
representation
fo(A) =
N
/H’l’?(wla---awi)XA(wh---
Gy =1
18 true.
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Proof. Due to Lemma 1, the set of random values «,({wi,...,wl}; {w? ... w?}),
n = 1, N, satisfying the conditions (20) - (22), is a non empty set. Introduce into
consideration the sequence of measures

u;}ilwn_1(A>: / HQZ {wl,.,.,wil};{w%,...,u}?})x

[T (20~ x00*]

i=n

Z ZHIIJJ Wiy e W1, W, ,...,w;j)XA(wl,...wn_l,w%",...,wf\?’)x

in=1 iN=1j=n
APY(W!)APY(W?) .. dPY(wh)dPR(Wh), n=T.N. (61)
and find the recurrent relations between them. Using Fubini Theorem, we have

L (4) =

//dpg( YAPY @2 )an({wh, ..ol {2, w?]) Z‘l’ Wty et win)

_ in=1
09~ 00t "

/ H ap({wl, . wid{w? W) x

N 1=n+1
I1 (907 <]
1=n-+1

Z Z H Yi(wi, W1, W)W )X AW W, W W)X

int+1=1 in=1j=n+1

dP’r?—i—l( n+1)dPn+1( n+1) dPN( )dpz(\)f(WQ ) =

an({wiv"'vwi};{w%a-” n} len Wiy .. Wp— 1>w )X
Q% a5t tn=1

gt (A) AP (wh ) AP (w7) =
/ / an({wi, . wih{w?, DWW, W1, W) ) X
- ot
i (A)d P () AP (wh)+

/ / an({wi, .. wih {w?, DY (wr, W, W) X

Q9 ot

s (A) AP () AP (). (62)
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In accordance with the formulas (49) - (51), for ¥, (wy,...,w,) we have

Y (wr,. .. wh) = X (Wi - -  Wne 1, WP (W, . wh)+
XQ;t(wla s 7wn—1)w711,)¢2(w17 s 7wrll) -
XQ; (wla sy Wne1, wi)XQi (wla ceey Wn1, wi)x
AS,J[(wl, Ce ,wn_l,wi)
Vo(wi, .oy wno1, wh w?)
Xoi (W1, -+ - ,wn,l,w}t)xm (Wi, v, Wno1,wh) X
AST (Wi ey wno1,wh) _ ~
Valwi, oo ywpo1,wh, w?2) £
S
XQ;(wl,...,wn_l,w}l)xgi(wl,...,wn_l,wi)x %
&
—
ASF(wry .oy wpo1,w?) o
T2 (63) £
Vn(wlu sy Wn—1, wn’wn) 2
Further, g
Y, (wr, ... w2 = Xa (Wi, W1, WP (W, ..., w2+ _g
A
XQx(wl,...,wn,l,wi)lpi(wl,...,wfb) = E
2 2 g
XQ; (Wla sy Wno1, wn)XQi (wla ey Wn1, wn)x 8
w0
ASH(wry .oy wno1,w2) Sqd:
Valwi, oo wpo1,wh, w?) %
XQz(wla"'awn—bwi)XQ;(wla---awn—lvwi)x g
=2
AST(wry -y wpo1,wh) _ g
Volwi, .oy wp_1,wh w?) %
-
XQ:{ (wlu s 7wn—1’wr2L)XQ; (wla <oy Wn—1, wrlz,)x
ASJ (wl, . ,wn_l,wi) (64)
Vo(wi, .o wp1, wh w?)
Substituting (63), (64) into (62), we obtain the recurrent relations
L (4) =
1 . g, 2 2 1 2
an({wy, - wn b {wr, W )Xo (Wi - Wne1, W) X (W1 -+ W1, W) X

Qb oot

|: AS:(W]_; N 7wn717 wi) uwl,...wn,hw}b (A) +
Vn<w17 s 7wn—17w71mw121> "
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AST . 1wk 2
Sn (W1, y Wn 1,wn) ,U,wl"“wnl’w”(A):| dPS(W:L)dPS(WTZL) (65)

1 .,,2\n
Vn(W1, <oy Wn—1, Wnawn)

To prove Theorem 2, we need to prove that the recurrent relations for

() =
N
/ H Y& (wi, ... wi)xalwr, ..., w H dP?(w
N i=n+1 i=n+1
I 9
k=n+1
are the same as (65). Really,
pt o (A) =
[ AP it o)
%
/ H Yt (wry e wi)xalw, .. w H dP?(w dPSH( V) =
1=n+2 1=n+2
o
k=n-+2
/ l/)f:_:,_l(wla- . wnawnﬁ—l)ﬂﬁilwmwwﬂ (A)dp +1<wn+l) (66)
QO

Substituting (55) - (57) into (66), we obtain

pt o (A) =

1
/ XQ;H(le sy Wn, Wiﬂ)%ﬁél(wla sy Wy W}Hl)/i:ilwmwnﬂ(A)dpr?H( 711+1)+

Xo,, (@1, @ W2 YR (@, w2 s (A)APE (W2 ) =

/Xﬂn+1(w17"'7wnvw71z+1) / XQI_H(wlﬁ"'awmwi—H)x

0— 0+
Q"+1 Q'n+1

AST (wiy .y wn,w?y )
Om+1({w%,...,wiﬂ};{w%,...,wZH})Vﬂ(ZI 7w 7w1“ 124;21 )
n ey Wny W1, Why

wl...wn,w}L
Mg H(A)dPSH( n+1)dp ( n+1)+

2 1
/XQI+1(W17"'7wn>Wn+1) / XQ;H(wl,...,wn,wnH)x

0+ 0—
Q"+1 Qn+1
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Asg_;’_l(wl) LR 7wn7 w}'l,-‘rl)

ozn+1({w%,...,w}lﬂ};{w%,...,wi+1}>v+1(wl W W w2 )
n sy Wn11yWntl

W1 .. Wy

11 e (A)dprg—l-l(wgz+1)dpfg+1(w721+l)'

So, we obtained the recurrent relations

i (4) =
XQEH(M’ ey Wy, w711+1)XQI+1(W1’ W, W2 )X
AR A
ASH (wry ey wn, w2 ) 1
1 1 Lr2 2 n+1 ) » Wy W11 WiWn Wty g
O[n-‘rl({wl,..-,wn+1}7{w1;-.-;wn+l}) |:Vn+1(w177wn,w%+1,w721+1) n+1 < ) +
AS;—H (wh <oy Wiy, w711+1) wi...w w2+1
LAY dPY (Wl )dPY (WP 67
VnJrl(wl, e, W, w}H_l’ w5+1)un+1 ( ) n—i—l( n+1) n—i—l( n+1)7 ( )

which are the same as (65). Theorem 2 is proved.

Theorem 3. Suppose that the conditions of Lemma 1 are true. Then, the set of
strictly positive random values o, ({w}l; {w}?),n =1, N, satisfying the conditions

EMIAS, (wry .y Wn1,wy)| =

N N
/Hlpf‘(wl,...,wi)|ASn(w1,...,wn_l,wn)|HdPio(wi) oo, n=TN, (68)
On i=1 =1

is a non empty set for the measures jo(A), given by the formula (60). The measure
po(A), constructed by the strictly positive random values o, ({w}l; {w}?),n =1, N,
satisfying the conditions (68) is a martingale measure for the evolution of risky
asset, given by the formula (1). Every measure, belonging to the convex linear span
of such measures, is also martingale measure for the evolution of risky asset, given
by the formula (1). They are equivalent to the measure Py. The set of spot measures
u{w%7w%}""’{w11\17w12\f}(14) is a set of martingale measures for the evolution of risky asset,

given by the formula (1).

Proof. The first fact, that the set of random values o, ({w}t;{w}?),n = 1, N, sat-
isfying the conditions (68), is a non empty one, follows from Lemma 1. From the
representation for the set of measures po(A), given by the formula (60), as in the
proof of Theorem 1, it is proved that this set of measures is a set of martingale
measures, being equivalent to the measure Py .

Let us prove the last statement of Theorem 3. Since for the spot measure
[l w?)... fwk w2} (A) the representation

M{w%,w%},...,{w}v,w%\,} (A) =
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2 2 N A '
ZZH P, wl xawl W), A€ Fu, (69)
=1 in=1j=1

2 , N
is true, let us calculate Y ¥;(wi',... ,w/). We have

ij=1

2
lej(wil,...7w;.j):¢j(w?,... 31, )—i—lﬂ(wil,...,w;-j:f,wf.):

ij=1
Xa; (Wi, ... ,w;j_’ll,w;)lpjl-(wil, . w;J wi)+
Xﬂﬁ(w?a e ;] 1w )1/Jg (wit, - W;J_llw )+
Xa; (Wi, ... ,w;jjll,w?)lpjl-(wil, o w;J 11w2)+
Xat (Wit ... ,w;jjll,w?)i,b?(w?, . wjj_fw )=

+ (0 -1 2
ASF (Wi wi wy)

1 i1 i1 2
Xo- (Wit . w? T wi ) xor (W, . wi T w? .
Qj(l, A ) QJ(l’ A ])Vj(wil,...wjl,wluﬂ)

—(, i -1 1
ASy (Wi wi W) N

J

in 1 j
XQj(% ,...,wj_l,wj)xgj—(wl yee Wi W - o —
Vi(wy', .. wiT, wi, wj)

+(, 0 Gi-1 2
AST(wi'y . wi, w3)

i1 g 1,2
Vil .. wiT wi,w?)

i1 ij—1 2 1
XQJ._(wl e Wiy 7%’))(9}*(“1 e Wi, Wy

AST (w ... ,w?jjll,wl)

i1 ij— i1 o1 1 J _
XQj(Wl pee Wi )XQ (wits. ..,wj_l,wj) - =
Vj(wl,...wjl,w w;)
+(, ij—1 2
0 o1 1 0 i oy AST (Wi wi w3
XQ;(C% 7---,Wj—17wj)XQ].+(W1 7'-'7wj—17wj) i 1 1 2
V}(wl 7"'7"‘)]'717(")]7(*)])

J

— (i1 -1 1
i ) . AS; (wl,...,w._l,wj)
Xﬂj(wl,...,wj_l,wj)xg;(wl,...,wj_l,w- A

if wl e Q)W e}, j=1,N.
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N
So, for every point {{w},wi}, ..., {wy, w3t} € [T[Q)" x Q7] the spot measure
j=1
(69) is nonzero probability measure on the o-algebra Fy. Further,

2
ST it WA W) =

ij=1
Wi(wit, ... ,w;j_’f,wjl-)ASj(w?, o ,wéff,w})—i—
YWl Wi WD) AS (WL wi T wh) =
Xo: (Wit ... ,w;j:f,w;)xﬂj(w?, . ,w;j:f,wjz)x

AST (Wi Wi w?) ~
G\ Wi Y — (i1 -1 1
— AST (wi'y . wi T wi )+

i1 b1 012
Vi(wi', . wit wiwi)

—(, i1 -1 1
ASy (Wi wi W)

. - ASHW™, .. Wi W) | =0, j=1,N. 70
V}(w?,...,w;]_’ll,w]l,w}) ]< ! it J) (70)

Let us prove that the set of measures [k w2}, ol w2, 1(A) is a set of martingale
measures. Really, for A, belonging to the o-algebra F,_; of the filtration, we

N
have A = B x [] QY, where B belongs to o-algebra F,_; of the measurable space
{Q’I’L—17 ]:n—l}' TI’IGII,

/Asn(wb s 7wTL)du{w%,w%},...,{w}v,w]z\,} =
A

2 N

2
SN T e xs(l W ) AS W i) =

1=1 iy=1j=1

~

2 2 n
Z . Z H Wi(wit, ... ,w;j)XB(wil, LW DAS (W win) =
=1 in=1j=1
2 2 n—l '
Do 2 TIwtt e xmletts i) x
i1=1 in—1=1 j=1
2
Z Yo (Wit W AS, (W W) =0, A€ F, . (71)
in=1

The last means the needed statement. Theorem 3 is proved.
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Below, in Theorem 4, we present the consequence of Theorems 2, 3.
Let us introduce the denotations

(ks @) = [Dxo (el ol Dxar (o0t n=TR.  (12)

From the assumptions (6) - (8), it follows that

Tu({w}i; {w}y) = HXQO wi )Xo+ (Wf), n=1LN. (73)
We also use the denotations

Py = {{{whn {w}i} € H[Q? x Q) n({why, {wli) = 1}, (74)

UN = {{{w}N7 {w}N} S H QO QOJF :u{w},w%} ..... {w}v,w?v}(QN) = 1} (75)

. From the construction of spot measures (i1 .2y . 1wl w21 (A) and assumptions (6)

- (8), it follows that these sets (74), (75) coincide.

Theorem 4. Let the evolution of risky asset, given by the formula (1), satisfy the
conditions (6) - (8) Suppose that the random value an({w}; {w}% ), given on the

measurable space {H[Qg_ x Q) H[]:O_ x FO1)}, satisfies the conditions

=1 i=1
1 1.7, 2 2 (76)
0<eny <ay{wi,...,wyti{wi,...,wi}) < Cn < 0.
If
/ an({wi,. .. ,wh b {w?, ... Wi )X
[T 00 x00*]
HdPO DdP(w?) =1, (77)
then the measure po(A), given by the formula (78)
@)= [ anll ok b @k x
]_[[QO’XQ(”]
N
Pt w2t w2y (A TT AP (w]) x P (w3)], (78)
i=1

18 a martingale measure, being equivalent to the measure Py.
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Proof. 1t is evident that

/ Yoo ({6l 0 P xgs (1, w2 ]

Q0 xQ9
ap({wr, - wn e b {w?, - wn W DAP, (W, )dP (w)) =1,
where
Oéll\f({w%7 e 7(")7%,—17(")711}; {w% e 7w3b—1a wrzl}) =
aN({w%a' .- 7("}]1\1};{(")%7' .- 7w]2V})

J w{wiyvi{olan{wr, . wpti{et, Wi ) ZIJ_VIN AP (w;)dP} (w})

N

IT [29x27]

i=N

1

aqlz({w%? s 7wn—17

I mawhvi{wli)an{wr, -

N
IT [29x97]
i=n+41

wpti{wi, ... w

Swy{wl

Y

72L—1a w?z}) =
2 N 1 2
OB ARG

S mwlyi{wlt)an(wr, .oy bi{wt, w0} }) lf[ AP (w})d P (wf)

T (20 %2

(2

[

n =

The set of positive random values o ({w}}; {w}?),n = 1, N, given by the formula

(79), are bounded as from below and

1

an({wr, Wy,

LN -1

above. Really,

wé}; {wi s 7w72L—17wr2L}) S

?

(79)
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J o (b )2 T1 dPP(w!)dPP(w?)

ﬁ Q9% Q9] =l
@i:n-&-l ¢ ¢ o
CN N N
o m{wini{wly) [T dR (w)dPY(w})
T (9% o
Cy
< Q.
en P(Q07) PR(0T)
Further,
04711<{w%’ e ’UJ}L—D w}w}; {w%? tet 7w’r2b—17w3l,}) Z
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I (el @) T1 dP(w!)dP(w?)

N i=n-+1
IT [2?xQ?]
CN i=n+1

Cx

I et )3 ﬁ AP () dPY(w?)

N 0 0
T [29%Q0]
=N

CN

B () PR (Q207)Cn
Therefore, they satisfy the conditions

> 0.

EFIAS, (Wi, .. ywp_1,wy)| =

N N
/Hl/)i(wl,...,wi)|ASn(w1,...,wn_l,wn)|HdPiO(wi) <oo, n=LN. (80)
Qn =1 =1

1(f,1 1 1. [, 2 2 2 —
The boundedness of random values «,, ({wy, ..., wp_1,w, };{wi, ..., wi_,wi}), n=

1, N, means that they satisfy the conditions (20) - (22). It is evident that

an({wl, . wpdi{el, wih) = [ enwl, . whhi{wr . wl}). (81

Owing to Theorem 3, p(A), given by the formula (78), is a martingale measure,
being equivalent to the measure Py. Theorem 4 is proved.

Theorem 5. Let the conditions of Theorem 4 be true. If the contingent claim
fv = fy(wi, ..., wy) satisfies the condition

{{wlw?l,..., {wk

sup /fN(wh"wwN)du{w},w%} ..... (Wl w2} < 00,
7W12V}6HN}QN

then the equalities

inf B fy = inf / Wiy ooy WN)A gt o wl w2 1 82
P IS o S e ) T oyt (82)
Qn
P
sup E" fy = sup / In(Wr, - WN) A 2y gt w2 ) (83)
PeM, {ohet)o ok widen) A

are true, where M, is the set of all martingale measures, figuring in Theorem 4, with
anv({wi, ..., wh}; {w?, ..., wk}) running all nonnegative bounded as from below and
above the random values.
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Proof. The inequality

. P Q
Juf B < (1= )yt a [ flon o omddigguiy ety 0<a <1,
Qn

-----

or

inf BT fy < inf / Wiy e e WN)Ap 1 Wl w21
RL A (ot i s den) Iulon o omdhieg ). ity
N

To prove the inverse inequality, we use the representation
Efy =

/ an({wi, ..., wn i {w?, . Wi} X

N
11 ()~ xQ) ]

=1

N
/ fN(wla <o 7WN)d:u{w%,wf},..,,{w]l\,,wlzv} H d[PzO(wzl) X on(w12>] (84)
Qn

Using the representation (84), we obtain the inequality

EQfN > inf / fN(wla s 7wN)d/*L{w%,w%},...,{w}v,w?\,}' (85)
Qn

{{w% 7“]%}7“'7{“}11\]7“)?\[}6.“‘1\7}

Taking into account the inequality (85), we obtain the inequality

inf E9fy > inf / Wiy e e s WN)Afg 1 Wl w2 1- 86
QEeM, Iz {{w%7wf},...,{w11v,w12v}€uN}Q fN( ' N) ot et (whwid ( )
N

This proves the equality (82). As before, (1—a)Q+afig1 w2y, ] w2} I8 @ martingale
measure, being equivalent to Py, therefore the inequality

SUIB EPfN > (1 - OC)EQfN + / fN(wla ce 7wN)dﬂ{w%,w%},...,{w}\,,w?\,}7 0<ac< 17
€My
Qn

is true. Tending « to one, we have

P
1:?;11\1/)11, E"fn > /fN(Wh e 7WN)d/i{w%,w%}w{w}VM?v}’
Qn
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or

sup EPfN > sup /fN(wl, . 7wN)d’LI/{wi’w%}w'?{w]l\f’w?\l}.

PeM, ok} ook benn) g
N

To prove the inverse inequality, we use the representation

B9y =

[ atul bl

N
100 <0

N
/ fN(wla s 7wN)dM{w},wf},...,{w}V,w]QV} H d[RO(w'Ll) X RLO<wz2)] (87)
oy i=1
From (87) we have
EQfN S sup / fN(wla .. ,(.UN)d[L{wl w2} {wl w? } (88)
Hebethedok it ) s

Taking into account the inequality (88), we obtain the inequality

Q
SU.p E fN S Sup / fN(w:b . e 7wN>d/,L{w17w2},”.,{w1 ,UJ2 } (89)
QeM, {{w{,w%},...,{w}v,w?\,}euN}QN 1)W1 NoWh

This proves the equality (83). Theorem 5 is proved.

Let us introduce into the set of measure M, the norm. If P, P, € M, where

A= ] el ekt b

N
TT 1) ]

N
Fofl w2 ol w2 ) (A) H [P (w}) x PP (w})], (90)

i=1

Py(A) = / ({wh W) {eh W)X

N
[0 %))

i=1

N
u{w%,w%},...,{w}\,,w?\,}(A) H d[Pz()(wzl) X Pio (%2)], (91)

i=1
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then we put
|1P1 = Bf| =

/ aly (fwhh: {13 — o ({whk: {w)2) %

N
1T [0 %95
i

H d[P] (w;) x P(w))]. (92)

Denote M;, the completion of the set M, in the introduced metrics.
Theorem 6. Let the conditions of Theorem 5 be true. Then, the equalities

inf E¥fy = inf / Wy e ey WN)Afg 1 Wl w21 93
PeMy fN {{w%,w%},...,{w}v,w?\,}ENN} fN( ! N) Iu{ %’ %}77{ ]1\,7 12\]} ( )
Qn
P
Sup E fN = sup / fN(wla B 7wN)dﬂ{w1,w2},...,{wl w2} (94)
PeM, e wdhoo o s yennly) v N
are valid.

Proof. For arbitrary small € > 0 there exists a measure Py € M, such that
|Pin]\f4 Effx — EP fy] < e. Since |EDt fy — E2 fy] < ||Py — P|, then there ex-
€Mo

ists a measure P, € M, such that |[E™» fy — ET0 fy| < ||P, — Py|| < &. Due to the
above inequalities, we have

. . P
{{w%7w%},---,l{r<}Jf];v,w12\,}€ltN} / fN(wla s 7WN)d:U/{w%,wf},...,{w}v,wsz} - Plellﬂf;[b E fN >
QN

inf EVfy > —e+ Efy > —2e+E™ fy >
PeMy

{wlwit oy,

—2e + inf w%\,}euN}Q/ fN(wh C ,WN)dH{w%,wf},...,{w}\”w]Z\,}.
N

Since € > 0 is arbitrary small we have the proof of (93).

Analogously, for arbitrary small € > 0 there exists a measure Py € Mj such that

| sup Ef fy — EPofy| < e. Since |EPt fy — EP2fy| < ||P1 — B||, then there exists
PeMj

a measure P, € M, such that |E™ fy — BT fx| < || P, — Py|| < &. Due to the above

inequalities, we have

sup / fN(wh e ,WN)d,lJ,{w1’w2 o{wl w2} = Sup EPfN <
{{w%7w%}7"-7{w11\;,w]2v}€,u,]\/}9 171 NYN PeM,
N
sup EF fy < e+ B fy <2+ B fy <
PeMy
2e + sup / fN(CUl, .. 7wN)d:u{w1,w2},..l,{w1 w2}
{{w%’w%}""’{wzlww?v}GHN}QN 11 NWN

Since € > 0 is arbitrary small we have the proof of (94).
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Denote M C M, the subset of all martingale measures from the set Mj, which
are equivalent to Py. As a consequence of Theorem 6, we obtain

Theorem 7. Let the conditions of Theorem 5 be valid. Then, the equalities

inf BT fy = inf / Wiy e ey WN)Afg 1 wl w21 95
peM I Hwiwit Aoy wi teun} fuler )iy Pt dehoeid (95)
QN
P
sup BV fy = sup / In(Wi, - ON) A 2y gt w2y (96)
PeM {{wlw?},..., {w}v,w?V}EuN}QN e NN
are true.

Proof. The proof of Theorem 7 follows from the inclusions M, € M C M, and
Theorems 5, 6.

Theorem 8. On the probability space {Qn, Fn, Px}, being the direct product of the
probability spaces {Q°, FO, PO}, let the evolution of risky asset be given by the for-

mula (12), with a,(wy,...,w, ) = by(wi,...,w,_1), n =1, N, where the random
variables fo(wi, ... ,wn), bu(wi, ... ,wn_1), Mul(wy) satisfy the inequalities
bp(wiy .y wiig,wn) >0, folwr, ..., wp1,wy) >0, sup n,, (wy) < 00,
wn €99 1y (wn)>0
sup bn(wla <oy Wn, wn) <
{wi, o, wn}EQR
! TN (o7)
, n=1N.
sup  fulwi, ..o wewn)  osup 1y (wn)
{wi, wn}€Q wrn€Q9,mn (w;)>0

For such an evolution, the family of martingale measures (78) described in Theorem

4 does not depend on the random variables b, (w1, ... ,w,—1), n =1, N.

Proof. Due to the representation (78) for the measure py(A) in Theorem 4, to prove
Theorem 8, it needs to prove that all spot measures M{w},w%},.l.,{w}v,w?v}(A> do not

depend on the random variables b, (w1, ...,w,_1), n = 1,N. For this purpose,
it is need to prove that w,(wq,...,w,) do not depend on the random variables

bn(wi, ..., wy—1), n =1, N, where

Yn(Wi, - Wn) = Xo- (W1 -+, Wno1,Wn) W (wr, .. W)+
Xﬂx(wl,...,wn,l,wn)zpi(wl,...,wn), (98)
l/)TIL<w1’ s 7wn—17wn) =
AST(wi, .. wyoq, w?

XQ;&L- (wl, . ,wn,l,wi) ( ! ! ) (wl, .. ,wn,l) c anl, (99)

1 .,2)’
Vn(wlu s 7wn717wn7wn)
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lpz(wlv ce. 7wn717wn) -

AS‘(wl e, Wn—1 wl)
1 n ) y Wn y Wn
XSZ;(Wl’...7wn_17wn)vn(wl,...7(,0”,17(,()71”(,(]721)7 (wl,...,wn_l) € Q1. (100)
It is evident that xq (wi, ..., wn—1,wn) and xgt (w1, . .., wn_1,wn) do not depend on
the random variables b,, (w1, ...,w,_ 1), n =1, N, where
Since,
AS;_(Wl, Ce ,wn_l,wi) =
Sp—1(wWiy ey wne1)bp (Wi, oy W) fr(wr, - ,wi)nf{(wz), (101)
AST (Wi, Wno1,wh) =
Snfl(wh cee 7wn71)bn(w17 <o 7wn71)fn(w17 o ,(,UTIL)’I];(CU}L), (102)
we have
AS;{(wl, C.e ,wn,l,wz)
Valwi, ooy wp_1,wh, w?) N
fn(wla s awn—bw?z)n;(wi) (103)
fn<w17 s 7Wn717w7%)777—l_(w121> + fn(wla cey Wn1, W%)ﬁﬁ(w}z)’
AST (Wi, wWh1, W)
V(Wi ..y W1, Wk w?)
fn(wla s awn—bwrlb)n; ((JJ}]) (104)
fn(wl’ B ,Wn—lawg)nﬁ(wr%) + fn(wlv ey Wn—1, W%)Uﬁ(w}y

(wla s awn—l) € Qn—l-
The equalities (103), (104) prove Theorem 8.

V. ASSESSMENT OF CONTINGENT CLAIM

In this section, we prove Theorems, giving us the formula for the fair price of super-
hedge for the evolution of risky asset, given by the formula

n

Sp(Wi, .y Wn_1,wn) = So H (1 + a; (e”i(“”"“’“’ifl)&(“i) — 1)) , n=1,N, (105)

i=1

where the random value &;(w;), w; € QF,i = 1, N, takes all real values from R!,
So > 0. The random values o; (w1, . . . ,w;_1) satisfy the inequalities o; (w1, ..., w;_1) >
0 >0,0<a <1,i=1,N. Due to Theorem 8, the set of equivalent martingale
measures constructed by the evolution of risky asset, given by the formula (105),
do not depend on parameters 0 < a; < 1,7 = 1, N. The proposed parametric model
based on the canonical model of the evolution of risky asset (9), which takes into
account both memory and clustering, takes into account the fact that the price of a
risky asset cannot fall to zero.
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Theorem 9. On the probability space {Qn, Fn, Py}, let the evolution of risky asset
be given by the formula (105) and the conditions of Theorem 7 are true. Suppose

that 0 < a; <1, 00 > 0y > oy(wi, ..., wi1) > 02 >0, i = 1, N. If the nonnegative
continuous payoff function f(x), x € [0,00), satisfies the conditions:
1) f(0) =0, f(z) <azx, lim %m) =a, a > 0, then the inequalities

T—>00

f (So H(l - ai)> + aSoy (1 - H(l - a¢)> < sup EF f(Sy) < aSy (106)

i=1 i=1 PeM
are true. If, in addition, the nonnegative payoff function f(x) is a convexr down one,

then
inf E¥f(Sy) = f(So), (107)

PeM

where M is a set of equivalent martingale measures for the evolution of risky asset,
given by the formula (105).

Proof. Due to Theorem 7,

sup Epf<SN) = sup /f(SN)du{w%,w%},...,{w}v,w?\,}'

PeM {{oh @}l Yenn )
N

So, we have

a/SO Su /f SN d'u{wh }7"'7{"‘)]1\77('012\7} -

{{wl 7w1}7 7{"'}]\77""1\]}6“1\7}

sup /f(SN)dM{wi,w%}7-~-7{w11v=W?v} -

{wre)™ w2eQ)t, i=1,N}
Qn

2

N
sup Z Hlpjwl,..., ;j)x

0— 0 - TN
{w}eQ]™ w2, i=1N} =1, iy=1j=1

s=1

N ‘ . i
ooy

Further,
2

i1 iN
sup E Dy (wity .. W) %
0— 0
{w]l\reQN 7w12\reQN+} in=1

(SOH (1 ta, ( Oawp ety 7 es (8 _ 1))) —

T iNc1 2
ASG(wity .. Wy W)

i1 IN—1
VN(wlw' yWN— 17wN’wN)

sup
{w}\, EQ?{ ,w?\, EQ(I)\,+ }
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f(sN,1 <1+aN< o (@it Den >_1>>> N

— 7 IN-1
ASN(W117 s W 1>WN) f (SNfl (1 +ay ( oN(wf, ,wlefv 11)€N(°-’N) — 1>)> Z
Vi (wit, ... w%v L wh,wd)
- . AST (W .. w%v L wi)
en(w)—o0 ey (wh)——o00 VN(W?, .. wj\]}’ 11,0011\[, WJQV)
F (Sws (1 ay (ermtetonsinih 1))
g IN—1 ; i
ASN(WII7 c OJN 17WN) f (SNf]_ <1 + an (eUN(UJ;l,~..,UJNN_711)5N(UJ]1\7) — 1))) =
Vi (wit, .. w?{,v L wh,wi)
f(SN_1<1 — CLN)) + aanSn_1, (109)
where we put
N-1 ) i1 )
SN_l — SO H (1 + s <60'5(W11,...,WSS_1 )85("-}55) —_ 1>> . (110)
s=1
Really,
i lim AS;{,(wil, .. w%v L wi)
en (W) oo en (wi)——o0 VN(Wila .- W%V 117wN7 WN)

F (-1 (15 ay (et osthentetn _ 1)) =

(eoN(wllv 70,)1\1[\] ll)sN(wN) _ 1)
X

lim lim — —
en (W) oo ey (wh)——o0 <60N(w11,...,w1\,_1 en (w3) _ eUN(w11:-~~7wN—1 )EN(w]l\,))

f (SN—l (1 +an (60N(wil"“’ijN:11)EN(W}V) - 1))) = f(Sn-1(1 —an)).
Further,

— i1 IN—1
_ , ASy (Wi, .o Wi wh)
lim lim ; P
en (W) oo en (wi)——o0 VN(Wlla s W WN> WN)

F (-1 (15 ay (et sthentstn _ 1)) =

X

(1 ol 11)5N(w11v)>
lim lim

; iN_ ; iN_
en (W) —oo ey (wh)——o0 <60N(w117""wNN_11)5N(""12\’) . GUN(""?:""""NN_ll)EN(WJIV))
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f (SN—l (1 T ay <60'N(Wi1v"'vw;\fN7711)5N(W12V) _ 1))) = aanySn_1.
Substituting the inequality (109) into (108), we obtain the inequality

2 2
sup Z Z H W (wit, -'j)x

0 0
{wleq) w2e)t, i= 1N} 4= 1 iny=1i1=1,..ixy=1j=1

N ) i ;
f (SU H (1 + s <€Js(w;17..‘,w3_11)gs(ws ) o 1))) 2

s=1
2 N-1 '
sup Z Yi(wi', .., wi)x
{w} EQO_ w2690+, i=1,N—1; — Lin_1=1 j=1
N-1 v
f (So(l —av) [] (1 +a, (e"s@”?w e 1))) +aaynSy.  (111)
s=1

Applying (N — 1) times the inequality (111), we obtain the inequality

sup/f Sw) Q>fSOH —l—aSchzl H 1—a,)

QEM =1 S= 7,+1

f (50 [Ta- al-)> + aSy (1 -] - ai)> . (112)

i=1

Let us prove the equality (107). Using the Jensen inequality, we obtain
i P > 113
;E&E f(Sn) = f(So)- (113)

Let us prove the inverse inequality. The inequality

Z H¢ Wit w )><

=1,....ixy=1j=1

s=1

f (Soﬂ (1—1—615 <€as<w?,...,wii?)as(w;;w _ 1))) > inf B7f(Sy) (114)

is true. If to put e,(w!) = 0, s = 1, N, then the inequality (114) turns into the
inequality

f (Soﬁ[l (1 +a (e"sW?---vWiO%W@ - 1))) > inf B”f(Sw). (115)

In the considered case Q) = {w; € Q0 &;(w;) < 0}, VT = {w; € QY &;(w;) > 0}.
Since the value £4(w?) > 0 can be made as small as it needs for w? € Q% then
we can do the left side of the inequality (115) as close to f(Sp) as it needs, since
os(wi, ..., w? ) is bounded and f(z) is a continuous one. The last proves the needed

inequality. Theorem 9 is proved.
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Theorem 10. On the probability space {Qn, Fn, Py}, let the evolution of risky asset
be given by the formula (105) and the conditions of Theorem 7 are true. Suppose
that 0 < a; <1, 00 > 0; > 04(wy, ..., wi—1) >0 >0, i=1N. If the nonnegative
continuous payoff function f(x), x € [0,00), satisfies the conditions:

1) f(0) = K, f(z) <K, then

N
f (So [0 - ai)> < sup E”f(Sy) < K. (116)
ity PeM
If, in addition, the nonnegative payoff function f(z) is a convexr down one, then
it B (Sx) = (o), (117)

where M is the set of equivalent martingale measures for the evolution of risky asset,
given by the formula (105).

Proof. Let us obtain the estimate from below. Due to Theorem 7,

sSup EPfN = sup /f(SN>d/J“{w%,w%},...,{w}v,w?\]}'

PeM ok} ok Yenn )
N

So, we have

K> sup /f (SN)digol w2y, fwlwt =

{{wl 7""1}» »{WN’WN}G/J‘N}

sup /f(SN)d:u{w%,w%} ..... (whwd) =
i=1,N}

0— 0 .
{w}eQd™ w2eQdT, i=
2

sup Z Hz/)j(wil,...,w;j)x

0— 0
{w €Q, wEQ +,’L 1N}7,1 1,..,in=1j=1

N i ig—1 is
f (So H (1 + ag (e"s(wil""’wsfl Jes(ws®) _ 1))) ) (118)

s=1

Further,

2
iN
E wl s W)X
{wNGQ wJQVEQO+} -1

N ) i .
(5l (e et 1>>) =
s=1

4+, i1 IN-1
sup ASH (Wit Wi wh)
B 11 IN—1
fwhead wieadty | Vv(wi's - oo wy why, w)
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f (SN,I (1 Tay ( on(wil,. ,WJ\IIV Hen@l) _ 1))) 4

ASy (Wi, ... Wi
N.(wl e 17WN))JC (SN—l (1 + ay ( (ool ) 1>>>] >

11 IN—1 1 2
V(Wi .. s wN g, Wy, Wiy
+ i1 IN—1
_ _ ASH (Wi, Wi wh)
lim lim - P
en(Wi)=ooen(wi)=—oo | Vy(wil, ... ,wy 1, wh,w%)

f (SN_1 (1 —f-aN( on (it ’szjrv Hen(why) _ 1))) +

— i1 IN_1 . i
A‘SYN(C"')ZL wN ]_’wN>)f <SN,1 <1 + a/N <60'N(w7il’..,,WNNf_ll)eN(w]lV) B 1)>)] -

Vv (wit, .. w}{,v 1wk, wk
f(Sn-1(1 = an)), (119)
where we put
N-1 v
K3 —1
Sr= S TL (1, (e ittt 1)) (120)
s=1
Really,
- . ASH (W .. w?{,v Wi
en(Wi)—ooen (wi)——oc0 Vi (wi, .. wj{,v 1wk, wd)

f (SN—l (1 + an (eUN(“?"“""jV:I Jen(wy) _ 1))) =

(661\’(‘”11’ ’“’NN en (W) _ 1)

lim lim X

1 N i TN
en (W3) =00 en (why)——o00 (eawil,...,w]év_f)smﬁv) _ eaw;l,...,wNN_f)amw}v))

f (SN—l <1 +an (6”(“?’“"“@{?)EN(“’}V) - 1))) = f(Sn-1(1 — an)).

Further,
lim lim AS&.(W?’ — wj\],v 1 wy)
en (W) o0 en(wh) o0 Vi (wi, ... wid "} wh, w?)
f <5N71 <1 ¥ ay (eoN(wil,m,wﬁv_‘l Jen (W) _ 1))) _
(1 N 11>aN<w}v>>
lim lim

- - - -
aN(wJQ\,)ﬁoo EN(W}V)%foo <€JN(wil7...,wN711)5N(w12\,) . GJN(""?v~"’wN,1l)€N(w11\’)>
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f (SNfl (1 + an < on (! o 3 New () _ 1))) =0.

Substituting the inequality (119) into (118), we obtain the inequality

2 2
sup Z Z Hllijwl,..., :j)><

07 0 -
{w St 2€Q *, = 1N}21 1,...iny=141=1,..,iny=1j5=1

(SOH <1+as( ! e, T () 1>>> >

2
sup Z %(wiﬂ...,w?)x

{wle?™ w2eQft, i=T,N— LN—1} ;= 1,

N-1
f (50(1 —an 1:[1 (1+a, (et el 1>)) . (121)

Applying (N — 1) times the inequality (121), we obtain the inequality

swp [ F(5w4dQ = (s T[0 - ). (122)

QeM
Q
Let us prove the equality (117). Using the Jensen inequality, we obtain
inf B f(Sy) = f(S0). (123)

Let us prove the inverse inequality. It is evident that the inequality

2 N

> I wwi .. wy)x

i1=1,...in=1 j=1

STT (o (s 0) ) g s o

s=1

is valid. If to put e4(w!) = 0, s = 1, N, then the inequality (124) turns into the
inequality

(SOH (1+a < ou@hnl )ea(2) 1))) > inf BV f(Sy). (125)

In the considered case Q0 = {w; € Q0 &;(w;) < 0}, QF = {w; € QY &5(w;) > 0}.
Since the value £4(w?) > 0 can be made as small as it needs for w? € Q% we can do
the left side of the inequality (125) as close to f(Sp) as it needs, since o¢(w?, ... w2 ;)
is bounded and f(z) is a continuous one. The last proves the needed inequality.

Theorem 10 is proved.
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Theorem 11. On the probability space {Qn, Fy, Py}, let the evolution of risky asset
be given by the formula (105) and the conditions of Theorem 7 are true. Suppose
that 0 < a; < 1, 00 > 07 > o4(wi,...,wi_1) > 0) >0, i =1,N. For the payoff
function f(z) = (x — K)*, x € (0,00), K > 0, the fair price of super-hedge is given
by the formula

sup E9f(Sy) =

QeM
(So—K)+, Zf SolZ_V[(l—al)) ZK,
N N (126)

N
For So [I(1 — a;)) > K, the set of non arbitrage prices coincides with the point
i=1

N
(So — K)7T, in case if Sy [[(1 — a;) < K the set of non arbitrage prices coincides
=1

with the set ((50 — K)*, S (1 - ;r:[lu - @)) .

Proof. Let us introduce the denotations

f (Soﬂ (1 +a, (easwil ..... W e (Wi 1))) , (127)

N ) . .
h (So H (1 + as (e"s(wil""’”s—ll)gs(% ) — 1))) : (128)

N
1% = sup Z Hlpj(wil,...,w;j)x

N i ig—1 i
f (So H (1 + a, <€”S(wil """ wsor Jes(ws”) 1))) , (129)

where we put fi(z) = (K — x)". Let us estimate from above the value Iy. For this,
we use the equality

In=1I+S — K, (130)
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which follows from the identity: f(z) = fi(z) + 2 — K, > 0. Since

. A M es(wif) _ N .
fi (SOHI(H% (eas<w1 ..... ea(wl) 1))) < f (sog(1 as)>, (131)

we obtain the inequality

In <So— K+ fi (So H(l - as)) : (132)

s=1

From the inequality (132), we have

IN<So— K+ fi (SOH(l - Gs))) =
(So — K)™, if Sy lj_v[(l—ai)) > K,
. 5 (133)
So (1—1:[(1—@)), if Sol:[(l—ai)<K.

=1

From the inequality (106) of Theorem 9

> f(Soﬁ(l—ai)> +SO<1—ﬁ(1 —ai)> (134)

i=1
and the inequality
I}y > (So - K)7, (135)

which follows from the Jensen inequality, we have

=1

IR, > maX{Sg — K)+,f (So H(l _ai)> + So (1 - H(l —ai))} =

(So — K)*, it SoT[(1 - a)) > K,

N

%

N N1 (136)
So (1 10— ai)) it SeT[(1—a) < K.

i=1 =1

This proves Theorem 11.

Theorem 12. On the probability space {Qn, Fn, Py}, let the evolution of risky asset
be given by the formula (105) and the conditions of Theorem 7 are true. Suppose

that 0 < a; < 1, 00 > 0; > 04(wy,...,wi_1) > 0 >0, i =1N. For the payoff
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function fi(z) = (K —x)*, x € (0,00), K > 0, the fair price of super-hedge is given
by the formula

N
sup E9f1(Sy) = fu (so [Ja- ai)> . (137)
QeM i=1

The set of non arbitrage prices coincides with the interval

(-5 (5o -a0) )

Proof. The inequality

]11v: Z HIIJ Wity wd)x

=1,....ixy=1j=1

<50H< +as( oo (@ T e (i) 1>)) < f <50ﬁ(1 - ai)> (138)

is true. Taking into account the inequality (116) of Theorem 10, we prove Theorem
12.

Theorem 13. On the probability space {Qn, Fn, Py}, let the evolution of risky asset
be given by the formula (105) and the conditions of Theorem 7 are true. Suppose

that 0 < a; <1, 00 > 0y > oy(wy,...,wi_1) > 0 >0, i =1,N. For the payoff

N +
> S
function fi(So,S1,...,5n) = | K — 5 , K >0, the fair price of super-hedge
s given by the formula
So Z H (1—as)
E®f1(Sp, S1,...,9v) = | K — —=%= . 139
sup f1(S0, 51 N) N+1 (139)

The set of non arbitrage prices coincides with the interval

; +
(K —So)*, | K 05 e
st [ k- ZEe ™

N+1

Proof. Let us denote

n

Sl <1 +a, (eas(w%,~..,w;_1>es<w;> _ 1)) . n=T1,N,

s=1

&~

b—‘E)—‘

€

3=
I

(eosw%, Swlop)es(w?) _ 1)

N
t
vl =11 ( 0s (@]l 1)ea(@?) _ goa(wwl_y)es(w s>)

(140)

s=1

Risk Hedging in Financial Markets

Volume 23| Issue 4 |Compilation 1.0 © 2023 Great Britain Journals Press



© 2023 Great Britain Journals Press

It is evident that
2 N '
I} = sup Z Hlﬂj(w?,...,w;j)x

{{UJ%,OJ%},,{UJ}V,W?V}EMN} i1=1,....ixy=1 jzl

f1 (S(),Sl(w/il), .. .,SN(W?, . ,w%v)) Z (141)
lim fl (80751((*}%)7'-wSN(w%v'-'aw]lV)) X

es(wl)=—00, es(w2)—00,s=1,N

N
tn(wi,. .. wy) = fi <50750(1 —@1)7---7501_[(1 _as)> :

s=1

So, we obtain the inequality

N i +
N So 2. [T(1 = as)
2 _ i=0 s=1
Iy > f (SOaSO(l_al)a--'a‘SOSl—[l(l_a5)> = | K- N1 - (142)
Let us prove the inverse inequality. We have
N .
I3 < sup Wi (Wit ..., W)X
{{w},w%},...,{w}v,w?v}ew}i1:1§N:1£[1 !
N
fi (S(): 50(1 - al)a S0 H(l - as)) =
s=1
N N +
N S > 101 —ay)
1—ay),... l—ay) | = | K - =2 . (14
fl <S()7SO< CL1>, 7502( a )) N +1 ( 3)
Therefore,
N i +
So . [T(1 = as)
2 _ i=0s=1
Iys | K N1 : (144)

The inequalities (142), (144) prove Theorem 13.

Theorem 14. On the probability space {Qn, Fn, Py}, let the evolution of risky asset
be given by the formula (105) and the conditions of Theorem 7 are true. Suppose

that 0 < a; <1, 00 > 0; > oi(wy,...,wi_1) > 0 >0, i =1,N. For the payoff
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N +
> 8
function f(So, S1,...,9n) = ;H — K| , K >0, the fair price of super-hedge

18 given by the formula
sup E9f(Sy, S1,...,Sn) =

QeM
. S ZO 1'[1(1 a;)
zosnla as) S I1(-a) (145)
So|1— NIl , So= J_\/—|—1 <K
N i
So > T1(1-a;)
The set of non arbitrage prices coincides with the point (So— K)™ for —=E— 2
o) (e . B
K, in case if S()T < K the set of non arbitrage prices coincides with the
N i
| . 3 Ien
interval | (So — K)*, S0 [ 1 — =5 5—
Proof. Let us introduce the denotation
2
Vy = sup Z Ht/)]wl,..., .)><
{{wlv }7 7{"JN7WN}€/’LN} 1= ]., ,ZN 1] 1
£ (So, S1(wi), ..., Sn(wit, ... wid)). (146)
Then, we have
2 N ‘
Vv = sup Z Hlpj(wil,...,w”)x
o wihdwh Wl Yennt i =1, iy=1j=1 ’
f1 (So, Sl(w?), ey SN(U.)?, Ce ,wj{,\’)) + SO - K. (147)
Due to Theorem 13,
N i +
So Z [T(1—ay)
Vv = S - K K — =0 s=1 _
v = (5 —K)+ N +1
N i
So 3 11 (1-a;)
(So — K)J;, if ;VN*H > K,
5A0e S0 (149)
Sol1— NIl , if S07 N1l <K
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In the formula (147) we introduced the denotation

N
> Si
f1(507517"'7SN) == K ;\7:_1 . (149)

Theorem 14 is proved.

If So,..., Sy is a sample of the process (105), let us denote the order statistic
Sy - - -» Sy of this sample.

Theorem 15. Suppose that Sy, ..., Sy is a sample of the random process (105).

Then, for the parameters ay,...,ayn the estimations
S(N_i R
a=1— == i TN, (150)
S(N—i+1)

are valid. Under such estimations 0 < a; < 1, 1 =1, N, the equalities

N—k
@) = Sw o g (151)
i=1 (N)
are true.
Proof. The estimation of the parameters ay,...,ay we do using the representation

of random process S,,, n = 1, N. The smallest value of the random variable S,, is

n —
equal S [[(1—a;), n =1, N. Let us determine the parameters a; from the relations

N N—k
So H(]_ - CLZ‘) = TS(O), ceey S() H (]_ - ai) = TS(k),
1=1 =1

N—-k-1

SO H 1-— (IZ == TS (k+1)5 S()(l - al) == TS(N_l), (152)
=1

London Journal of Research in Science: Natural and Formal

where 7 > 0. Taking into account the relations (152), we obtain

So(1 —a1) =7S8w-1),

S _
(1—ayp)=—E k=0,N—1 (153)
Stk+1)
Solving the relations (153), we have
S(r) TN _9

4 =1-—Suy ay p=1-——®_ LT N_2 154
' So ! N S(k+1) (154)
It is evident that if to put 7 = <2, then 1 — a; = &= Therefore Nl:[k(l —a;) =
p - Sy’ 1 — Sy ) P i) —

;(;)), k=0, N — 1. Theorem 15 is proved.
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Theorem 16. On the probability space {Qn, Fn, Py}, let the evolution of risky asset

be given by the formula (105), with parameters a;, i = 1, N, given by the formula
(150). For the payoff function f(x) = (x — K)T, x € (0,00), K > 0, the fair price
of super-hedge is given by the formula

sup EQf(SN) =
QeM

(So— K)*,  if 52 > K,

Sy —
s . 5 (155)
S, (1 _ —S;g)) i SEZ < K.

If SO% > K, then the set of non arbitrage prices coincides with the point (Sy —
K)*t, in case if So% < K the set of non arbitrage prices coincides with the set

<(So — K)*, S (1 _ %)) .

Corollary 1. Suppose that the strike price K = Sgo©

Sy’

then the set of non arbitrage

prices consists of one point Sy (1 — S50 ) Fisa fair price of a standard call option
S

of European type with the payoff function (Sy — K)™.

This corollary is very important for practical application. The fair price of a
standard call option of European type is proportional to the initial spot price of the
underlying asset multiplied by the value of the relative swing of the market in the
given horizon.

Theorem 17. On the probability space {Qn, Fn, Py}, let the evolution of risky asset

be given by the formula (105) with the parameters a;, i = 1, N, given by the formula
(150). For the payoff function fi(z) = (K —x)*, x € (0,00), K > 0, the fair price
of super-hedge is given by the formula

S
sup EQf1(Sy) = fi (SO%> . (156)
QeM (N)

The set of non arbitrage prices coincides with the interval

(= 80", fi (S052)).

Sy

Theorem 18. On the probability space {Qn, Fn, Py}, let the evolution of risky asset

be given by the formula (105) with the parameters a;, i = 1, N, given by the formula

N +
2 S
(150). For the payoff function fi(So, S1,...,59v) = | K — F5 , K >0, the fair
price of super-hedge is given by the formula
N-1 g \ 7T
So+So Y #N’)
E9f1(So, 1y, Sy) = | K — = 157
5161]1\)4 f1(S0, S1, -+, SN) (N +1) (157)
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The set of non arbitrage prices coincides with the interval

N—1 5(.)
So+S0 Y, ==

£s S
(K_ SO)Jra K — (N:g) &

Theorem 19. On the probability space {Qx, Fn, Py}, let the evolution of risky asset
be given by the formula (105) with the parameters a;, i = 1, N, given by the formula

N +
> S
(150). For the payoff function f(So,S1,...,5n) = | g — K | , K >0, the fair
price of super-hedge is given by the formula
sup E9f(Sy, S1,...,Sn) =
QeM
So+ 8 ;0 S<(ZN)>
(SO - K)+7 Zf (NZ_T_l) > K7
N—-1 . N-1 .
So+ 8 z';o ;((Ji’)) . So+5o0 g:o ;((ZN)> (158)
So (N+1) , if (N+1) <K
N—-1 g,.
So+So0 > S“N))
If (Nl—fl’)( > K, then the set of non arbitrage prices coincides with the point
SotS0 S o ©
(So — K)™T, in case if (Nl—fi)() < K the set of non arbitrage prices coincides
So+50 Nil SS((ZN))
with the interval | (So — K)*, | So — — x5

VI, DISCOUNTED EVOLUTION OF RISKY ASSET

In this section, we formulate Theorems, giving us the formula for the fair price of
super-hedge for the evolution of risky asset, given by the formula

e’i

n eai(wl,...,wi_l)si(wi)
Sn(wl,...,wn_l,wn):SOH(I—HLZ»( : —1>), n=1,N.(159)
i=1

where the random value &;(w;), w; € Q%4 = 1, N, takes all real values from R!,
So > 0. The random values 0; (w1, . . . ,w;_1) satisfy the inequalities o; (w1, ..., w;—1) >
0 >0and 0 <a; <1, 0<r; < oo. This parametric evolution (159) is built on
the discounted evolution of risky asset (17) for which the representation (12) is
valid. From this representation, it follows that for such a discounted evolution,
all proven Theorems regarding the existence of a family of martingale measures
are valid, since the representations (18), (19) is true. Due to Theorem 8, the set
of martingale measures do not depend on parameters 0 < a; < 1. The proof of

Theorems formulated below is analogous to the proof of Theorems 9 - 14.
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Theorem 20. On the probability space {Qn, Fn, Py}, let the evolution of risky asset
be given by the formula (159). Suppose that0 < a; < 1,00 > 0; > oy(wy, ..., wi—1) >
0 >0, 0<r <oo, i=1,N. If the nonnegative continuous payoff function
f(z), = €[0,00), satisfies the conditions:

1) f(0) =0, f(z) <azx, lim @ =a, a > 0, then the inequalities

T—00

i1 PeM

f <So H(l - CLI)> + CLS() (1 — H(l — CLZ)> S sup EPf(SN) S CLS() (160)

are true. If, in addition, the nonnegative payoff function f(x) is a convexr down one,
then

inf B"[(Sy) = (o) (161)

where M is the set of equivalent martingale measures for the evolution of risky asset,
given by the formula (159).

Theorem 21. On the probability space {Qn, Fy, Py}, let the evolution of risky asset

be given by the formula (159). Suppose that0 < a; < 1,00 > 0; > oy(wy, ..., wi—1) >

o) >0, 0 <r; <oo, i=1,N.If the nonnegative continuous payoff function
T), T € [ ,00), satisfies the conditions:

i
Uf()

K, f(z) < K, then
N
/ (So H(l - ai)) < sup Ef(Sy) < K. (162)
paie} PeM
If, in addition, the nonnegative payoff function f(x) is a convexr down one, then
P (163)
inf BT f(Sy) = f(So),

where M is the set of equivalent martingale measures for the evolution of risky asset,
given by the formula (159).

Theorem 22. On the probability space {Qn, Fn, Py}, let the evolution of risky asset
be given by the formula (159). Suppose that0 < a; < 1,00 > 0; > oy(wy, ..., wi—1) >
o) >0, 0<r; <oo, i =1N. Forthepayoﬁfunctzonf( )= (r—K)", = €
(0 o0), K >0, the fazr price of super-hedge is given by the formula

sup B9 f(Sy) =
QeM

(SO—K)Jr, Zf So ﬁ(l —(IZ)) 2 K,

N N (164)
SO <1 — 1;[1(1 — (I,Z)> , Zf S() 1;[1(1 — ai) < K.

N
For Sy [1(1 —a;)) > K, the set of non arbitrage prices coincides with the point
i=1

N
(So — K)T, in case if So [[(1 — a;) < K the set of non arbitrage prices coincides
i=1

with the set ((50 — K)*, 5 (1 - le(l - ai)>) .
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Theorem 23. On the probability space {Qxn, Fn, Py}, let the evolution of risky asset
be given by the formula (159). Suppose that0 < a; < 1,00 > 0; > oy(wy, ..., wi—1) >
o) >0, 0<r <o, i=1,N. For the payoff function fi(x) = (K —x)%, = €
(0,00), K >0, the fair price of super-hedge is given by the formula

up BN = (SoH 1), 165)

The set of non arbitrage prices coincides with the interval

(st (s [l an)).

Theorem 24. On the probability space {Qn, Fn, Py}, let the evolution of risky asset
be given by the formula (159). Suppose that 0 < a; < 1,00 > 0; > 04wy, ..., wi—1) >
o) >0, 0<r < oo, i =1,N. For the payoff function fi(So,Si,...,Sn) =

N +
2 5 o o
K — ’]Q(’Jrl , K >0, the fair price of super-hedge is given by the formula
N-1 4 +
SO + SO Z S((Z)
Q _ =0
sup B f1(S0,51,...,95v) = | K —
sup 1 ) N+ 1) (166)
The set of non arbitrage prices coincides with the interval
_l’_

N 4
5 10700

(K_ SO)JF? K — N+1

Theorem 25. On the probability space {Qn, Fy, Py}, let the evolution of risky asset
be given by the formula (159). Suppose that0 < a; < 1,00 > 0; > o4(wy, ..., wi—1) >
0 >0, 0<r; <oo, i=1,N. For the payoff function f(Sy,S1,...,Sn) =

N +
> s
N+1 , K >0, the fair price of super-hedge is given by the formula
sup E9f(Sy, S1,...,Sn) =
QeM
N 1
N 5 ZO l_[l(l*fli)
(50— K)', f e — = K
> 11 (1-a.) . 20 1 (1—a2) (167)
S() 1—H]_V—+1 , ’Lf SOZSN—_H<K
N 1
So 3 T1 (1-a;)
The set of non arbitrage prices coincides with the point (So— K)™* for —=e— 2
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N i
> [l (1-as)

K, in case if So="5 77— < K the set of non arbitrage prices coincides with the
N i

| X £ M-

interval | (So — K)*, S0 [ 1 — =5 5—

Theorem 26. On the probability space {Qn, Fn, Py}, let the evolution of risky asset

be given by the formula (159), with parameters a;, i = 1, N, given by the formula
(150). For the payoff function f(x) = (x — K)*, = € (0,00), K >0, the fair price
of super-hedge is given by the formula

sup EQf(SN) =
QeM

(So— K)*,  if Spo@ > K,

Sy
5 o8 (168)
So(1-52), i Sz < K.

If SOS<°) > K, then the set of non arbitrage prices coincides with the point (So —

K)*, in case if Sy S(N)) < K the set of non arbitrage prices coincides with the set

(50775 (1= 55))

Corollary 2. Suppose that the strike price K = SOS(

9. then the set of non arbitrage

prices consists of one point Sy (1 — 55—3)) . It is a fair price of a standard call option

of European type with the payoff function (Sy — K)™.

This corollary is very important for practical application. The fair price of a
standard call option of European type is proportional to the initial spot price of the
underlying asset multiplied by the value of the relative swing of the market in the
given horizon.

Theorem 27. On the probability space {Qn, Fn, Py}, let the evolution of risky asset

be given by the formula (159) with the parameters a;, i = 1, N, given by the formula
(150). For the payoff function fi(x) = (K —x)*, x € (0,00), K > 0, the fair price
of super-hedge is given by the formula

S
sup EQfl(SN) = fl (S()%) . (169)
QeM (N)

The set of non arbitrage prices coincides with the interval

(=5 1 (s0555))

Theorem 28. On the probability space {Qn, Fn, Py}, let the evolution of risky asset
be given by the formula (159) with the parameters a;, i = 1, N, given by the formula
N +
> S

(150). For the payoff function fi(So,S1,...,Sn) = | K — 555 , K >0, the fair
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price of super-hedge is given by the formula

N=1 g \ T
So+So 3 S(ﬁj)
E9f1(Sy,S1,...,9v) = | K — =0 170

The set of non arbitrage prices coincides with the interval

N-1 S(->
So+So Y. 2+

P
(K — Syt | K — —t ™

Theorem 29. On the probability space {Qn, Fy, Py}, let the evolution of risky asset

be given by the formula (159) with the parameters a;, i = 1, N, given by the formula

N +
2. S
(150). For the payoff function f(So,S1,...,9v) = | 557 — K| » K >0, the fair
price of super-hedge is given by the formula
sup E9f(Sy, S1,...,Sn) =
QeM
So450 3 S
0+S0
(S — K)*, if — ™ > K,
So+So Nil ;ﬂ So+So NZ_I ;ﬂ (171)
S i=0 "(N) Zf i=0 "(N) <K
0 (N+1) ) (N+1)
N—-1 g,.
So+So 3 s((;,))
If (N—f;) > K, then the set of non arbitrage prices coincides with the point
Sotsn > 5
(So — K)*, in case if (N—:‘;)() < K the set of non arbitrage prices coincides

RS0
So+Si :
oo igo S(av)

with the interval | (So — K)*, | So — N+D)

VII.  UNIQUENESS OF THE MARTINGALE MEASURE

In this section, the necessary and sufficient conditions of the uniqueness of martingale
measure in terms of the evolution of risky assets are obtained. Under the fairly wide
assumptions about the evolution of risky assets, an expression for a single martingale
measure is found. Based on the explicit construction of the martingale measure and
its invariance with respect to a certain type of evolutions, it is possible to construct
the models of non arbitrage markets, both complete and incomplete.

In this and section 8, we put that QY = {w},w?}. Denote by F? the o-algebra
of all subsets of the set QY. Let P? be a probability measure on F;. We assume
that P2(ws) > 0, i = 1, N, s = 1,2. As before, we put that the probability space
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{Qn, Fy, Py} is a direct product of the probability spaces {Q?, F?, P’}, i = 1, N,
and we put N < co. We also consider the probability spaces {2, F,,, P,},n =1, N,
being the direct product of the probability spaces {QY, 72, P’}, i = 1, n. We assume

that the evolution of a risky asset is given by the formula

Sp(wiy ..o wp) =

n

So H(l +ai(wi, - w)ni(wi), {wi, . Wi, W} € Qyy n=1,N, Sy > 0,(172)

i=1

where the random values a,(wi,...,wn—1,Wn), Mu(wy), n = 1,N, given on the
probability space {£2,,, F, P,}, satisfy the conditions

1
G (W1y .oy Wp_1,wWy) >0, max an(wy, ...,wn,,w}l < ,
( ! ! ) {w1, wn—1}€Qn_1 ( ! ! ) 775(%%)
Ma(w2) >0, nu(wp) <O. (173)
So, for AS, (w1, ..., wy_1,ws), n =1, N, the representation

ASn(wla ey Wn—1, Wn) -

Sn—1(W1s - oy Wne1) A (W - ey W1, Wy ) (W) =

dp(Wiy ooy W1, W) (wWn), dp(wi, .. wp_g,wp) >0, n=1N, (174)

is true, From these conditions, we obtain 2, = Q, ; x Q2= QFf = Q, ; x Q0
where Q% = {w,, € 2%, 1, (w,) < 0}, Q0" = {w, € QO n,(w,) > 0}.
Further, we assume that P2(Q%7) > 0, P%(Q%") > 0. The measure P’ is a

contraction of the measure P on the o-algebra 72~ = QV"NF?, P is a contraction
of the measure P? on the o-algebra Fo+ = Q0T N FP.
Let us introduce the following denotations. For every point {wy, ... ,wy_1,w,} €
2, we introduce the set A(wy,...,wy_1,w,) € Qy, where
2 .
Alwr, -y Wpo1,Wp) = U {wl,...,wn_l,wn,w:{ff,...,w;{f )

ing1=1,...in=1

Sometimes, for fixed indexes 41, ..., %, we also use the denotation
) ) )
il Tn—1 2 _ ’L'l,.“,i
AW, . w w) = Attt

It is evident that every set A»n has the form

2
01yeein i1 i In+1 iN
Attrtn = U {wit, .o wr wt W

ing1=1,...in=1
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where indexes i5, s = 1, N, take values from the set {1,2}. Then, A1 =
Azl,...,ln_l,l U All,...,ln—172 c fn_17 Where

2
01 yeenyin—1,1 __ i1 in—1 1 Tn41 IN
Attt — U {wit, o wn T Wy Wt - W E Fa,
int1=1,in=1
2
Dl yeenyin—1,2 __ i1 in—1 2 T4l iN
Abtin-1.2 U {wi's W we W € Fa.
inp1=1,in=1

If Py is a measure on Fy, then

2
PN(A(wl,...,wn,l,wn)): Z PN({WIV"7wn717wn7w;7i:117"'7(")3\]7\7})‘

ing1=1,....in=1

We give an evident construction of martingale measure for risky asset evolution,
given by the formula (172). Let us put P’(w}) = p,, P’(w?) = 1 — p,, where
0 < p, < 1. Then, to satisfy the conditions (14) - (16), (see [2]) we need to put that

AST (Wi, .. wpo1,wh) <00, (Wi,. .., wp_1,wl) € Q)

AST (Wi, wWno1,w2) <00, (Wi, . ., Wno1,w2) € QF. (175)
The next Lemma 3 is a consequence of results in [2].

Lemma 3. On the probability space {0y, Fn, Pn}, being the direct product of the

probability spaces {QV, F?, PP}, for the evolution of risky asset given by the formula

(172) only one spot measure fi,1 .2y, gt w2} (A) exists, where {w}, w7} € QF, i =

1, N. For it the representation

1o(A) = figut w2y, qwhw} (A) =

2 2 N
Z o Z H (Wit Wi xa(wlt, Wi, A€ Fy, (176)

is true. This measure is a martingale one for the considered evolution of risky asset,
where

Yn(Wi, -5 Wn) = Xq- (Wi, - - - W1, W) WA (W1, . o W)+
XQI(wl,...,wn,l,wn)llli(wl,...,wn), (177)
I!J}L((Uh.--,wn_l,wn) —
ASH(wy, .y wn1,w?)

2 n ) yn—1y ¥ 2 0+
XQ%+(wn)Vn(w1,---,wn_1,w}l,w%)’ (Wiyee oy Wno1) € Doy, ws € Q0 (178)
Vn(wlu s 7wn717wrlww2) = Asg(wh s 7wn717w711) + ASI(wb s 7wn717w721>7

V2 (Wi, W1, Wy) =
AST (Wi, Woo1, wl)

1 n ) yn—1y¥n 1 0—

- , ey Wno1) € Qp1, e (179
X0 (w")Vn(wl,...,wn_l,w}“w%) (w1 Wn—1) 1, W (179)
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Next Theorem 30 appeared first in [24] (Theorem 1.4.1), where it was proved
under the less general conditions.

Theorem 30. On the probability space {Qn, Fn, Pn}, being the direct product

of the probability spaces {QV, F?, P}, suppose that the evolution of risky asset

(]

{Sn(wi, ... wn) Y, is given by the formula (172). The necessary and sufficient
conditions of the uniqueness of martingale measure po(A), A € Fy, are the inequal-

ities
Sp(wit, o wn Wy £ S (Wit W W), n=1,N, (180)
for every set of indexes iy, ..., i, 1. For any martingale {my, (w1, ...,wn_1,wn) N,

relative to the unique measure po(A) the representation
mn(wla cee 7wn—17wn) ==

Z Cr(w, .« wi—1)[Sk(wr, - - w1, wi) — Se—1 (Wi, -+ we—1)]+
k=1

mg, n=1N, (181)
18 true, where
2
C’k(wl, . ,wk_l) = Z dil,...,ik,leil ..... ig_1 (wl, .. ,wk_l), (182)
i1=1,...ig_1=1
diy,..ipoy =
(Wi, wl wh) — mg(Wit L wiE w?) —
o E— . T k=1 N. (183)
Sp(wit, . wl T wp) — Se(wits o, w T wi)

Proof. The necessity. On the probability space {Qy, Fn, Py}, let the evolution
{Sn(wi, ... ,wn) Y, of risky asset be such that the martingale measure p(A), A €
Fn, being equivalent to the measure Py, is unique. Then, for every contingent liabil-

ity mu (w1, . ..,wx) the representation (181) is true [13] for some Fj_;-measurable fi-
nite valued random value Cy(wy,...,wi_1), k =1, N, where m,,(wy, ..., w,_1,w,) =
Ero{my(wy,...,wn)|Fn}. For my(wi,...,wp1,w,) and S,(wi,...,wu_1,w,) the
representations

M (W1, ey Wno1,Wy) =

2

XAil,.“,in,l,in (wl, Ce ,wn) B
> e e} / my(wi, ..., wy)dpo, n =1, N, (184)

=1, in=1 AtLsin—1,in

Sn(wh cee 7wn—1awn) =

2

X Aits-rin—15in (wl, cee ,wn) / —
—— S d =1,N, (185
Z /’LO(AZL---JTL—I,’L") N(Wh 7wN) Ho, T [ ( )

i1=1,...,in=1 Ailrrin—15in
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are true. From the representation (181) and the equality (182) for {wi,...,wp1} €
A'oin=1 we obtain the equality

D] 5eeesipn—1,1 w PPN 70‘]71
XA II’LO(Al’Zl"("viil,l) ) / mN(w17 AR 7wN)dMO+

Aflrin—1,1

i1smin_1,2(W1, -+« Wy
. 1Mo(Alily-(vwii—1,2> ) / my (Wi, - - - wN)dpo—

AfLeesin 1,2

Nt s (1, 1) )
fig(Ait-in-1) / my(wi, ..., wn)dpo =

dil,...,in_lXAil ----- in—1 (Wb cee >Wn71)><

i1t —1,1 (W1« o vy Wp
- 1#0(141"1»(--’;1,1) ) / SN(‘JJb cee >WN)d,U0+

Allsin—1,1

X At15in—1,2 (wl, e ,wn)
fig(Aitin=1.2) / Sn(wiy .o wn)dpo—

AiLsin—1,2

X Ai1r-vin—1 (wl,...,wn_l) / S d
— o 186
/,Lo(Azl,...,znfl) ‘ . N(wl’ ’wN) Hol ( )
Al ip—1
where d;, ;. is finite. Since
/ mN(Wh e 7WN)d/~60 =
AiLrsin—1
/ my (w1, ..., wn)dpo + / my (w1, ... ,wn)duo, (187)
AiLseerin—1,1 AiLseein—1,2
we have

fro (A" tnt) / my(wi, - .., wn)dpo—

Ailrino1,1

pig(Afrinh) / my(wr, ... wy)dpo =

AiLssin—1

oA ] o=
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pg(Ail""’i"—l’l) / my(wi, ..., wn)dug + / my(wi, ..., wn)dug| =

Aflrin—1,1 AtLsesin—1,2

fio( A in=1:2) / my(wi, ..., wn)dpo—

AiLsein—1,1

prg (A™in=11y / my (w1, ..., wn)dpo. (188)
Airrin—12
Further,
(At / my(wi, ..., wn)dpo—
AfLrrin—1,2
,LL()(Ail’""infl’Q) / mN(wl, .. ,wN)d,uO =
AfLoin—1

[MO(Ail,...,in,l,l) 4 MO(Ail,...,in,1,2>] / mN(wb o ,wN)duo—

AiLsein—1,2

MO(Ail""’infl’Q) / mN<LU1, R ,wN)duo + / mN(wl, . ,wN)d,uO =

AiLrstno1,l ALerin 1,2

— uo(Ail""’in_l’2) / mN(wl, . ,O.)N)d,uo—

Ailssino1,1

Mo(Ail""’in_l’l) / mN(wl, . ,wN)duo . (189)

AfLenrin 1,2

If to put

R™M(W, ..., wnl) = pg(Ah-in-nl) / my (w1, ..., wn)dpo—

AiLsrin—1,2

M0<Ail""’in_l’2) / mN(wl, e ,oJN)d,ug, (190)

AiLserin—1,1

RfN (wil, R ,wfl"_’f) = ,U,()(Ail"”’in_l’l) / SN(wl, . ,WN)(Z[L()—

AiLsesin 1,2
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Ailsin—1,1

then the equality (186) is transformed into the equality

m(, i1 In—1Y\ __ SN i1
Rl (wl yee e W ) - di1,~~~,in71R1 (wl yree

»n—1

Due to that Sn(wl‘, . ,wn) and M (wr, ..
sure pp and Aioin-1l s Altesin-12 € B we have

) (191)
Wi, (192)

., wy) are martingales relative to the mea-

/ Sn(wi, ..., wN)dpy = / Sp(Wi, .. wn)dpg =

Ailsrino1,1 AiLseesino1,1

=
. £
MO(A’Lly--.ylnfhl)Sn(w;l7 7("}:1”—_117"‘}711)7 (193) LC:D
a
b=
(2]
e
/ Sn(wi, ..., wy)dpo = / Sp(wi, ... wy)dpg = &
1reesbp—1s ] yeeslp—1s

A A S
NO(AU? ,Zn71,2)Sn(w§1’ ’w;n:f?w )7 (194) 5
.g
R
/ mN(w1>--->wN)dM0 = / mn(wl,--wwn)duo = <
AtLsin—1,1 AfLsin—1,1 %
8
. . ~
o (At (W@ w)), (195) z
=
S
3
/ mN<UJ1>--->WN)d,UO = / mn<w17'~'7wn)d,u0 = )
=
Ail ip—1,2 Ail ip—1,2 '_8
o
Q
i1 ot —1 2 il in—1 2 =

po (A= m (Wit L w T W), (196)

Since d;, ;. , is finite and my (wy, . . ., wy) is arbitrary, then RN (Wi, ..., w'™}) #

0. The last means that inequality (180) takes place. This proves the equality

i1 in_1 = (197)
mn(wilv 7“1?:117“111) mn(wilv 7w:zn:1lvw72z)
Sn(wil’ ’w:zn—_llvw111> - Sn(wila ’ :Ln—_llvo‘;r%)
n=1,N,

which means that (183) is true, where we introduced the denotations

M (w1, ..., wn) = EF{my(wy, ...

, W

N)lj:n} =
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2 . , . .
' 122 1m(w1,...,wn,w:[ff,...,w%"),uo({wl,...,wn,w:[ff,...,wﬁf,v )
int1=1,.,in=
nt N . ' A , (198)
7
Z‘ po({wi, ..., wn, W, Wi )

Sn(wl, e ,wn) = E“O{SN(wl, ce ,WN)|fn} =

2 . , . .
‘ 712:‘ ﬂSN(wl,...,wn,w;’ff,...,wﬁ{,v)uo({wl,...,wn,w;’ff,...,w}’{,\’})
= N - . (199)
> uo({wl,...,wn,w;’ff,...,wj{,v})

inp1=1,.in=1
This proves the necessity.

Proof of the sufficiency. Suppose that the inequalities (180) are true. Let us
prove that the martingale measure i is unique. For this purpose, we prove that for
every martingale the representation (181) is true with validity of equalities (182),

(183).

Let us note that the equality (186) is true if for d;, _;, , to choose the right hand
side of the equality (197), since the equalities

[ my(wi,...,wy)duo | my(wi,...,wN)duo
Ailein_1,1 B Allsin_1 o
po(ATini) po (A7)
f Sy (w1, - .., wy)dpo f Sy (w1, - .., wy)dpo -1
Ailsein—1,1 _ Ailsin—1 _
H,O(Ail,...,in_l,l) HO(Ail,.,.,in_l)
f my(wi, ..., wn)duo f my(wi, ..., wn)duo
Ail,...,in,1,2 . Ail ..... ip—1 %
/,LO(Ail""’i'”*lQ) MO(A’il,A..,infl)
f SN(wl,...,wN)duo f SN(wl,...,wN)duo -1
ALreesin 1,2 B Ailerin_1 B
/,LO(Ail”"’i"7172) MO(AilP‘”inil)
di1,...,in_1 (200)

are valid. Taking into account the equality (186) and the equalities

di17--~7in—1XAil ,,,,, in_1 ((JJl, Ce ,wn_l)x

X Aitrin—1,1 (wl, e ,wn)
o (Ai—in 1) / Sn(wi, ... wn)dpo+

Ailrino1,1
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i1t —1,2 (W1 o ooy W
XA l/’LO(Alil“("viil;Q) ) / SN(CL)I, ct 7wN)d/,LO—

X Aitrin—1 (wl,. .. ,wn) B
NO(Ailr--ﬂ'n—l) / SN<UJ1, C ,(JJN)d,uO =

2

XA]'I,.H,jn,l,l(wl, e ,wn)
> 110 (Adtin 1) / Swlen, - en)dpot

J1=1,...jn—1=1 AILrdn—1,1

X 4910 dn—1,2 (wl, R ,wn)
NO(Ajl,m,jn—l,?) / SN(wl, C. ,wN)duo_

AJ1sodn—1,2

J1seees dn—1 (W1, ..., Wy
XA IHO(ATH(’%]"1> ) / SN(wb oo 7WN>d,U,0 = (201)

di1 ..... z’n,1XAi1 »»»»» in—1 (le s 7wn)[8’n(w17 s 7wn—1)wn) - S’n—l(wla s awn—l)]7

we have
X Ai1rin—1,1 (wl, Ce ,wn)
NO(Ail""’i”‘l’l)

X At wrin—1,2 (Wi, wn) /

folAT—n17)

X gitssino1 (W1, -« ., Wh) /
MO(Ail,...,in71> ‘

dil,m,in—lXAil ..... i1 ((4.)1, e ,wn)[Sn(wl, e, Wn_1, wn) — Sn,l(wl, e ,wn,l)]. (202)

Summing over all indexes i1, ...,7,_1 the left and right hand sides of the equality
(202), we obtain the equalities

My (W1, ey W) — My (W1, ey Who1) =

C’n(wl, Ce ,wn,l)[Sn(wl, c. ,wn,l,wn) — Sn,l(wl, e ,wn,l)], (203)
2
C’n(wl, Ce ,wn_1> = Z di1,...,in71XAi1 ,,,,, in_1 (wl, . ,wn_l). (204)
i1=1,00yin—1=1
We proved that for every martingale {m,(wi,...,wy,)})_, relative to measure pq

the representation (181) is true, due to the conditions (180). Let us prove that
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the martingale measure is unique. Suppose that there are at most two martingale

measures pp and pi. If to put m(ws, ..., wy) = xa(wi, .. .,wy), then
Xa(wi, ..., wy) =
N
> Cu(wis - wa)[Sn(wr, - wWnot,wn) = Seca (Wi, - wont)] + 0o, (205)
n=1

From this representation, we obtain the equalities uj(A) = p2(A) = o, A € Fn.
Contradiction. The last proves Theorem 30.

Next Theorem is concerned the case as the set of martingale measures consists
of one measure.

Theorem 31. On the probability space {Qn, Fn, Py}, being the direct product of

the probability spaces {0, F?, PP}, suppose that the evolution of risky asset is given
by the formula (172), then the set of martingale measures, being equivalent to the

measure Py, consists of one point

2 2 N
Z...ZHzl)n(w’f,...,w;”)XA(w?,...,w%V), A e Fn. (206)

The fair price vy of European type option with the payoff function p(wi, ..., wx) is
giwen by the formula

2 2 N
w0 = Z . Z H P (Wi wmp(wh . W), (207)

i1=1  iy=ln=1

where the number of shares is determined by the formula (208) and the number of
bonds is determined by the formula (209)

Ve(Wi, - -y wh1) =
mk(wl,...,wk_hwi) _mk(wla"-uwk—lawi> EF=1N (208)
Sk(wly-'-ywkflaw]i) - Sk(“la---,wkflawlg) 7 C

Bre(wi, ..., wg—1) =

mk_l(wl,...,wk_l)—’yk(wl,...,wk_l)Sk_l(wl,...,wk_l), k= 1,N, (209)

where
mk(wla e ,Wk) = Euo{@(wla cee 7WN)|JT-"€} =

: lgo(wl, . ,wk,w;ﬁ:ll, o ,wj{,v)uo({wl, . ,wk,w,ifj:f, o ,wj{,v})
ipi1=1,..., iN=
k+1 N . ' ‘ ’
3
Z :U“O({wlw"7wk7wk}:-_~_117"'7w§\]lv})

tep1=1,...,in=1
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Y (wi, .-, wn) = X (Wi, -+ 5 Wne1, Wh) W (Wi, . W)+
Xat (Wi - W1, wo) ¥ (w1, -+ W), (210)
w};(‘*’la'-'awn—l:wn) =
ASH(wy, .y wpo1,w?)
2 n 1, sy WUn—1,Wp 2 0+
XQ%+(wn) Vn(wh - ’wn_hw}”wg), (wl, e 7wn_1) - Qn—ly Wy, - Qn s (211)
¢i<w1>-">wn—l7wn) =
AST(wry -y wno1,w))
1 n ) yMn—1y"n 1 0—
. ) € Qo e 0. (212 —~
Ko )y ety ) € €8 (21 :
—
S
Proof. Since =
1 o
lpn(wlv"'vwn—hwn) = %
©
ASH(w Who1,w?) -
n 1y yWn—-1,W, 2 0+ =
>0, (wi,...,Wpo1) € Ly, w;, €7, 213 <
Valwi, ooy wp_1,wh w?2) (o 2 ! " " (213) ~
g
<
2
Yo (Wi, ey W1, Why) = Z
A
R=
AST (Wi ey wno1, w)) ! S
AT TR TR S ), e Wne1) € oy, e 0o, 214 =
Volwi, ooy wp_1, w) w?) (@ “n-1) b @n " (214) S
g
we have .
Y (Wi, -+ Wn) = Xoo (W1, -, Wno1, Wn) (Wi, wn)+ %
=]
=
Xm(wl,...,wn,l,wn)tpi(wl,...,wn) >0, (Wi,y...,wWn) € Q. (215) 2
=
From this, it follows that po(A) > 0 for every A € Fy. It means that po(A) is '§
equivalent to Py. The inequality S

n—1
Sulwr, . wnon,wh) = [J(+ ailwr, . wimi(wi)) (L + an(wr, . w))milw))) #
i=1
Sp(wi, ... Wy, w?) =
n—1 .
H(l + ai(wr, - w)mi(wi)) (14 an(wr, ..., w2)n(w2)), n=1,N, (216)
i=1

is true, since

(14 ap(wy, ...

, W

n)i(w)) #
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(1+an(w177w727,)771(w3))7 n= 17N7 (217)

due to the suppositions relative to the evolutions of risky asset, given by the formula
(172). Thanks to Theorem 30, the martingale measure p is unique.

To prove the rest statement of Theorem 31, we need to construct the self-
financing strategy m such that the capital corresponding this strategy on (B,S)
market satisfies the condition

Xg = E#O¢<w17 s 7wn717wN)7 X]7\r] = gp(wla s 7wn717wN)~
Let us consider the martingale

mn(wla ce 7wn717wn> = Euo{‘p(wla cee 7wn717wN>’fn}-

Due to Theorem 30, for the finite martingale {m,, (w1, ..., w,_1,w,)}2_, relative to
the the measure jo(A) the representation

mn(wla <. awnflawn) =
n

Z Ci(wi, .oy wim)[Si(wr, -y wim1,ws) — Sic1 (w2 wir) ]+

i=1

mo, mn=1,N, (218)

is true, where Cj(wq,...,w;—1) is F;—1 measurable random value, and mg =
Erop(wy,...,ws 1,wn). If to put = {Bn, Yn}2_,, where

Tn = Cn(wla cee 7wn—1)7 Bn = mn—l(wh cee 7wn—1) - rYnSn—l(wly cee 7wn—1)7

then it easy to see that 7 is self-financed strategy. Really, since B,, =1, n =0, N,
we have

A/Bnlgn—l + A’7nSn—1 = Aﬁn + A'Vnsn—l =
Mp—1 — ’YnSn—l — Mp—2 + 'Yn—lSn—Q + (’Yn - ’Yn—l)sn—l =

Mp—1 — Mp_2 — fynfl(Snfl - Sn72) = 0.
Fn_1-measurability of (5,,,7,) is evident. It is easy to show that

X:lr(wh s 7wn) = Ban ""YnSn = mn(wl, c ,wn).

Therefore,

Xy =mg=E"p(wi,...,wn-1,wn), Xy =@(Wi,...,Wn-1,WnN).
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VIIl. - COMPLETE MARKET HEDGING

In this section, the securities market is constructed, the evolution of which occurs
in accordance with formula (172). Possible for this was the observation that with
respect to a certain class of evolutions of risky assets, the family of martingale

measures is invariant. This fact turned out to be crucial for the construction of
models of non-arbitrage markets. In papers [11], [13], such a possibility of the

existence of non-arbitrage markets is established on the basis of the Hahn-Banach
Theorem. This beautiful result has the disadvantage that it does not provide an
algorithm for constructing models of non-arbitrage markets. How to build them
having the evolution of risky assets is practically a difficult problem.

In Proposition 1, we establish the form of measurable transformations relative
to which the only measure is invariant. Using that, a model of the securities market
is built, which is complete. This result is constructive in contrast to the existence
theorem from [11], [13]. Our denotations in this section are the same as in the
previous section. We consider the evolution of risky asset, given by the formula
(172), on the same probability space.

Proposition 1. On the probability space {Qn, Fn, Py}, being the direct product of
the probability spaces {QY, F?, P’} let the evolution of risky asset be given by the

formula (172), with a;(wy, ..., w;) = bi(wy, ... ,wi—1)fi(wi, ... ,w;), where the random
variables fi(wi, ... ,wi), bi(wi,...,wi_1), satisfy the inequalities
fi(wl,...,wi) > 0, bi(wl,...,wi_l) > 0, max bi(wl,...,wi_l) <
{wl,...,wi71}€91‘71
1 =T, N (219)
Y 1= ) *
max filwr, . wisr, whn; (wh)

{wi,ewim1 YEQ 1

For such an evolution, the unique martingale measure gy does not depend on the
random variables b;(wq,...,w;i_1), i = 1, N, and it is given by the formula

MO(A) - u{w},wf},...,{w}v,w%v}(A> -

2 2 N
SO T et el xalwl L wl), A€ Fy, (220)

i1=1 in=1n=1
where
Y (Wi, - wn) = Xoz (W1, Wat, wn) Wy (w1, - wn )+
Xag (Wi, -+ Wne1, Wn ) P (W1, -+ 5 W), (221)
ASH(wr, .y wn1 w2)
1 2 n ) y Wn y Wn
W1, e vv s Wpet, W) = w;, =
Yl nmtsn) = Xape L) gl
fn(wb cee ’Wn—lawi)n:(w%) 2 c QO+ (222)
fn(wh"wwn—l?wg)n;(u}%)+fn(w1""’wn—bwrlL)nr:(w%,)’ “n "
AST (Wi ey wno1, wl)
1/12 e Wi, W) = (] n > -1, %n)
n(wl P ¥ ) XQ% <wn>Vn<w1>'">wn—17wqgaw721)
fTL(wl? s 7wn*17w711)7777<w71¢> 1 c QO— (223)
Fa@1, - W1, )0 @B) + faWr, - W, @) @)

Risk Hedging in Financial Markets

Volume 23| Issue 4 |Compilation 1.0

London Journal of Research in Science: Natural and Formal




London Journal of Research in Science: Natural and Formal

Proof. The proof of Proposition 1 is the same as proof of Theorem 8.

Suppose that the market consists of d assets the evolutions of which are given
by the law

Spl(wi, .. wn) = {S (Wi oy wn)y o, SY(wr, .. wn)}, n=1,N,  (224)
SE(wr, - wn) = ST+ (@i - wict) filwr, - wimilwy)), k= 1,4, (225)
i=1

and the random values n;(w;), fi(wi,...,w;), i =1, N, does not depend on k, and
satisfy inequalities

fi(wl,...,wl-) >O, bf(wl,...,wi,l) >O, max bf(wl,...,wi,l) <
{wisewio1}€Q—1
1 k=1,d, i=1N (226)
) = ) ) 1= Y N
max_ fi(wi,. .o wien, w0l (WF)

{wiyewi—1}EQi—1

Proposition 2. On the probability space {Qly, Fn, Pn}, being the direct product of
the probability spaces {Q2, F?, PP}, if the evolution of d risky assets is given by the
formula (224), (225), then such a market is complete non arbitrage one. The unique

martingale measure does not depend on the random variables W (wr,. . wii1), k=
1.d, =1 N, a,ndiis determined by the formula (220). For the contingent claims
@i(wr, ..., wn),i=1,d, the fair prices @}y are given by the formulas

2 2 N
b = Z . Z H (wit . wm) e (Wi Wi, i =1,d, (227)
ii=1  in=ln=1

where the number of i-th shares is determined by the formula (228) and the number
of i-th bonds is determined by the formula (229)

Yi(wr, ... wp1) =
m%(u}h"wwk—l;w%) _Wiz(wla"'awk—lau;]%)7 k:L_N, (228)
Sk<w17"'7wkflawk) _Sk<w17"'7wk717wk)

ﬂli(wla"'awk—l) -

m};_l(wl, e WE—1) — W,i(wl, o ,wk._l)S,i_l(wl, oo wig—1), k=1,N, (229)

m};(wl, coowg) = ER{ei(wr, .. wn) | FR) =
2

‘ 12 1<pi(w1,...,wk,w;’j:f,...,wf\}\’)ug({wl,...,wk,w,i’ff,...,wji\}v})
ipa1=1,. iny=
k+1 N . ‘ ' 7
1
> po({wi, .. Wik, wyiy, . Wy })

tep1=1,...,in=1
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Corollary 3. (Cox, Ross, Rubinstein, see [25]) On the probability space {Qy, Fn, Pn},
being the direct product of the probability spaces {0, F?, PP}, let the evolution of
risky asset is given by the formula

n

SH(wr, - .., wn) = So H(l +pi(wy)), n=

i=1

LN, (230)

where the random values p;(w;), i = 1, N, are such that p;(w}) = a, p;(w?) =b, and
let the bank account evolution be given by the formula

B,=By(1+n)", r>0, By>0, n=1N. (231)

Then, for the discount evolution of risky asset

n

So TT(X + pilw:))

So((Wi, .. wy) = E(Hr)n ., n=1,N, (232)

the martingale measure pig is unique if a < r <b. It is a direct product of measures
ph(A), Ae FP, i=1,N, given on the measurable space {Q, FP}, where pj(w}) =
b—r

=, ph(w?) = 5=2. The fair prices @o of the contingent liability o (wy, ... wy) is

giwen by the formula

Vo = /gpN(wl, cown)dpy =
Qn

N

S > ewletts ) T b, (233)

11=1 in=1 k=1

where the number of shares is determined by the formula (234) and the number of
bonds is determined by the formula (235)

London Journal of Research in Science: Natural and Formal

Ye(wiy ooy wp_1) =
me(wiy ..o wi—1, wi) — mg(wr, ..o Wp_1, WE) TN (234)
Sk(wi, .oy wp—1,wp) — Sk(wr, .« oy w1, w3) C
Br(wr, .. wi1) =
Mmg_1(wi,y ..o wr—1) — Ye(wry ooy We—1)Sk—1 (w1, - -+, Wk—1), (235)

mk(wl, e ,Wk) = EMO{QON(WI) s ’WN)|]:k} =
2

‘ 123 1g0N(w1,...,wk,wli’f:f,...,wj{,v)uo({wl,...,wk,w,i’ff,...,wj{}’ )
k+1=1,....AN=

2 . .

> ,uo({wl,...,wk,w;’ﬁf,...,w%\’ )

ip1=1,...,in=1
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Proof. For the discount evolution (232), the representation

n

Sp((wr, ... wn) = So H (1+ni(wi)), n=

i=1

I, N, (236)

is true, where 7;(w;) = pg‘fﬁ:f Due to Theorems 30, 31, since n;(w;) = {7 < 0,

ni(w?) = ll)_T:: > 0, then the measure ji is unique. The rest statement of Corollary
follows from Theorem 31.

Theorem 32. On the probability space {Qn, Fn, Py}, being the direct product of
the probability spaces {Q9, F?, PP}, let the evolution of risky asset be given by the
formula

S((wr, ... wy) = So H(1 + pi(w;)), n=1,N, (237)

where the random wvalues p;(w;), i = 1, N, are such that p;(w}) = b}, pi(w?) =
b2, i =1,N, and let the bank account evolution be given by the formula

n

B, =B [[(1+ria(wis1)), Bo>0, n=1N, (238)
=1

where the random values r;(w;), i = 1, N — 1, are such that ry(w}) = r}, ri(w?) =
r?2, i=1,N —1, rg > 0. Then, for the discount evolution of risky asset

So TT(L + pi(wi)) -
Sn((wiy. .. wy) = —= ., n=1,N, (239)

By [T(1+ 71 (wim1))

=1

the martingale measure g is unique, if bi < ro < b by <rl, <ri, <bl i=
2, N. It is determined by the formula (220) with

m(wr) = pi(wi) —ro,  ni(wi) = piwi) =174, i=2,N,

1
filwr) = 1+’ filwr, ..., w) =
pz‘(wz‘) - 7’171(%71) i — 2,_N (240)

(pilwi) =7 )1 +ria(wis1))’

The fair price ¢o of the contingent liability pn (w1, . ..,wy) is given by the formula

2 2 N
Z Z H1/)n(wil,...,wfl")wN(w?,...,w%\’), (241)
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where the number of shares is determined by the formula (242) and the number of
bonds is determined by the formula (243)

%(wla e 7wk—1) =
mk(wh e 7“%—1;“%) - mk(wla s 7wk—17u}2]%>7 L — L_N, (242)
Sk(wi, .. we—1,wi) — Sk(wr, - ., Wk—1,W7)
ﬁk(wl, Ce ,wk,l) =
Mp—1 (Wi, -+ wi—1) — Ve(wi, -y 1) k-1 (Wi, -+ W), (243)

mk(wl, . ,Wk) = EMO{QON(WI) s ’WN)|]:]€} =
2

‘ ~ 1901\7(("}17"'7wk7wlzcli:117"'7w§\]lv)u0({w17'"7wk7wlirr117"'7w§\]lv )
k+1=1,....,AN=

2 . .

Z MO({wla"'awk’wllck—:ll7"'7w§\lfv )

ipp1=1,...,in=1

Proof. To prove Theorem 32 it is necessary to prove the existence of unique spot
measure. The discount evolution (239) can be represented in the form

Sp((wiy .y wpn) =

B, | (I+ filwr, .., wimi(wi)), n=1,N, (244)

where ) '
771(w1) = P1(W1) — To, 772‘(%') = Pz’(wz’) -7, ©1=2,N,

f1<w1) = 3 fi(wl,...,wz-) =

London Journal of Research in Science: Natural and Formal

pi(wi) = 1i1(wi1) —
(pi(wi) - T?—l)(l + Ti—l(wi—ﬂ)’ 1=2,N. (245)

It is evident that n;(w}) < 0, n;(w?) > 0, fi(wi,...,w;) > 0. Therefore, from the rep-
resentation (244), (245) it follows that we can construct only one spot measure, which
is martingale measure, being equivalent to the initial measure Py. In accordance
with Theorem 30, since S, (wy,...,wl) # Sp(wi,...,w?), {wi, . ;W 1} € Qs
such a measure is unique. Theorem 32 is proved.

Theorem 33. On the probability space {Qn, Fn, Py}, being the direct product of
the probability spaces {Q9, F?, PP}, let the evolution of risky asset be given by the

7
formula

Sp((wr, . ywp) = S [ em@rmwmatd - = TN, (246)

=1
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where the random values &;(w;), i = 1, N, are such that &;(w}) < 0, &;(w?) > 0,
oi(wi,...,wi1) >0 >0, i=1,N, and let the bank account evolution be given by
the formula

n

B, =By H(l + ri_l(wi_l)), By > 0, n=1, N, (247)

=1

where the random values r;(w;), i = 1, N — 1, are such that ry(w}) = r}, ri(w?) =

r?2, i=1,N—1, rg > 0. Then, for the discount evolution of risky asset

SO ﬁ ecri(wl,“.,wifl)si(wi)
So((wr, ... wy) = —= ., n=1N, (248)

n

BO H (1 —+ n-,l(wi,l))

i=1

the martingale measure pg s unique, if

exp{a?el(w%)} <71y < exp{a?sl(w%)},

exp{olei(wh)} <ri , <1, <exp{olei(w}))}, i =2, N. (249)
It is determined by the formula (220) with

1
]_—f—’l"o7

m(wi) = exp{ofer(w)} —ro,  fi(wr) =
ni(wi) = exp{ojei(w)} — iy, filwr,...,wi) =

egi(wl,.‘.,wi_l)ei(wi) — 71 (wl—l)

oo le @] =7 )0 £ @)’ {wi,...,wi} €Q,, i=2/N. (250)

The fair price vo of the contingent liability pn (w1, ...,wy) is given by the formula
Yo = /@N(wl, o wN)dpg =

QN

2 2 N ‘ . .
Z Z Hl,bn(wil,...,w;")goN(wil,...,w%V), (251)
ii=1  iy=1n=1

where the number of shares is determined by the formula (252) and the number of
bonds is determined by the formula (253)

'yk(wl,...,wk_l) ==
mk(wl, R ,wkfh(ﬂ]};) - mk(wlu o 7wk717wlz) EL=1.N (252)
Sk(wl,...,Wk;_l,wli) —Sk((.adl,-.-,wk—l,w]%) ’ ’ ’
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5k(w1, S 7Wk—1) =

mk—l(wh - 7wk—1) - %(Wl, .. 7Wk—1)Sk—1(W1; e ;Wk—l); (253)

mk(wla S ,Wk) = EMO{C)DN@JM R 7WN)“FI€} =

2 A , , )
2y lgoN(wl,...,wk,w,:kjf,...,w?{,\’)uo({wl,...,wk,w,:’rf,...,w;\’,\’})
le+1=1,...AN=

2 . ,

> ,LLO({wl,...,wk,w;‘ﬁf,...,w%\’ )

tep1=1,...,in=1

Proof. For the discount evolution (248), the following representation

Sn((W1y .. wy) =

B, (I + filwr, ... ,wi)mi(wi)), n=1N, (254)

is true, where

1
1—|—7"0’

m(w) = exp{ofer(wi)} —ro,  fi(wi) =
ni(wi) = eXP{UzQEi(Wi)} - ri2—l7 filwr, ... wi) =

eOi(Wswio1)ei(wi) _ rioq (wifl)

(exp{ayei(wi)} —r7 )1+ ric1(wi1))

;o {wr, o wib €Q,, 1=2,N. (255)

It is evident that n;(w}) < 0, m;(w?) > 0, fi(wi,...,w;) > 0. From this, we obtain
that the spot measure exists and it is unique. Theorem 33 is proved.

On the probability space {Qy, Fn, Py}, being the direct product of probability

spaces {QV, F?, P?}, suppose that the market consists of d assets the evolution of
which is given by the law

Su((Wiy - wn) = {S (w1, wn)y oo, S ((wr, - ywn)y, n=1,N,  (256)

where
SE(wr, . wn) = SETJQ + df filwr, . wimi(wi),  k=T1,d, (257)
i=1
and the random values n;(w;), fi(wi,...,w;), i =1, N, and constants a¥ satisfy the
inequalities
777«(("}7,1) <07 nl(wf) >07 fi(w17"‘7wi) >07
0<al< ! i=1,N, k=1, (258)
' max filwr, .., whn; (w}) T T

{wi,ewim1}EQ 1

Risk Hedging in Financial Markets

London Journal of Research in Science: Natural and Formal

Volume 23| Issue 4 |Compilation 1.0



London Journal of Research in Science: Natural and Formal

Proposition 3. On the probability space {Qn, Fn, Py}, being the direct product of
the probability spaces {QY, FP2, PP}, let the evolution of risky assets be given by the
formulas (256), (257), where constants a¥ i = 1, N, k = 1,d, satisfy the inequalities
(258). For such an evolution of risky asset the martingale measure py does not de-
pend on af and is unique. It is determined by the formula (220). For the contingent

claims @i (wi, ... ,wy), i = 1,d, the fair prices ¢} are given by the formulas
2 2 N
0y = Z . Z H Yo (Wit w )y (Wit . W), = 1,4, (259)

where the number of i-th shares is determined by the formula (260) and the number
of i-th bonds is determined by the formula (261)

fy,i(wl,...,wk_l) =
m%(wlyywk—lyw%) _77/27];((401,..-;(&;]6—1’&)2]3)7 k:L_N, (260)
Sk(wh s 7wk717wk) - Sk<w17 s 7wk717wk)

5}2(0‘)1’""“}]9—1) =

mzfl(wl, e WE—1) — fy,i(wl, o ,wk_l)S,ifl(wl, ooy wig—1), k=1,N, (261)

m};(wl, e ,Wk;) - E“O{gpi(wh e 7WN)|F’€} =
2

> wi(wi, ... ,wk,wz’jjf, . ,wﬁ{,")po({wl, . ,wk,w,irj:f, . ,w%\’ )
ins1=Loin=1
2 ; .
> po({wi, - wiywiy Wy}
i1 =Loin=1
If filwy,...,w;)) =1, i =1, N, the unique martingale measure is a direct product of
measures jh(A), A € F?, given on the measurable space {0, FP}, i =1, N, where
(2 (1
i, 1 n; (wy) i, 2 n; (w;)
po(w;) = ——= (W) = = : (262)
’ (i (wh) + 0 (7)) 7 (n; (W) + 1" (w7))

The fair prices @), i = 1, N, of the contingent liability o' (w1, ..., wxn), i = 1, N,
are given by the formula

2 2 N
PORED DI 3] | (O} (263)

where the number of i-th shares is determined by the formula (264) and the number
of i-th bonds is determined by the formula (265)

yli(wl, W) =

Risk Hedging in Financial Markets
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ey Who1, wh) — mi(wr, .

<y WE—1, wl%)

St(wr, .oy wr—1, wy) = Sh(wr, - We-1, W) k=1N, (264)
Bi(wi, ..., wp1) =
mi_(wi, .. we) — V(e we1)SE (W, wker), k=1,N,  (265)
mi(wi, ..., wg) = EX{pi(wr, ..., wy)|Fr} =
ik+1:§:m7i]v:1%(w1""’wk’wli}ill""’wj\]fv)ﬂo({wlw--,wk,w,irj:f,...,wj\]}’ )
i NO({Wla---,wk,(JJZﬁf,...,wj\]," )

ipp1=1,..,in=1

IfSO7 1y N>

Proposition 4. Suppose that S}, Si, ...
(256), (257). Then, for the parameters a’, ..

i = 1,d, are the samples of the processes (256), (257) let us
denote the order statistics S(io), Sgl), cee SZN)’ i=1,d

i

a, =

18 valid.

In the formulas (266) we put that f; =

1, N.

Proof. The proof of Proposition 4 is the same as the proof of Theorem 15.

IX. MARTINGALE MEASURES ON DISCRETE PROBABILITY SPACE

This section presents all the necessary results for constructing a non-arbitrage in-

_ Siv-n) ]
Si
(N—k+1)
k

feng (W)

=1,N, i

max

{w1,eewWp—1}E€EQE 1

1, d, of this samples.

,S% is a sample of the random processes
., a’y the estimation

(266)

k=

1
W1, W),

fk(wl, ..

London Journal of Research in Science: Natural and Formal

complete market on a discrete probability space. The conditions under which the
entire family of martingale measures is described for the considered class of evolu-
tion of risky assets are minimal. In particular, conditions are presented under which
the family of martingale measures considered is equivalent to the original measure.
They are minimal. The entire set of equivalent martingale measures is a convex
combination of a finite number of spot martingale measures. On this basis, new
formulas were found for the fair price of the super hedge.

In this section, we put that QY = {w}, ...

,wMl i =1, N, and we assume that 2 <

M < oo, the o-algebra F? consists from all subsets of QY. We suppose that P?(wF) >
0,wF e QY k = 1,M, i = 1,N. As before, the probability space {Qny,Fy, Py}

%

is a direct product of probability spaces {9, F?, P’} i =

1

1, N. Sometimes, any

elementary event wf € Q2 it is convenient to denote by w; not indicating the index
k. Further, we use the both denotations. As in section 2, we introduce filtration
F,. on the probability space {Qy, Fn, Pv}. As before, it is convenient to introduce

© 2023 Great Britain Journals Press
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the family of probability spaces {Q,, F,, P,},n = 1, N, being a direct product of
probability spaces {Q9, F?, P°}.i = 1,n.

1

The evolution of risky asset is given by the formula (1) with the assumptions
given in the section 2. In this case

Q= x QF =0, x QF. (267)
Further, we also use the measurable space with measure
N N N
(Tl ot Tt TTit < 21} 265)
i=1 i=1 i=1

The measure P°~ is a contraction of the measure PV on the o-algebra F°= =
Q0= NFY P is a contraction of the measure P° on the o-algebra F0T = Q0T N FY.

Additionally, we assume
P)({wn € Q) I (wn)| < 00}) = 1. (269)
Let us consider the random values

Palwrs -3 wn) = Yo (@n) Y (w1, o)+

XQQ+(wn)¢fL(w1,...,wn), n=1N, (270)
where lrbrlL(wlv ceeyWh—1, wn) -
AST (Wi, wno1, w?)
2 n ) yYn—1y¥n 2 0+
X )y ey ) € G €05 2T
V(Wi W1, Wh) =
AST (Wi .y wno1, wl)
1 n ) yYn—1y¥n 1 0—
- , e Wh1) € Q1 e Q. (272
X9 (wn)vn(wl,'“,wn_l’w}wwz) (wl % 1) 1 Wn n ( )

Definition 1. Let the evolution of risky asset be given by the formula (1). On
the measurable space {Qn, Fy}, being the direct product of the measurable spaces

N
{Q0, FOY, for every point {{wi,w?}, ... {wk,w%}} € TT[Q x QY] let us introduce
i=1

the spot measure
Fft w2} (A) =

2 2 N
Z . Z H W (Wi wimxa(wl W), A€ Fu, (273)

Risk Hedging in Financial Markets
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Lemma 4. The spot measure fi,1 .2}

(A), giv

o{wi Wi

en by the formula (273),

15 a martingale measure for the evolution of risky asset, given by the formula

N
(1), for every point {{wi,w?},... {wk, w3} € TJI[Q0™ x Q). If the point
i=1

{wl Wi}, ... {wh,wk} is such that AS,, (wi, . .
0, {wi,...,wn1} € U1, n=1,N, then the spot measure ! w2}

<y Wp—1, w%)

<0, AS, (Wi, .., Wp1,w?) >
,...,{w}v,w?v}(A> is

a martingale measure, being equivalent to the measure Py.

Proof. Let us prove that Pl w2} ek 2, }(A) is a probability measure. Let us cal-

culate
2 . ) .
Z 1,[)‘7((,&)?, e ,CU;J) - lpj(w’il7 oo 7w;'J:117w‘71') + l/)](ufil, e ’wéj:ll’wjz) =
ij=1
oo () W) 3
. : . H
Xaos (WD, W wh)+ =
. > . g
Yo LWL, )+ k
e
: . =
e+ () Bt o u?) = z
. o ASH(wi, . Wi w?h) é
XQ‘;* (Wj)XQ(” Wj) i1 tji-1 1 2 + 3
V}(wl,...,wj_l,wj,wj) R
' N o
AS (W, Wit ) ’
Xad+ (W;)XQE?‘ <°‘JJ1')V ]i1 ij71j 1 ]1 T 5
G Wi whhw) p
. y . @
) b ASF(Wit, W w?) &
X9~ (%‘)XQ?* (wj> i G112 + o
V}(wla"'awj—l7wjawj) Té
. y ;-‘
AS; (Wi, Wi w)) g
Xao+ (WJQ')XQ‘]?* (ng) jil ij—lj 1 ]1 o Z
Vilw's - wiy, wiw)) 3
" ;. q
ASHWE, ... wi w?) S
1 2 1> ’ -1 —
XQ?* (Wj)XQ;’+ <wj> jil ij—lj 1 ]2 +
Vj(w1 ey Wi a%’a%‘)
AST (Wi ... Wi wl)
2 1 j 1 » =193 1 2
Vo (P () 25 — o ()Xo (62) = 1
T i wg e whwh) T

The last equalities proves that gy, .2y (wr w23 (Q2n)

N
{{wi, it {wh, wi b € TTIY™ x Q7). Further,
=1

i
9 wj

. ,w;j)ASj(wil, .

1 for every point

)=

© 2023 Great Britain Journals Press
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Py (Wil ... Wi} WwHAS; (W ... Wi wh)+

»Mj—10%g »g—=19g
i i1 2 i1 i1 2\
(Wi Wi wh)AS (W wi T wy) =

X0~ (W;)XQ‘JH (WJQ) X

+( i bj-1 2
ASI(wity . wi T wi) P
— : AST (wit w! T, wi)+
Vi (win ij-1 1, 2 JATL =10
Gwis Wi Wi w;
AST (wi Wi wh) , —
J ATl 10 + (0 -1 2| -
- A5 (wi's . wiwi)| =0, j=1,N. (274)
Vilwi's . wit), wi,wj)

Let us prove that the set of measures g1 2y . g1 021(A) is a set of martingale
measures. Really, for A, belonging to the g-algebra F,_; of the filtration we have

N
A = B x [[Q), where B belongs to o-algebra F,_; of the measurable space
{Qu_1, Furr}. Then,

2 2 N
SN T et wi)xswi . wr ) AS (Wit win) =

2
> (Wi W AS (W wi) =0, A€ F. (275)
in=1

To prove the last statement it needs to prove that ¥, (wi,...,w,) > 0, n = 1, N.

But,

AST(wy, .. wpo1, w?)
%(W]_, e ,wn) - XQ%‘ ((A.)n) Vn<w1, o ,wn717w71”w7%)
AS (Wi ey wno1,w)) —
n e 1 > (), =1, N. 276
Xags (@ >Vn(w1, e Who1, W w2) " (276)

The last means the needed statement.

Risk Hedging in Financial Markets
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Suppose that the random values a;(wy, .. .,w;), 7:(w;) satisfy the inequalities

1
ai(wla'”awi) >07 sup ai(wla"'awi) < — )
{wl ..... wi}EQi Sup T]z (wl)
w; €929,m; (w;)<0

PP(ni(w;) <0) >0, P(mi(w;)>0)>0, i=1N, (277)

(3

the evolution S,,(wy,...,w,) is given by the formula

n

Sn(wl)"')wn) = SU H(1+az(w177wz)nl(wz))7 n :L_N) SO > 0. (278)

=1

Below, we describe the convex set of equivalent martingale measures.
We use for ay({w],...,wi};{w}, ..., w%}) the denotation ay({w}y; {w}3)-

Theorem 34. Let the evolution of risky asset be given by the formula (278). On
N N N
the measurable space with measure { [J[Q0 x QY] TT[F>~ x FoH), [11PY x P},

i=1 i=1 i=1

suppose that the random value ax({w}}; {w}%) satisfies the conditions

ay({whyi{w}k) > 0. {wlwih oo oo} e [0 < 9], (279)

=1

[ axtiel bl [[aPrhirdel) =1 (250

N
120~ 00*]
1=

The measure po(A), given by the formula

po(A) =

/ OZN({W}}V; {w}?\]):u{w%,w%},..‘,{w}v,w%\,}(A)dH[Pio_ X f)io+]7 (281)

i=1
N
100 <02

18 a martingale measure, being equivalent to the measure Py.

Proof. Introduce the denotations

O‘TL({W%? SR 7w71hl’wrll}; {wfa s 7wi717 wi}) -

I an(wh byt e ) T1 AP AP W)

T 0wl e
_ L n=TN 1,
I an({wl, . wn kel wi ) TT dPY (W) dP(w?)

1T (00 w0

7

A=

Risk Hedging in Financial Markets
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aN({wlla cee anlV—hw]lV}; {wia cee 7(")]2\[—1’(")]2\/'}) =

av({wl, ... whhi{wl .. W}
S an({wls L wi i {et, s wi DAPR (wi)dPR (WR)” (282)

0— 0+
Qy XQy

It is not difficult to note that

N
[Tenlwl, o pwndi{ed, o wnh) = an({wl, - wids {wf, - Wi},
n=1

Since the random values o, ({wi, ..., wl |, wi}; {w?, ... w2, w?}) are finite valued,

then

an({w%, te 7w7lz—1v OJ?lz}; {w%’ te ’wi—hwi})x
Q) =t
AS T (wy, .. ,wn,l,wi)AS;(al)l, - ’wnfl’w’i)dPS(wi)dPg(wi) < oo,
Volwi, ooy wn_1, wh w?)
(Ldl, Ce ,wn,l) € anl- (283)

It is evident that the set of strictly positive finite valued random values
a,({w}t;{w}?),n =1, N, given by the formula (282), satisfy the conditions

EFIAS, (wry .. ywp_1,wy)| =
N N
/H iwr, - wi)|AS, (Wi wan,wn)| [ [dP)(wi) < 00, n=T,N. (284)
Gy =1 i=1
Moreover, for the measure (281) the representation (32) is true, meaning that it is

equivalent to the measure Py. The last proves Theorem 34.

Let us define the integral for the random value fy(wi,...,wn_1,wy) relative to
the measure fig,1 .2y . 1ot w23(A4) by the formula

/ fN(wlv <, WN-1, WN)d/L{w%,w%},...,{w}\,,w?\,} =
Qn

2 2 N ‘ ' '
DD T vnlwtt o win) v (wits o wil). (285)
i1=1 in=1n=1

Theorem 35. Let the evolution of risky asset be given by the formula (278). If
the conditions of Theorem 34 are true, then the fair price of super-hedge fo for the
nonnegative payoff function f(x) is given by the formula

fomsw B'fS) = a6 e (250)

PeM wleQd™ w2eQdt i=I.N
Qn
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Moreover,

. P . .
L BTSN = e B, / FON) Attty ook} (287)
Qn

Proof. Let us prove the formula (286). Denote M the set of all martingale measure,
being equivalent to Py. If an equivalent martingale measure Fy € M, then aFPy +
(1— a)#{w},w%},“.,{w}v,w?\]} € M for arbitrary 0 < a < 1. We have the inequality

aEPOf(SN) + (]' - Oé) / f(SN)du{w%,w%},...,{w}\,,w?\,} S sup EPf(SN)
PeM
Qy ©
Since v > 0 is arbitrary, we obtain the inequality

PeM

[ £ y.onny < 50 B F(Sx).
Qn

From here, we obtain the inequality

< P .
et B | TVt 1k < B (5
Qn

The inverse inequality follows from the representation (281) for any martingale mea-
sure, being equivalent to the measure Py. Really,

EPfy = / a({whh {w}3)x

N
IT (97 <]

i=1

=1

N
/ fN(wla e, WN-1, (-“-)N)du{w%,w%},...,{w}v,w?\,}dH[Pfi X PiOJr]‘ (288)
Qn

From the formula (288) it follows the inequality

EFf fy < max /f(SN)du 1,2 L2
— wy,w? by {wa,wi e
w} €] wieQ =N forerdfoy ot
QN
Or,
P
SupE fN < max /f(SN)du wl w2 ol 2.
PcM w,}EQgi,w?EQ?Jr,i:l,N { 1 1}7 7{ N N}
Qn

The proof of (287) is analogous. We have the inequality

QB 1(Sx) + (L= ) [ F(Si)dingty.ohuy 2 jnf, E"F(Sx)
Qn
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Tending « to zero and taking the minimum all over the spot measures we obtain

VARl w2), (w0l 2} = Hlf E"f(SN).

min
wileflof QGQ(H i= 1N
Using the representation (288) we have

E"fy > min
wleQd™ w2eQft i=I.N

VAol w2, (k-

Taking the infimum all over the martingale measures we obtain

inf EF fy > min Sn)d )
PeM I W1l W2eQ0t i=T.N L
Qn

Theorem 35 is proved.

X. MODELS OF NON-ARBITRAGE INCOMPLETE FINANCIAL MARKETS

Using the construction of the family of spot measures introduced in the previous
section, this section presents the conditions under which the considered family of
spot measures is invariant with respect to a certain class of evolutions of risky
assets. For a certain class of contingent liabilities including a standard call option,
the fair price of the super hedge is shown to be less than the spot price of the
underlying asset. Specific applications of the results obtained for the previously
known evolutions of risky assets are considered. New formulas is found for the non-
arbitrage price range. A model of a non-arbitrage incomplete market is proposed
and estimates are obtained in the case of a multi-parameter model of a non-arbitrage
market.

On the probability space {Qy, Fn, Py}, let us assume that the random values
bi(wi, ... wis1), filw,...,w;), mi(w;), i =1, N, satisfy the inequalities

b’i(w17-.‘7w7:—1) >07 fl’(w17~..7wi> >07
bon. o) <
{w1,...,Z.;Iilfll}iegii1 z(uﬂ, , Wy 1)
1

max max (w1, ..., - (wi)
{wi,ewi—1}€Qi1 {wi,m(wi)<0}f( ! )77 ( )

P2(ni(w;) < 0) >0, P’(ni(w;)>0)>0, i=1N. (289)

As before, we put Q)" = {w; € QY, ni(w;) <0}, T = {w; € O, ni(w;) > 0}. We
assume that the evolution S,,(ws,...,w,) of risky asset is given by the formula

n

Sn(wis -« wy) = So H(l (Wi, win) filwrs - wo)mi(w), = 1,N. (290)

i=1
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N
With every point v = {(w},w?),..., (wk,w?)} €V, where V = [][Q) x QF], we
i=1
connect the spot measure

u{w},w%},...,{w}v,wf\,}(A) =
2 2 N ‘
ST T et wimxalwit, . wi), A€ Fy (291)
i1=1 in=1n=1

N N

Let us denote v,(A) = [[ vurw2(Ai), A =[] Ai, € Fun, the direct product of the
=1 i=1

measures v, 2(4;), A € FY, i = 1, N, where v = {(wj,w]),..., (wy,wi)} €V,

N
V=112 x QF], and
i=1

n; (w?)
n; (W) +nf (W)

2 1 (W)
relEa e

le.l,wf (AZ) = XA (wzl>

for w} € QY7 w? € QY| A; € FP. Then, there exists a countable additive function
vy(A), A € Fy, on the o-algebra Fy for every v € V.

Theorem 36. On the probability space {Qn, Fn, Py}, being the direct product of
the probability spaces {0, F?, PP}, let the evolution of risky asset be given by the

formula (290). For every point v = {(wi,w?), ..., (wk,w)} €V, the spot measure
u{w%’w%}“_”{w}ww%}(A) given by the formula (291) does not depend on the random

values by(wy, ... ,wi—1), © = 1,N. In the case as fi(wi,...,w;) =1, i = 1, N, the
formula

oot} dul w3} (A) = 1u(A) (293)

is true.  For the evolution of risky asset (290), the set of martingale mea-
sures being equivalent to the measure Py does not depend on the random values

bi(wl, ce ,wi_l), 1= 1,N

Proof. The proof of Theorem 36 is the same as proof of the Theorem 8.

Theorem 37. On the probability space {Qn, Fn, Py}, being the direct product of
the probability spaces {Q9, F?, PP}, let the evolution of risky asset be given by the

formula (290). Suppose that the nonnegative conver down payoff function f(x) on
the set 0 < x < oo satisfies the inequality 0 < f(x) < x. Then, the inequalities

f(So) < sup B f(Sy) =

pPeM

o380, e | Ty < S0 (204)
K K ™ 1 7QN

are true.
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Proof. Since the set of points v = {(w},w?),. .., (wk,w%)} in the set V is finite then
the minimum in the formula

1min [Sy (w1, ..., wn) — f(Sn(wi, ... wN))] =d >0 (295)
W1y s WN
is reached at a certain point vy = {(w;”, "), ..., (wy’,wi’)}. Therefore, the in-
equality

SN(wla"'awN)_f(SN(wla"'awN))Zda {wla"‘awN}GQJ\U (296)
is true

Integrating left and right parts of inequality over the measure fig,1 2y (wl w2} (A),
we have

/ SN(wlﬂ e ’wN)dlu{w%vw%}v”'v{w]l\ﬂwJQV}_
Qn

/dﬂ{w},wf},...,{wgv,wg}f(SN(Wla cwN)) > d (297)
Qn
Since
/ SN<w17 s 7wN)d/*L{w%,w%},...,{w}v,w?\,} = SU (298)
Qn

we obtain the needed. It is evident that from the convexity down of payoff function
f(z) and Jensen inequality we obtain the inequality

/ f(SN<w1> s 7wN))d:u{w%,w%},...,{w}v,w?\,} > f(SO) (299)
Qn

Theorem 37 is proved.

Let us note that the interval of non arbitrage prices for a certain processes was
found in the papers [26], [27].

Corollary 4. For the standard call option of Furopean type with payoff function
f(z) = (x — K)*,K > 0, the conditions of Theorem 37 are true. Therefore, the
inequalities (294) are valid.

Theorem 38. On the probability space {Qn, Fn, Py}, being the direct product of
the probability spaces {Q0, F?, PP}, let the evolution of risky asset be given by the
formula (290). Suppose that the nonnegative convex down payoff function f(x) on
the set 0 < x < oo satisfies the inequality 0 < f(z) < K, K > 0. Then, the

mequalities

Sy) < sup EX f(Sy) = max SNV 2 ot w2 < K (300
F(S0) < Pent f(Sn) Wl €Ol W2eQ0t i=T,N SNt oy, . )y < K (300)
QN

are true.
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Proof. The proof is evident.

Corollary 5. For the standard put option of European type with payoff function
flx) = (K — )", K > 0, the conditions of Theorem 38 are true. Therefore, the

inequalities (300) are valid.

Corollary 6 For the standard call option of European type with payoff function
flz) = (x — K)*, K > 0, the interval of non arbitrage prices coincide with the
interval

min f(SN)du wl w2 wl w2,
wleQ?™ w2edt i=1,N fop et tonownd
Qn

ol ead- il;gg)z{@r ile/f(SN)dM{w},wf} ..... {whwd} | - (301)
2 T R ’ QN

Corollary 7. For the standard put option of European type with payoff function
flx) = (K —x)T, K > 0, the interval of non arbitrage prices coincide with the
interval

min f(SN)dM wi,w? whw? b
wgeﬂf,wfeszg’+,i—1,1\// foreihdonwid
QN

e B [ TSVt | (302
2 T 07 i ’ QN

Corollary 8. On the probability space {Qn, Fy, P}, being the direct product of
the probability spaces {QF, F?, PP}, let the evolution of risky asset is given by the
formula

Sh(wr, o wa) = So [J(+ pilwi)), n=TN, Sh>0, (303)

i=1

London Journal of Research in Science: Natural and Formal

where the random value p;(w;) is given on the probability space {Q9, FP, PP}, i =
1, N, and let the bank account evolution be given by the formula

Bn=DBo(l+71)", r>0, By>0, n=T1N. (304)

Then, for the discount evolution of risky asset

n

So [T(1 + pifwi))

Sul(wiy ..o ywy) = i21()<1+7«)“ , n=1,N, (305)

the set of martingale measure is nonempty one if the following conditions are true

Pio(pi(wi) —r<0)>0, Pio(pi(wi) —r>0)>0,
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P2(pi(w;) — 7 < 0) + P’(ps(w;)) —r>0)=1, i=1N.

For every point v = {(wi,wd),...,(wk,w%)} in the set V the spot measure
“{wivwf}v---v{w}waQv}(A) is a direct product of measures uy(A;), A; € FP, i = 1, N,
given on the measurable space {0, F{'}, where jiy(A;) = v 42(Ai), and v, 2 (A;)

1

is given by the formula (292) with n;(w;) = p"(f)—i)r_r, i =1,N. The fair price g of
super-hedge of the nonnegative contingent liability oy (w1, ..., wy) is given by the

formula

Yo = max / On (Wi, ..., wN)dyy.
veY
Y

The interval of non-arbitrage prices is written in the form

min/@N(Wl,---,wN)de ma§/¢N(w1,---,wN)dVv
ve

veY
QN QN

Theorem 39. On the probability space {Qy, Fn, Pn}, being the direct product of
the probability spaces {QY, F?, P}, let the evolution of risky asset be given by the
formula

SH(wy, .. wn) = S H(1 +pi(w)), n=1,N, (306)

where the random wvalue p;(w;), is given on the probability space {Q9, F? PP},
P’({pi(w;) < 0}) > 0, P°({pi(w;) > 0}) > 0, i = 1, N, and let the bank account
evolution be given by the formula

B, =By [[(1+ri(wis1)), By>0, n=1N, (307)

i=1

where the strictly positive random wvalues r;(w;) are given on the probability
{Q0, F2 PP} i =1, N. Then, for the discount evolution of risky asset

n

So H(1+Pi(%’)) o
So((Wi, .. wy) = =l ., n=1,N, (308)

n

BO H (]. + n-_l(wz-_l))

i=1

the set of martingale measure is nonempty one if the following conditions are true

max riq(wi1) < min - piw),
wi—1€Q-1 Wi €Q4,pi(w;i)>0

min Ti_l(u)i_1> > 0, 1= 2, N
wi—1€Q-1

0<ry < min wy). 309
0 wleﬂl,pl(w1)>0p1< 1) ( )
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The fair price po of super-hedge of the nonnegative contingent liability on (w1, . .., wN)
1s given by the formula

0 = max /@N(wl, e WN) AL W2yl w21
wilEng, w?EQ?Jr, 'i:l,NQ {wpert oy ey )
N

The interval of non-arbitrage prices is written in the form
min N (W1, WON) AR 02y ol w )

wil GQ(Z.)*, w?EQ?+, i=1,N
QN

SDN(w17 s 7WN)d,u wiw?},.. {wl w2
SIED" w2t i:LN/ o @i} (k)
QN

Proof. The discount evolution (308) can be represented in the form

Sn(wiy ... W) =

=
g
S
©
o
=
b
E
=
Z
Bo 1 =+ To g 1 —+ Ti,l(wi,l) %
=
2
n Q
S 7
=TT+ filwr, o wimiws) (310) £
Bo i <
&
where 2
&
1 —
filwr) = 1 , m(wr) = p1(wr) — 1o, (311) ©°
+ To <
2
fi(wla s 7wi) = ’Ol(wz) - Ti_l(u)i_l) ’ §
(pi(ws) — ,, rict(wi—1) (L + rim1(wi-1)) g
7—1 7—1 Fg
1S
. —
T]Z((,L)Z) = pz(w,) — min ’I"Z'_1<wi_1) 1= 2, N. (312)
wi—1€Q 1
Since
fi(wl,...,wi) >0, 1=1,N, (313)
PY(mi(w;) <0) >0, P’(ni(w;)>0)>0, i=1N, (314)

then it means that the set of martingale measures, being equivalent to Ry, is a
nonempty set. Theorem 39 is proved.
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Theorem 40. On the probability space {Qy, Fn, Pn}, being the direct product of
the probability spaces {QY, F?, P’} let the evolution of risky asset be given by the

formula
Sp((wr, . wp) = S [ em@rmwmatd - = TN, (315)
i=1
where the random values €;(w;), i = 1, N, are such that
Pio(€i(w7;) < 0) > 0, PiO(Ei(wi) > O) > 0,
PY(es(wi) < 0) + P(ei(wi) > 0) = 1,
oi(wi,...,wi1) >0) >0, i=1N,
and let the bank account evolution be given by the formula
B, =B [[(1+ria(wis1)), Bo>0, n=1N, (316)

i=1

where the random values r;(w;), i = 1, N — 1, are strictly positive ones, 1y > 0.
Then, for the discount evolution of risky asset

n
So H eCi (Wi, wi—1)ei(wi)
=1

Sn((wry ... wp) = — , n=1N, (317)
By Z.];[1(1 +7ic1(wi-1))
the set of martingale measure is nonempty one, if
exp{o?} {w1,§i§<0} e1(w1)} < 1o < exp{o? {M,arlr&}llbo} e1(w1)},
exp{oy {wi,{fﬂ%m} gi(wi)} < {wi_Ilneiéli_l}ﬁ—l(wi—l) <
{wif?gé_l}mq(wi—ﬁ < eXP{UzQ {wi,g(li?)w} eilw)}, i=2,N. (318)

Then, the fair price of super-hedge o of the nonnegative contingent liability
on(wi,...,wN) is given by the formula

po = max / ON (Wi - WN) AR w2), o (0l w2 ) =
Qn

2 2 N
2%3(2 . Zl 1_[1 Yn (Wi W™ on (Wi . W), (319)
1= in=1n=
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Proof. For the discount evolution (317), the following representation

Sn((wry .. wy) =
B, (T+ filwr, .., wi)mi(wi)), n=1N, (320)

is true, where

1
m(w1) = eXP{0(1)€1(w1)} —ro,  filwi) = 1+’
ni(w;i) = exp{oVe;i(w))} —  max i (wi1),
{wi—1€9Qi-1}
fi(wl, N ,wi) =
Ui(w17...7wi_1)€i(wi) _ ) )
_ e ri-1(wi-1) -0,
(exp{ojei(wi)} — max  rig(wi—1))(1 +rim1(wi-1))
{wi—1€9Q-1}
{wl,...,wi} e, 1=2N. (321)
In this case, the spot measures
M{w%,w%},...,{w}v,w%\,}(A> -
2 2 N
Z . Z H Yo (Wit o ) xalwr, . wy), A€ Fn, (322)
=1  iy=1n=1

figuring in the formula (319), are determined by the formulas

Y(wr, e wn) = Xa (@1, s @t @) Y (@1, )+

Xﬂi(wla sy Wno1, wn)lpi(wlu s uwn)u (323)
wi(wla"'awn—lawn) =
AST(wyy .oy wp1,w?)
2 n 1, yWn—1, Wy, 9 0+
XQ%Jr(wn)Vn(wh ol al) (Wi Wae1) € Loy, wi € Q0. (324)
¢i(w1,...,wn_1,wn) =
AST (Wi, Woo1, wl)
1 n ’ yWMn—1,%n 1 0—
_ , e Wn1) € Dy, wh e Q0T (325
X0 <wn)Vn(w1,---,wn—hw}“uﬁ) (w1 Wn—1) 1, W (325)
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where

AST(wi, . Wy, w?) B
Vi(wi,y ..y W1, Wk w?)
fn(wli ey Wn—1, WZ)U:(%%) (326)
folwi, .y wn1, w2)ntH(W2) + fu(wr, .o wno1, wh)ns (wh)
AST (Wi -y wpo1,wh)
Vilwi, ..y w1, wk w2)
fn(wla R b erb)n; <w711) (327)
fn(wh s 7(")”—17(")121)777—1—((“}%) + fn(wlv sy Wn—1, W%)UE(W}LY
(wla s awn—l) € Qn—l-
and the random values 7;(w;), fi(wi,...,w;), ¢ = 1, N, are given by the formulas
(321). The obtained representation (320) proves Theorem 40.
~ Suppose that the random values ny.(wy), fi(wi, ..., wk), k=1, N, and constants
a;, satisty the inequalities
) 1 I L —
0<a;,< k=1,N, 1=1,d,

max ma frolwr, .. we)n, (wg)’
{wiewr—1 Y€1 {wr, M (wi)<0} (w1, ’ )k( )

filwr, @) >0, BY(ni(wi) <0) >0, P(n(w)>0)>0, i=1,N. (328
We assume that the evolutions of d risky assets S, (w1, . . ., wy,) is given by the formula

Sp(wiy .y wn) = {SH(wr, . wa) P, (329)
where

Si(wr, . wa) =Sy [T+ afrlwr, - we)me(wr), n=1TN, i=14d. (330)
k=1

Proposition 5. On the probability space {Qy, Fn, Pn}, being the direct product of
the probability spaces {9, FP, P}, let the evolution of risky assets be given by the
formulas (329), (330), where the random values ng(wy), fe(w, ..., wk) and constants
ai, k= 1,N, i = 1,d satisfy the inequalities (328). For such an evolution of risky
assets the set of martingale measures py does not depend on al,. The spot measures
u{w%’w%}w{w}v,w%}(A) are determined by the formulas (322) - (327). The fair price
©b of super-hedge of the nonnegative contingent liability @’ (w1, . .. ,wy) is given by
the formula

()06 = Ivneagc / cpflv(wla s aWN)d:u{w%,wf},...,{w}v,wlzv}7 1 =1, d.
QN

Risk Hedging in Financial Markets

Volume 23| Issue 4 |Compilation 1.0 © 2023 Great Britain Journals Press



© 2023 Great Britain Journals Press

The interval of non-arbitrage prices is written in the form

min / 903\7(("}17 s 7wN)du{w%,w%},.‘.,{w}v,w?\,} ’

veY
Qn

max / @7}\7((&)17 o ,WN)dM{w},w‘f’} ..... {whw2} | i=1,d.

vey
Qn

In the case fi(wy,...,wp) = 1,k =1, N, for every point v = {(w;,w?),..., (wk,w3)}
in the set V the spot measure /‘{w%,w%},.-.,{w}v,w?v}(A) 15 a direct product of measures

pi(Ay), Ay € F2, i =1, N, given on the measurable space {QY, F°}, where pi(A;) =

K3 K3

Vot w2 (Ai), and v 2 (A;) is given by the formula (292).

If S§,S%,...,S%, i = 1,d, are the samples of the processes (329), (330), let us
denote the order statistics Séo)a Sél), ceey SE'N), 1 = 1,d, of this samples. Introduce
the denotations

1 1
fi = max . frelwy, .. wp—1,wy), k=1,N.
{wiyewp—1 Y€1, wieN]™

Proposition 6. Suppose that S}, Si,...,S% is a sample of the random processes
(329), (330). Then, for the parameters a}, ..., a’ the estimation

[1_M}

S’L

(N—k+1) — . T
k

=1,N =1,d 331
foma el FT T TR o

1
wy €8

(-
a, =

18 valid.

Xl. . CONCLUSIONS

Section 1 provides an overview of the achievements and formulates the main problem
that has been solved. Section 2 contains the formulation of conditions which must
satisfy the evolution of risky asset. In Section 3, the conditions for the evolution of
risky asset and random variables are formulated, on the basis of which a recursive
method of constructing a family of martingale measures equivalent to the original
measure is proposed. Lemma 1 gives a simple proof of the non-emptiness of the set of
random variables satisfying conditions (20) - (22), in contrast to similar results in [2].
In Lemma 2, an integral representation is obtained for the measure constructed by
the recursive method (28) - (30), from which it follows that it is equivalent to
the original measure. In Theorem 1, the conditions under which the recursively
constructed measure is martingale one and equivalent to the original measure are
formulated.

The Section 4 introduces a family of spot measures and a measure built on
the basis of these spot measures and a family of random variables. In Theorem
2, an integral representation is found for the introduced family of measures, which
means that this family of measures is absolutely continuous to the original measure.
Theorem 3 guarantees the conditions under which the constructed family of measures
are martingale and equivalent to the original measure. Theorem 4 gives a complete
description of martingale measures equivalent to the original measure. Theorems
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5 and 6 are auxiliary. Theorem 7 guarantees conditions when the infimum and
supremum of the average value of the payment function over the set of martingale
measures coincide with the infimum and supremum of the average value of the
payment function over the set of all spot measures. Theorem 8 proves that the family
of martingale measures is invariant with respect to a certain class of transformations.

In Section 5, based on Theorem 8, a parametric family of evolutions of risky
assets based on some evolution of risky asset is introduced. The proposed parametric
model based on the canonical model of the evolution of risky assets, which takes
into account both memory and price clustering, takes into account the fact that the
price of a risky asset cannot fall to zero.

For a wide class of payment functions, in Theorem 9, an estimate is obtained
both from above and from below for the supremum of the average value of the
payment functions over the set of all martingale measures. A similar result as in
Theorem 9 is obtained in Theorem 10 only for another class of payment functions.
For the considered parametric evolution, in Theorem 11, a fair superhedge price is
found for the payment function of a standard European-type call option. The same
Theorem 11 specifies the interval of non-arbitrage prices. In Theorem 12 , for the
considered parametric evolution of the risky asset, a fair superhedge price is found
for the payment function of a standard European-type put option. In Theorems 13
and 14, similar results are obtained as in Theorems 11, 12 only for the payment
functions of Asian call and put options. On the basis of the sample, in Theorem 15,
the estimates of the parameters of the introduced parametric model of the evolution
of risky assets are obtained.

In Theorems 16, 17 the fair price of the superhedge for the payment functions
of the standard call and put options are given in terms of the obtained parameter
estimates. Analogous results are given in Theorems 18 and 19 for fair superhedge
prices for Asian-type call and put option payment functions.

Another parametric model of the evolution of risky assets is considered in Section
6. It differs from the previous one in that it considers the discounted evolution of
risky asset. Theorems 20 - 21 are proved, in which estimates are obtained both
from above and from below and established. Theorems 22 - 23 derive formulas for
the fair price of a superhedge for the payment functions of call and put options,
respectively. A similar result is obtained in Theorems 24 - 25 for the payment
functions of Asian-type put and call options. In Theorems 26 - 29, based on the
sample for the evolution of the risky asset, the formulas for the fair price of the
superhedge through parameter estimation are presented.

Section 7 contains Theorems 30 and 31, which give the necessary and sufficient
conditions for the evolution of risky assets for which the martingale measure is
unique. Formulas for the fair price of option contracts and investor hedging strategies
are found. A clear construction of such martingale measures and hedging strategies
of the investor is given.

In section 8, Proposition 1 establishes the invariance of a single martingale mea-
sure with respect to a certain class of evolutions of risky asset. On this basis, propo-
sition 2 builds a parametric model of the financial market and finds formulas for the
fair price of an option contract and the investor’s hedging strategies. In Corollary
3 and Theorems 32, 33 examples of various evolutions of risky asset are given and
the conditions for the existence of a single martingale measure are established. An
explicit construction of a single martingale measure is given and formulas for the
fair price of an option contract and investor’s hedging strategies are constructed.
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Proposition 3 constructs a parametric securities market model with a single
martingale measure and provides formulas for the fair prices of options contracts and
investor hedging strategies. Proposition 4 provides an estimate of the parameters of
the introduced parametric models through realizations of risky assets.

Section 9 contains models of incomplete financial markets in discrete probability
space. Theorem 34 gives a complete description of all martingale measures equiv-
alent to the original one. Theorem 35 establishes formulas for both the lower and
upper limits of the interval of non-arbitrage prices for the evolution of risky assets
through the minimum and maximum of the average value of the payment functions
over a finite set of spot measures.

Section 10 considers models of the evolution of risky assets that are invariant
with respect to a certain class of evolutions of risky assets. Theorem 37 establishes
that for a certain class of payment functions and for a wide class of evolutions of risky
assets, the fair price of the superhedge is strictly less than the price of the underlying
asset. Among such payment functions is the payment function of the standard call
option of the European type. Theorems 39, 40 give various examples of discounted
evolutions of risky assets that satisfy the conditions of the proved theorems 35 - 37,
and find the conditions under which the family of martingale measures is nonempty.
Formulas for a fair superhedge price have been found. Proposition 5 contains the
construction of a parametric model of an incomplete financial market, a family
of martingale measures of which does not depend on the considered parameters.
Proposition 6 provides an estimates of the parameters of the constructed models of
incomplete markets through realizations of the considered evolutions of risky assets.
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ABSTRACT

The Four-Color Conjecture, also known as the Four-Color Problem, was first proposed by Francis
Guthrie, an Englishman, in 1852. The most famous previous proof of this problem was made by
Kenneth Appel and Wolfgang Haken in the United States in 1976 using computers. Afterwards, there
are still a considerable number of people hoping to find an artificial proof of this problem. My paper
titled "A Logical Proof of the Four-Color Problem" was published in the Journal of Applied
Mathematics and Physics in May 2020. Later, it was found that the key logical proof part can form a
new logical law — the law of the middle term. This paper aims to give a proof of the Four-Color
Problem based on the law of the middle term in logic proposed in this paper, so that the proof idea is
clearer, the proof process is more rigorous, and more concise. While solving the problem of graph
theory, also made a little contribution to the development of logic.

Keywords: graph theory, planar graph, graph coloring, logic.

. INTRODUCTION

The Four-Color Conjecture (hereinafter referred to as 4CC), also known as the Four-Color Problem,
was first proposed by Francis Guthrie, an Englishman, in 1852[1]. The most famous previous proof of
this problem was made by Kenneth Appel and Wolfgang Haken in the United States in 1976 using
computers [2]. Afterwards, there are still a considerable number of people hoping to find an artificial
proof of this problem. My paper titled "A Logical Proof of the Four-Color Problem [3]" was published
in the Journal of Applied Mathematics and Physics in May 2020. Later, it was found that the key
logical proof part can form a new logical law — the law of the middle term. This paper aims to give a
proof of the 4CC based on the law of the middle term in logic proposed in this paper, so that the proof
idea is clearer, the proof process is more rigorous, and more concise. While solving the problem of
graph theory, also made a little contribution to the development of logic.

Il METHODS

This paper is based on Kempe's work.

Kempe once tried to prove 4CC by means of reduction to absurdity. The main idea is that if there are
five color maps, there will at least be a "minimal five color map" G, with the least number of countries.

Kempe first proved a conclusion about the planar graph: in any map, there must be a country whose
number of neighbors is less than or equal to 5.

Next, Kempe looked at the country with the least number of neighbors in the minimal five color map
G, — country u (he had proved that country u has no more than five neighbors). Suppose there are n
countries in G,. If there are no more than 3 neighbors of country u, it can be "removed" to form a map
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with only n-1 countries, which should be 4-colorable. The original three neighbors of country u used at
most three colors, such as red, yellow and green. At this time, put the country u back and color it with
the color unused by its neighbors, such as blue, so that the minimal five color map G, can be 4-colored
again, see Figure 1.

0 o - o - o

LY i

Figure 1. Country u owned three neighboring countries.

This kind of subgraph that can reduce the number of map colors by "removinG* and "restorinG* a
country is later called "reducible configuration".

. RESEARCH IDEA

Kempe's work putted forward two important concepts, which laid the foundation for further solving 4
CC in the future.

Kempe's first concept was "configuration". He first proved that there must be a country on any map
whose number of neighbors is five or less. In other words, a set of "configurations" of one to five
neighbors is inevitable on each map.

Another concept proposed by Kempe is "reducibility”. Kempe found in his research that the chromatic
number of relevant maps can be reduced by "removinG* and "restorinG* a country in some subgraphs.
Since the introduction of the concepts of "configuration" and "reducibility”, some standard methods
for checking the configuration of a graph to determine whether it is reducible have been developed.
Seeking the inevitable group of reducible configurations is an important way to prove 4CC. The first
part of the proof of this paper is the same as Kempe's proof idea. It starts with the assumption that
there is a minimal five color map (called 5-critical graph in this paper) G, then analyzes the logical
relationship between graph G's related subgraphs when they are 4-coloring, and then uses the law of
the middle term based on logic proved in this paper, it is proved that the necessary configurations
composed of four or five neighbors in graph G are reducible, so 4CC is proved to be true by means of
reduction to absurdity.

V. LABELS AND CONCEPTS

In this paper, 6 is used to represent the minimum degree of the vertices of a graph; use PA to express a
proposition about something A; use PA — PB to represent the sufficient condition that PA is PB. If Vis
the set of all the vertices of a graph G and V' is a non-empty subset of V, then the induced subgraph of
graph G induced by V' is represented by G[V'] (The so-called induced subgraph is a subgraph
composed of some vertices in a certain graph and all the edges connecting these vertices in the original

graph).

A Proof of the Four-Color Problem based on a New Law of Logic the Law of the Middle Term
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A coloring of a graph is to assign a set of colors to each vertex so that no two adjacent vertices have the
same color. The set of all vertices with the same color is independent and is called a color group. An
n-coloring of graph G is a coloring with n colors, according to this coloring, all its vertices are divided
into n color groups.

Among all the colorings of a certain graph G, the color number of the coloring with the least color is
called its chromatic number, denoted as y (G). if x (G) < n, graph G is called n-colorable or n colorable
graph; if ¥ (G) = n, G is called n-color or n-color graph.

A graph G is said to be critical if for all its vertices or edges v/e, x(G-v/e) <x(G); if x (G) = n, Then G is
called an n-critical or n-critical graph.

V. THE LAW OF THE MIDDLE TERM

The law of the middle term: if PA — PC, but PA acts on PC through and only through B, then there
must be a PB such that PA — PB and PB — PC.

Proof: If this law does not hold, that is, if PA — PC, when PA acts on PC through and only through B,
for any PB, it is all not "PA — PB and PB — PC", that is, neither of them is PA — PC, then obviously
this would contradict the premise PA—PC.

VI RESULTS

The Four Color Theorem: For all planar graph G, x(G) <4.

Proof: Use the method of reduction to absurdity. If this theorem is not valid, then there should be
5-color graphs in planar graphs [4][5][6]. Let G is a 5-critical graph, and let u be the vertex with the
smallest degree, that is, deg(u)=3§, it can be proved that 6=x(4<x<5) [7][8] in G.

Figure 2: deg(u) = 4.

When deg(u) = 4, set the vertices adjacent to u as v,, v,, v,, v,, as shown in Figure 2. The reason why
edges v,v,, V,v,, V,v,, v,v, exist in G is that if anyone of them are missing, such as v,v,is missing, then
the graph obtained by combining v, and v, into v,,is G', as shown in Figure 3. Because of the number of
edges of G' is less than G, G' should be a 4-colorable graph. In this case, aslong as G'is changed back
to G, we can get 4-colored G, which contradicts the hypothesis that G is a 5-critical graph.

A Proof of the Four-Color Problem based on a New Law of Logic the Law of the Middle Term
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Figure 3: If the edge v,v, is missing, the graph can become 4-colorable.

Let G*= G-uv,, Gg = G* [{V,, V,, v,}], Since the number of edges of G* is less than G, G* should be a 4
color graph. It is easy to know that when we make 4-coloring for G*, u and v, must always be colored
the same color, otherwise, as long as we put uv, back between u and v,, we can get a 4 colored G, which
contradicts the hypothesis that G is a 5-critical graph, as shown in Figure 4. In other words, when
using color group C composed of red, yellow, green and blue to make 4-coloring for G*, If Pu is used to
represent "u is red" and Pv, is used to represent " v, is red", first, Pu — Pv,. Otherwise, if Pu is true and
Pv, is false, that is, u and v, are different in red, which will contradict the above inference that when we
make 4-coloring for G*, u and v, must always be colored the same color [9].
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Figure 4: When we make 4-coloring for G*, u and v, must always be colored the same color.

Secondly, when using color group C to color G*, if Pu is true, that is, u is red, then from the above
inference, Pv, will also be true, that is, v, will also be red with u. It is known from the law of the middle
term and Pu—Pv,, and Pu acts on Pv, through and only through G,that, at this time, for G,, there must
be a coloring PG4, making Pu—PG, and PGy—Pv,. But in the aforementioned coloring process, Gy
obviously can have "On all vertices of G4have all the three colors of yellow, green and blue" and "On all
the vertices of Gy have only some two colors of the three colors of yellow, green and blue". But PGy
obviously cannot including the latter case, otherwise it is only necessary to change the red of u to
another color among the three colors of yellow, green and blue that are not used on all vertices of G,
so that u and v, are different colors, so that it contradicts the inference that "when 4-coloring G*, u and
v, must be the same color". Thus, in this case, PG4can obviously only be the former case, that is, on all
vertices of Gy have all the three colors of yellow, green and blue. But this is obviously only possible if
there are odd circles in G, [10].

It follows from there is odd circle in G, that v, must adjacent to v,.

In the same way, it can also be inferred that v, must adjacent to v,, so that there is a contradictory
result of edge intersection in G, as shown in Figure 5.

A Proof of the Four-Color Problem based on a New Law of Logic the Law of the Middle Term
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Figure 5. Shows the result of contradiction with intersecting edges in G.

When deg(u) = 5, let the vertices adjacent to u are v,, v,, v,, v,, v,. Similar to the case of deg(u) =4,
edges v,v,, V,V,, V,v,, v,v;and v.v, should exist, as shown in Figure 6.
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Figure 6: deg(u) = 5.

Let Gd=G*[{V,, V;, V,, V;}], it can also be proved by imitating the situation of deg(u) =4: there must be
an odd cycle in Gd, therefore, either v, is adjacent to v,, or v, is adjacent to v,. If v, is adjacent tov,, it
can be deduced in the same way that in G, either v, is adjacent to v,, or v, is adjacent to v,. And if v,is
adjacent to v,, it can be deduced in the same way that in G, either v, is adjacent to v,, or v, is adjacent to
v,, so that there is a contradictory result of edge intersection in G, see Figure 7.

London Journal of Research in Science: Natural and Formal

Figure 7: Shows the result of contradiction with intersecting edges in G.

Similarly, it can be proved that when v, is adjacent to v, and v, is adjacent to v..
Similarly, it can be proved that when v, is adjacent to v,. This proves theorem.

VI.  CONCLUSIONS

On the basis of my previous relevant proofs, this paper refines the key logical proof part into a new
logical law called the law of the middle term, which makes the proof thinking clearer, the proof process
more rigorous, and more concise. While discussing difficult problems of graph, it also made a little
contribution to the development of logic.

A Proof of the Four-Color Problem based on a New Law of Logic the Law of the Middle Term
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