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1. I. INTRODUCTION
In 1965, Zadeh [3] coined the term "fuzzy set." Following that, a slew of authors worked on fuzzy sets, expanding the fuzzy set theory and its applications [4][5][6]. The idea of fuzzy metric spaces was given by Kramosil and Michalik [7]. After then, George and Veeramani [9] updated this idea. Grabiec [8] investigated fuzzy metric space fixed-point theory. The idea of complex-valued metric spaces was introduced by Azam et al. [21].
Verma et al. [23] recently established 'Max' functions and the partial order relation'for complex numbers, and used properties (E-A) and CLRg to prove fixed point theorems in complex valued metric space. Singh et al. [25] were the first to present the concept of complex-valued fuzzy metric spaces and to create the complex-valued fuzzy version of some metric space results.
The goal of this study is to expand well-known metric-space results to complex-valued fuzzy metric spaces and then prove them in complex-valued complete fuzzy metric spaces.
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[image: CF1) ?(?, ?, ?) > 0, (CF2) ?(?, ?, ?) = ? ?? for all ? > 0 â??" ? = ?, (CF3) ?(?, ?, ?) = ?(?, ?, ?), (CF4) ?(?, ?, ?) * ?(?, ?, ?) ? ?(?, ?, ? + ?), (CF5) ?(?, ?, . ) ? (0, ?) ? ? ? ? ?? is continuous, for all ?, ?, ? ? ?, ?, ? > 0, ? ? ? [0, 1] and ? ? [0, ? 2 ].]
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[image: ? = ?? ?+1 and ?? ? = ?? ?+1 Or ?? 2? = ?? 2?+1 and ?? 2? = ?? 2?+1 , ? = 1,2,3, ? On setting ? = ? 2? and ? = ? 2?+1 in (3.11), we get for ? = 1,2,3, ? ?(?? 2? , ?? 2?+1 , ??) ? ??? { ?(?? 2?+1 , ?? 2?+1 , ?), ?(?? 2? , ?? 2? , ?), ?(?? 2? , ?? 2?+1 , ?)} ?(?? 2? , ?? 2?+1 , ??) ? ??? { ?(?? 2? , ?? 2?+1 , ?), ?(?? 2?-1 , ?? 2? , ?), ?(?? 2?-1 , ?? 2? , ?)} ?(?? 2? , ?? 2?+1 , ??) ? ??? { ?(?? 2? , ?? 2?+1 , ?), ?(?? 2?-1 , ?? 2? , ?)} ? (?) Now suppose ??? { ?(?? 2? , ?? 2?+1 , ?), ?(?? 2?-1 , ?? 2? , ?)} = ?(?? 2? , ?? 2?+1 , ?) Then by (?), we have ?(?? 2? , ?? 2?+1 , ??) ? ?(?? 2? , ?? 2?+1 , ?) By lemma (4.1) or (5.1), we have ?? 2? = ?? 2?+1 Which is not possible Hence by (?), we must have ?(?? 2? , ?? 2?+1 , ??) ? ?(?? 2?-1 , ?? 2? , ?), ? ? > 0 ? (??)]

Figure 3. 2 ] 1 2 2 ]. 3 ? 3 + 2 ; 3 < 3 2? 3 + 1 ; 3 < ? ? 21 And
2123323331321[image: follows that ?? = ?? = ??, and ?(??, ? 2 ?, ??) ? ??? { ?(???, ???, ?), ?(??, ??, ?), ?(??, ???, ?)} ?(??, ? 2 ?, ??) ? ?(??, ???, ?) ?(??, ? 2 ?, ??) ? ?(??, ? 2 ?, ?) ? ?(??, ? 2 ?, ??) ? ? ( ??, ? 2 ?, ? ? ? ) ? (??) On taking ? ? ?, then by lemma (4.1), we have; ?? = ? 2 ? London Journal of Research in Science: Natural and Formal This implies that ?? = ? Thus ? is a common fixed point of ?, S, and ?. Uniqueness: -let ?(? ?) be another fixed point of ?, S, and ?. Then, by (3.11), we have ?(??, ??, ??) ? ??? { ?(??, ??, ?), ?(??, ??, ?), ?(??, ??, ?)} Which implies that ?( ?, ?, ??) ? ??? { ? ?? , ? ?? , ?( ?, ?, ?) } As ?(?, ?, ?) ? ? ? ? ?? , ? ? ? [0, 1] and ? ? [0, ? , also ?(?, ?, ?) ? ? ?? Then certainly we get, ??? { ? ?? , ? ?? , ?(?, ?, ?)} = ?(?, ?, ?) ?(?, ?, ??) ? ?(?, ?, ?) Which implies that ? = ?. As a result, p is unique. Ex. 3.1. Let ? = [3,21] with the metric ? defined by ?(?, ?) = |? -?|, ??, ? ? ?. For all ?, ? ? ? and ? ? (0, ?), we define ?(?, ?, ?) = ? ?? [ ? ?+?(?,?) ] or ?(?, ?, ?) = ? ?? [ ? ??+?(?,?) ] , ? = , and ? -norm ? * ? is defined as ? * ? = ??? {?, ?} where ?, ? ? ? ? ? ?? , for ? ? ? [0, 1] and ? ? [0, ? Here, lim ??? ?(?, ?, ?) = ? ?? , for all ?, ? ? ?. (?, ?, * ) is a CVCFMS with a given ?-norm * . ?, ? ? ? ? ? are defined as: ?(?) = { 3; ?? ? = ? ? 21 , and ?(?) = { 3; ?? ? = ?: ? ? ?(?) ? ?(?) as:]
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	Def.2.5. [25]. Complex Valued Continuous t-norm			
	A binary operation  * ? ? 2 ], is
	called complex valued continuous t-norm if it satisfies the following conditions:
	(1)  *  is associative and commutative,			
	(2)  *  is continuous,			
	(3) ? 2	].	
	(iii) ?  *  ? = {	min{?, ?} , ?ð�??" max{?, ?} = ? ?? ; 0, ?????????,	for a fix ? ? [0,	? 2	].


Note: ? ? [0, 1]. Ex.2.5. [25]. The following binary operations defined in (i), (ii) and (iii) are complex valued continuous t-norm (i) ? * ? = ??? (?, ?). (ii) ? * ? = ??? (? + ? -? ?? , 0), for a fix ? ? [0, Def.2.6. [25]. Complex Valued Fuzzy Metric Spaces (CVFMS)



Figure 5. 
	Lemma 2.7 [25]. Let (?, ?, * ) be a CVFMS such that lim ???	?(?, ?, ?) = ? ?? , for all ?, ? ?
	?, if ?(?, ?, ??) ? ?(?, ?, ?), for all ?, ? ? ?, 0 < ? < 1, ? ? (0, ?) then ? = ?.
	Lemma 2.8 [25]. Let {? ? } be a sequence in a CVFMS (?, ?, * ) with lim ???	?(?, ?, ?) = ? ?? ,
	for all ?, ? ? ?. If there exists a number ? which lies on (0, 1)such that
	?(? ?+1 , ? ?+2 , ??) ? ?(? ? , ? ?+1 , ?), ? ? > 0, ? = 0, 1, 2, . .. Then {? ? } is a Cauchy
	sequence in ?.	


Note: The following theorem was established bySingh et al. [25], which is the resetting of the Banach contraction principle in CVFMS. Theorem 2.7 [25]. Let (?, ?, * ) be a CVFMS such that lim ??? ?(?, ?, ?) = ? ?? , ? ?, ? ? ?,
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2. II. PRELIMINARIES
 Up: Home Previous: 1. I. INTRODUCTION Next: 3. Singh et al. [25], inspired by Ramot et al. [1,
Def.2.1. [21]. Let ? be the set of complex numbers and ? 1 , ? 2 ? ?, where ? = ? + ??. Then a partial order relation '? ' on ? is defined as follows:
? 1 ? ? 2 â??" ??(? 1 ) ? ??(? 2 ) and ??(? 1 ) ? ??(? 2 )Hence ? 1 ? ? 2 if one of the following satisfies;
London Journal of Research in Science: Natural and Formal (PO1) ??(? 1 ) = ??(? 2 ) and ??(? 1 ) = ??(? 2 ) (PO2) ??(? 1 ) < ??(? 2 ) and ??(? 1 ) = ??(? 2 ) (PO3) ??(? 1 ) = ??(? 2 ) and ??(? 1 ) < ??(? 2 ) (PO4) ??(? 1 ) < ??(? 2 ) and ??(? 1 ) < ??(? 2 )
In particular, ? 1 ? ? 2 if ? 1 ? ? 2 and one of (PO2), (PO3), and (PO4) is satisfied, and we write ? 1 ? ? 2 if only (PO4) is satisfied.
It can be noted that;
0 ? ? 1 ? ? 2 ? |? 1 | < |? 2 |, ? 1 ? ? 2 , ? 2 ? ? 3 ? ? 1 ? ? 3 . Def.2.2.[21]. Complex-Valued Metric Space (CVMS)Let ? be a non-empty set. Assume that the mappings ?: ? × ? ? ? satisfies: (CV1) 0 ? ?(?, ?), for all ?, ? ? ? and ?(?, ?) = 0 iff ? = ? ;
(CV2) ?(?, ?) = ?(?, ?), for all ?, ? ? ? ;
(CV3) ?(?, ?) ? ?(?, ?) + ?(?, ?), for all ?, ?, ? ? ? Then ? is called a complex-valued metric on ?, and (?, ?) is called a CVMS. Def.2.3. [23]. The 'max' function with partial order relation '?' is defined as
(1) ??? {? 1 , ? 2 } = ? 2 â??" ? 1 ? ? 2 (2) ? 1 ? ??? {? 2 , ? 3 } ? ? 1 ? ? 2 or ? 1 ? ? 3And the 'min' functions can be defined as
(1) ??? {? 1 , ? 2 } = ? 1 â??" ? 1 ? ? 2 (2) ??? {? 1 , ? 2 } ? ? 3 ? ? 1 ? ? 3 or ? 2 ? ? 3 .Following Zadeh's [3] contribution to fuzzy set theory, a number of scholars [4][5][6] contributed to the field's basics and core theories.
Buckley [10] was the first to present the concept of fuzzy complex numbers. Other authors were inspired by Buckley's work and continued their research on fuzzy complex numbers. Ramot et al. [1] expanded fuzzy sets to complex fuzzy sets in this chain.
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 Up: Home Previous: 2. II. PRELIMINARIES Next: 4. III. MAIN RESULTS
] constructed complex-valued fuzzy metric spaces using continuous t -norms, defined a Hausdorff topology on complex -valued fuzzy metric space, and gave the concept of Cauchy sequences in CVFMS.
We establish certain fixed-point conclusions in the situation of complex -valued fuzzy metric spaces, inspired by Singh et al. [25]. We begin by extending several well-known metric-space results to complex-valued fuzzy metric spaces, and then we prove those results in the setting of CVFMS. Def.2.4. [1]. The complex fuzzy set ? is given by ? = {(?, ? ? (?)) ? ? ? ?}.
Where ? is a universe of discourse, ? ? (?) is a membership function and defined as ? ? (?) = ? ? (?). ? ?? ? (?)  The triplet (?, ?, * ) is said to be CVFMS if a complex valued fuzzy set ? ? ? × ? × (0, ?) ? ? ? ? ?? (where ? ? ?, * is a complex valued continuous t-norm) fulfil the following criteria:  and ? > 0. Let ?: ? ? ? be a mapping that satisfies ?(??, ??, ??) ? ?(?, ?, ?), ? ? ? (0, 1). Then ? has a fixed point that is unique.
Fisher [24] established the following theorem in complete metric space for three mappings.
Theorem A [24]. Let S and T be continuous mappings of a complete metric space (X, d) into themselves. Then S and T have a common fixed point in X iff a continuous mapping A of X into S(X) ?T(X) exists, which commutes with S and T and satisfies;
?(??, ??) ? ? ?(??, ??) for all ?, ? ? ? and 0 < ? < 1. Indeed ?, ? and ? have a unique common fixed point.
We can now extend the preceding theorem/result to complex-valued complete fuzzy metric space as follows:
Theorem -3.1. Let (?, ?, * ) be a complex-valued complete fuzzy metric space (CVCFMS). ? and ? are continuous mappings from ? to ?. If ? is a continuous mapping from ? to ?(?) ? ?(?), it commutes with ? and ?, and if detailed maps satisfy the following contractive condition.
?(??, ??, ??) ? ???{ ?(??, ??, ?), ?(??, ??, ?), ?(??, ??, ?)} for all ?, ? ? ?, ? ? (0, ?) and 0 < ? < 1 ? (3.11)
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4. III. MAIN RESULTS
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Additionally, lim ??? ?(?, ?, ?) = ? ?? , for all ?, ? ? ? and ? ? [0, Then ?, ?, and ? have a unique common fixed point.
Proof: ?? ? is a Cauchy sequence?
Since ? is a continuous mapping from ? to ?(?) ? ?(?) so for ? 1 ? ?, there exists any ? 0 ? ? such that ?? 0 = ?? 1 and ?? 0 = ?? 1
On keep repeating this process for different ? 1 and ? 0 , we get a sequence {? ? } such that In general, we get ?(?? ?+1 , ?? ?+2 , ??) ? ?(?? ? , ?? ?+1 , ?), ? ? > 0 ? (???)
??Hence by lemma (4.2), {?? ? } is a Cauchy sequence in ?.
Since the space ? is complete, so there exists some ? ? ? such that lim The mappings ? and ? are continuous. ? is continuous from ? to ?(?) ? ?(?).
Clearly, ?(?) ? ?(?) and ?(?) ? ?(?)
This implies that ?(?) ? ?(?) ? ?(?).
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