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The current study investigated a two-dimensional free convective poiseuille flow of a viscous

incompressible electrically conducting fluid flowing between two infinite inclined parallel plates at an

angle to the horizontal. An inclined magnetic field at an angle with the y-axis was applied to theα ξ
parallel plates. Differential governing equations were formulated and solved using numerical methods.

The velocity problems from the momentum equation were graphed, revealing that the velocity

increases with the rise in parallel plates' inclination angle to the horizontal, Grashof, and Hartmann

numbers. Besides, increasing the magnetic field's inclination angle and the Reynolds number decreases

the fluid velocity. The research findings are applicable in the manufacturing industry and crystal

growth in liquids.
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ABSTRACT

The current study investigated a two-dimensional free convective poiseuille flow of a viscous

incompressible electrically conducting fluid flowing between two infinite inclined parallel plates at an

angle to the horizontal. An inclined magnetic field at an angle with the y-axis was applied to theα ξ
parallel plates. Differential governing equations were formulated and solved using numerical

methods. The velocity problems from the momentum equation were graphed, revealing that the

velocity increases with the rise in parallel plates' inclination angle to the horizontal, Grashof, and

Hartmann numbers. Besides, increasing the magnetic field's inclination angle and the Reynolds

number decreases the fluid velocity. The research findings are applicable in the manufacturing

industry and crystal growth in liquids.
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I. INTRODUCTION

Magnetohydrodynamics (MHD) is a field of science that studies the macroscopic interaction of

electrically conducting fluids, including gases and liquids, with a magnetic field [5]. Here, fluid

mechanics and electromagnetic equations describe the MHD flow. MHD exploitation in engineering

began in the early 1960s when three technologies were innovated [4]. They included fast-breeder

reactors, controlled thermonuclear fusion, and the innovation of the MHD power. The MHD power was

expected to improve the power station efficiencies. Today, magnetic fields are highly utilized in

metallurgical industries to heat, pump, and levitate liquid metals. Buoyancy convective flow is the

motion and heat transmission process that takes place in a closed or infinite place.

The interaction between the Lorentz and buoyant forces governs the fluid flow and the temperature

fields. The Lorentz force reduces the fluid velocity, suppressing the free convection currents [7].

The MHD study results in fundamental problems whose solutions are applied in several ways,

including magnetohydrodynamic power generators, pumps, oil purification, and accelerators [8].

A poiseuille flow between two infinite parallel plates was researched by Manyonge et al. [6]. Agaie et al.

[1] extended the work done by Manyonge et al. by considering a poiseuille oscillatory flow. They

obtained the fluid velocity analytical expression presented in terms of Hartmann number. According to

their results, a rise in the Hartmann number leads to a rise in the velocity. Poiseuille flow in the

inclined channel was further investigated by Chutia [2]. They considered a two-dimensional fluid flow

between two separate plates at distinct but consistent temperatures. The results reviewed showed that

raising Hartmann and Reynolds numbers declines the fluid velocity while raising the Grashof number,

and the inclination angle increases fluid velocity. Chutia [3] researched more on magnetic field
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inclination by numerically investigating the steady MHD flow past a channel-filled permeable medium

enclosed by two limitless walls. Their analysis showed that velocity decreased when the Hartmann

number, magnetic inclination angle, and the permeability parameter for both poiseuille and

Couette-poiseuille flows was raised.

II. NUMERICAL SOLUTION OF AN ORDINARY DIFFERENTIAL EQUATION

Studying in MHD Poiseuille flow has been of interest to many researchers, and more problems

continue to evolve in the area of research. Several assumptions were set to control the nature of the

problem to be solved in the current study. The two infinite parallel plates were inclined at an angle α to

the horizontal. Both plates were assumed to be non-conductors, and each was maintained at a constant

temperature (the lower plate: , the upper plate ). The x-axis was positioned parallel to 𝑇 =  𝑇
0

𝑇 =  𝑇
1

the parallel plates, while the y-axis was normal to the plates. An inclined magnetic field at an angle ξ

with the y-axis was applied to the parallel plates. The magnetic field developed by the fluid motion was

weak and hence negligible in this study, assuming that the applied magnetic field was strong enough.

Both plates were considered nonconductors to avoid the secondary component of velocity.

Fig. 1: Geometry of the problem

An electric field vector ( ) is induced whenever a fluid velocity ( ) interacts with a magnetic field ( ).𝐸 𝑉 𝐵
This vector is usually transverse to both and as noted by Manyonge et al. [6]. Therefore;𝑉 𝐵,

(0.0.1)𝐸 =  𝑉 ×  𝐵

Let's assume that the fluid, in this case, is isotropic despite the magnetic field and use the symbol as aσ
scalar that represents the fluid's electrical conductivity. The equation (0.0.2) below expresses the

induced current's density in the fluid, designated ;𝐽

(0.0.2)𝐽 =  σ(𝑉 × 𝐵) 

Lorentz Force is a force that co-occurs with current induced;𝐹

(0.0.3)𝐹 =  𝐽 × 𝐵

Therefore, using (0.0.2) and (0.0.3);

𝐹 =  σ(𝑉 × 𝐵)  × 𝐵
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The continuity equation is the partial differential equation expressing mass conservation. It comprises

only fluid density and fluid velocity . ρ 𝑉

(0.0.4)
∂ρ
∂𝑡  +  ∇ · ρ𝑉 =  0  

The symbol represents the Gradient operator, and stands for time. For incompressible fluid∇ 𝑡
hence (0.0.4) reduces to

𝐷ρ
𝐷𝑡  =  0

two-dimensional (0.0.5)
∂𝑢
∂𝑥  + ∂𝑣

∂𝑦  =  0

Where , , and are the fluid velocity in the x, y, and z-axis directions, respectively. Maxwell's 𝑢 𝑣 𝑤
Equations express the generation and variation of electric and magnetic fields. They include;

(0.0.6)∇ · 𝐵 =  0

(0.0.7)∇ × 𝐸 =  − ∂𝐵
∂𝑡

(0.0.8)∇ × 𝐻 =  𝐽 + ∂𝐷
∂𝑡

Navier-Stokes Equations

The Navier-Stokes Equations for a two-dimensional steady flow are;

(0.0.9)ρ 𝑢 ∂𝑢
∂𝑥  +  𝑣 ∂𝑢

∂𝑦( ) =  𝐹
𝑥

− ∂𝑝
∂𝑥  +  µ ∂2𝑢

∂𝑥2  + ∂2𝑢

∂𝑦2( )
(0.0.10)ρ (𝑢 ∂𝑣

∂𝑥  +  𝑣 ∂𝑣
∂𝑦  =  𝐹

𝑦
 − ∂𝑝

∂𝑦  +  µ ∂2𝑣

∂𝑥2 + ∂2𝑣

∂𝑦2( )
Where and are force components in the and directions, respectively, is the fluid viscosity,𝐹

𝑥
𝐹

𝑦
 𝑥 𝑦 µ

and is the pressure acting on the fluid.𝑝

The force components in the Navier-Stokes equation and are mainly due to gravity. In our case,𝐹
𝑥

𝐹
𝑦

we will neglect the body forces and replace them with the Lorentz force. From equation (0.0.3),

. Therefore, equations (0.0.9) and (0.0.10) becomes: 𝐹 =  𝐽 × 𝐵 =  σ(𝑉 ×  𝐵) ×  𝐵

ρ 𝑢 ∂𝑢
∂𝑥  +  𝑣 ∂𝑢

∂𝑦( ) =  σ 𝑢,  0,  0( )× 𝐵 [ ]× 𝐵 [ ]

(0.0.11)− ∂𝑝
∂𝑥 + µ ∂2𝑢

∂𝑥2 + ∂2𝑢

∂𝑦2( )
ρ 𝑢 ∂𝑣

∂𝑥  +  𝑣 ∂𝑣
∂𝑦( ) =  [σ[(0,  𝑣,  0) × 𝐵 ] × 𝐵 ]

(0.0.12)− ∂𝑝
∂𝑦  +  µ ∂2𝑣

∂𝑥2  + ∂2𝑣

∂𝑦2( )
respectively.
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(0.0.13) [σ[(𝑢,  0,  0) × 𝐵 ] × 𝐵 ] =− σ𝑢𝐵
0
2𝑠𝑖𝑛2ξ𝑖 

(0.0.14)[σ[(0,  𝑣,  0) × 𝐵 ] × 𝐵 ] =  0

(0.0.15)− ∂𝑝
∂𝑥  =  ρ

∞
𝑔 𝑠𝑖𝑛 α

Substituting (0.0.13), (0.0.14), and (0.0.15) in (0.0.11) and (0.0.12), respectively, and simplifying gives

the following equations.

𝑢 ∂𝑢
∂𝑥 + 𝑣 ∂𝑢

∂𝑦  =  
ρ

∞
𝑔 𝑠𝑖𝑛 α

ρ   −  σ𝑢𝐵2𝑠𝑖𝑛2ξ
ρ  

(0.0.16)+ µ
ρ  ∂2𝑢

∂𝑥2  + ∂2𝑢

∂𝑦2( )
(0.0.17)𝑢 ∂𝑣

∂𝑥  +  𝑣 ∂𝑣
∂𝑦  =  µ

ρ  ∂2𝑣

∂𝑥2  + ∂2𝑣

∂𝑦2( )
Using the volumetric thermal expansion coefficient, be defined by;

β =  − 1
ρ  ∆ρ

∆𝑇( )
𝑝=𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

 = 1
ρ  

ρ
∞

 − ρ

𝑇 − 𝑇
∞

( ) 

(0.0.18)ρ
∞

 =  βρ(𝑇 −  𝑇
∞

)

Substituting (0.0.18) in (0.0.16) gives:

𝑢 ∂𝑢
∂𝑥  +  𝑣 ∂𝑢

∂𝑦  =  𝑔β(𝑇 −  𝑇
∞

) 𝑠𝑖𝑛 α

(0.0.19)−
σ𝑢𝐵

0
2 𝑠𝑖𝑛2ξ

ρ  +  µ
ρ  ∂2𝑢

∂𝑥2  + ∂2𝑢

∂𝑦2( )
Equations (0.0.17) and (0.0.19) are the resultant Momentum Equations.

The associated boundary conditions for the problem include:

at (0.0.20)𝑢 =  0,  𝑇 =  𝑇
0

𝑦 =  0

at (0.0.21)𝑢 =  0,  𝑇 =  𝑇
1
  𝑦 =  𝐿

at (0.0.22)𝑣 =  0,  𝑇 =  𝑇
0
  𝑦 =  0

at (0.0.23)𝑣 =  0,  𝑇 =  𝑇
1
  𝑦 =  𝐿

L
on

d
on

 J
ou

rn
al

 o
f 

R
es

ea
rc

h
 in

 S
ci

en
ce

: N
at

u
ra

l a
n

d
 F

or
m

al

©2024 Great Britain Journals PressVolume 24 | Issue 6 | Compilation 1.04

The Effect of Plate and Magnetic Field's Inclination on Fluid Velocity of an Mhd Free Convective Poiseuille FlowThe Effect of Plate and Magnetic Field's Inclination on Fluid Velocity of an Mhd Free Convective Poiseuille Flow



2.1 Similarity Transformation Technique

Similarity Transformation is a technique applied in this research to convert the non-linear partial

differential equations (0.0.17) and (0.0.19) into ordinary differential equations.

A two-dimensional stream function that satisfies the continuity equation is defined byψ(𝑥,  𝑦) 𝑢 = ∂ψ
∂𝑦

and . 𝑣 =  − ∂ψ
∂𝑥

Let be the similarity variable, be the dimensionless temperature, and be the fluid's velocityη θ(η) 𝑈
∞

away from the plate. Then, the following Non-dimensionless variables are used to obtain a similarity

solution to the problem:

, ,η =  𝑦
 𝑈

∞

ν𝑥       ψ 𝑥,  𝑦( ) =  𝑓 η( ) ν𝑈
∞

𝑥

(0.0.24)θ(η) =
𝑇 − 𝑇

∞

𝑇
1
 − 𝑇

∞

We have the following Non-dimensionless;

(0.0.25)𝑣 ∂𝑢
∂𝑦  =

𝑈
∞
2

2𝑥 (η𝑓' (η)𝑓''(η))

(0.0.26)
∂2𝑢

∂𝑦2  =  𝑈
∞

𝑈
∞

ν𝑥 𝑓''' η( ).  
𝑈

∞

ν𝑥 =
𝑈

∞
2

ν𝑥 𝑓'''(η)

(0.0.27)𝑢 ∂𝑣
∂𝑥  =  −

𝑈
∞

4𝑥   
ν𝑈

∞

𝑥 [2η𝑓' η( )𝑓' η( ) +  η2 𝑓' η( )𝑓''(η)]    

(0.0.28)𝑣 ∂𝑣
∂𝑦 =

𝑈
∞

4𝑥  
ν𝑈

∞

𝑥  [η𝑓'(η)𝑓'(η) +  η2𝑓'(η)𝑓''(η)]

(0.0.29)
∂2𝑣

∂𝑦2 =
𝑈

∞

2𝑥  
𝑈

∞

ν𝑥  [2𝑓''(η) + η𝑓'''(η)]

(0.0.30)𝑢 ∂𝑢
∂𝑥  =  −

𝑈
∞
2

2𝑥 η𝑓''(η)𝑓'(η)

(0.0.31)
∂2𝑢

∂𝑥2  =
𝑈

∞

4𝑥2 [η2𝑓''' η( ) +  3η𝑓'' η( )]

(0.0.32) ∂2𝑣

∂𝑥2  = 1

8𝑥2

ν𝑈
∞

𝑥  [8η𝑓'(η) + 7η2𝑓''(η) + η3𝑓'''(η)]

Let , and (0.0.33) =
𝑔β 𝑇

1
 − 𝑇

∞( )𝑥

𝑈
∞
2 𝑅𝑒 =

𝑈
∞

𝑥

ν 𝑀 =
𝑥σ𝐵

0
2

𝑈
∞

ρ
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Substituting (0.0.24), (0.0.25), (0.0.26), (0.0.30), (0.0.31), (0.0.33) and in (0.0.19) gives;ν = µ
ρ  

(0.0.34)4θ𝐺𝑟 sin 𝑠𝑖𝑛 α − 4𝑀 𝑠𝑖𝑛2ξ𝑓' + 1
𝑅𝑒  η2𝑓''' +  3η𝑓''[ ] + 4𝑓''' =  0 

Substituting (0.0.27), (0.0.28), (0.0.29), (0.0.32), (0.0.33) and in (0.0.17) gives;ν =  µ
ρ

𝑅𝑒  [− 2η𝑓'𝑓' −  8𝑓'' − 4η𝑓''']

(0.0.35)−  1
𝑅𝑒  [8η𝑓' +  7η2𝑓'' +  η3𝑓''' = 0

Equating equation (0.0.34) to equation (0.0.35) and collecting the like terms together gives;

4θ𝐺𝑟 𝑠𝑖𝑛 α +  2 𝑅𝑒 η𝑓' +  8 1
𝑅𝑒  η −  4𝑀 𝑠𝑖𝑛2ξ⎡⎢⎣

⎤⎥⎦
𝑓 '

+  3η
𝑅𝑒  +  8 𝑅𝑒 +  7 1

𝑅𝑒   η2⎡⎢⎣
⎤⎥⎦
𝑓 '' +

(0.0.36)4 +  4 𝑅𝑒 η + 1
𝑅𝑒  η3 + η2

𝑅𝑒
⎡⎢⎣

⎤⎥⎦
𝑓''' =  0

Equation (0.0.36) is the momentum equation to be solved with boundary conditions; with boundary

conditions;

at𝑓 =  0 ,   𝑓' =  0 ,  θ =  1  η =  0

at (0.0.37)𝑓 ' =  1 ,  θ =  0  η =  ∞

2.2 Shooting Method

The non-linear ordinary differential equations (0.0.36) with boundary conditions (0.0.37) were solved

numerically using the shooting method.

III. RESULTS AND DISCUSSION
The nonlinear equations with boundary conditions were solved numerically using the shooting method.

The boundary value ODEs were converted using the shooting method technique utilizing Secant

iteration into a group of first-order initial values for ODEs. The fourth-order Runge-Kutta technique,

incorporated within Mathematica software, was then used to solve the resulting system. In figures (fig.

2 - 6), velocity distributions were displayed for various governing parameters to analyze the results of

the numerical calculations. Physically realistic numerical values were assigned to the embedded

parameters in the system to obtain an insight into the flow structure for velocity.

Figure 2 shows that parallel plates' inclination angle to the horizontal impacts fluid velocity. There is a

rise in fluid velocity whenever the parallel plates' angle of inclination, , increases. The impact of the α
magnetic field’s inclination angle ( ) was also determined. According to Figure 3, increasing decreasesξ ξ
the fluid velocity. Figure 4 shows that there is an influence of on fluid velocity. A rise in fluid velocity𝐺𝑟
is expected whenever value increases. Another parameter that affects fluid velocity is the Hartmann𝐺𝑟
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number, . Increasing the Hartmann number increases the fluid's velocity, as shown in Figure 5. 𝑀
Lastly, a Reynolds number's influence on fluid velocity was noted. A rise in its values results in a drop

in the fluid velocity, as shown in Figure 6.

Fig. 2: Velocity at different α

Fig. 3: Velocity at different 𝐺𝑟

Fig. 4: Velocity at different 𝑀

Fig. 5: Velocity at different 𝑅𝑒
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Fig. 6: Velocity at different ξ

IV. CONCLUSION
This paper examined two-dimensional steady MHD free convective Poiseuille flow past an inclined

magnetic field and two infinitely inclined parallel plates. The impact of inclining the magnetic field and

parallel plates and other pertinent parameters on the velocity and temperature of the fluid were

discussed. Differential governing equations were formulated and solved using numerical methods.

According to the results, a rise in the parallel plates' inclination angle to the horizontal, Grashof

number, and Hartmann number raises the fluid velocity. Besides, increasing the magnetic field's

inclination angle and the Reynolds number drops the fluid velocity. The research findings are

applicable in the manufacturing industry, electrical equipment cooling, nuclear reactor insulation, and

crystal growth in liquids.
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