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Nomenclature

R = Real probability set of events

M = Imaginary probability set of events

¢ = Complex probability set of events

i = the imaginary number where i =+/—1 or i> =—1

EKA = Extended Kolmogorov's Axioms

CPP = Complex Probability Paradigm

P, = Probability of any event

P, = Probability in the real set R = system failure probability

P = Probability in the imaginary set MM corresponding to the real probability in R = system
survival probability in M

Pn/i = System survival probability in R

Pc = Probability of an event in R with its associated event in J, it is the probability in the
complex set €

Z = Complex probability number and vector, it is the sum of P, and P

DOK = |Z |2 = Degree of Our Knowledge of the random experiment and event, it is the square

of the norm of Z.
Chf = Chaotic factor
MChf = Magnitude of the Chaotic factor
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t = System cycles time

tc = System cycles time till failure
E = Young modulus
Ec = Young modulus till system failure
f(©) =Failure probability density function of ¢
F(f) = Failure cumulative distribution function of ¢
f(E) =Failure probability density function of £
F(E) = Failure cumulative distribution function of E
7 = Simulation magnifying factor
1/y = The normalizing constant of P,
D = Degradation indicator of a system

RUL = Remaining Useful Lifetime of a system
Pos[RUL(t)] = Probability of RUL after a system cycles time ¢
P.op[RUL(E)] = Probability of RUL after a Young modulus £

[ Introduction

The First-Order Reliability Method, (FORM), is a semi-probabilistic reliability analysis
method devised to evaluate the reliability of a system. The accuracy of the method can be improved
by averaging over many samples, which is known as Line Sampling [1,2].

The method is also known as the Hasofer-Lind Reliability Index, developed by Professor Michael
Hasofer and Professor Neil Lind in 1974 [3]. The index has been recognized as an important step
towards the development of contemporary methods to effectively and accurately estimate
structural safety [4,5].

Moreover, reliability engineering is a sub-discipline of systems engineering that emphasizes
dependability in the life cycle management of a product. Reliability, describes the ability of a
system or component to function under stated conditions for a specified period of time
[6]. Reliability is closely related to availability, which is typically described as the ability of a
component or system to function at a specified moment or interval of time.

The Reliability function is theoretically defined as the probability of success (Reliability =
1 — Probability of Failure); as, R(f), the probability of failure at time #; as a probability derived
from reliability, availability, testability, and maintainability. Availability, testability,
maintainability, and maintenance are often defined as a part of "reliability engineering" in
reliability programs. Reliability plays a key role in the cost-effectiveness of systems for example
cars have a higher resale value when they fail less often.

Reliability and quality are closely related. Normally quality focuses on the prevention of defects
during the warranty phase whereas reliability looks at preventing failures during the useful lifetime
of the product or system from commissioning to decommissioning.

Reliability engineering deals with the estimation, prevention, and management of high levels of
"lifetime" engineering uncertainty and risks of failure. Although stochastic parameters define and
affect reliability, reliability is not (solely) achieved by mathematics and statistics [7,8]. One cannot
really find a root cause (needed to effectively prevent failures) by only looking at statistics. "Nearly
all teaching and literature on the subject emphasize these aspects, and ignore the reality that the
ranges of uncertainty involved largely invalidate quantitative methods for prediction and
measurement" [9]. For example, it is easy to represent "probability of failure" as a symbol or value
in an equation, but it is almost impossible to predict its true magnitude in practice, which is
massively multivariate, so having the equation for reliability does not begin to equal having an
accurate predictive measurement of reliability.
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Reliability engineering relates closely to safety engineering and to system safety, in that they use
common methods for their analysis and may require input from each other. Reliability engineering
focuses on costs of failure caused by system downtime, cost of spares, repair equipment, personnel,
and cost of warranty claims. Safety engineering normally focuses more on preserving life and
nature than on cost, and therefore deals only with particularly dangerous system-failure modes.
High reliability (safety factor) levels also result from good engineering and from attention to detail,
and almost never from only reactive failure management (using reliability accounting and
statistics) [10].

The word reliability can be traced back to 1816, and is first attested to the poet Samuel Taylor
Coleridge [11]. Before World War II the term was linked mostly to repeatability; a test (in any
type of science) was considered "reliable" if the same results would be obtained repeatedly. In the
1920s, product improvement through the use of statistical process control was promoted by
Dr. Walter A. Shewhart at Bell Labs [12], around the time that Waloddi Weibull was working on
statistical models for fatigue. The development of reliability engineering was here on a parallel
path with quality. The modern use of the word reliability was defined by the U.S. military in the
1940s, characterizing a product that would operate when expected and for a specified period of
time.

In World War II, many reliability issues were due to the inherent unreliability of electronic
equipment available at the time, and to fatigue issues. In 1945, M.A. Miner published the seminal
paper titled "Cumulative Damage in Fatigue" in an ASME journal. A main application for
reliability engineering in the military was for the vacuum tube as used in radar systems and other
electronics, for which reliability proved to be very problematic and costly. The IEEE formed the
Reliability Society in 1948. In 1950, the United States Department of Defense formed group called
the "Advisory Group on the Reliability of Electronic Equipment" (AGREE) to investigate
reliability methods for military equipment [13]. This group recommended three main ways of
working:

1) Improve component reliability.

2) Establish quality and reliability requirements for suppliers.

3) Collect field data and find root causes of failures.

Furthermore, in the 1960s, more emphasis was given to reliability testing on component and
system level. The famous military standard MIL-STD-781 was created at that time. Around this
period also the much-used predecessor to military handbook 217 was published by RCA and was
used for the prediction of failure rates of electronic components. The emphasis on component
reliability and empirical research (e.g. Mil Std 217) alone slowly decreased. More pragmatic
approaches, as used in the consumer industries, were being used. In the 1980s, televisions were
increasingly made up of solid-state semiconductors. Automobiles rapidly increased their use of
semiconductors with a variety of microcomputers under the hood and in the dash. Large air
conditioning systems developed electronic controllers, as had microwave ovens and a variety of
other appliances. Communications systems began to adopt electronics to replace older mechanical
switching systems. Bellcore issued the first consumer prediction methodology for
telecommunications, and SAE developed a similar document SAE870050 for automotive
applications. The nature of predictions evolved during the decade, and it became apparent that die
complexity wasn't the only factor that determined failure rates for integrated circuits (ICs). Kam
Wong published a paper questioning the bathtub curve [14] — one can refer also to reliability-
centered maintenance. During this decade, the failure rate of many components dropped by a factor
of 10. Software became important to the reliability of systems. By the 1990s, the pace of IC
development was picking up. Wider use of stand-alone microcomputers was common, and the PC
market helped keep IC densities following Moore's law and doubling about every 18 months.
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Reliability engineering was now changing as it moved towards understanding the physics of
failure. Failure rates for components kept dropping, but system-level issues became more
prominent. Systems thinking became more and more important. For software, the CMM model
(Capability Maturity Model) was developed, which gave a more qualitative approach to reliability.
ISO 9000 added reliability measures as part of the design and development portion of certification.
The expansion of the World-Wide Web created new challenges of security and trust. The older
problem of too little reliability information available had now been replaced by too much
information of questionable value. Consumer reliability problems could now be discussed online
in real time using data. New technologies such as micro-electromechanical systems (MEMS),
handheld GPS, and hand-held devices that combined cell phones and computers all represent
challenges to maintain reliability. Product development time continued to shorten through this
decade and what had been done in three years was being done in 18 months. This meant that
reliability tools and tasks had to be more closely tied to the development process itself. In many
ways, reliability became part of everyday life and consumer expectations.

Finally, and to recapitulate, this research paper is structured as follows: After the introduction
in section I, the advantages and the purpose of the present paper are presented in section II. Next,
in section III, we will illustrate and explain the paradigm of complex probability with its novel
parameters and concepts. In section IV, we will do a review of reliability theory. In section V, we
will apply the complex probability paradigm to prognostic based on reliability. Also, in section
VI, we will apply FORM to prognostic. Furthermore, in section VII the new model will be applied
to Young modulus. Additionally, in section VIII a comprehensive analysis will be achieved where
we will clarify all the results and then display the equations of general prognostic. Finally, I
conclude the paper by doing a complete summary in section IX, and then at the end cite the
references supporting the current research work.

. The Purpose and the Advantages of The Present Work

Computing probabilities is all our work in the classical theory of probability. Adding new
dimensions to our stochastic experiment is the innovative idea in the current paradigm which will
make the study absolutely deterministic. As a matter of fact, the theory of probability is a
nondeterministic theory by essence that means that all the random events outcome is due to luck
and chance. Hence, we make the study deterministic by adding new imaginary dimensions to the
phenomenon occurring in the “real” laboratory which is R, and therefore a stochastic experiment
will have a certain outcome in the complex probabilities set C. It is of great significance that
random systems become completely predictable since we will be perfectly knowledgeable to
predict the outcome of all stochastic and chaotic phenomena that occur in nature like for example
in all stochastic processes, in statistical mechanics, or in the well-established prognostic field.
Consequently, the work that should be done is to add the contributions of M which is the set of
imaginary probabilities to the set of real probabilities R that will make the random phenomenon
in C =R + M completely deterministic. Since this paradigm is found to be fruitful, then a new
theory in prognostic and stochastic sciences is established and this to understand deterministically
those events that used to be stochastic events in R. This is what I coined by the term "The Complex
Probability Paradigm" that was elaborated and initiated in my fourteen previous papers [15-28].

Furthermore, although the prognostic laws are sometimes deterministic and well-known in
general but there are chaotic and stochastic aspects (such as in engineering: geometry dimensions,
humidity, water action, material nature, atmospheric pressure, applied load location, corrosion,
soil pressure and friction, temperature, etc...) that influence the system and make its function of
degradation deviate from its computed trajectory predicted by these deterministic laws. An updated
follow-up of the behavior of degradation with cycle number or time, and which is under the
influence of non-chaotic and chaotic effects, is done by what I named the system failure probability
due to its definition that evaluates and calculates the jumps in the function of degradation D.
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Moreover, my objective in this present paper is to link the complex probability paradigm to
the system prognostic based on reliability by using FORM. In fact, the system failure probability
derived from FORM will be included in and applied to the complex probability paradigm and then
related to prognostic. This will lead to the novel and original prognostic model illustrated in this
current work. Consequently, by calculating the new prognostic model parameters, we will be able
to evaluate the degree of our knowledge, the magnitude of the chaotic factor, the system survival
and failure probabilities, the complex probability, and the RUL probability, after that a simulation
cycles time ¢ or a Young modulus £ has been applied to the studied system and which are all
functions of the system degradation under the influence of random and chaotic influences. An
application of the novel model to Young modulus will be done to illustrate the original idea and

method.

Subsequently, to summarize, the advantages and the objectives of the current work are to:

1-

© 2020 London Journals Press

Relate probability theory to the field of complex variables and analysis in mathematics and
therefore to extend the theory of classical probability to the set of complex numbers. This
task was elaborated and initiated in my fourteen previous papers.

Do an updated follow-up of the behavior of degradation D with cycle number or time or
Young modulus £ which is under the influence of chaos. This follow-up is achieved by the
system real failure probability computed by FORM due to its definition that calculates the
jumps in D; and thus, to relate a system degradation to probability theory in an innovative
and a new way.

Extend the concepts of prognostic to the complex set € of probabilities by applying the
novel probability paradigm and axioms to prognostic.

Demonstrate that any stochastic and random event and experiment can be expressed
deterministically in the complex probabilities set €.

Quantify both the chaos magnitude and the degree of our knowledge of the system
remaining useful lifetime and its degradation.

Represent graphically and illustrate the parameters and functions of the original paradigm
related to the system prognostic and to Young modulus.

Demonstrate that the classical concepts of stochastic remaining useful lifetime and
degradation have a probability of occurring permanently equal to one in the complex set;
consequently, no disorder, no ignorance, no unpredictability, no stochasticity, no
randomness, no nondeterminism, and no chaos exist in:

C (complex set) = R (real set) + M (imaginary set).

Show that we will be able to do prognostic in a deterministic way in the complex set C by
adding new and supplementary imaginary dimensions to any stochastic system and random
experiment.

Prepare to apply the novel paradigm to other topics in stochastic processes, in statistical
mechanics, and to the field of prognostics in science and engineering. This will be the task
in my following research work and publications.
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The novel proposed mathematical prognostic paradigm will be applied to practical engineering
and as a future work, it will be implemented in the study of a wide set of dynamic systems like
offshore and buried petrochemical pipes and vehicle suspension systems which are under the
influence of fatigue and in the nonlinear and linear cases of damage accumulation.

To recapitulate, compared with existing literature, the major contribution of the present work
is to apply the novel complex probability paradigm to the concepts of stochastic remaining useful
lifetime and degradation of a system therefore to the field of prognostic and to Young modulus.

The following figure recapitulates the objectives of the present work (Figure 1):

Linked to Linked to

Linked to Linked to

Figure 1. The major objectives of the Complex Probability Paradigm (CPP)

. The Extended Set of Probability Axioms [29-72]

In this section, we will present the extended set of probability axioms of the complex
probability paradigm.

3.1 The Original Andrey Nikolaevich Kolmogorov Set of Axioms
The simplicity of Kolmogorov’s system of axioms may be surprising. Let E be a collection

of elements {£1, E>, ...} called elementary events and let F' be a set of subsets of £ called random
events. The five axioms for a finite set £ are [29-32]:

Axiom 1: F'is a field of sets.
Axiom 2: F contains the set E.
Axiom 3: A non-negative real number P,.»(A4), called the probability of A4, is assigned to each
set A in F. We have always 0 < Po5(A4) < 1.
Axiom 4: P,op(E) equals 1.
Axiom 5: If 4 and B have no elements in common, the number assigned to their union is:
Prob(A UB) = Prob (A) + Prob(B)
hence, we say that 4 and B are disjoint; otherwise, we have:
Ijrob(A UB) = Prob (A) +1)rob(B) _Ijrob(A ﬁB)

And we say also that: P _,(AnB)=P,(A)xP,(B/A)=P,(B)xP,(A/B) which is the
conditional probability. If both 4 and B are independent then: P, ,(ANB)=P, ,(A)xP,,(B).
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Moreover, we can generalize and say that for N disjoint (mutually exclusive) events
A, 4,...,4;,..., Ay (for 1< j < N), we have the following additivity rule:

Prob(QAsziprob(Aj)

J=1

And we say also that for N independent events 4, 4,,...,4 e ., Ay (for 1< j < N), we have the

following product rule:
N N
Prob(ﬂAjj = HProb(Aj)
j=l j=1

3.2 Adding the Imaginary Part M

Now, we can add to this system of axioms an imaginary part such that:

Axiom 6: Let P, =ix(1-P.) be the probability of an associated event in M (the imaginary
part) to the event A4 in R (the real part). It follows that P. + P, /i =1 where i is the
imaginary number with i = V=1 ori?=-1.

Axiom 7: We construct the complex number or vector Z =P. + P, = P. +i(1-P.) having a
norm |Z| such that: |Z|2 =P’ +(P, /i),

Axiom 8: Let Pc denote the probability of an event in the complex probability universe C

where C = R + M. We say that Pc is the probability of an event 4 in R with its
associated event in JU such that:

Pc*=(P.+P, /i) = |Z|2 —2iP.P, and is always equal to 1.

We can see that the system of axioms defined by Kolmogorov could be hence expanded to take
into consideration the set of imaginary probabilities by adding three novel axioms [33-45].

London Journal of Research in Science: Natural and Formal

3.3 The Purpose of Extending the Axioms

It is clear from CPP extended set of axioms that adding to any real event an imaginary
counterpart makes the event probability in the set C permanently equal to one. As a matter of fact,
understanding will follow directly if we start to conceive the set of probabilities as divided into
two complementary parts: one probability part is real and the other probability part is imaginary.
The stochastic event that occurs in the real set R of probabilities (like getting a head when tossing
a coin) has a corresponding probability P.. Now we denote by J the set of imaginary probabilities

and we denote by |Z |2 the Degree of Our Knowledge (DOK for short) of this stochastic event. P.

is according to Kolmogorov’s axioms, and as always, the probability of the random phenomenon.

A full ignorance of the probability set M leads to:
P =0.5 and |Z|2 = DOK in this case is equal to: 1-2P(1-P)=1-(2x0.5)x(1-0.5)=0.5
Conversely, a perfect knowledge of the set in R leads to:

The Paradigm of Complex Probability and Prognostic Using FORM
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Prop(event) =P =1 and P = P,p(imaginary part) = 0. Here we have
|1

is, all its variables and laws are fully determined; therefore, our degree of our knowledge of the
stochastic event is 1 = 100%.

*=DOK =1- (2x1)x(1-1) =1 because the random event is totally and perfectly known, that

Now, if we are sure that an event is impossible and will never occur, that is, like ‘getting nothing’
(the empty set), P. is accordingly = 0, that is the event will never happen in R. Hence, P, will be

equal to: i(1-P.)=i(1-0)=1i, and |Z|2 =DOK =1-(2x0)x(1-0) =1, because we can tell that

the event of getting nothing surely will never happen; thus, the Degree of Our Knowledge (DOK)
of the stochastic event is 1 = 100%. [15]

We can infer that we have always:

0.5<[z[ =DOK <1, VE: 0<P <l and
|z = DOK = P* + (P, /i)’ , where 0< P,,P, /i<1 (1)

And what is truly significant and crucial is that we have in all cases:
P =(P+P, /iy =|z[ =2iRP, =[P +(1-P)f =1’ =1 ?)

As a matter of fact, the game is a game of chance according to an experimenter in R: the
experimenter ignores the outcome of the random event. Accordingly, a probability P. is assigned
to each outcome and he will affirm that the output and result are nondeterministic. But an observer
will be able to foretell the output of the game of chance in the probability universe € = R + M,
since he considers the contribution of the probability set M, so he states that:

Pc* =(P.+P, /i)’

therefore Pc is permanently equal to one. Actually, the addition to our stochastic experiment of
the imaginary probability set MM leads to the abolition of indeterminism and ignorance.
Subsequently, the study of this class of events in the set C is of great worth since we will be able
to foretell with certainty the outputs of the conducted random experiments. As a matter of fact,
conducting experiments in R leads to uncertainty and unpredictability. Consequently, and to study
all random phenomena, we place ourselves in C instead of placing ourselves in R then study the
random phenomena, since in € the contributions of M are considered and hence a deterministic
study of the random events becomes conceivable. Conversely, when we consider the contribution
of the probability set M we place ourselves in € and when we ignore U we restrict our study to
nondeterministic and probabilistic events in R. [46-56]

Furthermore, we can infer from the axioms and definitions stated above that [15]:
2iPP, =2ixP. xix(1-P)

=2*xP.x(1-P)=-2P(1-P)
= 2iP.P, = Chf (3)
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2iPP will be called the Chaotic factor in our random experiment and we will denote it

accordingly: ‘Chf’. We will understand now why we have called this term the chaotic factor. As a
matter of fact:

In case P. =1, that is the case of an event which is certain, then the event chaotic factor is equal

to 0.
In case P. =0, that is the case of an event which is impossible, then the event chaotic factor is

equal to 0 also.
Therefore, in both two last cases, there is no chaos since the outcome is known in advance and is
certain.

In case P. =0.5, that is in the case of complete ignorance, then the event chaotic factor is equal to
—0.5. (Figures 2-4)

We can infer that:
—-05<Chf <0, VP:0<P <1.

What is crucial here is that we have consequently quantified both the chaotic factor and the degree
of our knowledge of any stochastic phenomenon and thus we state now:

Pc* =|z|" - 2iP.P, = DOK — Chf (4)
Therefore, we can conclude that:
Pc? = Degree of our knowledge of the system — Chaotic factor = 1,
Hence, Pc =1 permanently.
This straightforwardly can be interpreted as follows: if we succeed to eliminate and subtract the

chaotic factor in any stochastic phenomenon, like we have done in the equation above, then the
outcome probability will be permanently equal to one. [57-72]
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The Complex Probability Paradigm Parameters for Any Probability Distribution

A
1 ....................................
o DOK
S 05
c
©
Y
o
[m]
[Py
S 0
Chf
0.5
0 0.5 1 -

Real Probability Pr

Figure 2: Chf, DOK, and Pc for any probability distribution in 2D

The Complex Probability Paradigm Parameters for Any Probability Distribution
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Figure 3: DOK, Chf, and Pc for any probability distribution in 3D with Pc* = DOK —Chf =1= Pc
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The Complex Probability Paradigm Parameters for a Lognormal Distribution

Chf

DOK o5 ¢ 08 Random Variable X

Figure 4. DOK, Chf, and Pc for a Lognormal probability distribution in 3D with
Pc* = DOK —Chf =1= Pc

The graph below illustrates the linear relation between both DOK and Chf. (Figure 5)
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Figure 5. Graph of Pc* = DOK —Chf =1= Pc for any probability distribution
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Additionally, the absolute value of the chaotic factor will be required in our current work which
will evaluate for us the magnitude of all the random and chaotic influences on the studied stochastic
system that is materialized by the random simulation cycles time ¢ and a probability density
function, and which leads to an increasing system chaos in the set R and sometimes to a premature
system failure. We will denote this new term accordingly Magnitude of the Chaotic factor or MChf
[15-28]. Therefore, we can deduce what follows:

MChf =|Chf|=|2iP.P,|=-2iP.P,=2P.(1-P)>0, VP : 0<P.<lI, (5)
And
Pc* = DOK — Chf

=DOK +|Chf| , since —0.5<Chf <0

=DOK + MChf =1,
<0< MChf <0.5 where 0.5<DOK <1.

The graph below (Figure 6) illustrates the linear relation between both DOK and MChf.
Additionally, Figures 7-13 illustrate the graphs of Chf, MChf, DOK, and Pc as functions of the real
probability P, and of the random variable X for any probability distribution and for a Lognormal
distribution. It is significant to mention here that we could have considered deliberately any
random distribution besides the Lognormal probability distribution like the discrete Binomial or
Poisson random distributions or the continuous standard Gaussian normal distribution, etc.
Although the graphs would have looked different whether in 2D or in 3D but the mathematical
interpretations and consequences would have been similar for any imaginable and possible random
distribution. This hypothesis is confirmed in my fourteen previous published papers by the mean
of many illustrations encompassing both continuous and discrete probability distributions [15-28].

The Complex Probability Paradigm Parameters for Any Probability Distribution
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Figure 6: Graph of Pc* = DOK + MChf =1= Pc for any probability distribution
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Figure 7. MChf, DOK, and Pc for any probability distribution in 2D
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Figure 8: DOK, MChf', and Pc for any probability distribution in 3D with
Pc* = DOK + MChf =1= Pc
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The Complex Probability Paradigm Parameters for a Lognormal Distribution
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Figure 9 DOK, MChf , and Pc for a Lognormal probability distribution in 3D with
Pc* = DOK + MChf =1= Pc
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Figure 10: Chf and MChf for any probability distribution in 2D
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Figure 11: Chf and MChf for any probability distribution in 3D with MChf + Chf =0
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Figure 12: - Chf and MChf for a Lognormal probability distribution in 3D with
MChf + Chf =0
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Figure 13: Chf, MChf, DOK, and Pc for any probability distribution in 2D

To recapitulate and to conclude, we state that in the real probability universe R our degree of our
certain knowledge is undesirably imperfect and hence unsatisfactory, thus we extend our analysis
to the set of complex numbers € which incorporates the contributions of both the set of real
probabilities which is & and the complementary set of imaginary probabilities which is J.
Afterward, this will yield an absolute and perfect degree of knowledge in the probability universe
C =R+ M because Pc = 1 constantly. As a matter of fact, the work in the complex universe C
gives way to a sure prediction of any stochastic experiment, because in € we remove and subtract
from the computed degree of our knowledge the measured chaotic factor. This will generate a
probability in the universe € equal to 1 (Pc> = DOK- Chf = DOK + MChf = 1 = Pc). Many
illustrations taking into consideration numerous continuous and discrete probability distributions
in my fourteen previous research papers confirm this hypothesis and innovative paradigm [15-28].

The Extended Kolmogorov Axioms (EKA for short) or the Complex Probability Paradigm (CPP
for short) can be shown and summarized in the next illustration (Figure 14):
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Input: real set R @ Output: complex set C

8 CPP axioms

5 original + 3 additional axioms
Kolmogorov’s l
axioms Complex number Z = P, + Py,
Add Imaginary set M Complex Probability Pc = 1
l Pc*=DOK — Chf
[ Real Probability P, ] Pc? = DOK + MChf

Imaginary Probability P,
=Chf =2iP,P,
=MChf =|Chf|
=DOK = |Z’= P? + (P,/i)’

Chance Total
& Luck Determinism

Figure 14: The EKA Paradigm or the Complex Probability Paradigm (CPP)

IV.  Review of Reliability Theory [73-76]

The reliability is the probabilistic evaluation of a limit state of performance on a domain of
basic variables. As a matter of fact, it is obtained by the computation of the probability of failure
toward a limit state or criterion.

4.1 Methodology

1) Identify the basic parameters intervening in the limit state

2) Identify the limit states that govern the lifetime of the structure

3) Deduce their probability density functions

4) Compute the failure probability that expresses the risk when the limit states are not satisfied.

There exist two types of methods which are: The first method is the Monte Carlo simulation and
the second method is the approximate method FORM (First-Order Reliability Method). The Monte
Carlo simulation method is based on a large number of simulations and we must use N simulations

when we want to evaluate a probability of order of 10™V*%

London Journal of Research in Science: Natural and Formal

The approximate method FORM is an iterative procedure that permits us to compute an index of
reliability which is denoted by £ . The index £ is the distance between the origin and the limit
state function G(7) in a standard space. Once we have computed f we can deduce the failure
cumulative probability which is: P. = ®(-/f).

In FORM approximation the real (usually nonlinear) limit state is replaced by its tangent plane
at a specific point called the Most Probable Failure Point (MPFP). This point is the closest point
on G(¥) to the origin.

The limit state G(¢) divides the space into two regions:

e The first region where G(¢) > 0 called safe region
e and the second region where G(¢) < 0 called failure region
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4.2 Work Plan

In the general case, we choose N random variables correlated and of any density functions as
well as a nonlinear limit state function. This method is based on the following iterative
algorithm:

1) Converting basic random variables to standard normal variables N (0,1)

2) Converting the limit state from the original space to the standard normal space

3) Searching of the MPFP point by replacing the limit state surface by its tangent hyper-plane at
the same point.

4) Computing the index £ and consequently the failure cumulative distribution function P. .

4.3 Description of the Algorithm

The transformation from the basic state to the normalized state is implicit in the algorithm. The
detailed steps of the algorithm are the following (Figure 15):

Let the limit state equation be: g(z)
where z =z,z,,z,,...,z, is the random vector of the limit state; therefore:

1) Initialize the coordinates of the MPFP. The mean value of each variable is a good choice.
2= Mot

2) Calculate the following parameters: (m is the number of the iteration)

The value of the limit state at the MPFP:
gy =g(...20)

The gradient at the MPFP is assumed to be:
- Efyn)

L aeeesZy

The equivalent normal standard deviation and mean value of non-normal variables:

)
' £,z)

ur =z -t (£ )

3) Calculate the intermediate parameters:

n

m _ m_m

z =) &%
i=1
n

m _ m, m

H =) & H
i1

n 2
m _ m m
o, = Z( i ) (O'i )Z

i=1
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4) Calculate:

The directive cosine:

The reliability index:

The new coordinates of the MPFP:

5) Verify the convergence criterion:
Hz"’” — z'”H < tolerance and‘,B"’+1 - ,B’”‘ < tolerance

6) Repeat the steps from 2 till 5 until convergence.

7) Calculate the failure cumulative distribution function (CDF):

London Journal of Research in Science: Natural and Formal

F=F =0(-p)
r x1
(n}
HX™)
|? H (Ktn] )|
o
-‘_‘—_—_'_'—_h___ }{fn-a—‘l}l
- ] x*
51-“_*/' o
.IIL o s
{}{I{n} iyt (Il{n}l} \ \
H(x) = O
H(x) = H(x(m)

Figure 15 The First-Order Reliability Method illustration.
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V. Application of the Complex Probability Paradigm to Prognostic Based on
Reliability [15-28] [77-87]

5.1 The Basic Parameters of the New Model

In engineering systems, the prediction of the remaining useful lifetime is related deeply to
many aspects and factors that generally have a chaotic and random behavior which decreases the
degree of our knowledge of the entire system.

As we have shown, we can deduce from CPP that if we add to an event probability in the real set
R the imaginary counterpart JM (like the lifetime variables) then we can predict the exact
probability of the remaining lifetime with certainty in € (since Pc = 1 permanently). We can apply
this idea to prognostic analysis through the degradation evolution of a system. As a matter of fact,
prognostic analysis consists in the prediction of the remaining useful lifetime of a system at any
instant 7, and during the system functioning.

Let us consider a degradation trajectory D(¢) of a system where a specific instant ¢, is studied.

The instant ¢, means here the time or age that can be measured also by the cycle number N.
(Figure 16)

Referring to Figure 17, the previous statement means that at the system age ¢, , the prognostic
study must give the prediction of the failure instant 7. Therefore, the RUL predicted here at the
instant ¢, is the following interval: RUL(t,))=t.—t, (6)

In fact, at the beginning (z, =0) (point J), the system failure probability P = 0 and the chaotic

factor in our prediction is zero (Chf = 0) since chaos has not started its deteriorating and harmful
effect on the system yet. The system is intact and in raw state; therefore, RUL(0)=¢.-0=¢..

If ¢, =¢. (point L) then the RUL(t.)=t.—t. =0, the system failure probability is one (P,= 1),

and the chaotic factor in our prediction is zero (Chf'= 0) since chaos has finished its deteriorating
and harmful effect on the worn-out system and failure has certainly occurred.

Ifnot (i.e. 0 <1, <t.) (point K), the probability of the occurrence of this instant and the prediction

probability of RUL are both less than one (not certain) due to non-zero chaotic factors since chaos
has begun its damaging influence (0.5 < Chf < 0). Consequently, the system failure probability
is: 0 < P.<1 for the same reason. The degree of our knowledge DOK is accordingly less than 1.
Thus, by applying here the CPP model, we can determine the system RUL and degradation with
certainty in € = R + M where Pc = 1 always.

Furthermore, we need in our current study the absolute value of the chaotic factor that will give us
the magnitude of the chaotic and random effects on the studied system. Hence, we can deduce that
at any instant ¢, : 0<¢, <t., the MChf influencing and acting on the system is the following:

MChf(t,) = |Chf(t,)|=0and

Pc’(t,) = DOK (1)~ Chf (t,)
=DOK(t,)+|Chf(t,)| . since —0.5<Chf(t,)<0
= DOK(t,)+ MChf(t,)=1, Vt: 0<t, <t

< 0< MChf(t,)<0.5 where 0.5< DOK(t,) <1
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Figure 16;  CPP and the prognostic of degradation

RUL(0) The Complex Probability Paradigm and Prognostic Using FORM

J RUL(t=0)=RUL(D=0)=tc—0=tc
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Figure 17: RUL prognostic model
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Moreover, we can define two complementary events £ and E with their respective probabilities:
P, (E)=pand P, (E)=q=1-p
Then P, (E) in terms of the instant ¢, is given by:
P (E)=P(t)=P,, (t<t,)=F(t,) %)
where F'is the cumulative probability distribution function (CDF) of the random variable ¢.

Since P,,(E)+P,,(E) =1, therefore,
Pmb(E):l_Rab(E):l_R(tk):l_Rab(tStk):l_F(tk):Pr()b(t>tk):Pm(tk)/l (8)

Let us define the two particular instants:

t, =0 assumed as the initial time of functioning (raw state) corresponding to D = Dy =0,

and
t. = the failure instant (wear-out state) corresponding to the degradation D=1.

The boundary conditions are:

For ¢, =0 then D = Dy (initial damage that may be zero or not)

and F(¢,)=P,(t<0)=0

For t, =t.then D=1 and F(t,)=F(t.)=P,,(t<t.)=1.

Also F(t,) is a nondecreasing function that varies between 0 and 1. In fact,F(¢,) is a
cumulative CDF function (Figure 18).

In addition, since RUL(t,)=t.—t, and since time ¢, is always increasing (0<¢, <¢.)then

RUL(t,) is a nonincreasing remaining useful lifetime function (Figure 17).
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Figure 19: Degradation prognostic model
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Referring to Figures16 to 19, we can infer the following:

The complementary imaginary probability to P.(¢,) in Mis P, (¢,) and it is equal to:

P,(t)=i[1-B(t,)] ©9)
The complex probability number or vector is:
Z(t,)=B(t)+B,(t,) = P(t)+i[1- B(t,)] (10)

The Degree of Our Knowledge DOK is the square of the norm of Z(¢,) and it is equal to:

1Z(t)] = DOK (1) =[P.()T +[Bo ) /i] =[P )] +[i{1-P.@)} /i ]
S 1-2R()[1- B.(4)] (1)
=1-2P.(t,) + 2AP.(t,)]

The Chaotic Factor is:
Chf (t,) = 2iP (t,)F,(t,) = 2iP.(1,)i [1 A )] ==2F () [1 -k, (tk)] since i* =~1
= 2P () +2[P)] (12)
Chf (¢,)is null when P.(t,) = P.(0) = 0(point J) or when P.(¢t,) = P.(t.) =1(point L).
The Magnitude of the Chaotic Factor is:
MCh (1,) = |Chf (6,)| = ~2iP.(t,) P, (1,) = ~2iP. (1 )i[1 - P.(1,)]

=2P.(¢t)[1-P(t,)] since i’=-1
=2P(t,) - 2AP.(t,)] (13)

MCHhf (¢,)is null when P.(#,)= P.(0)=0(point J) or when P.(¢,)= P.(¢.)=1 (point L),
Atany instant?, : 0<¢, <7, (J <K <L), the probability expressed in the complex set € is:

P (1) = DOK (1)~ Chf (1,) = {1-2B.(1,) + 2 P.(t, )T | = {=2P.(t) + APt )T}
= DOK(t,) + MChf (1,) = {1=2P.(1,)+ 2 B.(1 ) | + {2P.(4) - 2[R, )T} (14)

=1
< Pc(t,) =1always
And

Pe(t,) = P.(t,)+ P,(t,) 1= P.(t,)+[1- P.(1,)]=1 always. (15)

Hence, the prediction of RUL(¢, ) andof the system degradation D(z, ) in €= R+.M is permanently
and totally certain and perfect.
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5.2 The New Prognostic Model

Let us present in this section the basic assumption of the new prognostic model. We
consider firstly the cumulative probability distribution function F(¢) of the random time variable
¢t which was calculated by FORM as being equal to:

t=t,

F(tk) = Prob (to <t< tk) = Z Prob t= Pr (tk) = Q)(—ﬂ) (16)

t=t,
We note that we are dealing here with discrete random functions depending on the discrete
random time ¢ of simulations.

Then, we assume secondly that the real system failure probability P.(¢)/y at the instant z =¢, is
equal to:

P(t)=F@)=yx[P,(t<t)=F,<t)]
1=ty 1=ty |

=y x| D Py(t) = D Py, (1)

1=ty t=ty

1=ty

=y x meb(t)zl//xpmb(tk—1 St<ty)

1=lg-

=y x[D(1,) - D(t,_,)] (17)
=y times the jump in D(¢) from ¢ =1¢,_, to ¢t =¢, (Figures 20 & 21),

where,

t=[012,....t ,ti.ty - -t ]= the time of simulation cycles, and
to = 0 = the initial time of cycles at the simulation beginning. It corresponds to a

degradation D = D(t)) =D, which is generally considered to be nearly equal to 0.
t1 = 1 = the first simulation cycle time;

tc = the time of simulation cycles till system failure = the critical number of simulation time. It
corresponds to D = D(tc) =Dc = 1.

w = the simulation magnifying factor that depends on the simulation profile. ¥ is equal
to 724.3113.

Consequently, the recursive relation for degradation as a function of the failure probability
P (t)/y is the following:

D(@t,)=D(, )+ F(t)/y
= D(4) =D, )+ F@)/y

= D(t,)=D(t, )+ O(=p)/y (18)
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This basic assumption is plausible since:

1- Both D and F are cumulative functions starting from 0 and ending with 1.

2- Both are nondecreasing functions.

3- Both functions are without measure units: D is an indicator quantifying degradation
and system damage as well as ' which is an indicator quantifying chance and
randomness.

Thus, initially we have:

Pt =1,=0)=F(1,)=0
Moreover,

P(t) =y x [ (t;)= P.(t,) /v =Py = [ (t,). (19)

Where 1/ is a normalizing constant that is utilized to transform P, (¢, ) = ®(—/) function to a
probability density function with a total probability equal to one.1/y depends on the simulation
mode and conditions.Subsequently, we deduce that f(z,) is the usual probability density

function (PDF) for any simulation mode. Knowing that, from classical probability theory, we
have permanently:

S F)= 3 By =1

ty =ty
This result is reasonable since P.(¢,)/y is here a probability density function. (Figures 20& 21)

Therefore, we can deduce that:

L=le L =te

Z P(t,)= Z F(,)

k=l =l
1=l¢

=szpmb(t) =yxPB,(t,<t<t.)

1=ty

ZWX[D(t =1.)-D(t =t0)]
=1//x[DC—D0]:W><[1—0]:w,
since D(t.) =1 and D(¢,) =0 and F(t,) is taken as =0

= yx 3 ) =yxl= 3 OH) =y
= 3 Ba)v=3 FU) Iy =3 OBy =ply=1. 20)

=l L=l =l

We can observe that D(7) is a discrete random function where the amount of the jump in the
degradation discrete curve is P (¢)/y ; therefore, P.(¢)/y 1is a function of degradation and
damage evolution (Figures 20 & 21). And we can realize from the previous calculations that
P (t)/y is a probability density function. Consequently, we can understand now that P.(¢)/y

measures the probability of the system failure or degradation. Accordingly, what we have done
here is that we have linked probability theory to degradation measure.
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Notice that:
0<P(t,)w<1,0<F(t,)<l,and (D, =0)<D(t,)< (D, =1), forevery tr: 0 < tx < tc

and
Ift, >0=>D—->D,=0=>F—>0=P(,)—>0
ift, >t,.=>D—>D.=1=>F >1=P(,)—>1.

This, since the degradation is flat near 0 and starts increasing and becoming more acute with
time ¢ hence, at #c, D is the greatest and is equal to 1. (Figures 21 & 22)

Furthermore, we have:

RUL(t,) =t —t, and it corresponds to a degradation D(¢,),
And
RUL(t,_;) =t; —t,_, and it corresponds to a degradation D(¢,_,) .

This implies that (Figure 23):

P(t,) =y x[D(t,)-D(,_,)]

1)
=y x{D[t. — RUL(t,)]- D[t — RUL(t, )]}

5.3 Analysis and Extreme Random and Stochastic Environments

Even though the prognostic laws are sometimes deterministic and well-known in general
[88-100] but there are chaotic and stochastic aspects (such as in engineering: geometry dimensions,
humidity, water action, material nature, atmospheric pressure, applied load location, corrosion,
soil pressure and friction, temperature, etc...). Additionally, many variables in the expression of
degradation which are believed to be deterministic may as well adopt a stochastic behavior, such
as in engineering and in pipelines and suspension prognostic: the magnitude of the applied pressure
(due to the various conditions of pressure profile) and the length of the initial crack (potentially
occurring during the process of manufacturing). All those stochastic aspects, embodied in the
prognostic models by their average values, influence the system and make its function of
degradation diverge from its computed path foretold by these deterministic rules. An updated
follow-up of the behavior of degradation with cycle number or time, and which is under the
influence of chaotic and non-chaotic aspects, is done by P.(¢)/y due to its definition that
evaluates the jumps in D. In fact, chaos alters and affects all the environment and system
parameters included in the expression of degradation. Consequently, chaos total effect on the
system contributes to shape the curve of degradation D and is embodied and counted in the system
failure probability P (¢)/y . Actually, P.(t)/w quantifies the resultant of all the nondeterministic
(stochastic) and deterministic (non-stochastic) factors and parameters which are included in the
equation of D, which influence the system, and which determine the consequent final curve of
degradation. Accordingly, an accentuated effect of chaos on the system can lead to a smaller (or
bigger) jump in the trajectory of degradation and thus to a smaller (or bigger) probability of failure
P (t)/y . If for example, due to extreme random influences and deterministic causes, D jumps

directly from D, =0 to 1 then RUL goes straight from 7c to 0 and subsequently P.(¢)/y jumps
instantly from O to 1:

t=te t=te

P.(L) /¥ = D(t)~D(t,) = D(t-) ~D(0)=1-0= 3P, () = Y O(-) [y =y Iy =1
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where ¢ goes directly from 0 to #c.

In the extreme ideal situation, if the system never deteriorates (no pressure or stresses) and with
zero chaotic effects and random influences, then the resultant of all the deterministic and
nondeterministic aspects is null (like in the system isolated and idle state). Accordingly, the

system remains indefinitely at D, =0 and RUL stays equal to ¢ . So consequently, the jump in D
is always 0. Therefore, ideally, the probability of failure persists 0:

P.(t,) /'y =[D(,)—D(t,_,)]
=[D, - D,]
=0

where D(t,)=D(t,))=...=D(t, ,))=D@,)=D(,,,)=......... =D, =0,
for k=0,1,2,3,...0

Degradation as a Step Function of Time
10"

9 X T T T T T T T T T
8 L -
7 L -
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= 5 i
[m)
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i)
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a .l i
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2 L -
D(k-1)
1 L -
t=k-1 t=k
0 T | | | | | A |
0 0.5 1 1.5 2 25 3 3.5 4 45 5
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Figure 20: P,, degradation, and the CDF step function

Figure 20 shows the real failure probability P,(r) as a function of the random system
degradation step CDF in terms of the simulation cycles time .
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The Real Probability Pr as a Function of Degradation
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Figure 21 shows the real failure probability P,(¢) as a function of the random system
degradation in terms of the simulation cycles time 7.
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Figure 21: P, as a function of Degradation D(¢)
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Figure 22: Degradation and P,

Figure 22 shows the real failure probability P((t) and the random system degradation D(t) as
functions of the number of the simulation cycles time t.
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Figure 23: P, , D, and RUL

Figure 23 shows the real failure probability P,(¢) as a function of the random system degradation
D (¢) and the random system RUL () in terms of the simulation cycles time z.

VI.  Application of FORM to Prognostic [15-28] [73-76]

In this part, we study the CPP in the context of reliability by defining a limit state G that
describes the lifetime margin of the system.

We have:

G(t,) =1, —t, = RUL(t,) (22)

where G(¢,) is the limit state of lifetime.

tc: is the fixed lifetime of the system which follows a normal distribution (60, 1)
t; : is an arbitrary instant that varies from 0 to #¢ and which follows a normal distribution

N (1,,0.1x 1)
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When G(¢,)1s zero or negative then we have a case of # = 7¢ that means that we have a system

failure that cannot live until the instant #. In the other case where #<tc, the system can live above
the instant ¢, and we have a case of success.

The reliability index S =-®' [Pr (t, )] where P (¢,)1s the cumulative distribution probability

function and @ is the normal cumulative distribution function. Hence, ®'is the inverse of ®
and P,(1,) = ®(-f) (23)

The failure cumulative distribution function computed by the FORM procedure is:
P(t,)=F,{G(t,) <0} =B, {t, 2 1.} = D(-f) (24)
It corresponds in system prognostic to: P, {RUL(¢,) <0}

Therefore, the survival cumulative distribution function computed by the FORM procedure is:

BpiG(t) >0y =P, {t, <t} =1=-F(t,)=F, )/ i=1-D(=-p) (25)
It corresponds in system prognostic to: P, {RUL(¢,) > 0}

In CPP, the real part of probability is taken here P (¢,). As we make the instant # vary
between 0 and t¢, then P.(¢,)= F(t,) varies between 0 and 1 as shown in Figure 24. Moreover,
Figure 25 illustrates the system failure PDF whichis P.(t,)/y =®(-8)/y .

The Complex Probability Paradigm and Prognostic Using FORM
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Figure 24: System failure CDF for the current simulation
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103 The Real Failure Probability
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Figure 25: System failure PDF for the current simulation

We Know that we take # and 7c as two normal random variables where the value of 7¢
corresponds to 1000 cycles (¢c = critical value). After a reliability calculation using a Matlab
version 2020 program, we deduce a value of P.(z,) for each value of instant # . Figure 26
illustrates all the new prognostic model functions and proves all the mathematical derivations.
We have computed and ploted for this set of P (¢, ) all the CPP parameters and components and

which are: Chf(ty), MChf(tr), DOK(tr), Pc(t), Pu(te)/i , D(tx), and P,,[RUL(t,)].

We note from the figure that the DOK is maximum (DOK = 1) when absolute value of Chf'which
is MChf is minimum (MChf = 0) (points J & L), that means when the magnitude of the chaotic
factor (MChf) diminishes our certain knowledge (DOK) grows. Subsequently, MChf begins to
grow during the functioning due to the environment and intrinsic circumstances thus leading to a
diminution in DOK until they both reach 0.5 at # = ¢,,,,,, = 258.7 (point K). The real cumulative

failure probability P. and the real cumulative complementary survival probability P,/i will meet

with DOK and MChf also at the point (258.7, 0.5) (point K). The point K’ is the point
corresponding to K and which is (637, 0.5). K’ is the point where the degradation D(#) and

P_,[RUL(t,)] intersect. With the growth of #, the Chf and MChf return to zero and the DOK

returns to 1 where we attain total damage (D = 1) and hence the total certain failure of the system
(P.=1) (point L). At this last point the failure here is definite, P,(¢c) = 1 and RUL(tc) = tc — tc =

0 with Pc(tc) = 1, so the logical consequence of the value DOK = 1 ensues.
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We note that the point K corresponding to ¢

Median

#1 #1t,,, Which is the median of the

distribution is not at the middle of the simulation since the probability of failuredistribution
evaluated by FORM is not symmetric. Therefore, the corresponding graphs are skewed to the

right or positively skewed.

Furthermore, at each instant #, we can predict with certainty the remaining useful lifetime
RUL(t) in the complex probability set C with Pc preserved as equal to one through an unceasing
compensation between DOK and Chf. This compensation is from instant # = 0 where D(#) = 0

until the instant of failure #c where D(tc) = 1.

The Complex Probability Paradigm and FORM
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Figure 26: CPP and FORM applied to prognostic.

6.1 The Complex Probability Cubes

In the first cube (Figure 27), the simulation of Chfand DOKas functions of each other and
of the simulation cyclestime ¢ can be seen. The line in cyan is the projection of Pc’(f) = DOK(f) —
Chf(t) = 1 = Pc(¢) on the plane ¢ = 0 cycles. This line starts at the point J (DOK = 1, Chf' = 0)
when ¢ = 0 cycles, reaches the point (DOK = 0.5, Chf= —0.5) when t = ¢,,,,.,=258.7 cycles, and
retumns at the end to J (DOK = 1, Chf= 0) when ¢ = ¢t¢ = 1000cycles. The other curves are the
graphs of Chf(t)(pink, blue,green) andDOK(#)(red)in different planes. Notice that they all have a
minimum at the point K (DOK = 0.5, Chf= 0.5, t = t,,,.,=258.7cycles). The point L

corresponds to (DOK =1, Chf= 0, t = tc = 1000 cycles). The three points J, K, L are similar to

those in the previous figures.
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DOK and Chfin terms of t and of each other
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——  Chf": Chaotic factor
Chf': Chaotic factor

Figure 27: DOK and Chf'in terms of ¢ and of each other

In the second cube (Figure 28), we can notice the simulation of the failure probability
P.(?) and its complementary real probability P,,/i(f) in terms of the simulation cycles time ¢. The
line in cyan is the projection of Pc*(f) = P(f) + Pn/i(f) = 1 = Pc(¢) on the plane 7= 0 cycles. This
line starts at the point (P, = 0, P,/i= 1) and ends at the point (P, = 1, P,/i = 0). The red curve
represents P,(¢) in the plane P.(f) =P,/i(f). This curve starts at the point J (P, =0, P,/i=1,¢t=0
cycles), reaches the point K (P, =0.5, P,/i=0.5,t=t,,,.,=258.7cycles), and gets at the end to L
(P, =1, P,/i= 0, t =tc = 1000 cycles). The blue curve represents P,/i(t) in the plane P,(¢)
+P,,/i(t) = 1. Notice the importance of the point K which is the intersection of the red and blue
curves at ¢t =t,, .. =258.7 cycles and when P.(t) =P,/i(t) = 0.5.The three points J, K, L are

e

similar to those in the previous figures.
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Figure 28: P» and Py,/iin terms of # and of each other

London Journal of Research in Science: Natural and Formal

In the third cube (Figure 29), we can notice the simulation of the complex random vector
Z(?) in € as a function of the real failure probability P,(f) = Re(Z) in R and of its complementary
imaginary probability P, (f) = ixIm(Z) in M, and this in terms of the simulation cycles time. The
red curve represents P,(¢) in the plane P, (f) = 0 and the blue curve represents P, (¢) in the plane
P,(¢#) = 0. The green curve represents the complex probability vector Z(¢) = P,(t) + P, (f) = Re(Z)
+ ixIm(Z) in the plane P,(¢) =iP,,(¢) + 1. The curve of Z(¢) starts at the point J (P, =0, P,=1i,t=
0 cycles) and ends at the point L (P, =1, P,, =0, t = ¢c = 1000 cycles). The line in cyan is P,(0)
=iP,,(0) + 1 and it is the projection of the Z(¢) curve on the complex probability plane whose
equation is ¢ = 0 cycles. This projected line starts at the point J (P, = 0, P,= i, t = 0 cycles) and
ends at the point (P, = 1, P, = 0, t = 0 cycles). Notice the importance of the point K
corresponding to ¢ =¢,, .. =258.7 cycles and when P, = 0.5 and P,, = 0.5i. The three points J, K,

L are similar to those in the previous figures.
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The Complex Probability VectorZ=P P
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—— P, :Real Failure Probability in the set # = Re(Z)
—— P, : Complementary Imaginary Survival Probability in the set M = ixIm(Z)
—— Z= P,.+ P, : The Complex Probability Vector in the set €

Figure 29: The Complex Probability Vector Z in terms of ¢
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6.2 Flowchart of CPP Applied to Prognostic

The following flowchart summarizes all the explained procedures of the proposed

complex probability prognostic model:

C=De

Input initial parameters (7 , o,, #,, ., Dy, ¥ )
of the Normal Distribution and for prognostic

Apply FORM Procedure

v

For each simulation time:
t=1t,tc

v

Calculate F(f) from FORM at each
simulation time ¢

London Journal of Research in Science: Natural and Formal

Plot all the functions for »
t=1t,tc
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VII. Application of the New Model to Young Modulus [15-28] [73-76]

We apply now the novel prognostic model to the very well-known Young modulus. Let £ be the
Young modulus in a material bar domain (Figure 30) and we suppose that it follows a Normal
Gaussian probability distribution.

vF

Figure 30: The Young modulus E in a material domain
The novel prognostic model expressions for Young modulus are the following:

The CDF (cumulative probability distribution function) F(E) of the random variable Eand which
was calculated by FORM is equal to:

F(E) = Poy(Ey <E<E)= Y Poy(E)= PE)=(-p) (26)
And o
P(E)=F(E)=yx[P,(E<E)-P,(E<E, )]
—yx| Y BB - Y P,OAE)}
=YX E:ZE:k P, (E)=yxP,(E_ <E<E,)
=y x[D(E,) - D(E,)] 27)

= y times the jump in D(E) from E=E,_ to E=FE,. (Figures 31 & 32)

w = the simulation magnifying factor that depends on the simulation profile. i is equal to 1449 .4
in the case of Young modulus prognostic.

Consequently, the recursive relation for degradation as a function of the failure probability
P (E)/wyis the following:

D(E;)=D(E,)+E(E) /vy (28)
= D(E,)=D(E,_ )+ F(E,) /v (29)
:D(Ek):D(Ek—l)"'cD(_IB)/‘// (30)

Thus, initially we have:
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P(E, =E,=0)=F(E,)=0

Moreover,
B(E)=wxf (E)= P(E)/y =)y =1 (E)

Where 1/ is a normalizing constant that is utilized to transform P.(E,) = ®(—/£)function to a
probability density function with a total probability equal to one.1/y is a function of the
simulation mode and conditions. Subsequently, we deduce that f (E,) is the usual probability

density function (PDF) for any simulation mode. Knowing that, from classical probability
theory, we have continuously:

E=Ec E =E
> f(E)= D P(E)y=1
Ey=E, Ey=E,

This result is reasonable since P.(E,)/y is here a probability density function.

Therefore, we can deduce that:

Ej=Ec E=E¢ E =Ec

> P(E)/wy= D FE)y=) O-Bly=1 G1)

Ei=Ey Ey=Ey Ey=E,
(Figures 31 & 32)

Notice that:
0<P(E)/w<1,0<F(E)<l,and (D, =0)<D(E,)<(D, =1),for everyEy: 0 <E}<E¢
and

IfE, 50=D—->D,=0=>F—>0=P(E)—>0
ifE, >E.=>D—>D.=1=F—>1=P(E)—1.

This, since the degradation is flat near 0 and starts increasing and becoming more acute with Young
modulus E; hence, at E¢, D is the greatest and is equal to 1. (Figures 32 & 33)

Furthermore, we have (Figure 34):

RUL(E,)=E. —E, and it corresponds to a degradation D(E)),
And

RUL(E, )= E.—E, | and it corresponds to a degradation D(E, ).
This implies that:

P(E,) =y x[D(E,)-D(E,_)]

(32)
=y x{D[E. - RUL(E,)]- D[E. - RUL(E, )]}

Figures 31 to 34 illustrate the application of the new prognostic model to Young modulus.
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6Degradation as a Step Function of Young Modulus
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Figure 31 P,, degradation, and the CDF step function

Figure 31 shows the real failure probability P,(E) as a function of the random system
degradation step CDF in terms of the simulation Y oung modulus E.
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The Real Probability PIr as a Function of Degradation
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Figure 32: P, as a function of Degradation D(E)

Figure 32 shows the real failure probability P-(E) as a function of the random system
degradation in terms of the simulation Young modulus E.
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Figure 33 Degradation and P,

Figure 33 shows the real failure probability P(E) and the random system degradation D(E) as
functions of the simulationYoung modulus E.
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Figure 34: p, D, and RUL
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Figure 34 shows the real failure probability P,(E) as a function of the random system degradation
D(FE) and the random system RUL(E) in terms of the simulation Young modulus E.

Moreover, we have from FORM:
G(E,)=E.—-E, =RUL(E,) (33)
where G(E,) is the limit state of lifetime.

Ec: is the fixed lifetime of the system which follows a normal probability distribution A (516, 1)
Ei: is an arbitrary instant that varies from 0 to Ec and which follows a normal probability
distribution V" (E, ,0.051x E, )

When G(E,)is zero or negative then we have a case of E;> E¢ that means that we have a

system failure that cannot live until the instant Ej. In the other case where E}<E(, the system can
live above the instant £} and we have a case of success.

The reliability index f=-®' [R(Ek)] where P (E,) is the cumulative distribution

probability function and ® is the normal cumulative distribution function. Hence, @' is the
inverse of ® and

P.(E,)=D(=p) (34)
The failure cumulative distribution functioncomputed by the FORM procedure is:

P(E,)=P,{G(E)<0} =P, {E, 2E.} =D(-)) 35)

It corresponds in system prognostic to: P, {RUL(E,) < 0}

Therefore, the survival cumulative distribution function computed by the FORM procedure is:
P, {G(E,) >0} = P, {E, <E.}=1-P(E,)=P,(E,)/i=1-®(-f) (36)

It corresponds in system prognostic to: P, {RUL(E,) > 0}

In CPP, the real part of probability is taken here P.(E,). As we make the instant Eyvary
between 0 and E¢, then P.(E,)= F(E,) varies between 0 and 1 as shown in Figures 35 and 36.
Moreover, Figure 37 illustrates the system failure PDF which is P.(E,)/y =®(-f)/y .

The Paradigm of Complex Probability and Prognostic Using FORM

London Journal of Research in Science: Natural and Formal

Volume 20 | Issue 4 | Compilation 1.0



0.9

/

The Complex Probability Paradigm and Prognostic Using FORM

L

/

0.8

0.7

/

,-4

06

05

0.4

0.3

F(Ex) =

Pr(Ek) = Prop

E<E;

0.2

0.1

Failure Cumulative Distribution Function F(E)

J

Ex

Young Modulus E
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Figure 36: System failure CDF for the current simulation
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The Real Failure Probability
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Figure 37: System failure PDF for the current simulation

7.1 Mathematical Analysis: A Numerical Example

Let £ be the mean value of Young modulus £ in the simulations and let o, be the standard
deviation of E then the coefficient of variation in the simulations is:

v

c =25 _0.051.
E

We can infer from the simulations that the median of the distribution is £ = £, =516 Ksi and
is denoted accordingly E,,. We know from classical statistical theory that it is the value that
divides the distributioninto two equal parts. From the simulations we have the following results:

P

rob

[0 < E <(E,, =516 Ksi)]=0.5,and P,,[(E,, =516 Ksi) < E < +%]=0.5,
And P,,[-o < E <663 Ksi]=0.7748 , and P,,[663 Ksi < E < +00] =0.2252,

As well
P, [E<0Ksi]=0.
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Moreover,

dF = f,(E)dE =

—\2

1 E-FE

exp{—[ j }dE , which is the normal distribution corresponding
O

WGE

to Young modulus E with mean equal to E and standard deviation equal to o,.

=dF = f,(u)du =

2 —
exp( > ]du where u=E E, which is the standard normal

Og

1
N2
distribution corresponding to Young modulus £ with # =0 and o, =1.

Therefore,

D(u,)= I\/_exp[ ]du P [u<u.].

Note that:

- | 1(E-E u’
dF = exp| — dE = ex du=1
J; Jc:onﬂo-E p{ ( Ok j ] I N2 p( j
Now,in the real probability domain R we have:

[~ < E < (E = 663)] = F(E = 663)

E=663 =32
= P(E=663)= I ;exp{—l[E_Ej ]dE
ke X0,

=0.7748

rob

The correspondingcomplementary probability in the imaginary domain M is:

P,(E =663) = ix[1—P.(E = 663)]=ix P,,[E > 663] =ix[1- F(E = 663)]

400 =\2
=ix I ;exp —l{E_EJ dE
po663 N 27T X O 2\ o

= ix0.2252

If we compute the norm of the complex number or vectorZ = P. + P, we have:

1z =P*+(P, /i)’ =P* +(1-P) =1+ 2P(P.~1)=1-2P.(1- P);
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This implies that:

1=|z| +2P(1-P)=|Z|' -2 x (1~ P) =|2| —2ix P x[i(1- P)] = |Z| —2iP.P,
=P?>+(P, /iy’ =2iPP, =P>+(P, /i) +2P(P, /i)=(P. +P, /i)’ = Pc’ < Pc =1

) . 1
since i*=—-l<—i==

i
We note that:

—00

E +00 E +o0
Z.=P(E)+P (E)= J-fE(u)duﬂ'J‘ [ (u)du , written for short I +iJ-
—0 E E

and
2y, =P(Ey, =516)+P,(E,, =516)= [ fy@)du+ix [ [,(1)du=05+ix0.5

and

E=663

Zy gy = PAE=663)+P,(E=663)= [ f,(u)du+ix [ f,(u)du=0.7748+ix0.2252.

E=663

We have also:

+00

E iI E o )2 o \2
Pc,> =[P(E)+P,(E) /i’ = j +-E =[j +j ] =[j J =1>=1

l -0 E

And the chaotic factor is:

Cth=2i><R(E)me(E):2i><j: xixT :—2><]E‘ x(l—f ],where:

0 E —o0
E — —o0, hence P.=0

E — +o0, hence P. =1

Chf,, =0 if{

Moreover, the Magnitude of the chaotic factor is:

E +00 E E
MChf,; =|Chf,| =|2ix P(E)x P, (E)| = 2ixj xixj = —2><j x(l—j j‘
—0 E —0 —0
E E
=2x | {1—] J
where: h h
. {E—)—oo, hence P. =0
MChf, =0 if
E — +o0, hence P. =1
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Additionally,

DOKE=|ZE|2ZR(E)ZJF[P,,,(E)/i]Z={JE. } J{T } ={JE. } J{I—JE. },Where:

E — -, hence P.=0

DOK, =1 if
E — 4o, hence P =1

Consequently, we state that:

Pc,’ = |Z E|2 —2i.P.(E).P, (E) =Degree of our knowledge — Chaotic factor = 1.

And if Chf, =0=|Z E|2 = DOK =1, in other words, if the chaotic factor is zero then the degree
of our knowledge is 1 = 100%.

In addition, we say that:

Pc,’ =Degree of our knowledge +Magnitude of the Chaotic factor = 1.

And if MChf, =0= |ZE|2 = DOK =1, in other words, if the magnitude of the chaotic factor is
zero then the degree of our knowledge is 1 = 100%.

Numerically, we write:

\ZEW:SIGF =DOK, _;s=(0.5"+(0.5 =025+0.25=0.5

= |2, 516/ =0.707106781= Chf,, s %0,
hence, Chf, _54=0.5-1=-0.5,
and MChf,,, 6 =|Chfy, 516 =|-0.5|= 0.5

Additionally,
|Z, g6 = (0.7748)% +(0.2252)* = 0.60031504 +0.05071504 = 0.65103008
=|Z; 43| = 0.80686435 = Chf,_, #0, Notice that: %g |z, =DOK <1

Hence, Chf,_.; =0.65103008—1=—0.34896992, Notice that: —% < Chf, <0

and MChf,_; =|Chf ;_qs| =|-0.34896992| = 0.34896992, Notice that: 0 < MChf,, s%

Accordingly, we can say that:
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The degree of our knowledge DOK, (., =|Z 5:663|2 =0.65103008, the chaotic factor
Chf,_o; =—0.34896992 , and the magnitude of the chaotic factor MChf,_., = 0.34896992.

What is interesting here is thus we have quantified both the degree of our knowledge and the
chaotic factor of the stochastic event as well as the corresponding magnitude of the chaotic
factor.

Notice that:

DOK,_; — Chf,_o; = 065103008 — (—0.34896992) = 0.65103008 + 0.34896992 =1=Pc,_,
and DOK ,_,, + MChf,_., =0.65103008 + 0.34896992 =1=Pc,_,

Also
DOK; _ss— Chfy _s15=0.5-(=0.5) =05+ 0.5 =1=Pc; _54

and DOK, o+ MChf, _,=05+0.5=1=Pc; _q

Conversely, if we assume that:

Chf, =0 = MChf, =0 =|Z,| = DOK, =1=> P(E)* +[P,(E) /i =1
P(E)=0 [E—-w
=2P(E)1-P(E)]=0=> or = or
P(E)=1 |E -+

And if Chf,, :—%:MCth :%:>|ZE|2 = DOK, :%:E:Em =516 Ksi,

And

if Chf;, =—0.34896992 = MChf, =0.34896992 =|Z,|" = DOK, =0.65103008
— E =663 Ksi.

Now if Eincreases to become=1000Ksi then both |ZE|2 =DOK and Chf, increase, and
MChf,. decreases.

Therefore, we can infer that:

lim (Chf;) =0, lim (MChf,)=0,and lim (IZE|2 = DOKE) =1

E—*o0
where we have always:

Pe,’ =|Z,|" ~Chf, = DOK, —Chf, =|Z,[ + MChf,, = DOK, + MChf, =1,

for every value of £ in the real set of numbers.
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Figure 38 illustrates all the novel prognostic model functions when applied to Young modulus
and proves all the mathematical derivations. We have computed and ploted for this set of P.(E,)
all the CPP parameters and components and which are: Chf(Er), MChf(Er), DOK(E¥), Pc(Ex),
Pu(Ex)/i , D(Ex), and P,,[RUL(E,)].

We note from the figure that the DOK is maximum (DOK = 1) when absolute value of Chf which
is MChf is minimum (MChf = 0) (points J & L), that means when the magnitude of the chaotic
factor (MChf) diminishes our certain knowledge (DOK) grows. Afterward, MChf starts to grow
during the functioning due to the environment and intrinsic conditions thus leading to a diminution
in DOK until they both reach 0.5 at Ex =E,, = 516 (point K). The real cumulative failure

probability P. and the real cumulative complementary survival probability P,/i will meet with
DOK and MChf also at the point (516, 0.5) (point K). The point K’ is the point corresponding to
K and which is (1273, 0.5). K’ is the point where the degradation D(Ey) and P,,[RUL(E, )] meet.
With the increase of Ex, the Chf'and MChf return to zero and the DOK returns to 1 where we reach
total damage (D = 1) and hence the total certain failure of the system ( 2. = 1) (point L). At this

last point the failure here is definite, P{Ec = 2000) = 1 and RUL(Ec = 2000) = Ec — Ec = 0 with
Pc(Ec=2000) = 1, so the logical consequence of the value DOK = 1 ensues.

We note that the point K corresponding to E,,, # E # E,,,, is not at the middle of the simulation

since the probability of failure distribution evaluated by FORM is not symmetric. Therefore, the
corresponding graphs are skewed to the right or positively skewed.

Furthermore, at each instant E;, we can predict the remaining useful lifetime RUL(Ex) with
certainty in the complex probability set € with Pc preserved as equal to one through an unceasing
compensation between DOK and Chf. This compensation is from instant E; = 0 where D(Ey) = 0
until the failure instant Ec where D(E¢) = 1.
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Figure 38: CPP and FORM applied to prognostic and to Young modulus.

7.2 The Complex Probability Cubes

In the first cube (Figure 39), the simulation of Chf'and DOK as functions of each other and
of the simulation of Young modulus E can be seen. The line in cyan is the projection of Pc*(E) =
DOK(E) — Chf(E) =1 = Pc(E) on the plane E = 0 Ksi. This line starts at the point J (DOK =1, Chf
= 0) when E = 0 Ksi, reaches the point (DOK = 0.5, Chf = —0.5) when E = E,,,= 516 Ksi, and
returns at the end to J (DOK = 1, Chf' = 0) when E = Ec = 2000 Ksi. The other curves are the
graphs of Chf(E) (pink, blue, green) and DOK(FE) (red) in different planes. Notice that they all have
a minimum at the point K (DOK = 0.5, Chf=-0.5, E = E,,, = 516 Ksi). The point L corresponds

to (DOK =1, Chf =0, E = Ec = 2000 Ksi). The three points J, K, L are similar to those in the
previous figures.
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DOK and Chf in terms of E and of each other

Chf

2000

1000

DOK 05 o0 Young Modulus E

— DOK : Degree of our knowledge
——  Chf': Chaotic factor
Chf: Chaotic factor

Figure 39: DOK and Chf in terms of E and of each other

In the second cube (Figure 40), we can notice the simulation of the failure probability
P.(E) and its complementary real probability P,/i(E) in terms of the simulation of Young
modulusE. The line in cyan is the projection of Pc*(E) = P.(E) + P,/i(E) = 1 = Pc(E) on the
plane £ = 0Ksi. This line starts at the point (P, = 0, P,/i= 1) and ends at the point (P, =1, P,/i =
0). The red curve represents P,(E) in the plane P,(E) =P,,/i(E). This curve starts at the point J (P,
=0, P,/i= 1, E = OKsi), reaches the point K (P, = 0.5, P,/i= 0.5, E=E,,, =516 Ksi), and gets at
theendto L (P, =1, P,/i= 0, E=E¢ = 2000 Ksi). The blue curve represents P,,/i(E) in the plane
P.(E) +P,/i(E) = 1. Notice now the importance of the point K which is the intersection of the red
and blue curves at £ = E,,, =516 Ksi and when P,(E) =P,,/i(E) = 0.5.The three points J, K, L are

similar to those in the previous figures.
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Figure 40: P, and P,/iin terms of E and of each other
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In the third cube (Figure 41), we can notice the simulation of the complex random vector Z(E)
in C as a function of the real failure probability P.(E) = Re(Z) in R and of its complementary
imaginary probability P, (E) = iXIm(Z) in M , and this in terms of the simulation of Young
modulus E. The red curve represents P,(E) in the plane P, (E) = 0 and the blue curve represents
P, (E) in the plane P,(E) = 0. The green curve represents the complex probability vector Z(E) =
P.(E)+ P,(E) =Re(Z) + ixIm(Z) in the plane P,(E) =iP,(E) + 1. The curve of Z(FE) starts at the
point J (P, =0, P,= i, E = 0 Ksi) and ends at the point L (P, =1, P,, =0, E= Ec = 2000 Ksi).
The line in cyan is P,(0) =iP,(0) + 1 and it is the projection of the Z(E) curve on the complex
probability plane whose equation is £ = 0 Ksi. This projected line starts at the point J (P, =
0,P,= i, E = 0 Ksi) and ends at the point (P, = 1, P,, = 0, E = 0 Ksi). Notice the importance of
the point K corresponding to £ = E,,,=516Ksi and when P, = 0.5 and P,, = 0.5i. The three
points J, K, L are similar to those in the previous figures.
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Figure 41. The Complex Probability Vector Z in terms of £
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7.3 Flowchart of CPP Applied to Young Modulus Prognostic

The following flowchart summarizes all the explained procedures of the proposed
complex probability prognostic model:

=

Apply FORM Procedure

Input initial parameters (E , 0., E,E., Dy, v )
of the Normal Distribution and for prognostic

v

For each simulation cycle:
E= E() 9 EC

v

Calculate F(E) from FORM at each
simulation cycle of Young modulus £

1
l
l
l
l
d
l
l
l
l
l
r
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Plot all the functions for »
E=FEo, Ec
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VIII.  Final Analysis: Explanation and the General Prognostic Equations

In this section, all the obtained data and achieved simulations will be interpreted, a final
analysis will be done, and the novel general prognostic equations will be presented. A detailed
discussion of all the previous figures will be executed to understand the results.

Firstly, probability theory embodied by the CDF F(¢) calculated and made available by
FORM was connected to prognostic materialized by the degradation D(¢) by supposing that
Ft,)=wx[D(t,)-D(t,_,)]=P(-p) and the good reason for this postulation was presented.

Subsequently, the deterministic D(¢) quantified from deterministic prognostic converts to a
nondeterministic function. Consequently, the deterministic and discrete variable of simulation
cycles time ¢ converts to a stochastic and discrete variable. Thus, the resultant of all the factors
influencing the system which was deterministic converts to a stochastic resultant because D(r)
quantifies now the stochastic degradation of the system in terms of the random cycles time ¢.
Accordingly, all the parameters exact values of the D(¢) expression become now mean values of
the stochastic factors influencing the system and are embodied by PDF's as functions of the
stochastic variable of simulation cycles time . As a matter of fact, this is the real-world case where
randomness is omnipresent in one way or another. What we consider and judge as a deterministic
phenomenon is nothing in reality but a simplification and an approximation of an actual chaotic
and stochastic phenomenon and experiment due to the impact of a huge number of
nondeterministic and deterministic forces and factors (a good illustration is a lottery machine).

Subsequently, an updated follow-up of the stochastic degradation behavior with time or cycle
number, and which is subject to chaotic and non-chaotic effects, is done by the quantity F,.(7,)/y

due to its definition that embodies the jumps in the stochastic degradation D(¢). Henceforth,
B.(t,) =y x[D(t,) - D(t,)] = P(=f) ,

Referring to the theory of classical probability, this converts P.(¢,)/w = ©(-f)/y to become the

t=tc t=tc
system failure probability at # =, withO < P.(¢,)/yw <1 and ZR, " /y :Z ®O(-p)/y =[sum of

t=ty t=ty

all the jumps in D from ¢ to tc] = Dc = 1, similar to any probability density function (PDF).

Additionally, in the simulations a constant and extremely minor increases in ¢ have been considered
and which yield extremely minor increases in D and consequently in P.(¢,)/y . So, we have
multiplied those extremely minor jumps in D by a simulation magnifying factor that we called
w . Note that 1/y is a normalizing constant that is utilized to transform P.(z,) function to a
probability density function with a total probability equal to one. 1/y is a function of the
simulation mode and conditions and it depends on the parameters in the degradation equation and
in the FORM algorithm. We have from the simulations that = 724.3113 and y = 1449.4 for
Young modulus. So we get: if # tends to #o = 0 then P.(¢,) tends to 0, and if # tends to #c then P.(z,)

t=t¢ t=tc

tends to 1, so 0<P(#)<1 and ZR(t):Zd)(—,B):z//x(DC—DO):l//x(l—O):l// as

t=t, t=t,

P (t,) =D(=p) is a CDF since P.(¢,) is cumulative, it is y times the probability of failure at ¢ =
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tr. Hence, in the simulations, P.(z,) is the cumulative probability that the system failure occurs at

t = tr and is used accordingly to compute all the CPP parameters.

Therefore, F(¢,)=P,,(0<t<t,)= Pop(t =00r¢t=1o0r¢t=2or ...or¢t=t)=sum of all

probabilities of failure between 0 and # = probability that failure will happen somewhere
between 0 and #. So, if # = 0 then P ,(¢# <0)=0= probability that failure will happen at ¢t = 0

and before. If t; = tc then P_,(0<¢<t.)=1= sum of all probabilities of failure between 0 and #¢
wE>t)=1=
probability that failure will happen beyond 7. We can observe that the probability of failure
grows with the growth of the cycles time # until at the end it becomes equal to 1 when ¢, > 1.

Thus, If 7, =0 and D(z,) =0 therefore:

= probability that failure will happen somewhere between 0 and #¢. If #,>¢¢ then P

2

t=t, t=t, t=t,

P,0<1<t)=3 P, (0= PO)/y=> OCp)y

t=t. t=t. t=t.

This implies that: P, (0<t<t.)=Y P, ()= P(t)/y =Y ®(-B)/y =y /y =1 and
t=0 t=0

t=0
=0 =0
P, (t<0)=Y P, ()= P(0)/y =P(0)/y =0/y =0
=0 t=0
If ¢, #0 and D(¢,) # 0 then the prognostic equation in the new model is:
t=t, t=t, t=t;

Bty <t<t)= zpmb(t) = zPr(t)/‘// ZZ(D(_ﬂ)/l// (37)

t=t, t=t, t=t,
with P.(t,)/w = D,.

Moreover, since P(¢,) =w[D(¢t,)—D(¢,,)], this leads to the following recursive relation:

D(t,) = D(t, )+ B (1) /v = D(t, )+ D(=p) y ;94 1, <t <tc. (38)

London Journal of Research in Science: Natural and Formal

In the general prognostic case, if we possess the PDFof system failure then we can include it in
the equations (37) and (38) above and computedegradation at any instant # and vice versa. Then,

all the other model CPP functions (Chf, MChf, DOK, Z, P,, P,,, P,/i, Pc) will follow. This would
be our new prognostic paradigm general equations:

t=t; =t

Pr()b (tO <t< tk) = Z Pr()b (t) = Z PDFﬁlilure (t) (39)

t=t, t=t,
And the recursive relation:

D(tk) = D(tk—l) + PDFfailure (tk) (40)
with PDF,. (t,)=D,.

failure

It is crucial to indicate here that the PDFy . function of the system failure has all the
mathematical characteristics and all the possible features of a probability density function
whether it is a continuous or a discrete stochastic function and it can follow any imaginable
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probability distribution in condition only that it characterizes the failure function and the random
degradation of the studied system whether it is a petrochemical pipe in the buried, unburied, or
offshore case, or a vehicle suspension system in engineering, or any nondeterministic system
under the effect of randomness and chaos. In fact, the function PDF}.. inherits all the attributes
and features of the failure system function and of the nondeterministic degradation.

Furthermore, by applying CPP to the system prognostic, and in all the simulations, we
were successful in the original prognostic model to quantify in R (our real laboratory) both our
chaos embodied by Chf and MChf and our certain knowledge embodied by DOK. These three
parameters of CPP are evaluated and caused by the resultant of all the non-random (deterministic)
and random (nondeterministic) aspects influencing the system. Knowing that, in the novel
paradigm, the factors resultant effect on RUL and D is materialized by the jumps in their curves
and is accordingly expressed and concretized in R by P, and in M by P,. As it was defined in
CPP, M is an imaginary probability extension of the real probability set # and the complex
probability set € is the sum of both probability sets; thus, C = £ + M. Because P, = i(1 — P;)
therefore it is the complementary probability of P, in M. Hence, if P, is identified as the failure
probability of the system in R at the simulation cycles time ¢ = #, then P, is identified as the
corresponding probability in the set J that the system failure will not happen at the same
simulation cycles time ¢ = #. So, Py is the associated probability in the set M of the system survival
at t = #. It follows that, P,/i = 1 — P, is the associated probability but in the set R of the system
survival at the same simulation cycles time. Accordingly, we know that the sum in R of both
complementary probabilities is surely 1 from classical probability theory. This sum is nothing but
Pc which is equal to P+ Pu/i = P, + (1 — P;) = 1 always. The sum in € of both complementary
probabilities is the complex random number and vector Z which is equal to P- + Py, = P, +
i(1 — P;). And as the complex probability cubes show and illustrate, we realize that Z is the sum in
C of the real probability of failure and of the imaginary probability of survival in the complex

probability plane that has the equation: P«(f) = iPu(¢) + 1 for V¢: 0<t<t., VP : 0<P <1,
VP : 0< P <i.What is noteworthy is that the square of the norm of Z which is |Z |2 is nothing

but DOK, as it was proved in CPP and in the new model. Moreover, since MChf = —2iP.Py =
2P,Py/i, therefore it is twice the product in R of both the probability of failure and the probability
of survival and it embodies the magnitude of chaos since it is always 0 or positive. All the
simulations show and prove all these facts.

From all the above we can conclude that since D(?) is stochastic, the factors resultant is random,
the jumps in D are the simulations failure probabilities P.(¢,), then we are dealing with a random

experiment, thus the natural appearance of Chf, MChf, DOK, Z, and hence Pc. So, we get in the
simulations:

Chf(t,) =-2F.(¢,)F,(t,)/i=-20(-p)[1-P(-p)] @1
=2{w[D(,) - D@, )} 1-w[D(,)—D(,_)]}

MChf (t,) =|Chf (¢,)| = 20(- )1~ O(-P)]

(42)
= 2lD(@,) - D(t, )]} {1 =yl D(@,) - D@, )]}
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DOK(t,) =1-2P.(t,)F,(t,) /i =1-20(=)[1-D(-p)]
=1-2{y[D(t,) - D(¢,_ )1} {1-w[D(¢,) — D(t,_)]}

(43)

Z(t) = B(t)+F, () = O(=p) +ill=O(=p)] = v [D(t,) - D(t,_ )]+ {1 -w[D(,) - D(z, )]} (44)

Pc*(t,)= DOK(t,)— Chf(t,) = DOK(t,) + MChf(t,) =1, forevery tx: 0<t, <t. . (45)
Furthermore, in the novel paradigm we have:

RUL(t,) =1, —t,.

Note that, since # and D are random then RUL is also a random function of ¢. Thus, this will yield
in the set R:

P, [RUL(t,)]= Po» (the system will survive for ¢, <t <t.)
=1 — P,o (the system will fail for 7 <¢,)
=1-D()

(46)

Thenceforth, we get continuously: P, ,[RUL(t,)]+ D(t,) =1 everywhere.

This implies that: P,,[RUL(z, =0)]=1-D(t, =0)=1-D, =1-0=1

Henceforth, we attain a general and an original prognostic equation for RUL. In fact, if 7, # 0
and D(t,) # 0 therefore:

P [RUL(t,)] =P, (Survival : t, <t <t.)=1-P, , (Failure:t, <t <t,)

1=ty 1=ty

=1-) R(0)/y =1-Y ®(-B)/y; with P.(t,)/y = D, 47)
=1-D(t,)
t=tc t=tc
=Y P0Iy =) OBy (48)
| |
t=ty
= 1 - ZPDFfailure (t) ’ Wlth PDFfai/ure (ZO) = DO (49)
t=ty
t=tc
= Y PDF,,,.() (50)

1=ty

for any mode of simulation profile.

Moreover, from equations (38), (39), and (40) and for any mode of simulation profile we have
the following recursive relations:
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P, [RUL(t)]=1-D(t,) =1-{D(t, ) + P.(t) 1w } = 1-{D(t, ) + D(-B) |y} (51)

=1-{D(t,_,) + PDF,,,.(1,)| (52)
=1-{1- P, [RUL(t, )]+ P.(t,)/ v} (53)
=1-{1- P, [RUL(t, )]+ @(-B) v/} (54)
= P, [RUL(t, )]-P.(t,) /v (55)
= P,,[RUL(t, )] - ©(-p) /v (56)
= P, [RUL(t, )]- PDF,,,,,(t,) (57)
where P, [RUL(t,_)]=1-D(,_,).

In the ideal situation, if all the factors are 100% deterministic then we have in R: the probability
of failure for ¢, <z, i1s 0 and is 1 forz, >¢., accordingly the probability of system survival for

t, <t.is 1 andis O for ¢, > 1., since certain failure will happen only at 7, =¢.. So, degradation is

determined surely everywhere in R and its random function is replaced by a deterministic curve.
Therefore, chaos is null and hence Chf = MChf'= 0 and DOK = 1 always for all 0 <¢, <¢.. Thus,

P, [RUL(t, <tc)]=1 and F,[RUL(t, 21.)]=0.

Furthermore, at each instant ¢ in the original prognostic paradigm, the stochastic RUL(%) and D(¢)
are predicted with certitude in the complex probability set € with Pc?> = DOK — Chf= DOK + MChf
preserved as equal to 1 through a permanent compensation between Chf and DOK. This
compensation is from the instant # = 0 where D(¢) = Do = 0 until the instant of failure zc where D(tc)
= 1. Furthermore, we can realize that DOK does not comprise any uncertain knowledge (with a
probability less than 100%), it is the measure of our certain knowledge (probability = 100%) about
the expected event. We can understand that we have eliminated and subtracted in the equation
above all the random factors and chaos (Chf) from our random experiment when computing Pc?,
thus no chaos exists in €, it is only present (if it does) in R; consequently, this has led to a 100%
deterministic outcome and experiment in € since the probability Pc is constantly equal to one. This
is one of the advantages of extending R to M and therefore of conducting random experiments in
the set € = R + M. Thus, in the original prognostic paradigm, our knowledge of all the indicators
and parameters (RUL, P, D, etc.) is totally predictable, always perfect, and constantly complete
because Pc = 1 permanently, independently of any random factors or any simulation profile.

IX.  Conclusion

In this paper I applied the theory of Extended Kolmogorov Axioms to Prognostic based on
Reliability. I used for this purpose the very well-known First-Order Reliability Method or FORM
analysis and procedure. Consequently, I established a tight link between the new theory
degradation or the remaining useful lifetime and reliability. Hence, I developed the theory of
"Complex Probability" beyond the scope of my previous fourteen papers on this topic.
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As it was proved and illustrated, when the degradation index is 0 or 1 and correspondingly the
RUL 1is tc or 0 then the degree of our knowledge (DOK) is one and the chaotic factor (Chf and
MChf) is 0 since the state of the system is totally known. During the process of degradation
(0<D<1)wehave: 0.5<DOK <1,-0.5<Chf<0, and 0 < MChf<0.5. Notice that during the
whole process of degradation we have Pc> = DOK — Chf = DOK + MChf= 1 = Pc, that means that
the phenomenon which seems to be random and stochastic in R is now deterministic and certain
in € =R + M, and this after adding to R the contributions of M and hence after subtracting the
chaotic factor from the degree of our knowledge. Moreover, for each value of an instant # or Ej, |
have determined their corresponding probability of survival or of the remaining useful lifetime
RUL(ty) = tc — tx or RUL(E}) = Ec — Ek. In other words, at each instant # or Ex, RUL(tx) or RUL(Ex)
are certainly predicted in the complex set € with Pc preserved as equal to one through an incessant
compensation between DOK and Chf. This compensation is from instant # = 0 where D(#) = 0
until the failure instant ¢ where D(zc) = 1. And this compensation is also from E; = 0 where D(E%)
= 0 until failure at Ec where D(Ec) = 1. Furthermore, using all these graphs illustrated throughout
the whole paper, we can materialize and illustrate both the system chaos (Chf and MChf) and the
system certain knowledge (DOK and Pc). Additionally, an application to Young modulus £ was
successfully done here and proves the success of the entire novel prognostic paradigm. This is
certainly wonderful, very fruitful, and fascinating and shows once again the benefits of extending
the axioms of Kolmogorov and hence the benefits and novelty of this innovative field in applied
and in pure mathematics that can be called verily: "The Complex Probability Paradigm".

As a prospective and future challenges and research, we intend to more develop the novel
conceived prognostic paradigm and to apply it to a diverse set of nondeterministic events like for
other stochastic phenomena as in the classical theory of probability and in stochastic processes.
Additionally, we will implement CPP to other topics in the field of prognostic in engineering and
also to the problems of random walk which have huge consequences when applied to economics,
to chemistry, to physics, to pure and applied mathematics.
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