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Dynamics of States with Non-Zero Moment in
Own Field

ДИНАМИКА СОСТОЯНИЙ С НЕНУЛЕВЫМ МОМЕНТОМ В СОБСТВЕННОМ
ПОЛЕ

A. S. Chikhachev

__________________________________________

ABSTRACT

The paper studies a nonstationary self-consistent quantum system that intensively interacts

with its own field. At a non-zero moment, the psi function cannot be independent of the angles of

the spherical coordinate system. In this paper, a superposition of angular distributions is found,

leading to a spherically symmetric charge distribution for the whole value of the moment (l=1).

The paper defines the conditions under which in the case of half-integer values of the moment

the charge density distribution turns out to be spherically symmetric. In this case, a

self-consistent system can be described by a system of ordinary differential equations.

In the final section, a classical collisionless one-component system of charged particles

characterized by a nonzero moment is considered.

Аннотация

В работе изучается нестационарная самосогласованная квантовая система,

интенсивно взаимодействующая с собственным полем. При ненулевом моменте

пси-функция не может быть независящей от углов сферической системы координат. В

работе найдена суперпозиция угловых распределений, приводящая к сферически

симметричному распределению заряда при целом значении момента ( ).

В работе определены условия, при которых в случае полуцелых значениях момента

распределение плотности заряда оказывается сферически симметричным. В

этом случае самосогласованная система может быть описана системой обыкновенных

дифференциальных уравнений.

В заключительном разделе рассмотрена классическая бесстолкновительная

однокомпонентная система заряженных частиц, характеризуемая ненулевым

моментом.

Ключевыеслова: уравнение Шредингера, орбитальный момент, нестационарные

координаты.

I. Введение

Изучение нестационарных систем, интенсивно взаимодействующих с собственным полем

представляет большой интерес как с экспериментальной, так и с теоретической точек
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зрения. Особый интерес представляет квантовомеханическая система, использующая

нестационарный гамильтониан. В настоящей работе будет использован нестационарный

гамильтониан, следующий из работ Мещерского [1]. Этот гамильтониан использован в

работе [2] для решения квантовомеханической задачи. В работах [3,4] решались задачи в

одномерной конфигурации и сферически симметричная проблема при нулевом

орбитальном моменте l=0.

В настоящей работе приведено решение уравнения Шредингера в сферических

координатах при ненулевом орбитальном моменте, причем рассмотрены задачи с целым

(l=1) и полуцелым орбитальным моментом. Так же, как и в работах [3,4] точное решение

сводится к системе обыкновенных дифференциальных уравнений 4-го порядка.

Заметим здесь, что используемый нестационарный гамильтониан может быть использован

как для квантовых, так идля классических систем. Кинетическое уравнение с

использованием модельного нестационарного гамильтониана, впервые, по-видимому,

сформулировано в работе [5]. В дальнейшем динамика нестационарных

самосогласованных систем в плоской исферической геометрии изучались в работах

[6],[7],[8].

Состояния с моментом l=1

Состояние квантовой системы с ненулевым моментом в центральном поле описывается

уравнениемШредингера:

1.1

здесь

Положим

При этом

,

где -квадрат полного момента. При в уравнении присутствуют

производные по угловым переменным, что означает отсутствие сферической симметрии

изучаемого состояния, что является существенным обстоятельством для систем с

собственным полем.

Рассмотрим, далее, случай, когда и введем функцию посредством равенства

причем будем изучать нестационарную систему, описываемую

потенциалом вида:

получим:
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1.2

Здесь функция, удовлетворяющая уравнению:

-потенциал собственного поля, - координаты сферической системы.

Введем новые переменные:

Тогда (1.2) приводится к виду:

1.3

Произведем следующее преобразование, положим где Для

следует уравнение:

1.4

При решении самосогласованной задачи с удобно ввести функцию

Получим:

1.5

В (1.5) положим

Тогда

1.6

При этом плотность заряда определяется выражением .
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В случае угловую часть пси-функции можно рассматривать как состояние со спином

единица, описываемое столбцом , соответственно -это строка

Положим

При таком выборе представления

а плотность заряда, определяемая произведением не зависит от углов:

В этом случае уравнение для потенциала можно записать в виде:

1.7

Здесь -константа связи. Положим, далее, Получим систему

уравнений:

1.8

1.9

Вместо введем переменную s: . Обозначим

Тогда система принимает вид:

1.10

1.11

1.12

Можно переписать (1.11) в виде: а (1.12)-в виде

Тогда Полагая

получим уравнение:
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1.13

Уравнение(1.10) удобно переписать в виде:

1.14

а (1.11)-

1.15

Т.е. имеем систему (1.13)-(1.15).

Рис. 1: З ависимость потенциала (I) и плотности заряда (II) от автомодельной

переменной s.

Рис. 2: Зависимость y (s).

На рисунках 1 и 2 изображены результаты решения системы (1.13), (1.14) и (1.15). В качестве

начальных условий использовались соотношения: R(0)=10,R'(0)=0,V(0)=100,y(0)=0.

Полагалось Зависимость y(s) характеризуется наличием резких и узких
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максимумов, плотность заряда быстро осциллирует и стремится к нулю, а потенциал

убывает монотонно.

Состояния с моментом

В отличие от прелылущего раздела рассмотрим, далее, случай, когда (l=1/2). Как и

в предыдущем случае положим

Введем функцию посредством равенства Представим также и

потенциал в виде произведения функции от углов на функцию от радиуса:

.
В дальнейшем будут определены условия, при которых

Получим:

2.1

Введем новые переменные: ,

тогда (2.1) приводится к виду:

2.2

Введем, длее, положив где

Получим:

2.3

Плотность заряда имеет вид:

где удовлетворяет уравнению:

2.4

Вместо переменной введем тогда уравнение принимает вид:

2.5
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Далее будем учитывать спинорный характер -функции и представлять в виде столбца

соответственно -это строка Проекции момента

на оси координат имеют вид:

Зависимость плотности от углов определяется произведением и при выбранном

представлении не зависит от угла

Представим потенциал в виде произведения функции от радиуса на функцию от угловых

переменных, а поскольку плотность заряда не зависит от потенциал также не зависит от

Используя переменную вместо получим:

2,6

Здесь -плотность заряда. В случае взаимодействия с собственным полем

- константа связи.

Полное отделение функции радиуса от функции угла может быть достигнуто, если

выполнены условия:
-константа) и Из (2.5) можно получить:

2.7

Исключая из этих соотношений получим уравнение:

Это уравнение имеет интеграл:

(2.8)

Введем функцию Тогда выражение для интеграла принимает вид:

Dynamics of States with Non-Zero Moment in Own Field

1521© Volume 23 | Issue 17 | Compilation 1.02023 Great Britain Journal Press

L
on

d
on

 J
ou

rn
al

 o
f 

R
es

ea
rc

h
 in

 S
ci

en
ce

: N
at

u
ra

l a
n

d
 F

or
m

al

 



Из этого соотношения следует, что при В то же время при

Из (2.6) следует уравнение:

2.9

В уравнении (2.3) сделаем замену:

2.10

где - действительная величина, , -действительные функции. Положив

получим:

2.11

2.12

Уравнение (2.9) (с заменой на и (2.11) и (2.12) образуют замкнутую систему,

описывающую нестационарную динамику. Вместо введем безразмерную переменную

Обозначим

Тогда система принимает вид:

2.13

2.14

2.15.

Удобно, далее, ввести функцию . Уравнение (2.14) можно представить в виде:

Тогда (2.15) приводится к виду:
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2.16

По-видимому, система (2.13), (2.14), (2.16) не имеет решения, регулярного в нуле. На Рис.3.

приведены решения, использующие краевые условия при Полагалось

.
Решение характеризуется

колебательным поведением функции y(s) и монотонным убыванием потенциала и ростом

полного заряда внутри сферы радиуса s. Начальная точка счета полагалась При

решение не определено.

Рис.3: Кривая I-зависимость полного заряда внутри сферы радиуса s от s, кривая

II-потенциал, кривая III-зависимость у(s).

Состояния с моментом

В отличие от предыдущего раздела рассмотрим, далее, случай, когда

Как и в предыдущем случае положим Введем функцию

посредством равенства причем потенциал также представим в виде

произведения функции от углов на функцию от

Получим:

3.1

Введем новые переменные:

Тогда (3.1) приводится к виду:

3.2
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Введем, длее, , положив Получим:

\begin{equation}

3.3

Плотность заряда имеет вид: где удовлетворяет уравнению:

\

3.4

Вместо переменной введем тогда уравнение принимает вид:\

3.5

Далее будем учитывать спинорный характер функции и представлять в виде

столбца:

соответственно это строка Зависимость

плотности от углов определяется произведением и при выбранном представлении не

зависит от угла Представим потенциал в виде произведения функции от

радиуса на функцию от угловых переменных, а поскольку плотность заряда не зависит от

потенциал также не зависит от Используя переменную вместо

получим:

3,6

Здесь -плотность заряда. В случае взаимодействия с собственным полем

- константа связи. Полное отделение функции радиуса от функции угла может быть

достигнуто, если выполнены условия: константа) и Из (3.5)

можно получить:

3.7
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Исключая из этих соотношений получим уравнение:

. 3.8

Это уравнение имеет интеграл: Введем определение

Тогда Из этого соотношения при следует,что

а также отсюда следует и что распределение плотности заряда

является сферически симметричным.

Из (3.6) следует уравнение:

3.9

В уравнении (3.3) сделаем замену:

3.10

Где - действительная величина, -действительные функции. Положив

получим систему:

3.11

3.12

Уравнеие (3.9) (с заменой на и (3.11) и (3.12) образуют замкнутую систему,

описывающую нестационарную динамику. Вместо ведем безразмерную переменную

Обозначим

Тогда система принимает вид:

3.13

3.14
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3.15

При решении этой системы полагалось и использованы граничные условия:

Для получения регулярного в нуле

решения необходимо использовать равенство Отметим, что на рис.4

можно видеть, что потенциал (кривая I) и полный заряд (кривая II) медленно изменяются,

тогда как y(s) (кривая III) колеблется относительно линейно растущей функции.

Рис.4: Зависимости потенциала (I), полного заряда (II) и функции y от s

Кинетическая модель сферически симметричной системы зарядов

Нестационарный гамильтониан сферически симметричной системы точечных зарядов

имеет вид:

4.1

Здесь квадрат полного момента количества движения, в классической задаче

- вспомогательная функция, удовлетворяющая уравнению

-константа. Используя выражение для гамильтониана, можно получить выражение для

инварианта:

4.2

Рассмотрим уравнение для подробнее. Из него следует:
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Далее будем полагать а вместо введем переменную

Получим

В дальнейшем рассматривается случай, когда При этом

Подставим в (4.2) переменную вместо и введем

переменную Тогда инвариант приводится к виду, аналогичному

гамильтониану:

4.3

В (4.3) точка означает производную по .

Можно, далее, построить интеграл сопряженный с Рассмотрим выражение:

4.4

здесь - функция Хевисайда, -стартовая точка частицы. Выполнение

равенства является очевидным, если частицы движутся от центра. При движении

к центру знак перед интегралом должен быть изменен.

Плотность частиц выражается интегралом в фазовом пространстве:

4.5

Элемент фазового пространства представим в виде:

Усреднение по приводит к выражению:
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В переменных:

уравнение Пуассона принимает вид:

4.6

Функция распределения должна содержать множитель, экспоненциально зависящий от .

Положим:

Если выполнено условие , то в уравнение Пуассона в качестве независимой

переменной входит только Таким образом, .Обозначим, далее,

Тогда из уравнения Пуассона следует:

4. 7

Константа определяется параметрами задачи -- и зарядом :

В уравнении (4.7) плотность заряда определяется только уходящими

частицами. Система интегрируется:

4.8

Эта система решалась при следующих условиях:

Следует отметить, что полный заряд сгустка при остается конечным
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Рис. 5: З ависимость потенциала y(s) (I), полного заряда внутри сферы радиуса s (II) и

функции u(s) (III)

II. ЗАКЛЮЧЕНИЕ
Таким образом, в работе найдены частные решения модельных нестационарных

квантовомеханических задач, характеризуемых ненулевым моментом. Показана

возможность построения пси-функции, приводящей к сферически симметричной

плотности заряда при l=1. При получены частные решения, при которых также

плотность заряда не зависит от углов. Решение кинетической задачи показывает

возможность существования сгустка с конечным значением заряда при больших значениях

автомодельной переменной.
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