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Quasi-P-Normal  and  n-Power Class Q 
Composite Multiplication Operators on the 

Complex Hilbert Space 
    

 

ABSTRACT
 

In this paper, the condition under which composite multiplication operators on )(L2 µ -space become 
Quasi-P-Normal operators and n-Power class Q operator have been obtained in terms of radon-nikodym 
derivative 0f

 

.

  

 

composite multiplication operator,

 

conditional expectation, Quasi-p-normal,  multiplication

 

operator, class Q operator.

 

  

Let ),,X( µ∑ be a σ -finite measure space. Then a mapping T from X into X is said to be a measurable 

transformation if ∑∈− )E(T 1 for every ∑∈E .A  measurable transformation T is said to be non-singular 

if  0))E(T( 1 =µ −

 

whenever 0)E( =µ . If T is non-singular then the measure 1T−µ
 

defined as 

))E(T()E(T 11 −− µ=µ
 

for every E in ∑ , is an absolutely continuous measure on ∑ with respect to µ
.Since µ is a σ -finite measure, then by the Radon-Nikodym theorem, there exists a non-negative 

function 0f
 

in )(L1 µ
 

such that µ=µ ∫
− df)E(T

E
0

1
 

for every ∑∈E . The function 0f
 

is called the Radon-

Nikodym derivative of 1T−µ
 

with respect toµ .

 

Every non-

 

singular measurable transformation T from X into itself induces a linear transformation TC
 

on )(Lp µ defined as TffCT =
 

for every f in )(Lp µ . In case TC
 

is continuous from )(Lp µ
 

into itself, then 

it is called a composition operator on )(Lp µ
 

induced by T. We restrict our study of the composition 

operators on )(L2 µ
 

which has Hilbert space structure. If u is an essentially bounded complex-valued 

measurable function on X, then the mapping uM on )(L2 µ
 

defined by fufMu ⋅= , is a continuous 

operator with range in )(L2 µ . The operator uM
 

is known as the multiplication operator induced by u.

 

A composite multiplication operator is linear transformation acting on a set of complex valued ∑

 

measurable functions f
 

of the form

 

TfTu)f(MC)f(M uTT,u ==
 

Where u is a complex valued, ∑

 

measurable function. In case 1u = almost everywhere, T,uM
 

becomes 

a composition operator, denoted by TC .

 

In the study considered is the using conditional expectation of composite multiplication operator on 2L
-spaces. For each ),,X(Lf p µ∈ ∑ , ∞≤≤ p1 , there exists an unique )(T 1 ∑− -measurable function )f(E

 

such that

 

∫ ∫ µ=µ
A A

d)f(Egdfg
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for every )(T 1 ∑− -measurable function g , for which the left integral exists. The function )f(E is called 

the conditional expectation of f with respect to the subalgebra )(T 1 ∑− . As an operator of )(Lp µ , E is 

the projection onto the closure of range of T and E is the identity on )(Lp µ , 1p ≥ if and only if 

∑∑ =− )(T 1 . Detailed discussion of E is found in [1-4].

Let H be a Complex Hilbert Space. An operator T on H  is called normal operator if ** TTTT =

Let H be a Complex Hilbert Space. An operator T on H  is called Quasi-normal operator if TTTTTT ** =   

ie, TT* commute with T

Let H be a Complex Hilbert Space. An operator T on H  is called Quasi-normal operator if 

( ) ( ) TTTTTTTT **** +=+

Let H be a Complex Hilbert Space. An operator T on H  is called 2 power-normal operator if 2**2 TTTT =

Let H be a Complex Hilbert Space. An operator T on H  is called Quasi-normal operator if 

( ) 2*22* TTTT =

II. RELATED WORK IN THE FIELD

The study of weighted composition operators on 2L spaces was initiated by R.K. Singh and D.C. Kumar 
[5]. During the last thirty years, several authors have studied the properties of various classes of weighted 

composition operator. Boundedness of the composition operators in )(Lp ∑ , )p1( ∞<≤ spaces, where 

the measure spaces are σ -finite, appeared already in [6]. Also boundedness of weighted operators on 
)E,X(C has been studied in [7]. Recently S. Senthil, P. Thangaraju, Nithya M, Surya devi B and D.C.

Kumar, have proved several theorems on n-normal, n-quasi-normal, k-paranormal, and (n,k) 

paranormal of composite multiplication operators on 2L spaces [8-12]. In this paper we investigate 

composite multiplication operators on )(L2 µ -space become Quasi-P-Normal operators and n-Power 

class Q operator have been obtained in terms of radon-nikodym derivative 0f . 

III. CHARACTERIZATION ON COMPOSITE MULTIPLICATION OF QUASI P NORMAL 
OPERATORS ON L2 SPACE

Let the composite multiplication operator ))(L(BM 2
T,u µ∈ .Then for 0u ≥

ffufMM)i( 0
2

T,uT,u =∗

)f(ETfTufMM)ii( 0
2

T,uT,u ⋅⋅=∗ 

1.1 Normal operator

1.2 Quasi-normal operator

1.3 Quasi p-normal operator [13]

1.4 Power -normal operator

1..5 Class Q-operator [14]

3.1 Proposition



)Tf(u)f()MC()f(M)iii( n
n

n
uTT,u

n == ,   
n32

n Tu...........Tu.Tu.Tuu =  

1
0T,u T)f(EfufM)iv( −∗ ⋅=   

n)1n(
00T,u

n
T)f(ET)fu(EfufM)v( −−−∗ ⋅⋅=   

where )1n(
0

2
0

1
0

)1n(
0 T)fu(E....T)fu(ET)fu(ET)fu(E −−−−−− ⋅=   

 
Theorem 3.1 

Let the T,uM  be a composite multiplication operator on )(L2 µ . Then the following statements are 

equivalent 

(i) T,uM  is Quasi p-normal operator 

(ii) ( ) )f(EuhTfTuuhTfuhEuhTfThTuTu 322122 +=+ −   

 
Proof: 

 For )(Lf 2 µ∈ , T,uM  is Quasi P-normal operator if  

             ( ) ( ) ( ) ( )fMMMMfMMMM T,u
*

T,uT,uT,u
*

T,uT,u
*

T,u
*

T,u +=+  and we have, 

( ) ( ) ( ) ( )fMMMfMMMfMMMM T,uT,u
*

T,u
*

T,uT,u
*

T,uT,uT,u
*

T,u
*

T,u +=+  

( ) ( )TfTuMMTfTuMM T,u
*

T,u
*

T,u
*

T,u  +=  

( )[ ] ( )[ ]1
T,u

*1
T,u TTufEuhMTTufEuhM −− +=   

[ ] [ ]fuhMfuhM 2
T,u

*2
T,u +=  

( ) ( ) 122 TfuhEuhTfuhTu −+=   

( ) 122 TfuhEuhTfThTuTu −+=   

 
Consider 

( ) ( ) ( ) ( ) fMMMfMMMfMMMM T,u
*

T,uT,u
*

T,uT,uT,u
*

T,u
*

T,uT,uT,u
* +=+  

( ) ( ) ( ) ( )1
T,uT,u

*
T,uT,u

* T)f(EuhMMTfTuMM −+=   

( ) ( ) TT)f(EuhTuMTTfTuTuM 1
T,u

*
T,u

*  −+=  

[ ] [ ] 1122 T)f(ETuThTuEuhTTfTuTuEuh −− +=   

)f(EuhTfTuuh 322 +=   

Suppose, T,uM  is Quasi P-normal operator. Then  

( ) ( ) ( ) ( )fMMMMfMMMM T,u
*

T,uT,uT,u
*

T,uT,u
*

T,u
*

T,u +=+  

( ) )f(EuhTfTuuhTfuhEuhTfThTuTu 322122 +=+⇔ −   

almost everywhere.  
 
Corollary 3.2 

The composition operator TC  on ))(L(B 2 µ  is Quasi p-normal operator  if and only if  
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( ) )f(EhTfhTfhuEhTfTh 21 +=+ −    almost everywhere.  

Proof: 

The proof is obtained from Theorem 3.1 by putting 1u = . 
 
Theorem 3.3 

Let the T,uM  be a composite multiplication operator on )(L2 µ . Then the following statements are 

equivalent 

(i)  T,u
*M  is Quasi p-normal operator 

(ii)    

       TfTuTuThT)f(E)u(E)h(ETuTh

T)f(ETuTuThT)f(Euh
212

222132





+=

+
−

−

  
             almost everywhere.  
 
Proof: 

 For )(Lf 2 µ∈ , T,u
*M  is Quasi P-normal operator if 

( ) ( ) ( ) ( ) fMMMMfMMMM T,uT,u
*

T,u
*

T,uT,u
*

T,uT,uT,u
* +=+  

and then we have  

( ) ( ) ( ) ( ) fMMMfMMMfMMMM T,u
*

T,uT,uT,u
*

T,uT,u
*

T,u
*

T,uT,uT,u
* +=+  

[ ] [ ]1
T,uT,u

1
T,uT,u

* T)f(EuhMMT)f(EuhMM −− +=   

[ ] [ ] TT)f(EuhTuMTT)f(EuhTuM 1
T,u

1
T,u

*  −− +=  

[ ] [ ])f(ETuThTuM)f(ETuThTuM T,uT,u
*  +=  

( ) [ ] T)f(ETuThTuTuT)f(ETuThTuEuh 1  += −  

T)f(ETuTuThT)f(Euh 222132  += −  

 
Consider 

( ) ( ) ( ) ( ) fMMMfMMMfMMMM T,uT,u
*

T,uT,u
*

T,u
*

T,uT,uT,u
*

T,u
*

T,u +=+  

( ) ( ) )TfTu(MMT)f(EuhMM T,u
*

T,u
1

T,u
*

T,u  += −  

( ) ( ) 1
T,u

11
T,u TTfTuEuhMTT)f(EuhEuhM −−− +=   

fuhMT)f(ET)u(ET)h(EuhM 2
T,u

211
T,u += −−−   

( ) T)fuh(TuTT)f(ET)u(ET)h(EuhTu 2211  += −−−  

TfTuTuThT)f(E)u(E)h(ETuTh 212  += −  

Suppose T,u
*M  is Quasi p-normal operator. Then  

( ) ( ) ( ) ( ) fMMMMfMMMM T,uT,u
*

T,u
*

T,uT,u
*

T,uT,uT,u
* +=+  

TfTuTuThT)f(E)u(E)h(ETuTh

T)f(ETuTuThT)f(Euh
212

222132





+=

+⇔
−

−

 

almost everywhere.  
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Corollary 3.4 

The composition operator T
*C  on ))(L(B 2 µ  is Quasi P-normal operator if and only if  

TfThT)f(E)h(EThT)f(EThT)f(Eh 1212  +=+ −−  

almost everywhere.  

Proof: 

The proof is obtained from Theorem 3.3 by putting 1u = . 

III. CHARACTERIZATIONS ON N POWER CLASS Q COMPOSITE MULTIPLICATION 
OPERATOS ON L2-SPACE 

Theorem 4.1 

Let the T,uM  be a composite multiplication operator on )(L2 µ . Then T,uM  is n power class Q composite 

multiplication operator if and only if   

                 
2n22n

n
1n1n1

n

2n22
n2

11

TfT)u(ETuThT)u(Euh

TfT)u(ET)u(ET)h(Euh
−−−−−

−−−−

= 


 

Proof: 
Now Consider,  

[ ]n2
n2T,u

2*
T,u

n2
T,u

2* TfuMfMM =  

where n242
n2 Tu.................TuTuu =  

( )( )1n2
n2T,u

* TTfuEuhM −=   

1n21
n2T,u

* TfT)u(EuhM −−=   

( ) 11n21
n2 TTfT)u(EuhEuh −−−=   

2n22
n2

11 TfT)u(ET)u(ET)h(Euh −−−−=   

 
Next we consider, 

( ) ( ) ( )fMMMMfMM T,u
n

T,u
*

T,u
n

T,u
*2

T,u
n

T,u
* =  

( ) ( )n
nT,u

*
T,u

n
T,u

* TfuMMM =  

where n2
n Tu.................TuTuu =  

( ) ( ) 1n
nT,u

n
T,u

* TTfuEuhMM −=   

( ) 1n1
nT,u

n
T,u

* TfT)u(EuhMM −−=   

( ) n1n1
nnT,u

* TTfT)u(EuhuM  −−=  

1n21n
n

nn
nT,u

* TfT)u(ETuThuM −−=   

( ) 11n21n
n

nn
n TTfT)u(ETuThuEuh −−−=   

2n22n
n

1n1n1
n TfT)u(ETuThT)u(Euh −−−−−=   

 
Given T,uM  is n power class Q composite multiplication operator 

( ) fMMfMM
2

T,u
n

T,u
*

T,u
n2

T,u
2* =⇔  
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                    2n22n
n

1n1n1
n

2n22
n2

11

TfT)u(ETuThT)u(Euh

TfT)u(ET)u(ET)h(Euh
−−−−−

−−−−

=

⇔




 almost everywhere.  

 
Corollary 4.2 

The composition operator TC  on ))(L(B 2 µ  is n power class Q  if and only if  

2n21n2n21 TfThhTfT)h(Eh −−−− =   

almost everywhere.  

Proof: 

The proof is obtained from Theorem 4.1 by putting 1u = . 
 

Theorem 4.3 

Let the T,uM  be a composite multiplication operator on )(L2 µ . Then T,u
*M  is n power class Q composite 

multiplication operator if and only if   

)2n2()3n2()2n()2n(2

)2n2()3n2(222

T)f(ET)hu(EThT)hu(EThTu

T)f(ET)hu(EThTuTu
−−−−−−−−

−−−−

= 


 

Proof: 

Now if we consider  

( )n2)1n2(
T,u

2
T,u

n2*
T,u

2 T)f(ET)uh(EuhMfMM −−−=   

( )( )TT)f(ET)uh(EuhTuM n2)1n2(
T,u  −−−=  

( ))1n2()2n2(2
T,u T)f(ET)uh(ETuThM −−−−=   

( ) TT)f(ET)uh(ETuThTu )1n2()2n2(2  −−−−=  

)2n2()3n2(222 T)f(ET)hu(EThTuTu −−−−=   

 
and we consider 

( ) ( ) ( ) fMMMMfMM T,u
n*

T,uT,u
n*

T,u
2

T,u
n*

T,u =  

( ) n)1n(
T,uT,u

n*
T,u T)f(ET)hu(EhuMMM −−−=   

( ) ( ) TT)f(ET)hu(EhuTuMM n)1n(
T,u

n*
T,u  −−−=  

( ))1n()2n(2
T,u

n*
T,u T)f(ET)hu(EThTuMM −−−−=   

( ) n)1n()2n(2)1n(
T,u TT)f(ET)hu(EThTuET)hu(EhuM −−−−−−−=   

( ))1n2()2n2()1n()1n(2)1n(
T,u T)f(ET)hu(EThTuT)hu(EhuM −−−−−−−−−−=   

( ) TT)f(ET)hu(EThTuT)hu(EhuTu )1n2()2n2()1n()1n(2)1n(  −−−−−−−−−−=  

)2n2()3n2()2n()2n(2 T)f(ET)hu(EThT)hu(EThTu −−−−−−−−=   

Since T,uM  is a Composite multiplication operator, by definition  

 ( ) fMMfMM
2

T,u
n*

T,uT,u
n2*

T,u
2 =⇔  

L
on

d
on

 J
ou

rn
al

 o
f 

R
es

ea
rc

h
 in

 S
ci

en
ce

: N
at

u
ra

l a
n

d
 F

or
m

al

30 © 2023 Great Britain Journal Press

Quasi-P-Normal and n-Power class Q Composite Multiplication Operators on the Complex Hilbert Space

Volume 23 | Issue 16 | Compilation 1.0



)2n2()3n2()2n()2n(2

)2n2()3n2(222

T)f(ET)hu(EThT)hu(EThTu

T)f(ET)hu(EThTuTu
−−−−−−−−

−−−−

=

⇔





 
almost everywhere.  
 
Corollary 4.4 

The composition operator T
*C  on ))(L(B 2 µ  is n power class Q if and only if  

)2n2()3n2()2n()2n(

)2n2()3n2(2

T)f(ET)h(EThT)h(ETh

T)f(ET)h(ETh
−−−−−−−−

−−−−

= 


 

almost everywhere.  

Proof: 

The proof is obtained from Theorem 4.3 by putting 1u = . 
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