

Scan to know paper details and
author's profile

Population Growth as a Biological Factor in Climate Change

Dimitrios Kampolis

Hellenic Open University

ABSTRACT

Climate change is a concept that is directly correlated with everyday life. Extreme weather events are occurring with greater intensity and frequency, most likely caused by an increase in the Earth's average temperature. Dozens of studies have been based on the anthropogenic contribution of the increase in greenhouse gases, which are identified as the main cause of global warming. But what is the contribution of the human species itself as a biological factor in this increase?.

Keywords: NA

Classification: LCC Code: QH541

Language: English

Great Britain
Journals Press

LJP Copyright ID: 925691
Print ISSN: 2631-8490
Online ISSN: 2631-8504

London Journal of Research in Science: Natural and Formal

Volume 23 | Issue 18 | Compilation 1.0

Population Growth as a Biological Factor in Climate Change

Dimitrios Kampolis

ABSTRACT

Climate change is a concept that is directly correlated with everyday life. Extreme weather events are occurring with greater intensity and frequency, most likely caused by an increase in the Earth's average temperature. Dozens of studies have been based on the anthropogenic contribution of the increase in greenhouse gases, which are identified as the main cause of global warming. But what is the contribution of the human species itself as a biological factor in this increase?

Author: School of Applied Arts and Sustainable Design, Hellenic Open University.

I. INTRODUCTION

A few years ago, in a BBC documentary for the bunkers of World War II in the English Channel, southeast England, a question was asked about the heating of the space and its source. Guide's answer was disarming, naming the only source of heat as the presence of thousands of people inside the bunker. Bunker's system is a small closed system in which, however, the biological presence of human had left its thermal footprint.

The purpose of this study is to prove the possible contribution of global population to a much larger closed system, that of earth's atmosphere, in temperature increase and in atmospheric composition.

1.1 Methodology

1.1. Human Body

Human body produces heat through metabolic activities. An average human body consumes 2000 Calories per day ($1\text{ Cal} = 4,184 \times 10^3\text{ joules}$) which is equal to $8,37 \times 10^6\text{ Joules}$ per day. Since most of this energy escapes body as heat, it implies that an average body emits $348,000\text{ J/hr}$ which is equal to $\sim 100\text{ Watts}$ [1] [2].

Therefore, the energy produced by a human in a year is:

$$8.37 \times 10^6 \times 365 \text{ days} = 3,055 \times 10^9 \text{ J/yr} \quad (1)$$

1.1.2 Conversion of Energy Into Temperature

To convert energy to temperature it is sufficient to divide it by the mass of the heating medium (atmospheric air in kg) and divide the result by the C_p of the air which is $\sim 1006\text{ J/kg oC}$.

Since 1kg of atmosphere requires 1006 J to rise $T = 1$ degree Celsius, the total mass of the atmosphere requires:

$$5,181 \times 10^{21} \text{ J} \text{ to rise } T = 1 \text{ degree Celsius} \quad (2)$$

The mass of atmosphere is:

$$\sim 5,15 \times 10^{18} \text{ kg} \quad (3)$$

(1),(2) result to the annual thermal footprint of a human body in Earth's atmosphere:

$$0,589 \times 10^{-12} \text{ degrees Celsius} \quad (4)$$

1.2 World population growth

World population is increasing during last decades [5].

1960: $3,035 \times 10^9$

1970: $3,7 \times 10^9$

1980: $4,458 \times 10^9$

1990: $5,327 \times 10^9$

2000: $6,143 \times 10^9$

2010: $6,956 \times 10^9$

The population growth from 1960 to 2010 (fig.1) is:

$$3,921 \times 10^9 \text{ persons} \quad (5)$$

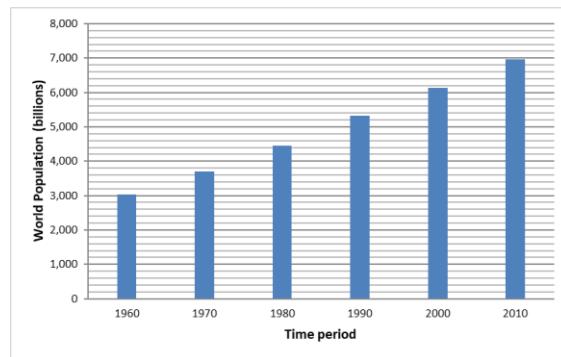
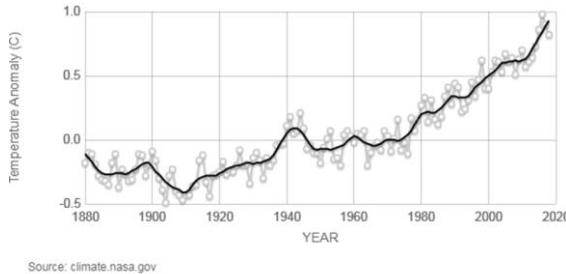



Fig. 1: Global population growth from 1960 2010.

1.3 Global Temperature Increase

Global temperature is increasing last decades with a temperature increase of ~ 0.65 degrees Celsius (1960: ~ 0.0 degrees Celsius, 2010: ~ 0.65 degrees Celsius (fig.2).

Fig. 2: Global temperature increase from 1890-2018.

Therefore from (1),(4),(5) we calculate the contribution of world population over a period of 50 years in temperature increase which is:

$$0,58 \times 10^{-1} \text{ degrees Celsius} \sim 0.06 \text{ degrees Celsius} \quad (6)$$

This value constitutes a minimum ~9% of the total temperature increase during period 1950-2010 and by reduction to actual daily action conditions [6] (~170Watts), this contribution reaches a ~15%

1.4 Atmosphere

Human body consumes and produces several gases.

1.4.1 O₂

The average human breath is ~7,5lt air/min [3] resulting to:

$$3,942 \times 10^6 \text{ lt/yr} \quad (7)$$

21% of this volume is O₂ resulting to:

$$0,828 \times 10^6 \text{ lt/yr} \quad (8)$$

During a breath 3-6% of O₂ is retained -we assume an average of around 4% (9)

(7),(9) result to the volume of O₂ removed from atmosphere by the respiratory system of an average human:

$$0,033 \times 10^6 \text{ lt/yr} \quad (10)$$

Therefore from (5),(10) we calculate the volume of O₂ removed from atmosphere by the respiratory system of population growth over 50 years:

$$3,24 \times 10^{15} \text{ lt} \quad (11)$$

$$\text{One lt of O}_2 \text{ weights } 1,43 \times 10^{-3} \text{ Kg} \quad (12)$$

(11), (12) result to the mass of O₂ removed from atmosphere by the respiratory system of population growth over 50 years:

$$4,64 \times 10^{12} \text{ kg} \quad (13)$$

According to measurements [7], the natural decrease in O₂ is 4ppm per year (Fig.3) which results to:

$$5,64 \times 10^{-9} \text{ kg/l} \quad (14)$$

(13), (14) result to the mass of O₂ removed from atmosphere due to natural reasons over 50 years:

$$1,452 \times 10^{15} \text{ kg} \quad (15)$$

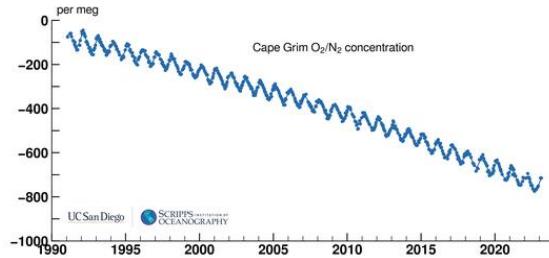


Fig.3: O₂ decrease from 1990-2023

1.4.3 CH₄

An average human produces about 0,35lt/day [4] which results to:

$$127,75 \text{ lt/yr} \quad (16)$$

(5), (16) result to the volume of CH₄ produced by the population growth over 50 years:

$$250,4 \times 10^9 \text{ lt} \quad (17)$$

$$\text{One lt of CH}_4 \text{ weighs } 0,6682 \times 10^{-3} \text{ Kg} \quad (18)$$

(17), (18) result to the mass of CH₄ produced by the population growth over 50 years:

$$0,167 \times 10^9 \text{ kg} \quad (19)$$

Cows produce about 250-500lt/day (average=325lt) resulting to:

$$0,118 \times 10^6 \text{ lt/yr} \quad (20)$$

The population of cows is

$$1,5 \times 10^9 \quad (21)$$

(18),(20),(21) result to the mass of CH₄ produced by the cow population over 50 years:

$$0,119 \times 10^{15} \text{ kg} \quad (22)$$

1.4.4 Atmospheric pressure and sea level

Average Pressure is 1013.25hPa and it is correlated to the mass of atmosphere ($5,15 \times 10^{18} \text{ kg}$).

Human respiratory system has removed mass of O₂ affecting MSL pressure in an order of $0.9 \times 10^{-3} \text{ hPa}$ over the last 50 years while natural O₂ decrease has affected MSL pressure in an order of 0.28 hPa .

Human digestive system has produced mass of CH₄ affecting MSL pressure in an order of $0.033 \times 10^{-6} \text{ hPa}$ over the last 50 years while CH₄ increase due to cow population has affected MSL pressure in an order of 0.023 hPa .

In total the change in MSL pressure is $\sim 0.258\text{hPa}$ (23)

1hPa atmospheric change = 10mm of sea level change

II. RESULTS

The contribution of world population in temperature increase is $\sim +0.06\text{--}0.150\text{C}$ and to the composition of atmosphere due to human respiration is $-4.64 \times 10^{12}\text{Kg}$ of O_2 and $+16.73 \times 10^6\text{ Kg}$ of CH_4 (50 years period) (Table 1).

Table 1: Results

	Heat ($^{\circ}\text{C}$)	O_2 (Kg)	CH_4 (Kg)
Human	+0.06-0.12	-4.64×10^{12}	$+0.167 \times 10^9$
Total	+0.65	$-1.452,5 \times 10^{12}$	$+118,8 \times 10^{12}$

III. CONCLUSIONS

The study results to a strong contribution of world population to temperature increase (9-15% of the total temperature increase during the period 1960-2010) while the contribution in O_2 declination is very small (0.3% of current declination), and in CH_4 increase is negligible (comparing to current increase).

Further work is needed to investigate the contribution of O_2 and CH_4 in changes of mean atmospheric pressure and mean sea level.

REFERENCES

1. S. Matthew, *Human Body Heat as a Source for Thermoelectric Energy Generation*(Stanford University, 2006)
2. R. Riemer, A. Spahiro, *Biomechanical energy harvesting from human motion: Theory, state of the art, design guidelines, and future directions*(Journal of NeuroEngineering and Rehabilitation), vol.8, article 22, (2011)
3. J.Pleil, M.Wallace, M.Davis,C.Matty, *The physics of human breathing: flow, timing, volume, and pressure parameters for normal, on-demand, and ventilator respiration*(Journal of Breath Research), vol.15, number 22, (2021)
4. D. Polag,F. KepplerWallace, *Global methane emissions from the human body: past, present and future*(Atmospheric Environment), vol. 214,116823(2019).
5. <https://www.worldometers.info/world-population/>
6. <https://www.weforum.org/agenda/2020/12/how-people-spend-their-time-globally/>
7. <https://scrippso2.ucsd.edu/>

This page is intentionally left blank