

Scan to know paper details and
author's profile

Mass Stability & Astrotheology

Paul T E Cusack, BScE, Dule

ABSTRACT

Simon's 12 th problem is the list of unsolved math-physics problems on Wikipedia states that we need to establish molecular structure from first principles. In this paper, that is what we do; from the individual atoms to the periodic table, to the benzene ring, we see the energy is always conserved. It is assumed that the reader is familiar with AT Math. If there was any doubt that Astro theology is the theory that explains the physical universe (as well as the spiritual), they can be laid to rest after reading this paper.

Keywords: simon's 2000 list of unsolved math and physics problems; periodic table, oganessian; benzene; at math.

Classification: LCC: QC170-197

Language: English

Great Britain
Journals Press

LJP Copyright ID: 925642
Print ISSN: 2631-8490
Online ISSN: 2631-8504

London Journal of Research in Science: Natural and Formal

Volume 23 | Issue 14 | Compilation 1.0

© 2023. Paul T E Cusack, BScE, Dule. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 4.0 Unported License <http://creativecommons.org/licenses/by-nc/4.0/>, permitting all noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Mass Stability & Astrotheology

Paul T E Cusack, BScE, Dule

ABSTRACT

Simon's 12 th problem is the list of unsolved math-physics problems on Wikipedia states that we need to establish molecular structure from first principles. In this paper, that is what we do; from the individual atoms to the periodic table, to the benzene ring, we see the energy is always conserved. It is assumed that the reader is familiar with AT Math. If there was any doubt that Astro theology is the theory that explains the physical universe (as well as the spiritual), they can be laid to rest after reading this paper.

Keywords: simon's 2000 list of unsolved math and physics problems; periodic table, oganessian; benzene; at math.

I. INTRODUCTION

Simon's 12 th problem in the 2000 list:

Is there a mathematical sense in which one can justify current techniques for determining molecular configurations from first principles? Source: Wikipedia.

There are two forces in nature, one that draws together and the other that pushes apart. They are gravity and coulombic forces. We will show that the Mass in the universe is the result of these two opposing forces working against each other.

$$6.67/1.602=0.24017$$

$$GMP \Rightarrow t^2-t-1=E$$

$0.2401^2-0.2401-1=1.18249$ =Mass of the Period Table of the elements.

The 118th element is Og.

$$118/118249=-0.99789$$

There are 32 elements in the 7th Period, or 32 elements. The Mass of an electron =5.1099mEv

$$-0.99789/(32 \times 5.1099)=6.10267$$

Orbitals

$$\{2+8+8+18+18+32+32\} \times 5.1099=602.9682=1/98.8 \approx 99$$

$$\text{Mass H}+=1.0079 \rightarrow \text{Mass Og}=294$$

$$\Delta M=292.99 \approx 293$$

$$292-392=198=t$$

$$198-981=693=\ln 2=M$$

$$693-936=297=c$$

$$297-792=495=E$$

$$495-549=99=E$$

99-99=0 Convergent

198 x 693 x 297 x 495x99=1997~2

t=2

GMP $\Rightarrow 2^2-2-1=E=1$

Oganessian #118

118 p+ x938.27208816

118 e- x 5.1099

118.4(943.3819)=111696+1/2=1.617.46 \approx 1.618 Golden Mean

GMP

1.618²-1.618-1=-76

1-0.76=0.24 \Rightarrow 1.602/6.67

Covalent radius for Og:

r=157=π/2

r=d=s=E × t=|E||t|sin θ

E=1/sin θ=1/F

$\alpha=\omega^2 R=(d\theta/dt)R$

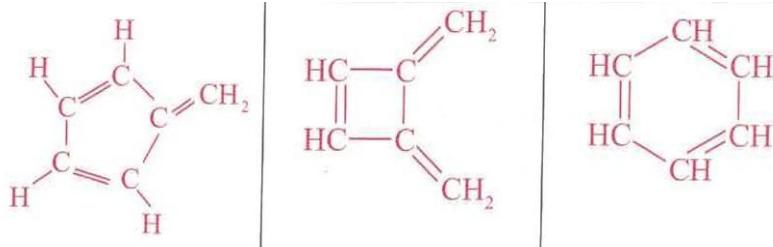
$\omega^2=157^2$

$=(157)^2(293)(3/8)$
 $=271\approx e^1=E$

Eigenvector

$\sqrt{\sqrt{3}}=1.316=1/0.759835=24.01$

$F=2M\omega^2$
 $=2(292.99)(\pi/2)^2=1444$


$E=1/F=1/1444=692=Ln1998=M$ when t=2

The image shows a periodic table of elements. In the top left, there is a box for Hydrogen (H) with the symbol, name, atomic number (1), and atomic mass (1.008). In the top right, there is a box for Aluminum (Al) with the symbol, name, atomic number (13), and atomic mass (26.982). The rest of the periodic table is shown below these two elements.

H Hydrogen 1.008	Al Aluminum 26.982
Li Lithium 6.941	Be Boron 9.013
Na Sodium 22.990	Mg Magnesium 24.305
K Potassium 39.098	Ca Calcium 40.078
Rb Rubidium 85.468	Sr Strontium 87.62
Cs Cesium 132.905	Ba Barium 137.323
Fr Francium 223.020	Ra Radium 226.026
Sc Scandium 44.959	Ti Titanium 47.88
Zr Zirconium 88.906	V Vanadium 50.942
Nb Niobium 91.224	Cr Chromium 51.916
Mo Molybdenum 92.008	Mn Manganese 54.938
Tc Technetium 95.95	Fe Iron 55.845
Ru Ruthenium 101.07	Co Cobalt 58.932
Rh Rhodium 102.908	Ni Nickel 58.693
Pd Palladium 104.42	Cu Copper 63.546
Ag Silver 107.868	Zn Zinc 65.38
Cd Cadmium 112.414	Ga Gallium 69.723
In Indium 114.814	Ge Germanium 72.031
Sn Tin 115.171	As Arsenic 74.122
Sb Antimony 121.765	Se Selenium 78.771
Te Tellurium 127.6	Br Bromine 79.924
I Iodine 125.924	Kr Krypton 83.780
Xe Xenon 131.294	Rn Radon 222.018
La Lanthanum 57.926	Ce Cerium 140.114
Ac Actinium 227.028	Pr Praseodymium 140.908
Th Thorium 232.034	Nd Neodymium 144.243
Pa Protactinium 231.039	Pm Promethium 144.913
U Uranium 238.028	Sm Samarium 150.36
Np Neptunium 237.548	Eu Europium 151.064
Pu Plutonium 244.064	Gd Gadolinium 157.25
Pu Plutonium 243.061	Tb Terbium 158.923
Am Americium 247.061	Dy Dysprosium 162.500
Cm Curium 247.061	Bk Berkelium 168.937
Bk Berkelium 247.076	Cf Californium 169.080
Es Einsteinium 257.055	Fm Fermium 169.055
Fm Fermium 257.055	Md Mendelevium 169.258
Mc Moscovium 258.1	No Nobelium 169.258
Lv Livermorium 259.1	Lu Lutetium 174.967

Figure 1: Periodic Table of the elements showing Og in lower right corner

We now use Benzene, a prolific molecule in organic chemistry to show why the atoms come together to conserve energy.

Proposed by August Kekulé in 1865

Figure 2: Benzene proposed structures. Source Barron's E Z Chemistry

$$3 \text{ C-C } 3(710) = 2130$$

$$3 \text{ C-C } 3(607) = 1821$$

$$6 \text{ C-H } 3(337.2) = 2023.2$$

$$\text{SUM} = 59742$$

$$\text{PE} + \text{Mc}^2 =$$

$$\text{M} = 6(12) + 6(1) = 78$$

$$\text{PE} = 78(2.9979)^2 = 4222.3$$

$$\text{TE} = \text{PE} + \text{BDE} = 59742 + 4222.3 = 10196$$

But the molecules all have the same number of each bond type.

Caron needs 4 e-

$$28 \times 1.602 = 4485.6$$

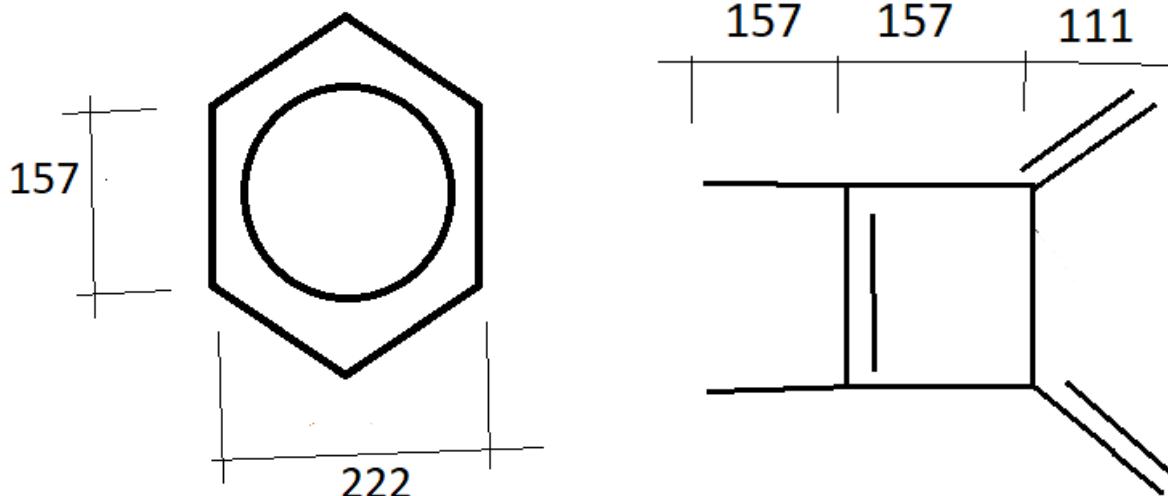
$$M = L n \ t = 4485.6$$

$$T = 1.50 = 1/G$$

$$15 \text{ e-} \text{ shared} \times 1.602 = 24.03 = 1.602 \times 6.67$$

So what is the difference for the Benzene ring? It is that 3 electrons are shared between 6 Carbons. So, energy is minimized:

$$3e-/6 \times (1.602) + 6(1.602) + He - 6(1.602) = 20.025$$


$$e^{20.025} = 2.99698 = c = 2.997 \sim 3$$

$t = c = 3$ = eigen value $\square E = 5 \square y = y'$ for the eigen function.

For the middle architecture:

$$3 \text{ e-} + 6 \text{ e-} + 6 \text{ e-} = 20.025 \text{ same}$$

They are both symmetric molecules. Space must be conserved which is based on the cross product of energy and time(KE).

Figure 3: Two architectures for C₆H₆. The circle represents 3 electrons shared

$$s = \text{Ext} = E \ t \ \sin \theta$$

$$s = t$$

$$E = 1 / \sin \theta = 20.025$$

$$\Theta = 28.6 \text{ deg} = 0.5 \text{ rads}$$

$$\text{GMP: } 0.5^2 - 0.5 - 1 = -1.25 = \text{Emin of the GMP}$$

Area of the Benzene Ring:

$$S = (157)^2 + (\pi/4)^2 (\pi/4)^2 / 1/2$$

$$= 375 = 1/F = E \text{ where } F = SF = 8/3$$

Area of the middle structure:

$$157 + 157 + 111 = 425$$

$$111 + 157 + 111 = 379$$

Area -804

804

375 by 46.6% So the Benzene structure minimizes space. So that is why the Benzene ring is selected from first principles using AT Math.

II. CONCLUSION

The Mass of the universe are established from first principles of Astro theology. The joining up of atoms of elements follows the laws of the conservation of energy and space using coulombic forces.

ACKNOWLEDGEMENTS

I'd like to acknowledge Dr Owen Dunn of St Malachy's High School who taught me chemistry in 10 months. And Prof Carl Thompson at UNB Saint John who taught me Organic Chemistry for Health Sciences over a summer course. I also thank the government of New Brunswick for paying for my primary and secondary education, and the people of Canada for paying me a pension while I work at research. Finally, I thank my parents for educating me at home and allowing and encouraging me to learn while they worked to support us. Above all, I thank God for letting me push His pen; yet the many mistakes are all mine.

REFERENCES

1. Hathaway., BA., *Barron's E-Z Chemistry*. Barron's 2011.

This page is intentionally left blank