

CrossRef DOI of original article:

1 Scan to know paper details and author's profile

2

3 *Received: 1 January 1970 Accepted: 1 January 1970 Published: 1 January 1970*

4

5 **Abstract**

6

7 *Index terms—*

8 **1 I. INTRODUCTION**

9 Most organic compounds containing nitrogen (N-heterocyclic), sulfur? long carbon chain, or aromatic, and
10 oxygen atoms are used as a corrosion inhibitors. Among them? organic compounds have many advantages such
11 as large molecular size, soluble in water, availability, cheap? low toxicity? easy for using, and easy production [1].
12 Natural heterocyclic mixes have been utilized for the corrosion inhibitor on the C-steel [2], copper [3], aluminum
13 [4], and various metals in various aqueous medium [5]. Adsorption of the drug molecules on the metal surface
14 facilitates its inhibition [6]. Heterocyclic mixes have demonstrated more hindrance effectiveness, for C-steel in
15 both HCl [7] and H 2 SO 4 arrangements [8], such as the medications are used inhibitors, that can compete
16 favorably with green inhibition of corrosion, and the most medications can be synthesized from natural products.
17 Selection of some medication as corrosion inhibitors due to the followings: (1) drug molecules contain oxygen,
18 sulfur, and nitrogen as active sites, (2) it is environmentally friendly furthermore vital in organic responses, (3)
19 drugs can be easily produced, and purified, (4) nontoxic compering organic inhibitors. Some medications have
20 been investigated to be great corrosion inhibitors for metals such as Biopolymer gave 86% inhibition efficiency
21 (IE) for Cu in NaCl [9], pyromellitic diimide linked to oxadiazole cycle gave 84.6% IE for mild steel (MS) in HCl
22 [10], 2-mercaptopbenzimidazole gave 82% IE for MS in HCl Antidiabetic Drug Janumet gave 88.7% IE for MS in
23 HCl [11]. Januvia gave 79.5 % IE for Zn in HCl [12], Cefuroxime Axetil gave 89.9% IE for Al in HCl [13], Phenytion
24 sodium gave 79% for MS in HCl [14], Aspirin gave 71% IE for MS in H 2 SO 4 [15], Septazole gave 84.8% IE for Cu
25 in HCl [16] and London Journal of Research in Science: Natural and Formal using Chloroquine diphosphate gave
26 80% IE for MS in HCl [17]. Study on Structural, Corrosion, and Sensitization Behavior of Ultrafine and Coarse
27 Grain 316 Stainless Steel Processed by Multiaxial Forging and Heat Treatment [18]. Investigating the corrosion
28 of the Heat-Affected Zones (HAZs) of API-X70 pipeline steels in aerated carbonate solution by electrochemical
29 methods [19]. Predictions of corrosion current density and potential by using chemical composition, and corrosion
30 cell characteristics in microalloyed pipeline steels [20]. Predictions of toughness, and hardness by using chemical
31 composition, and tensile properties in microalloyed line pipe steels [21].

32 The scope of this article is used Egy-dronate drug as save corrosion inhibitor for CS in the acid medium by
33 electrochemical method, and to elucidate the mechanism of corrosion inhibition.

34 **2 II. EXPERIMENTAL**

35 **3 Metal samples**

36 The sample of CS was used in this study that have the chemical composition of the metal sample was determined
37 by using an emission spectrometer, with the aid of ARL quant meter (model 3100-292 IC) and listed in the Table
38 1.

39 **4 Preparation of metal sample (working electrode)**

40 Working electrode having the surface area, which, exposed to corrosion media is (1Cm 2) cross-section area, and
41 the rod was weld from one side to a copper wire used for electric connection. The sample was embedded in a
42 glass of just a larger diameter than the sample. Epoxy resin was used to stick the sample to glass tube. These
43 also ensured that a constant cross-sectional area would be exposed to corrosive media, through the experiments.

12 POTENTIODYNAMIC POLARIZATION TECHNIQUE

44 The sample was scraped with SiC polisher sheet coarseness sizes (400, 800, and 1200), and clean with (CH₃)₂CO.
45 Then, clean a few times with bi-distilled water, and dried by soft tissue. Finally, the polishing of sample surface
46 become like a mirror bright, just before immersion in the electrolyte cell.

47 5 Egy-dronate drug as an inhibitor

48 Egy -dronate drug is mixed inhibitors which consists of two substances Alendronic acid, and Cholecalciferol which
49 describing in Table 2.

50 6 Solution

51 The aggressive solution, 0.5 M H₂SO₄ was prepared by dilution of analytical grade (98 %) H₂SO₄ with
52 bi-distill water. The concentrations range of the inhibitor were used between 50 ppm to 250 ppm.

53 7 Potentiodynamic polarization measurement

54 Cathodic, and anodic polarization technique were used for determination the rate of corrosion, by using the
55 electrochemical cell that consists of three electrodes [22]:

56 1-A platinum electrode (as an auxiliary electrode).

57 2-Calomel electrode (as the reference electrode). (Hg (l) + 2 Cl⁻ (s) , KCl (aq) sat,), E equal -241 mV
58 at 25 o C. 3-The working electrode is the CS sample. The electrolytic cell was filled with 100 ml of the solution,
59 and the sample was immersed in the medium. Then, the cathodic polarization was firstly measured, and after
60 reverse the current direction the anodic polarization was measured.

61 8 Calculation of the rate of corrosion

62 The anodic, and cathodic polarization were measured by using the over-potential cells. The corrosion current
63 density (I_{corr}), the corrosion potential (E_{corr}), and the corrosion rates (R) are calculated according to the
64 Tafel extrapolation method [23].

65 It is clear that the line representing Tafel region refer by either cathodic, and anodic polarization curve, to
66 obtain the corrosion potential (E_{corr}), and corrosion current density (I_{corr}), which can be used to calculate
67 the rate of corrosion by the equation (1) [24][25].

68 Corrosion rate (mpy) = 0.1288 I (mA/cm²) Eq.wt /d (g/cm³)

69 Where, Corrosion rate (mpy) = mils per year, I = the corrosion current density, d = Specimen density, and,
70 Eq.wt = Specimen equivalent weight.

71 The corrosion current density (I_{corr}), corrosion potential (E_{corr}), and corrosion rate are recorded in Table
72 5.

73 9 Applied Evans technique

74 The Evans diagrams give good and suitable interpretation of the electrode-electrolyte interface reactions. We
75 can use the following definitions for the items of Evans diagram as follows [26]:

76 1-?? e,m and ?? e,so are anodic and cathodic potentials at equilibrium at the electrode-electrolyte interface
77 (at I = the exchange current i₀) respectively, where ??e,x = E_{e,x} ± a??E_c - E_a a ??i=i₀; m= metal, so=

78 solution, 2-?? = ?? corr = the relative corrosion potential determined from the position of the intersection of

79 the two curves (de-electronation and electronation processes) where I considered as the i_{corr}.

80 London Journal of Research in Science: Natural and Formal These data can be used for kinetic calculations,
81 and to know, which additive is favorable, or which is faster to the electrode surface at the same conditions. It
82 can be used for studying the inhibition mechanism.

83 10 Surface Examinations [27]

84 The morphology of the CS surface is used for the analysis by examination nature of the surface, and study of
85 changing that appeared on the metal surface. The specimens were prepared by abraded mechanically by using
86 different emery papers up to 1200 grit size, and immersed in 0.5 M H₂SO₄ (blank) then with 250 ppm of Egy-
87 dronate at room temperature for one day (24 h). Then, after that the specimen was washed gently with distilled
88 water, dried carefully, and take care to the system of surface examinations by Fourier Transforms infrared (FT-
89 IR), scanning electron microscope (SEM), energy dispersive x-ray (EDX), and atomic force microscope (AFM).

90 11 III. RESULT AND DISCUSSION

91 12 Potentiodynamic polarization technique

92 Study the polarization of the different medium, and with added the various concentrations of Egy-dronate as a
93 corrosion inhibitor.

94 13 Dissolution of CS sample in 0.5N H₂SO₄ at different 95 temperatures

96 Results of the anodic, and cathodic polarization processes for the CS sample in 0.5M H₂SO₄ at different
97 temperatures in the absence of Egy-dronate are shown in Figure 1, and Table 5. It was obvious that the
98 corrosion current density (I_{corr}) is increased as the temperature increased, and the corrosion potential (E_{corr})
99 is slightly shifted to the more positive value. The polarization processes are started with a potential between
100 about 547, and 553 mV. London Journal of Research in Science: Natural and Formal The positive potential
101 is increased by anodic polarization, i.e., increase the dissolved component while that the potential decreased
102 by cathodic polarization, i.e., increase the undissolved components. The dissolved component is formed as the
103 following chemical equations [28]:
$$\text{Fe}^{2+} + 2e \rightarrow \text{Fe}^{2+} + 2\text{H}_2\text{O} \rightarrow \text{HFeO} - 2 + 3\text{H}^+$$

104 Where HFeO - 2 Di-hypo-ferrite, green.

105 In the same time occurs as
$$\text{HFeO}^{2-} + \text{H}^+ \rightarrow \text{Fe}(\text{OH})_2$$

106 Where the undissolved hydrated, and the (FeO) can be considered. So that at anodic polarization in the
107 presence of H₂SO₄, the iron is dissolved, and formed ferrous sulfate as:
$$\text{Fe}^{2+} + \text{H}_2\text{SO}_4(\text{aq}) \rightarrow \text{FeSO}_4(\text{aq}) + 2\text{H}^+$$

108 And the cathodic processes in the presence of H₂SO₄ occurred as:
$$2\text{H}^+ + 2e \rightarrow \text{H}_2$$
 hydrogen evolution ii)
$$\text{O}_2(\text{g}) + 4\text{H}^+ + 4e \rightarrow 2\text{H}_2\text{O}(\text{l})$$
 reduced of oxygen

109 The hydrogen ions adsorbed on the metal surface where an electrochemical reaction takes place in the presence
110 of O₂ as:
$$\text{M} + \text{H}_3\text{O}^+ + e \rightarrow \text{M}^{2+} + \text{H}_2\text{O}$$

111 Where three steps can be done as:
a. 2M²⁺ + 2H₂(g) → 2M + H₂(g)
b. M²⁺ + H₂O → M + H₂(g)
c. 4M²⁺ + 4H₂O → 4M + 2H₂(g)

112 London Journal of Research in Science: Natural and Formal

113 The positive potential is increased by anodic polarization, i.e. increase the dissolved component while that
114 the potential decreased by cathodic polarization, i.e., increase the undissolved components.

115 According to the following equation:
$$\text{Fe}^{2+} + 2e \rightarrow \text{Fe}^{2+} + 2\text{H}_2\text{O} + 2e \rightarrow \text{H}_2(\text{g}) + 2\text{OH}^-$$
 anodic reaction
116 cathodic reaction

117 In total process:
$$\text{Fe} + \text{H}_2\text{O} \rightarrow \text{Fe}^{2+} + 2\text{OH}^- \rightarrow \text{Fe}(\text{OH})_2$$

118 In the bulk the ferrous hydroxide dissolved as:
$$2\text{Fe}(\text{OH})_2 \rightarrow 2\text{FeOH}^{2+} + 2\text{OH}^-$$
 And,
$$2\text{FeOH}^{2+} + 2e \rightarrow 2\text{FeO} + \text{H}_2$$

123 14 Effect of add different concentration of Egy-dronate inhibitor

124 The anodic, and cathodic polarization of the CS in a mixed solution 0.

125 15 Potentiodynamic polarization technique

126 It is obvious that the presence of different concentrations are shifted the potentials to low positive values, both
127 anodic potential E_a, and cathodic potential E_c are shifted to low positive values [29]. The anodic current (i_a)
128 slightly decreased (shifted to low values) while the cathodic (i_c) decreased, and shifted to low values too,
129 that are shown in Figure 3. The values of the corrosion potential (E_{corr}), the corrosion current density (I_{corr}),
130 and the rate of corrosion in (mpy) are given in Table 5. London Journal of Research in Science: Natural and
131 Formal 3, it is clear that [30]:

132 The parameters (E_{corr}), (i_{corr}), (m_{corr}), (i_a), (i_c / I_a), and (i_c / I_c) are decreased with
133 increasing the temperatures. In the other hand the (E_{corr}), From the above results that are illustrated by Evans
134 diagrams for the electrode-electrolyte interface of the CS. It is clear that:

135 In the presence various concentrations of the Egy-dronate under polarization technique. At low Egy-dronate
136 concentrations the de-electronation potential shifted toward more positive values (positive direction), this means
137 that the polarization are affected the donor functional groups of the Egy-dronate molecules, oriented them to the
138 electron sink area on the electrode surface, and slow done the dissolution of the metal. The size of the Egy-dronate
139 molecules allow to cover somewhat area of electron source, so that the electronation potential of acceptor splices
140 shifted to low positive value. It is observed that the shifted of the de-electronation potential is larger than the
141 shifted of the electronation potential. In the other hand the Egy-dronate concentrations increasing the shift of
142 the electronation potential i.e., the Egy-dronate molecules are covered more electron source area on the corroded
143 metal surface with increasing Egy-dronate concentrations, and the electronation potential shift is being that the
144 larger than the de-electronation potential shift, which indicating that the slightly formation of multilayer, which
145 adsorbed on the metal surface. It is clear that the polarization process affects the orientation, and the adsorption
146 of the inhibitor molecules, so that both the metal dissolution, and the hydrogen evolution are slowing down more.

147 London Journal of Research in Science: Natural and Formal

148 16 Effect of temperature on corrosion behavior

149 The results of the anodic, and cathodic polarization processes for the CS sample in the corrosive medium are
150 listed in Table 5. The E_{corr}, I_{corr}, and the rate of corrosion were increased with the temperatures increased
151 at the same concentration 150 ppm of Egy-dronate Figure 5.

152 **17 Potentiodynamic polarization technique**

153 The behavior of the anodic, and cathodic polarization are indicated that the rate of corrosion of the CS are
154 stimulated by increasing of of temperatures will be enhance the rate of diffusion of hydrogen (H^+) ion to
155 the metal surface beside the ionic mobility, and increasing the conductivity of the electrolyte. Also, at lower
156 temperatures, absorbed hydrogen atoms which are blocked on the cathodic areas, otherwise the increasing the
157 temperatures of the solution, hydrogen will be disrobed from the cathodic area, i.e., the corrosion rate was
158 increased.

159 **18 1-Apply Evans technique**

160 From the Evans diagrams in the presence of 150 ppm Egy-dronate, which are viewed in Figure 6, and the Evans
161 diagram parameters are listed in Table 4, it is clear that:

162 The parameters (corr), (m), (a), (c), (a / I_a), and (c / I_c) are decreased with
163 increasing the temperatures. In the other hand (corr), (s), (c), (a / I_a), (c / I_c) are increased the
164 temperatures.

165 From the results that illustrated in Evans diagrams for the electrode-electrolyte interface it is clear that:

166 The effect of the temperature on the behavior of the Egy-dronate as an inhibitor of the CS corrosion at 150
167 ppm is discussed. It is obvious that both the electronation, and the de-electronation potentials are shifted to
168 negative, and positive direction respectively by increasing the temperature. This behavior clarify that the metal
169 surface divided the electron sink, and electron source area to the small parts, so that the size of the Egy-dronate
170 sufficient to cover more electron source area be side electron sink.

171 **19 Inhibition efficiency (IE %)**

172 The Egy-dronate compound possess eight active centers like nitrogen, oxygen atoms, and π -bonding are acted
173 as a donor centers. As a result of the restricted un-plainer structure of the Egy-dronate, and some active sites
174 are acted as a donor centers. These centers are oriented, and adsorbed on anodic sites (iron carbide), due to
175 the Egy-dronate molecule is attached to the anodic site, and covered somewhat of cathodic area, so that the
176 corrosion rate in the presence of Egy-dronate is regarded anodic-cathodic control. The inhibition efficiency (IE
177 %) is calculated as following [31].

178 **20 $IE\% = [(I_{corr} - I'_{corr})/I_{corr}] \times 100$ (1)**

179 Where I_{corr} , and I'_{corr} are the corrosion current densities in the absence, and the presence of an inhibitor
180 respectively. The inhibition efficiency data is listed in Table7. It is obvious that the IE % for the CS sample
181 increases with increasing the Egy-dronate concentrations.

182 Plot IE % against logarithm of the concentrations of Egy-dronate inhibitor ($\log [In]$). It is obvious that
183 the increases of the IE % with the temperatures of the medium are increased, this behavior is indicated that
184 chemisorption's occurs. See Figure 7. The extra part in the curvatures that obtained from polarization technique
185 like f shape indicating that the multilayer proceed from the orientation of functional group under polarization
186 where causes second chemical adsorption over the first layer [32].

187 **21 Scanning Electron Microscopy (SEM)**

188 The micrographs are obtained for CS specimens in the nonexistence, and in the existence of 250 ppm of Egy-
189 dronate drug after exposure for immersion one day in corrosive medium $0.5\text{ M H}_2\text{SO}_4$. It is clear that CS
190 has suitable surfaces for corrosion attack in the blank or corrosive medium only Figures ?? a, b and ???. When
191 the Egy-dronate is existence in the corrosive medium, the morphology of CS surfaces is quite different from the
192 previous one, and the specimen surface was smoother. It is clear that the formation of a thin film layer adsorbed
193 on the metal surface, which distributed in a disorder way overall surface of the CS [33]. This may be due to the
194 adsorption of the Egy-dronate on the CS surface, and made up the passive film in order to block the active site
195 present on the CS surface. The Egy-dronate molecule is interacted with active sites of CS surface, resulting the
196 decreasing contact between CS, and the corrosive medium. From the above sequentially Egy-dronate is exhibited
197 excellent inhibition effect.

198 **22 Energy Dispersion Spectroscopy (EDX) [34]**

199 To determination the elements, and molecules that existence are adsorbed on the surface of CS after one day
200 that immersion in acid with optimum doses of Egy-dronate by using the EDX spectra. The EDX analysis of
201 CS in $0.5\text{ M H}_2\text{SO}_4$ with in the presence of 250 ppm of the Egy-dronate is given by Figure 9. The spectra
202 show additional lines, demonstrating the existence of C (owing to the carbon atoms of some Egy-dronate). These
203 data shows that the carbon, nitrogen, and oxygen atoms are covered the specimen surface. The EDX analysis is
204 indicated that only carbon, nitrogen, and oxygen are detected, and show that the passivation film is contained
205 the chemical formula of the Egy-dronate drag that adsorbed on the CS surface. It is clear that, the percent
206 weight of adsorbed elements C, N, and O were presented in the spectra, and recorded in Table 6.

207 23 5 Atomic Force Microscopy (AFM)

208 AFM is a powerful tool to investigate the surface morphology of various samples at nano-micro scale that is
209 currently used to study the influence of corrosion inhibitor on the metal solution interface. From the analysis, it
210 can be gained regarding the roughness on the surface. The roughness profile values is played an important role to
211 identifying, and report the efficiency of the inhibitor under study. Among the roughness is tacked a role for the
212 explanation of adsorption, and illustrated the nature of the adsorbed film on the metal surface [35][36]. Figure
213 10 a, shows the 3D images as well as elevation profiles of polished of the CS in the absence, and the presence the
214 Egy-dronate as an inhibitor.

215 24 6 Fourier transforms infrared spectra (FT -IR)

216 The (FT -IR) spectrophotometer is a powerful instrument that can be used to identify the function group that
217 presence in organic compounds and the type of interaction that occur between function group with metal surface.
218 Since, pharmaceutical drug compound contain variety of organic compound, and these organic compounds
219 (inhibitor) are adsorbed on the metal surface providing thin film that protection them against corrosion, they
220 can be analyzed by using (FT -IR). To confirm the nature of the chemical constituent is adsorbed on the metal
221 surface, by the Fourier transform infrared (FT -IR) spectra [37].

222 The pharmaceutical drug compounds are certain have function group according to the chemical formula like
223 OH, C=C and P=O. In order to find the nature of constituents involved in the adsorption using (FT -IR)
224 spectrum of material that are coated the metal surface gives in Figures 11. The spectrum of Egy -dronate before,
225 and after adsorption that seen the wave number of the function groups OH abroad peak at 3400 cm ⁻¹ starching,
226 C=C is sharp peak at 1630 cm ⁻¹ starching, and P=O a sharp peak between 1140 -1000 cm ⁻¹ starching. It is clear
227 that the function groups of Egy -dronate inhibitor appear on the metal surface that confirm to the adsorption
228 process [38].

229 25 Mechanism of inhibition

230 To illustrate the mechanism of inhibition of corrosion on the CS surface in acid medium by using pharmaceutical
231 drug compound as an inhibitor, it is must be know the nature of metal surface, and the nature of the component
232 of inhibitor structure. The CS is regarded the metal ?-phase [39], It is obvious that ?-phase state consists of
233 grains, and grain boundaries in the surface of the metal, Figure 12. A cross-section of a piece or specimen of the
234 metal that is a corroding to clarify that there are both anodic, and cathodic sites in the metal surface structure.
235 The surface of iron is usually, coated with a thin film of iron oxide. However, if this iron oxide film develops some
236 cracks, anodic area are created on the surface, while other metal parts acts as cathodic sets. It follows that the
237 anodic areas are small surface, while nearly the rest of the surface of the metal large cathodes. Electrochemical
238 corrosion involves flow of electric current between the anodic, and London Journal of Research in Science: Natural
239 and Formal cathodic areas called inter-granular corrosion. Figure 13, SEM image is shown the corrosion of the
240 CS in 0.5 N H ₂ SO ₄ in one day immersion that illustrated inter-granular corrosion. All previous results prove
241 that the pharmaceutical drug compound under study were actually inhibit the corrosion of the CS in 0.5 M H ₂
242 SO ₄ solution as a corrosive medium. The corrosion inhibition is due to their physical, and chemical adsorption
243 for formation of protection thin film adsorbed on the metal surface. The effect of Egy-dronate as inhibitor may
244 be corresponding to the accumulation of the inhibitor molecules on the metal surface, which prevent the direction
245 contact of the metal surface with corrosive environment. The surface of the CS sample have positively charge in
246 aqueous acid solution, and the adsorption occur according to [40]:

247 1-The unshared electrons of nitrogen, oxygen atoms, and electron density of ? bonding donate to the vacant
248 orbital on the metal surface make chemisorption. 2-The partial negative charge that present in function group
249 containing Oxygen, nitrogen, and electron density of ?-bond in Egy-dronate may be adsorbed on the positively
250 charge of the metal surface like electrostatic attraction between the opposite charge, in the form of neutral
251 molecules, that involving displacement of water molecules from the metal surface.

252 The inhibition action of the Egy-dronate can be accounted by the interaction between the lone pair of electrons
253 in the nitrogen, oxygen, and electron density of ?-bond with positively charged (anodic sites) on the metal surface,
254 and the skeleton of inhibitor compound cover the cathodic sites this action form thin layer adsorbed on the metal
255 surface and prevent corrosion processes Figure 14. This meaning, the Egy-dronate molecule attached with anodic
256 site, and covered somewhat of cathodic area, so that the corrosion rate in presence of Egy-dronate is anodic-
257 cathodic control.

258 26 IV. CONCLUSION

259 Inhibition of the corrosion of the CS in 0.5 M H ₂ SO ₄ solution by Egy-dronate is determine by potentiodynamic
260 polarization, Evans techniques, and surface examination by Scanning Electron Microscopy (SEM), Energy
261 Dispersive X-ray (EDX), Atomic Force Microscopy (AFM), and Fourier Transforms Infrared (FT-IR). It was
262 found that the inhibition efficiency depends on concentration, nature of metal surface, and the type of adsorption
263 of the inhibitor. The observed corrosion data in the presence the Egy-dronate as an inhibitor:

264 1) The tested Egy-dronate inhibitor establish a very good an inhibition efficiency for the CS corrosion in 0.5
265 M H ₂ SO ₄ solution.

266 2) Egy-dronate inhibit the CS for the corrosion by the adsorption on its surface, and make thin film layer
267 protective them from corrosion process.
268 3) The inhibition efficiencies of the Egy-dronate increases with the increasing of their concentrations.
269 4) The values of inhibition efficiencies obtained from all techniques that using are seen the validity of the
270 obtained results. 5) The Egy-dronate molecule attached with anodic site, and covered somewhat of cathodic
1 2 3 area, so that the corrosion rate in the presence of the Egy-dronate is anodic-cathodic control.

Figure 1: 3 -

271 4 5 6 7 8 9
272

¹ © 2023 London Journals Press Volume 23 | Issue 3 | Compilation 1.0

² © 2023 London Journals Press

³ © 2023 London Journals Press

⁴ Electrochemical Study for using Eg-Dronate Drug as a Green Corrosion Inhibitor in 0.5 M H₂SO₄ Solution by Applied: Potentiodynamic and Evans Techniques

⁵ © 2023 London Journals Press Volume 23 | Issue 3 | Compilation 1.0 Electrochemical Study for using Eg-Dronate Drug as a Green Corrosion Inhibitor in 0.5 M H₂SO₄ Solution by Applied: Potentiodynamic and Evans Techniques

⁶ © 2023 London Journals Press

⁷ London Journal of Research in Science: Natural and Formal

⁸ © 2023 London Journals Press Volume 23 | Issue 3 | Compilation 1.0

⁹ © 2023 London Journals Press Volume 23 | Issue 3 | Compilation 1.0

Figure 3:

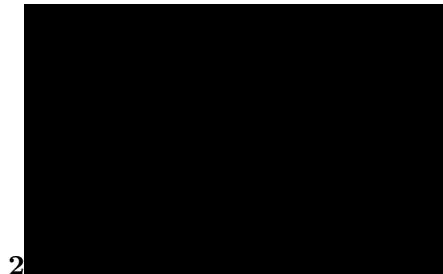


Figure 4: Figure 2 :

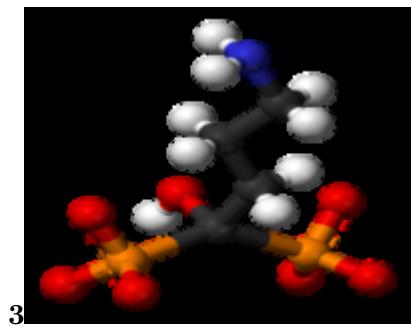


Figure 5: Figure 3 :

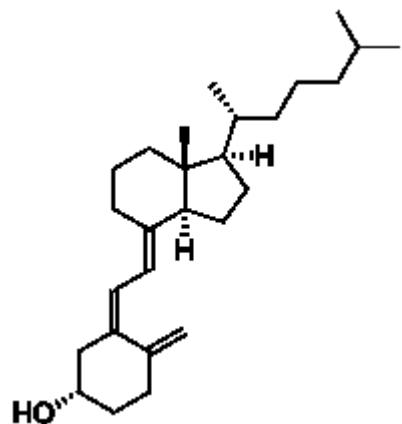
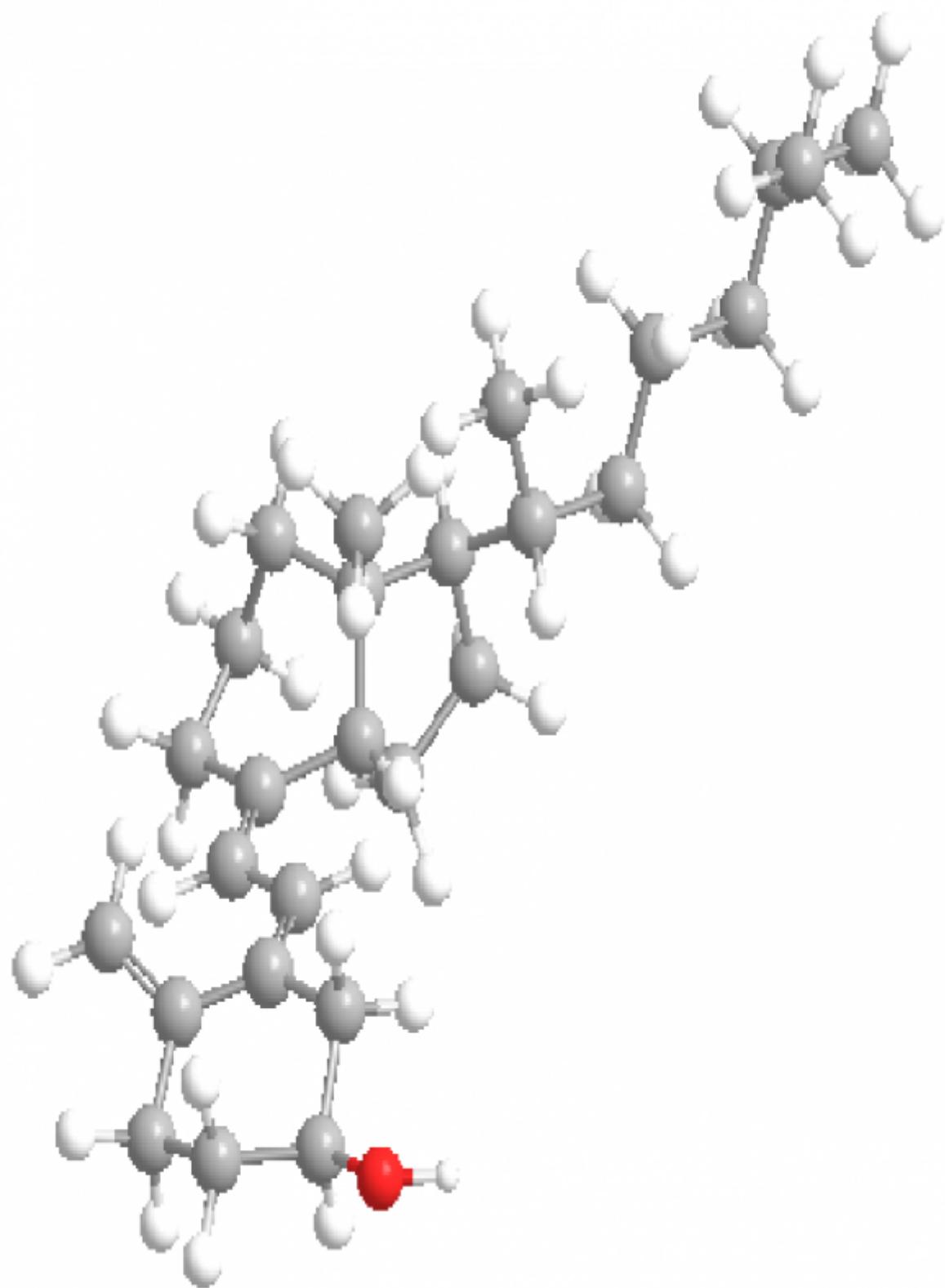



Figure 6:

4

Figure 7: Figures 4 :

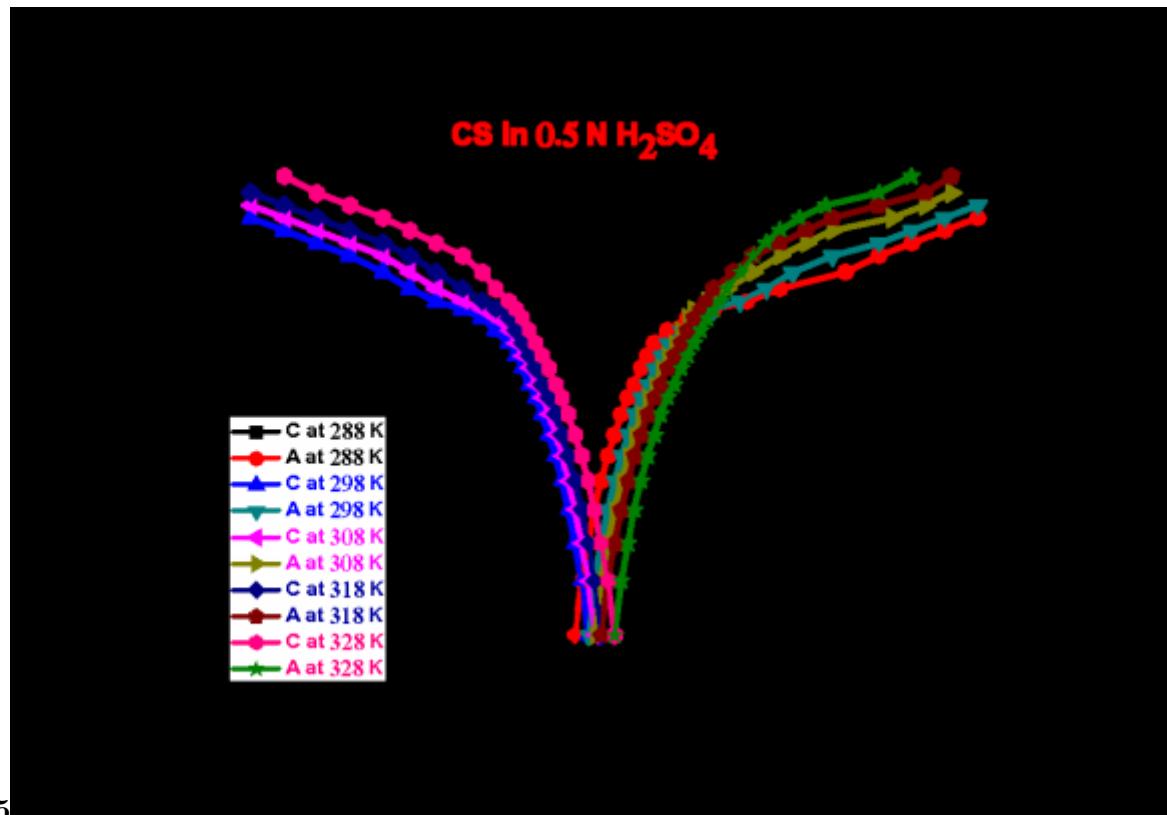


Figure 8: Figure 5 :

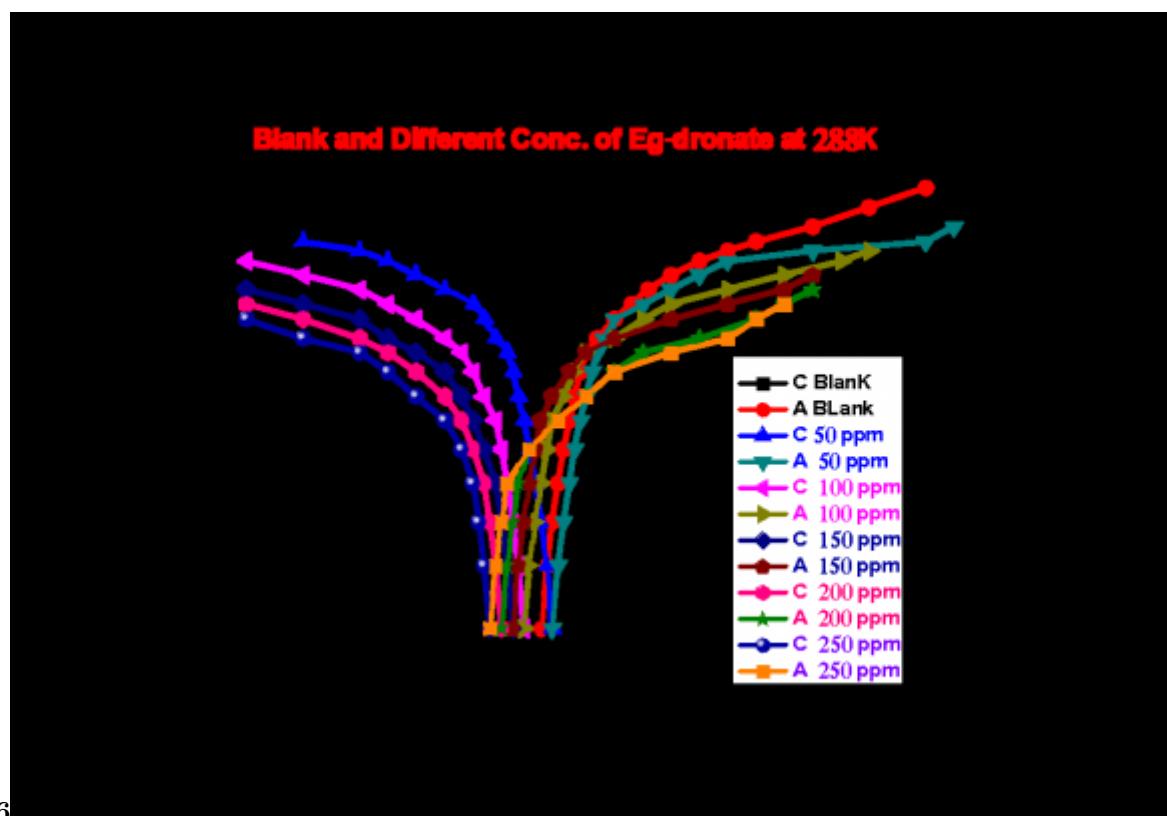


Figure 9: Figure 6 :

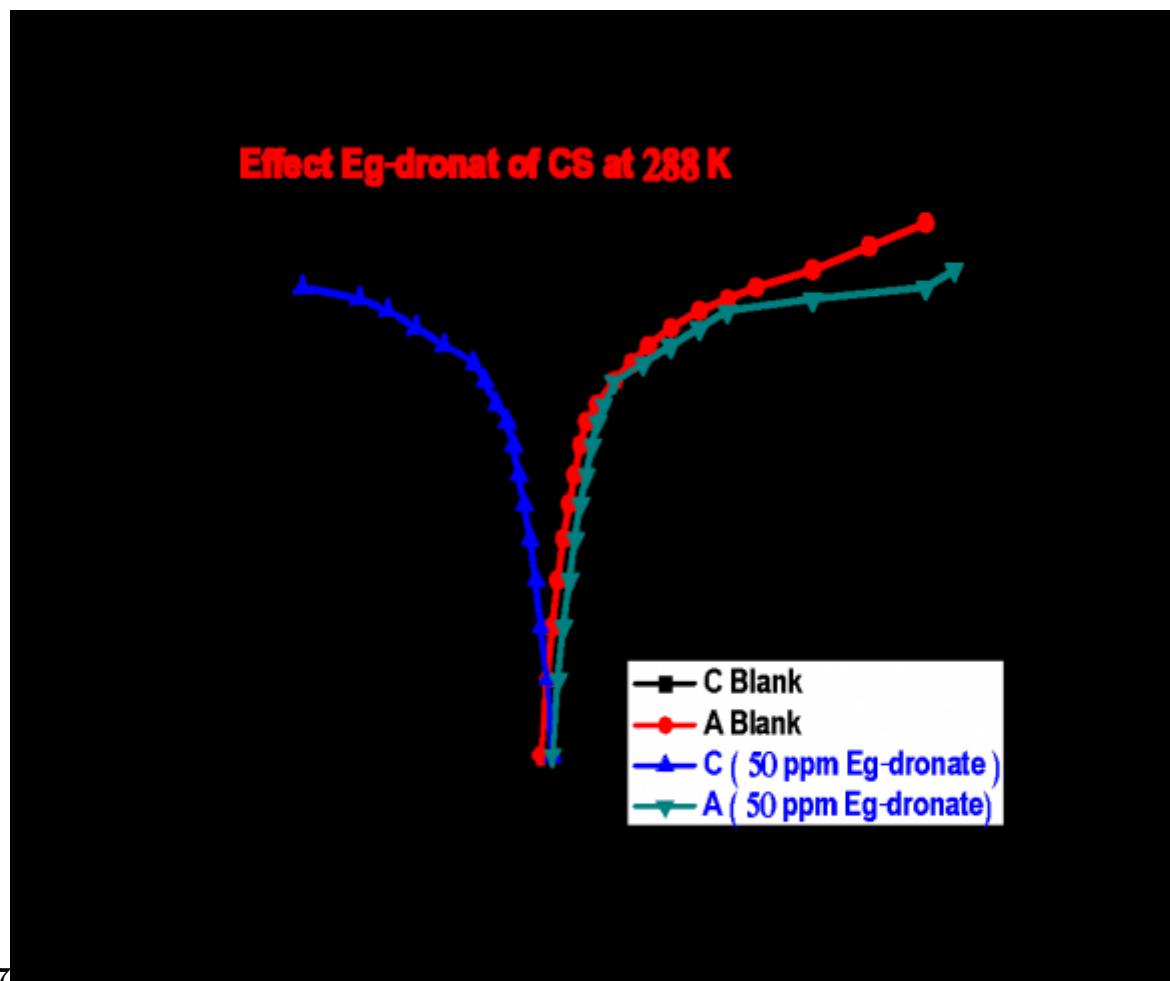


Figure 10: Figure 7 :

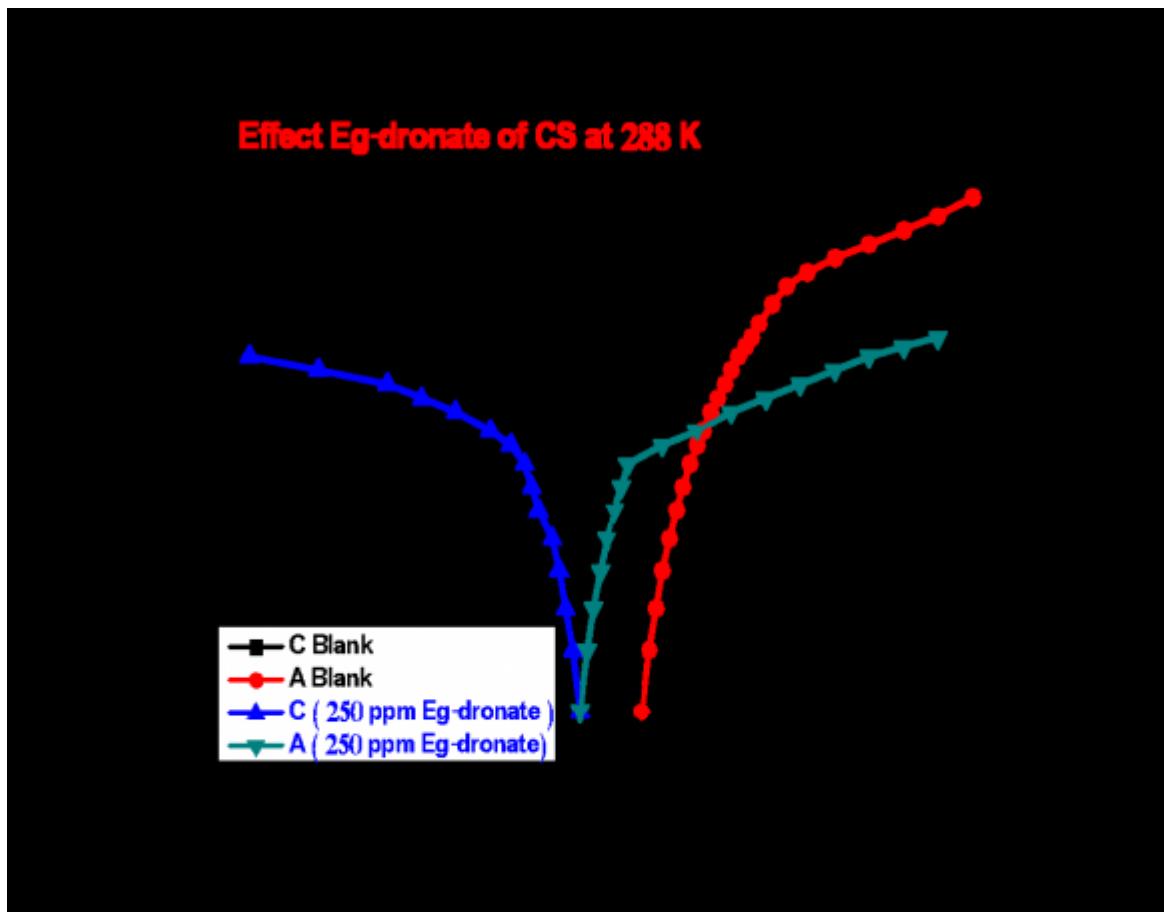


Figure 11:

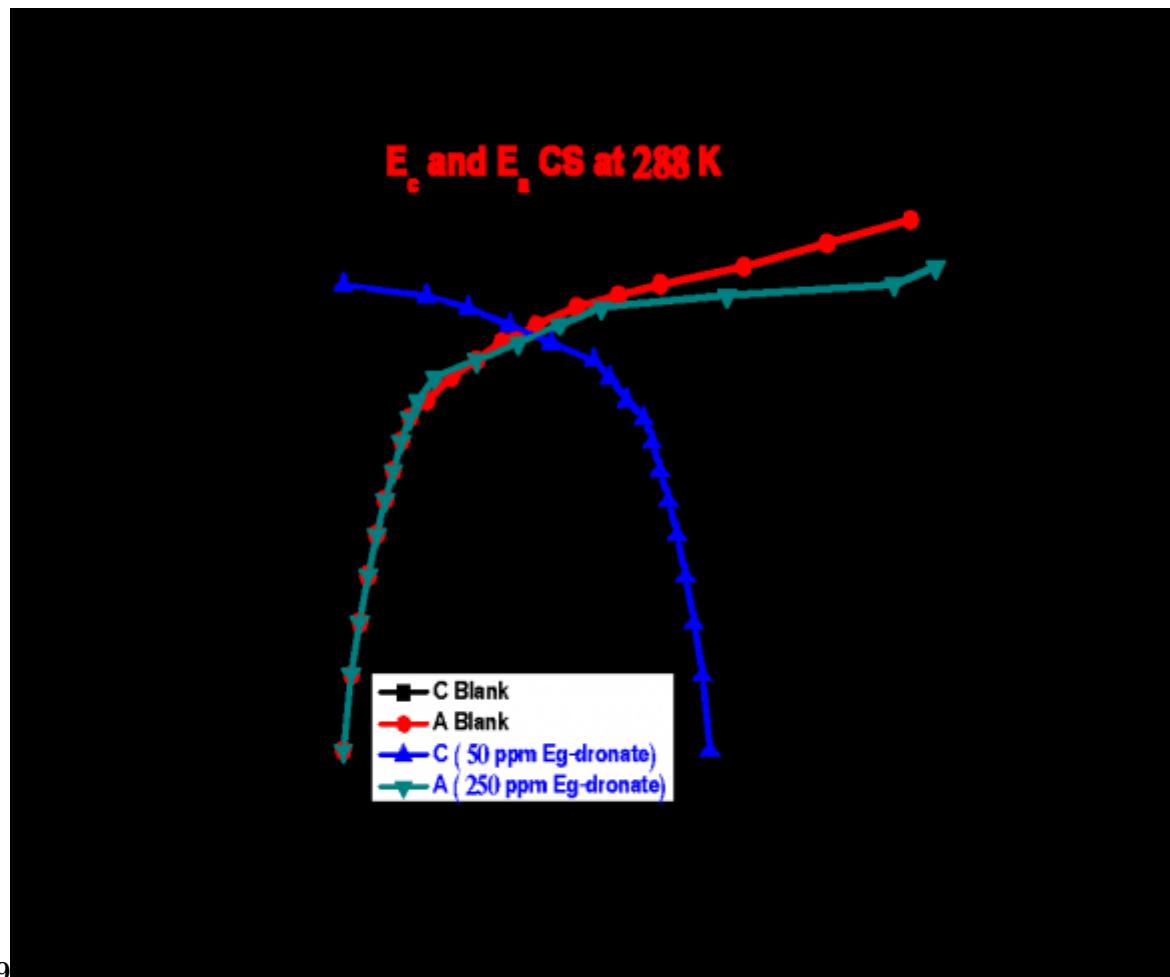
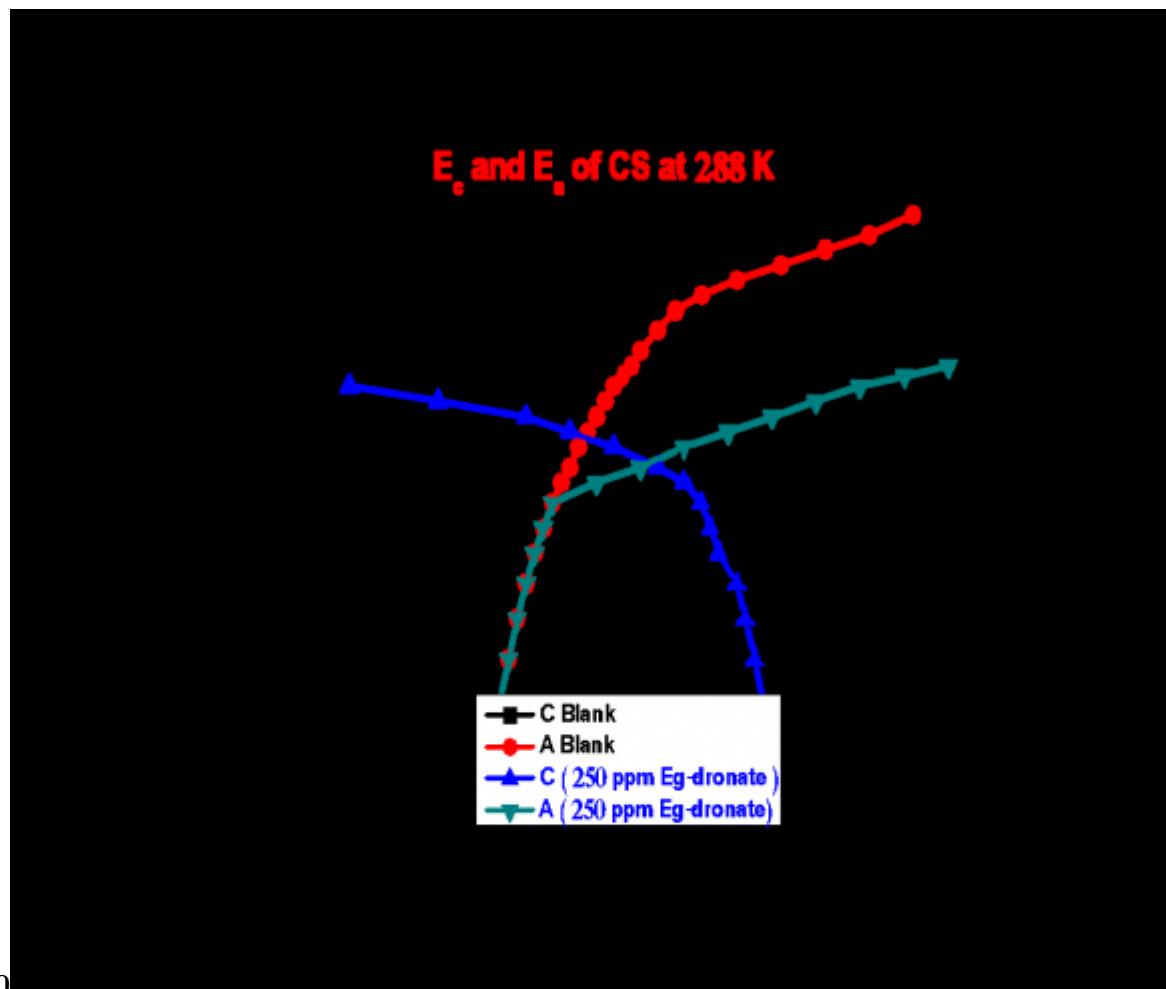
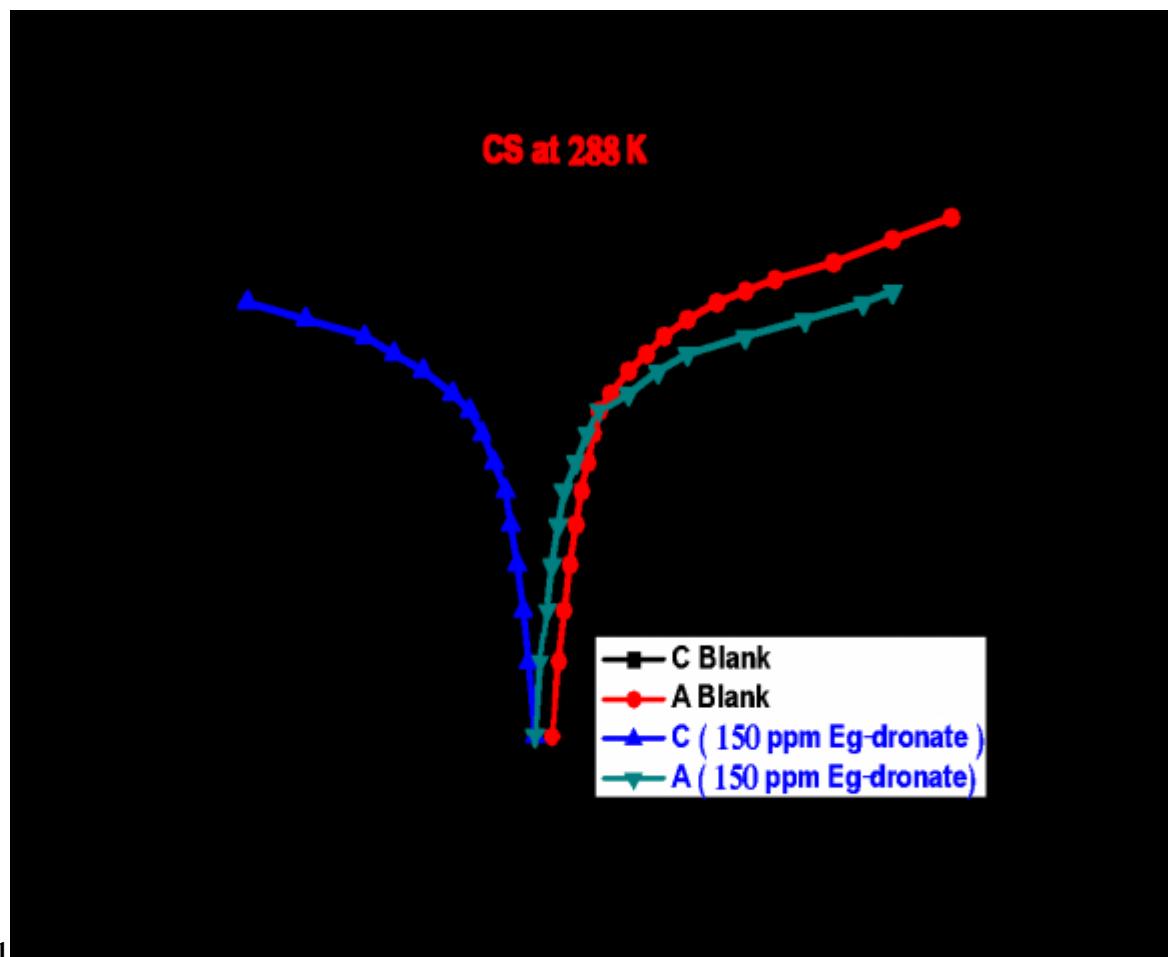




Figure 12: Figure 9 :

10

Figure 13: Figure 10 b

11

Figure 14: Figure 11 :

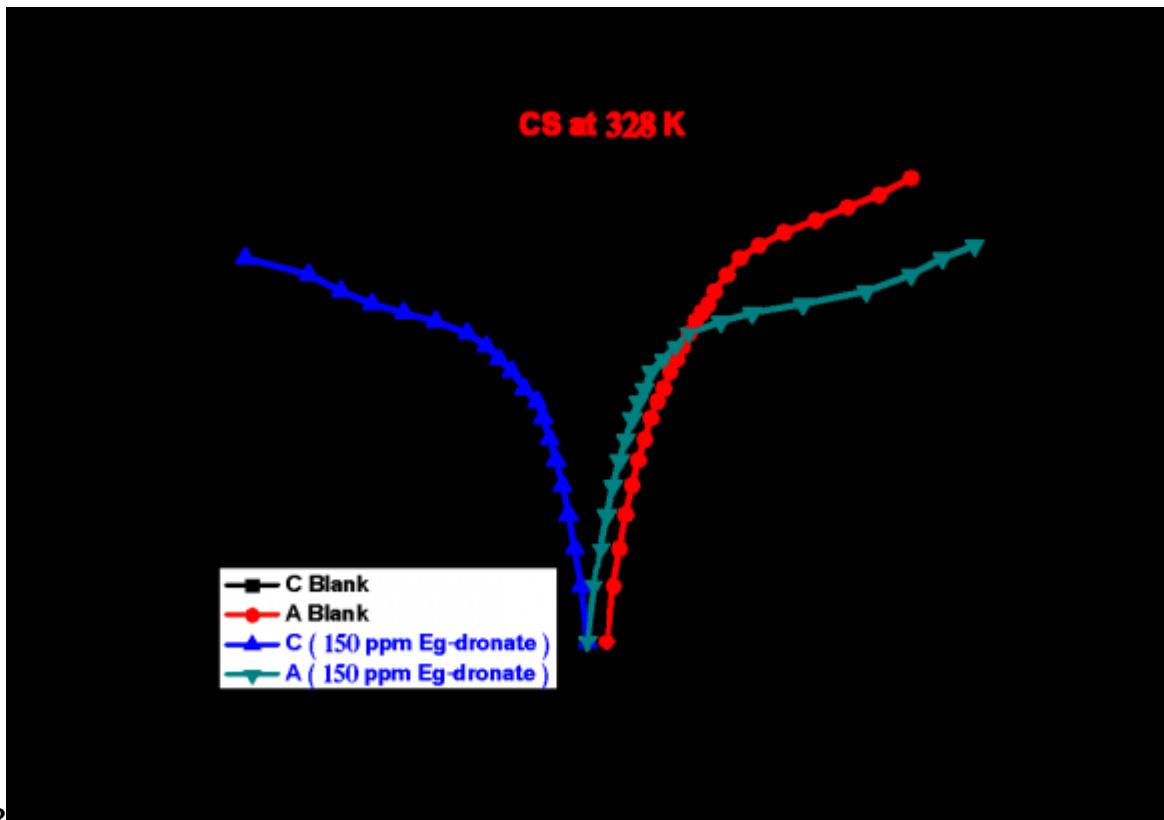


Figure 15: Figure 12 :

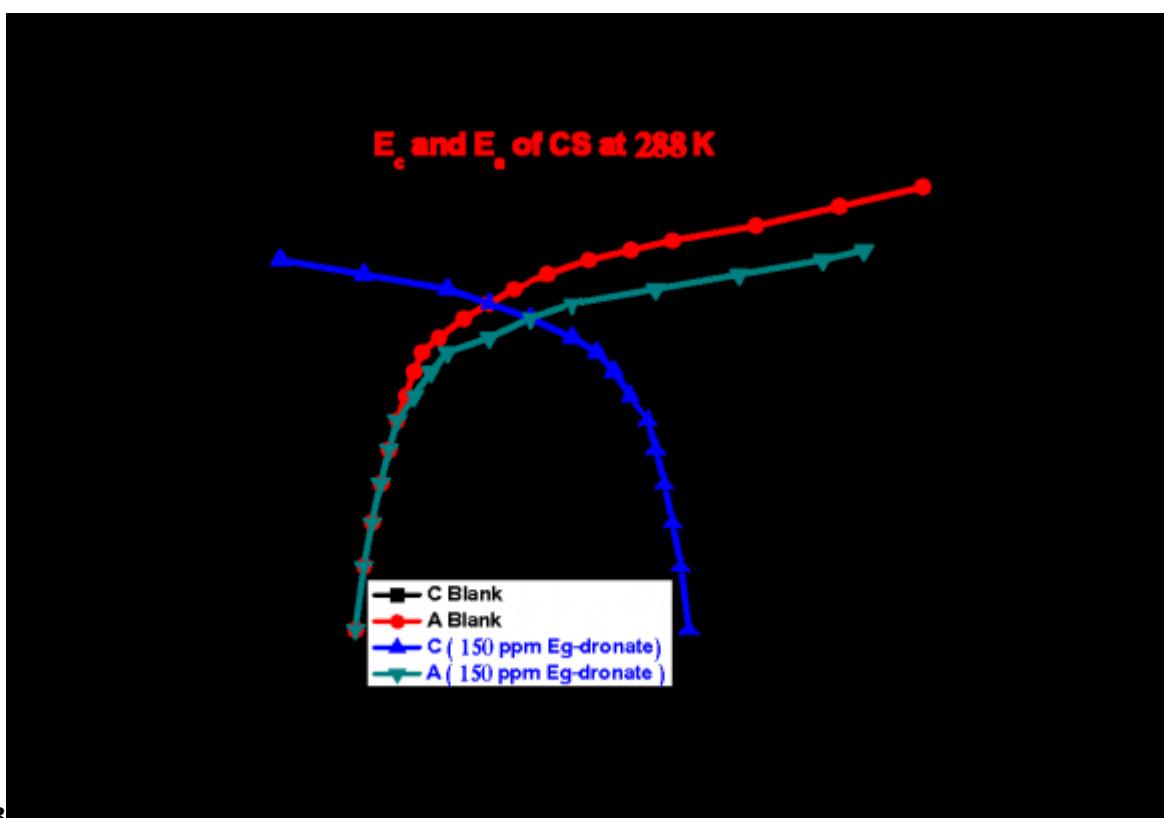
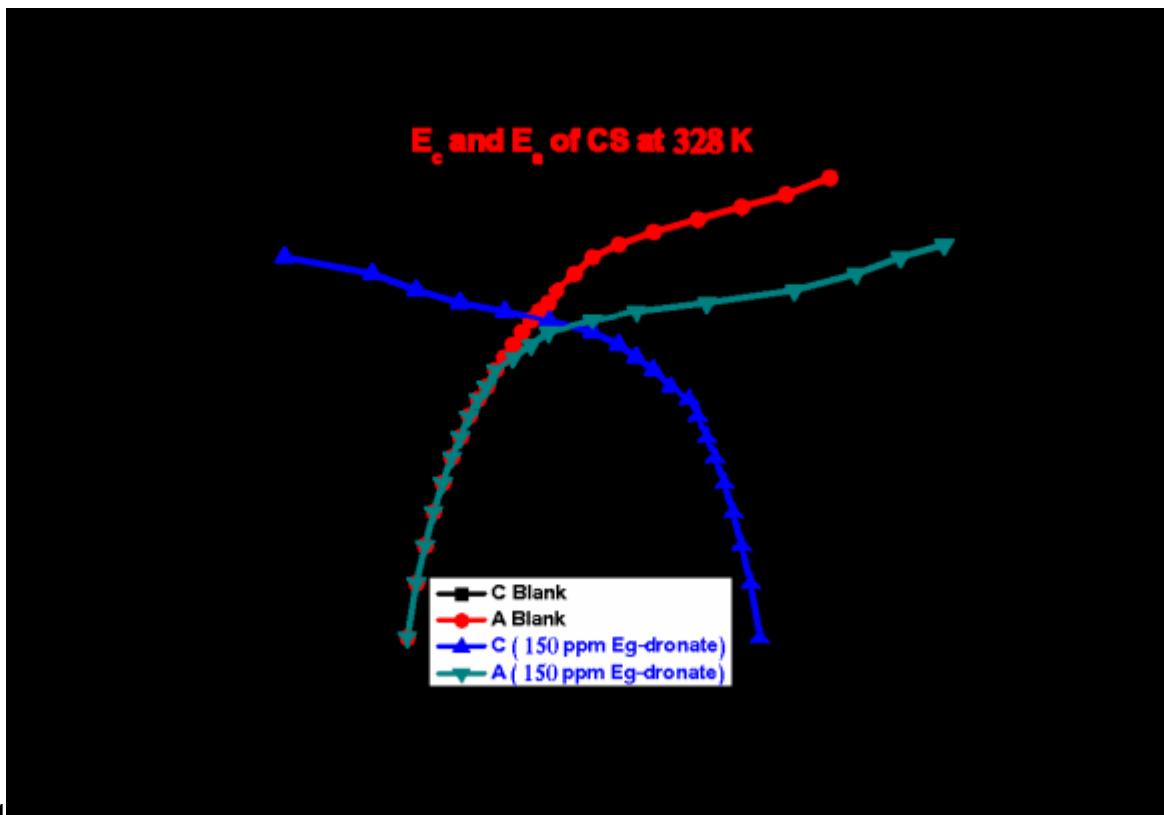



Figure 16: Figure 13 :

14

Figure 17: Figure 14 :

1

Sample	C%	Mn%	V%	Fe%	Si%
CS	0.26	0.77	0.11	98.51	0.35

Figure 18: Table 1 :

2

Inhibit	Structure	IUPAC Name	Molecular weight	Active centers	Chemical formula
		sodium		N	C 4 H 13 NOP 2
		[4-amino-1-hydronoxy-1-(hydroxy-		7O 2?	
(1)		oxido-phosphoryl)-butyl]phosphonate Alendronic acid trihydrate	249.097 g/mol		

Figure 19: Table 2 :

3

Figure 20: Table 3 :

4

Figure 21: Table 4 :

5

at various temperatures

Figure 22: Table 5 :

6

London Journal of Research in Science: Natural and
Formal

Wt %	Egy -dronate	of the Egy-dronate		
		Fe	C	N
		75.97	2.08	1.88
				20.68

Figure 23: Table 6 :

273 [London Journal of Research in Science: Natural and Formal] , *London Journal of Research in Science: Natural*
274 *and Formal*

275 [London Journal of Research in Science: Natural and Formal] , *London Journal of Research in Science: Natural*
276 *and Formal*

277 [Kolo et al. ()] , A M Kolo , U M Sani , U Kutama , UsmanU . *The Pharmaceutical and Chemical Journal* 2016.
278 3 (1) p. .

279 [Algaber et al. ()] A S Algaber , E M El-Nemma , M M Saleh . *Effect of octylphenol polyethylene oxide on the*
280 *corrosion inhibition of steel in 0.5 M H*, 2004. 2 p. .

281 [Branzoi et al. ()] 'Aluminum corrosion in hydrochloric acid solutions and the effect of some organic inhibitors'.
282 V Branzoi , F Golgovici , F Branzoi . *Mater. Chem. Phys* 2002. 78 p. .

283 [Narayan ()] *An Introduction to Metallic Corrosion and its Prevention*, R Narayan . 1983. Oxford, New Delhi.
284 p. 73.

285 [Pourbaix ()] 'Atlas of Electrochemical Equilibria'. M Pourbaix . *Aqueous Solutions*, (Oxford) 1966. Pergamon
286 Press.

287 [Fouda et al. ()] 'Calotropis procera plant extract as green corrosion inhibitor for 304 stainless steel in hydrochlo-
288 ric acid solution'. *Zastita Materijala* Abd Fouda , S El-Aziz , El-Hossiany , A Ahmed , Ramadan Heba , M
289 (eds.) 2017. 58 (4) p. .

290 [Ameh and Sani ()] 'Cefuroxime Axetil: A Commercially Available Pro-Drug as Corrosion Drug for Aluminum
291 in Hydrochloric Acid Solution'. P O Ameh , U M Sani . *Journal of Heterocyclic* 2015. 1 (1) p. .

292 [Sutula and Lerrick ()] *Comparison of Procedures Used in Assessing the Anodic Corrosion of Metal Matrix*
293 *Composites and Lead Alloys for Use in Lead-Acid Batteries*, Dacres Sutula , C M Lerrick , BF . 1983.
294 *Electrochem. Soc.* 130 p. .

295 [Fouda et al. (2017)] 'Corrosion Inhibition of Carbon Steel in hydrochloric acid medium using gliclazide drug'. A
296 S Fouda , G El-Ewady , Ali Adel , H . *Journal for Electrochemistry and Plating Technology* 2017. November.
297 p. .

298 [Migahed et al. ()] 'Corrosion inhibition of mild steel in 1 M sulfuric acid solution using anionic surfactant'. M
299 A Migahed , E M S Azzam , A M Al-Sabagh . *Mater. Chem. Phys* 2004. 85 p. .

300 [Ofoegbu and Ofoegbu ()] 'Corrosion inhibition of MS in 0.1 M hydrochloric acid media by chloroquine
301 diphosphate'. S U Ofoegbu , P U Ofoegbu . *ARPN Journal of Engineering and Applied Sciences* 2012. 7
302 (3) p. .

303 [Fouda et al. ()] 'Corrosion protection of carbon steel by using simvastatin drug in HCl medium'. A S Fouda , G
304 El-Ewady , Ali Adel , H . *J. Applicable Chem* 2017. 6 (5) p. .

305 [Mohammad Mir et al. ()] 'Corrosion resistance and thermal behavior of acetylacetone-oxo peroxy molybde-
306 num (VI) complex of maltol: Experimental and DFT studies'. Jan Mohammad Mir , R C Maurya , P K
307 Vishwakarma . *Karbala International Journal of Modern Science* 2017. 3 p. .

308 [Al-Shafey et al. ()] 'Effect of Expired Drugs as Corrosion Drugs for carbon steel in 1M HCL Solution'. H I Al-
309 Shafey , Abdel Hameed , R S Ali , F A Aboul-Magd , A S Salah , M . *Int. J. Pharm. Sci. Res* 2014. 27
310 (1) p. .

311 [Villamil et al. ()] 'Effect of sodium dodecylsulfate on copper corrosion in sulfuric acid media in the absence and
312 presence of benzotriazole'. R F V Villamil , P Corio , J C Rubim , M L Siliva . *J. Electroanal. Chem* 1999.
313 472 p. .

314 [Guo et al. ()] 'Effects of SDS and some alcohols on the inhibition efficiency of corrosion for nickel'. R Guo , T
315 Liu , X Wei . *Colloids Surf., A* 2002. 209 p. .

316 [El-Aziz et al. ()] 'Egy-drone drug as promising corrosion inhibitor of C-steel in aqueous medium'. Abd El-Aziz
317 , S Fouda , Adel H Ali . *Jour. Mater. Prot* 2018. 59 p. .

318 [Adel et al. ()] 'Electrochemical behavior for corrosion protection of mild steel (MS) in 1M HCl medium by using
319 lidocaine drug as an inhibitor'. *Zastita Materijala* Ali Adel , H Fouda , Abd El-Aziz , S Tilp , AmalH (eds.)
320 2020. 61 (4) p. .

321 [Adel ()] 'Electrochemical Behavior of Quench-treated Low Carbon Steel in 0.5 H₂SO₄ Medium Containing
322 Simvastatin Drug as Corrosion Inhibitor Using Potentiodynamic and Evans Techniques'. Ali Adel , H .
323 *International Journal of Modern Chemistry* 2020. 12 (1) p. .

324 [Adel ()] 'Electrochemical Behavior of Quenching Low Carbon Steel (LCH) by using Simvastatin Drug as a
325 Corrosion Protection in 0.5 H₂SO₄ Medium by Applied: Potentiodynamic and Evans Techniques'. Ali Adel
326 , H . *Global Journal of Science Frontier Research: B Chemistry* 2020. 20 (2) p. .

327 [Umar et al. ()] 'Electrochemical Corrosion Inhibition of Mild Steel in Hydrochloric Acid Medium Using the
328 Antidiabetic Drug Janumet as Inhibitor'. M Umar , Umar Sani1 , Usman . *International Journal of Novel*
329 *Research in Physics Chemistry & Mathematics* 2016. 3 (3) p. ..

330 [Adel ()] 'Electrochemical study for Effect of Gliclazide as a Corrosion Inhibitor of the Carbon Steel in Sulfuric
331 Acid Medium by Applied Potentiodynamic and Evans Techniques'. Ali Adel , H . *International Journal of*
332 *Modern Chemistry* 2018. 10 (2) p. .

333 [Adel ()] 'Electrochemical study of candesartan drug as corrosion inhibitor for carbon steel in acid medium'. Ali
334 Adel , H . *J. Adv. Electrochem* 2018. 4 (1) p. .

335 [Ailor ()] *Handbook of Corrosion Testing and Evaluation*, W H Ailor . 1971. New York: John Wiley & Sons, Inc.
336 p. .

337 [Raspini ()] 'Influence of Sodium Salts of Organic Acids as Additives on Localized Corrosion of Aluminum and
338 Its Alloys'. I A Raspini . *Corrosion* 1993. 49 p. .

339 [Kushwah and Pathak ()] 'Inhibition of Mild Steel Corrosion in 0.5 M Sulphuric Acid Solution by Aspirin Drug'.
340 Rupesh Kushwah , R K Pathak . *International Journal of Emerging Technology and Advanced Engineering*
341 2014. 4 (7) p. .

342 [Moretti et al. ()] 'Inhibition of mild steel corrosion in 1N sulphuric acid through indole'. G Moretti , G
343 Quaranone , A Tassan , A Zingales . *Wekst. Korros* 1994. 45 p. .

344 [Gholamreza and Mohammad-Javad ()] 'Investigating the corrosion of the Heat-Affected Zones (HAZs) of API-
345 X70 pipeline steels in aerated carbonate solution by electrochemical methods'. K Gholamreza , K Mohammad-
346 Javad . *International Journal of Pressure Vessels and Piping* 2016. 145 p. .

347 [Fouda1 et al. ()] 'Mitigation of corrosion of carbon steel in acid medium using some antipyrine derivatives'.
348 *Zastita Materijala* Abd Fouda1 , S El-Aziz , Abd El-Maksoud , A Samar , Abd El-Salam Samar , A (eds.)
349 2017. 58 (1) p. .

350 [Fouda et al. ()] 'Modazar as promising corrosion inhibitor of carbon steel in hydrochloric acid solution'. A S
351 Fouda , G El-Ewady , A H Ali . *Green Chem. Lett. Rev* 2017. 10 (2) p. .

352 [Al-Azzawi and Hammud ()] 'Newly antibacterial / anti-rusting oxadiazoleporomellitic di-imids of carbon steel
353 / hydrochloric acid interface: Temkin isother model'. A M Al-Azzawi , K K Hammud . *IJRCP* 2016. 6 (3) p.
354 .

355 [Fouda et al. ()] 'Pharmaceutical compounds as save corrosion inhibitors for CS in 1 M H 2 SO 4 solution'. A S
356 Fouda , A M El-Defrawy , M W El-Sherbeni . *J. Chem* 2012. 39 p. .

357 [Narimani et al. ()] *Predictions of corrosion current density and potential by using chemical composition and*
358 *corrosion cell characteristics in microalloyed pipeline steels, Measurment*, N Narimani , B Zarei , H
359 Pouraliakbar , G Khala . 2015. 62 p. .

360 [Faizabadi et al. ()] 'Predictions of toughness and hardness by using chemical composition and tensile properties
361 in microalloyed line pipe steels'. M J Faizabadi , G Khalaj , H Pouraliakbar , M R Jandaghi . *Neural Computing*
362 *and Applications* 2014. 1993-1999. 25.

363 [Crow ()] *Principles and Applications of Electrochemistry*, D R Crow . 10.1016/j.ijpvp.2016.06.001. 1988. London:
364 Chpman and Hall. p. 3. (rd ed.)

365 [Oukhrib et al. ()] 'Quantum chemical calculations and corrosion inhibition efficiency of biopolymer "chitosan'.
366 R Oukhrib , B El Ibrahim , H Bourzi , K El Mouaden , A , Jmiai , S El Issami , L Bammou , L Bazzi .
367 *JMES* 2017. 8 (1) p. . (on copper surface in 3% NaCl)

368 [Fouda et al. ()] 'Septazole: Antibacterial Drug as a Green Corrosion Drug for Copper in Hydrochloric Acid
369 Solutions'. A S Fouda , M N El-Haddad , Y M Abdallah . *IJIRSET* 2013. 2 (12) p. .

370 [Elachouri et al. ()] 'Some Nonionic Surfactants as Inhibitors of the Corrosion of Iron in Acid Chloride Solutions'.
371 M Elachouri , M S Hajji , M Salem , S Kertit , J Aride , R Coudert , E Essassi . *Corrosion* 1996. 52 p. .

372 [Kiahosseini et al. ()] 'Study on Structural, Corrosion, and Sensitization Behavior of Ultrafine and Coarse Grain
373 316 Stainless Steel Processed by Multiaxial Forging and Heat Treatment'. S R Kiahosseini , S Baygi , J M
374 Khalaj , G Khoshakhlagh , A Samadipour , R . *Journal of Materials Engineering and Performance* 2018. 27
375 p. .

376 [El Rehim et al. ()] 'The corrosion inhibition study of sodium dodecyl benzene sulphonate to aluminum and its
377 alloys in 1.0 M HCl solution'. Abd El Rehim , S S Hassan , H Amin , MA . *Mater. Chem. Phys* 2003. 78 p. .