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ABSTRACT

A recursive method of martingale measures construction for a wide class of evolutions of risky
asset is proposed. An integral representation for each equivalent martingale measure is obtained.
A complete description of all martingale measures is established. The formulas for both infimum
and supremum for the average values of payment functions of call and put options with respect
to all equivalent martingale measures are established. The invariance of the set of all martingales
with respect to a certain class of evolutions of risky assets is proved. A parametric class of
evolutions of risky asset is introduced, which includes ARCH and GARCH models and their
generalizations. A parameter estimation method for the introduced parametric models is
proposed.

Necessary and sufficient conditions are obtained under which the martingale measure is unique. A
significant number of examples of the discounted evolution of risky assets are presented for
which the existence of a single martingale measure is established. An explicit construction of a
single martingale measure in these cases is given. Formulas for fair price of options contracts
and investor hedging strategies are provided. A parametric model of evolution of risky asset is
introduced so that the single martingale measure does not depend on the entered parameters. A
complete description of the family of martingale measures is given for multinomial models of the
evolution of risky asset. Each martingale measure is a finite sum of the introduced spot measures.
The attractive side of such models is that the lower and upper price of the interval non arbitrage
prices are, respectively, the minimum and maximum of the average values of the payment
functions on a set of spot measures.

A class of parametric models is introduced that describe the multinomial evolution of risky asset
such that the family of martingale measures does not depend on the entered parameters.

Keywords: random process; spot set of measures; parametric model of evolution; unique martingale
measure; martingale; assessment of derivatives.

Author: Bogolyubov Institute for Theoretical Physics of NAS of Ukraine.

. INTRODUCTION

This paper continues the papers [1] - [5] and generalizes them to the case of different
evolutions of risky assets. These examples of evolutions are quite realistic because
they contain the memory of the past and describe the phenomenon of clustering
and other effects. Our results concerning construction of risk neutral measures are
quite general relative to volatility evolution and therefore they contain a wide class
of evolutions of risky asset. The construction of the set of martingale measures for
the above class of evolution of risky asset is based on the result of the work [4]

(see Lemma 5) where, for a given random variable and a measure on an abstract

1This work was partially supported by the Program of Fundamental Research of the Department
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research of financial market models using the methods of non-equilibrium statistical physics and
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probability space, the set of all measures equivalent to the original one and such that
the average value over such measures of the considered random variable is equal to
zero is described. The notion of consistency of a family of measures with filtration
introduced in this paper and the proven Lemma 5 [4] made it possible to propose a
new method for constructing a family of martingale measures equivalent to a given
measure, which is different from the Escher transformation and generalizations of
Girsanov’s theorem. The ideas proposed in this paper [4] made it possible to propose
a recursive method for constructing a set of risk neutral measures and to give a
complete description of them for a certain class of evolutions of risky asset. It turned
out that it is possible to introduce a set of spot martingale measures in a recurrent
way and prove that any equivalent martingale measure to the original measure is
an integral over the set of spot martingale measures. The latter made it possible
to establish formulas for the boundaries of non-arbitrage prices for nonnegative
contingent claims, as well as a formula for the fair price of a complete hedging of
systematic risk. In the paper [3], formulas for the interval of non-arbitrage prices
for put and call options are found for the evolution of a risky asset occurring in
accordance with the geometric Brownian motion. The work [2] contains a general
construction of building risk-neutral measures by the recursive method.

In the present paper, a significant generalization of the class of evolutions of

risky assets is made, which contains ARCH and GARCH processes and their gener-
alizations.

The study of non-arbitrage markets was begun for the first time in Bachelier’s
work [6]. Then, in the famous works of Black F. and Scholes M. [7] and Merton R.
S. [8] the formula was found for the fair price of the standard call option of Euro-
pean type. The absence of arbitrage in the financial market has a very transparent
economic sense, since it can be considered reasonably arranged. The concept of non
arbitrage in financial market is associated with the fact that one cannot earn money
without risking, that is, to make money you need to invest in risky or risk-free as-
sets. The exact mathematical substantiation of the concept of non arbitrage was
first made in the papers [9], [10] [11] for the finite probability space and in the gen-
eral case in the paper [12]. In the continuous time evolution of risky asset, the proof
of absent of arbitrage possibility see in [13]. The value of the established Theorems
is that they make it possible to value assets. They got a special name ”The First
and The Second Fundamental Asset Pricing Theorems.” Generalizations of these
Theorems are contained in papers [14], [15], [16].

If the martingale measure is not the only one for a given evolution of a risky
asset, then a rather difficult problem of describing all martingale measures arises in
order to evaluate, for example, derivatives.

Assessment of risk in various systems was begun in papers [17], [18], [19], [20].

Statistical studies of the time series of the logarithm of the price ratio of risky
assets contain heavy tails in distributions with strong elongation in the central re-
gion. The temporal behavior of these quantities exhibits the property of clustering
and a strong dependence on the past. All this should be taken into account when
building models for the evolution of risky assets.

In this paper, we generalize the results of the papers [1] - [5] and construct
the evolution of risky assets for which we completely describe the set of equivalent
martingale measures.
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The aim of this study is to describe the family of martingale measures for a
wide class of risky asset evolutions. The paper proposes the general concept for
constructing the family of martingale measures equivalent to a given measure for a
wide class of evolutions of risky assets. In particular, it also contains the description
of the family of martingale measures for the evolution of risky assets given by the
ARCH [21] and GARCH [22], [23] models. In section 2, we formulate the conditions
relative to the evolution of risky assets and give the examples of risky asset evolu-
tion satisfying these conditions. Section 3 contains the construction of measures by
recurrent relations. It is shown that under the conditions relative to the evolution
of risky asset such construction is meaningful. It is proved that the constructed set
of measures is equivalent to an initial measure. In theorem 1, we are proved that
under certain integrability conditions of risky asset evolution the set of constructed
measures is a set of martingale measures relative to this evolution of risky asset. In
section 4, a family of spot martingale measures is introduced and a set of measures
is constructed from it and a family of random variables, and it is shown in Theorem
2 that the constructed family of measures is absolutely continuous with respect to
the original measure. And in Theorem 3, it is proved that the family of measures
constructed in this way is a family of martingale measures which are equivalent to
the original measure. A complete description of all martingale measures is found in
Theorem 4. Theorem 7 establishes that the infimum and supremum of the mean
value of payment functions all over martingale measures equals, correspondingly,
infimum and supremum of the mean value of payment functions all over spot mar-
tingale measures. Theorem 8 establishes that the constructed class of martingale
measures is invariant with respect to a certain class of evolutions of risky assets.
This statement is important and makes it possible to build parametric models of
financial markets. In Section 5, estimates for both the lower and upper limits of
the interval of non-arbitrage prices are found for the constructed parametric model.
The proposed parametric model based on the canonical model of the evolution of
risky asset (9), which takes into account both memory and clustering, takes into
account the fact that the price of a risky asset cannot fall to zero. As a consequence
of these estimates, explicit formulas for the fair prices of a superhedge in the case of
the payment functions of a standard call and put options are found in Theorems 11,
12. Analogous results are found in Theorems 13 and 14 for the payment functions
of Asian-type call and put options.

Theorem 15 provides estimates for the parameters through realizations of the
random parametric evolution of the risky asset. In Theorems 16 - 19 the formulas
for interval of non arbitrage prices and the fair prices of superhedge are given through
the obtained parameter estimates.

Another parametric model of the evolution of risky assets is considered in Section
6. It differs from the previous one in that it considers the discounted evolution of
risky asset. Theorems 20 - 21 are proved, in which estimates are obtained both from
above and from below and established. Theorems 22 - 23 derive formulas for the
fair price of a superhedge for the payment functions of call and put options, respec-
tively. A similar result is obtained in Theorems 24 - 25 for the payment functions of
Asian-type put and call options. In Theorems 26 - 29, based on the sample for the
evolution of the risky asset, the formulas for the fair price of the superhedge through
parameter estimation are presented. Section 7 establishes Theorem 30, which gives
the necessary and sufficient conditions for the unity of an equivalent martingale
measure.

In Section 8, Proposition 2 proposes a model of the financial market with a sin-
gle martingale measure that is invariant with respect to the evolution of each of the
assets. In Theorems 32 and 33, various examples of discounted evolutions of risky
assets are presented, conditions for the existence of a single martingale measure are
found, and its explicit construction is given. Formulas for fair pricing options con-
tracts and investor hedging strategies are provided. In proposition 3, a parametric
model of the evolution of risky asset is proposed; the single martingale measure
constructed for this evolution does not depend on these parameters. Estimates of
the model parameters were built based on the realizations of the random evolution
of asset.
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Section 9 contains a description of all martingale measures for the multinomial
evolution of risk assets. This result is obtained in Theorem 35.

In section 10, models of incomplete financial markets are proposed for which
inequalities are established for the fair price of a superhedge for various models
of the evolution of risky asset. Theorem 37 establishes that for a certain class of
payment functions and for a wide class of evolutions of risky assets, the fair price
of the superhedge is strictly less than the price of the underlying asset. Among
such payment functions is the payment function of the standard call option of the
European type. Theorems 39, 40 give various examples of discounted evolutions of
risky assets that satisfy the conditions of the proved theorems 35 - 37, and find the
conditions under which the family of martingale measures is nonempty. Formulas
for a fair superhedge price have been found. Proposition 5 contains the construction
of a parametric model of an incomplete financial market, a family of martingale
measures of which does not depend on the considered parameters. Proposition 6
provides an estimates of the parameters of the constructed models of incomplete
markets through realizations of the considered evolutions of risky asset.

Il. GENERAL ASSUMPTIONS RELATIVE TO EVOLUTIONS OF RISKY ASSETS

Let {Qx, Fn, Py} be a direct product of the probability spaces {QY, F?, PP}, i =

- N N N

LN, Qv = [19Y, Pv = [I P?, Fx = [[ F?, where the o-algebra Fy is a min-
i=1 i=1 i=1

N
imal o-algebra, generated by the sets [[ G;, G; € FP. On the measurable space

i=1
{Qy, Fn}, under the filtration F,,, n = 1, N, we understand the minimal o-algebra

N
generated by the sets [[ G;, G; € F?, where G; = QY for i > n. We also intro-

%
i=1

duce the probability spaces {Q,, F., B.},n = 1, N, where Q, = [[ 0, F, = [] 77,
i=1 =

i=1

P, =[] P?. There is a one-to-one correspondence between the sets of the o-algebra
i=1
F,, belonging to the introduced filtration, and the sets of the o-algebra F,, = [] F?
S i=1
of the measurable space {€,,F,},n = 1, N. Therefore, we don’t introduce new
denotation for the o-algebra F,, of the measurable space {€2,, F,}, since it always
will be clear the difference between the above introduced o-algebra F,, of filtration
on the measurable space {2y, Fy} and the o-algebra F,, of the measurable space

{Q,, F.},n=1,N.

We assume that the evolution of risky asset {S,})_,, given on the probabil-
ity space {Qn, Fn, Py}, is consistent with the filtration F,,, that is, S, is a F,-
measurable. Due to the above one-to-one correspondence between the sets of the
o-algebra F,,, belonging to the introduced filtration, and the sets of the o-algebra
F., of the measurable space {2, F,},n =1, N, we give the evolution of risky assets
in the form

{Sn(wlv ce 7wn)}7]:[:07 (1)
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where S,,(wy, . ..,w,) is an F,-measurable random variable, given on the measurable

space {€,, F,}. It is evident that such evolution is consistent with the filtration F,
on the measurable space {Qy, Fn, Py}
Further, we assume that

P.((wy,...,wy) € Q,, AS, >0)>0,

Po((w,...,wy) €Q,, AS, <0)>0, n=1,N, (2)

where AS,, = S, (w1, ..., wy) — Sn-1(wi, - ywpo1), n =1,

=

Let us introduce the denotations

Q) ={(w1,...,wn) €Dy, AS, <0}, QF ={(w1,...,w,) €, AS, >0}, (3)

AS, = —AS,xq- (W1, -+, Wn), AST = ASpXar (Wi -+, Wn), (4)
V(Wi ooy Woot, Wi w2) = AS, (Wi, vy W1, wih) + AST(wr, . walg, w2),
(Wi oo, W) € Q0L (Wi, Wpe1, w?) € Q. (5)

Our assumptions relative to Q; and Q are the following

Q) =Q, 1 % Q?;, QZ =0, X Q?f, Q%f, Q?f = Qg, n=1,N, (6)
where

QU =0 n=T,W, (7)

POy >0, PYQY)>0, n=1,N. (8)

London Journal of Research in Science: Natural and Formal

Below, we give the examples of evolutions {S, (w1, ...,w,)}_,, for which the con-
ditions (6) - (8) are true. Let us consider the evolution of risky asset given by the
law

Sn(wlv sy Wn1, Wn) = SO H 601‘(“}1,”-,“}1._1)81.(%)7 n = ]-a Na SO > 07 (9)
i=1

relative to which we assume that the conditions

oi(wi, ... wi1) >0) >0, Pi(w;) >0)>0, Pei(w;)<0)>0, i=1N,
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are true. For the evolution of risky asset (9), we have

ASn((.Ul, ey Who1, wn) =

Sn71<wl, .. ,wn71>(ean(wl,...,wnfﬂen(wn) — 1) = (10)
dp(wy, ... ,wn_l,wn)(e”’%"(w”) - 1),
h
where dn(“ul?"'?wnfl;wn) =

(ean(wl,...,wnfﬂen(wn) _ 1)
Sn_l(wl, NN ,wn_l) (602577,("-771,) — 1) . (11)

It is evident that d,(wy,. .. ,wy—1,wy) > 0 and for Q,, QF the representations (6)
are true with

Q™ ={w, € W ep(w,) <0}, QO ={w, € Q% e,(w,) > 0}.

The more general example of risky asset evolution, satisfying the conditions (6)
- (8), is given by the formula

Sn(wl, e ,wn) =
So H(l + a;(wi, .., wi)ni(wi))y {wr, . w1, wn} € Qyy, n=1,N, Sy >0, (12)
i=1
where the random values a,(wi,...,wn_1,Wn), Mu(wy), n = 1,N, given on the

probability space {Q,, F,, P, }, satisfy the conditions

an(Wy, ..y wp_1,wy) >0, sup n,, (W) < 00,
wnEQ%ﬂ?E (Wn)>0

sSup a‘n(wla <o Wne, wn) < _ . (13)
wnEQ%,ﬁE(wn)>0
So, for AS, (w1, ...,ws_1,wy,), n =1, N, the representation
ASn(wla sy Wno1, Wn) -
Sp—1(Wiy ey wp1)an (Wi, e Wity Wy )M (Wn) =
dp(wWiy ey Wone1, W) (wn), n=1N, (14)
is true, where d,(wi,...,wy_1,w,) > 0. From the representation (14) we obtain

Q. =Q,1 xQ, QF =Q, 1 x Q% where Q07 = {w, € 2%, n,(w,) <0}, Q0T =
{wn € Q8 nu(wy) > 0}

Risk Hedging in Financial Markets
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Further, we assume that P2(Q%~) > 0, P%(Q%T) > 0. The measure P’ is a
contraction of the measure P? on the o-algebra F2~ = Q" NF?, P is a contraction
of the measure P? on the o-algebra Fo+ = Q0T N FY.

Below we give an example of discount evolution having the representation (12).
Suppose that risky asset evolution is given by the formula (9) and an evolution of

non risky asset is given by the law

n

Bn:He”, 0<r,<oo, m=1N. (15)
i=1
Let us assume that

Pf({w,- € Q?, a?si(wi) —r; < 0}) >0,

P({wi € ), ojei(w) —ri>0}) >0, i=1,N. (16)

Then for the discount evolution

S’I’L AR n—1» n T AT
SHwi, .. Wpe1, wy) = (r Bw ke ), n=1,N, (17)
the representation (12) is true, where
ai(wl ..... wi_l)si(wi)—ri _ 1
ai(Wis ., Wim1,Wi) = ‘ 0 > 1, mwy) = eI,
€% ei(wi)—r; _ 1
In this case,
_ T T
Q) = {wi € Y, eiw) < 9}7 O = {w; € O, ei(wi) > E}’ (18)
Q; = Qi*l X Q?i, Qj = Qi,1 X Q?Jr (19)

The evolution of risky asset, given by the formula (9), includes a wide class
of evolutions of risky assets, used in economics. For example, under an appro-
priate choice of probability spaces {Q?, F?, P’} and a choice of sequence of in-
dependent random values ¢;(w;) with the normal distribution N(0, 1), we obtain
ARCH model (Autoregressive Conditional Heteroskedastic Model) introduced by
Engle in [21] and GARCH model (Generalized Autoregressive Conditional Het-
eroskedastic Model) introduced later by Bollerslev in [22]. In these models, the

random variables o;(wi,...,w;_1) > 0V > 0, i = 1, N, are called the volatilities

)

which satisfy the nonlinear set of equations.

London Journal of Research in Science: Natural and Formal

Further, we do not restrict ourselves only the above considered case of evolutions
of risky assets. We assume that the random variables o;(w,...,w;—1) entering in
the formulas (9) satisfy only the inequalities o;(wy,...,w;_1) > oY >0, i = 1, N,
and the random values £;(w;), i = 1, N, are non correlated between themselves. For

example, they may be independent random values having the normal distribution
with zero mean value and not only.
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. RECURSIVE CONSTRUCTION OF THE SET OF MARTINGALE MEASURES

In this section, we present the construction of the set of measures on the ba-
sis of evolution of risky asset, given by the formula (1), satisfying the condi-
tions (6) - (8). For this purpose, we use the set of nonnegative random values
an({wi,. .. wl ol {w? ... w? [ w2}), given on the probability space {Q. x
QF Fo x Ff Py x Py, n=1,N, where F,, = F,NQ,, Ff=F,NQ. The
measure P is a contraction of the measure P, on the o-algebra F,” and the mea-
sure P is a contraction of the measure P, on the o-algebra F,. After that, we
prove that this set of measures is equivalent to the measure Py. At last, Theorem 1
gives the sufficient conditions under which the constructed set of measures is a set
of martingale measures for the considered evolution of risky asset. Sometimes, we

use the abbreviated denotations {wi, ... wl} = {w} {w}, ..., w?} = {w}>.

We assume that the set of random values a,({wi,...,wl};{w}, ... ,w?}) =
an({wili {w}?), {w}il{w}?) € Q. x QF, n = 1, N, satisfies the following con-
ditions:

P x B ({}h {w}2) € 9 x O an({whh {w)2) > 0) =
Po() x P(QF), n=T.N: (20)

1 1 1 2
/ XQ;(WI’""wn—hwn)XQj;(wl’""wn—hwn)x
Q0 xQ9

O‘ﬂ({wia e 7w71L—1’ wrlz}; {wfv e 7w721—17w721})><

ASH(wy, .y wn1,W2)AST (Wi, .y Wy, w))

Vn(wla <oy Wn—1, W%, w%)

({wi et 7(")%—1}; {wi e 7w12z—1}) € Qn—l X Qn—h

AP, (w,)d Py (wy) < oo,

(Wi, e ywn1) € Y1, n=1,N; (21)
/ XQ;(W%’""wrlz—hw}z)XQj;(w%’""w?z—hw?z)x
Q0 x Q9
O‘n({w%? s 7w711—17w711}; {w% s vw?z—l? wi})dpg(wrll)dpg(wi) =1,
Hwiyoowr  Bdw? w2 D) eQ xQy, n=1,N. (22)

In the next Lemma 1, we give the sufficient conditions under which the conditions
(20) - (22) are valid.

Lemma 1. Suppose that the evolution of risky asset, given by the formula (1),
satisfies the conditions (6) - (8). If the inequalities

LN, (23)

/ AS (wiy .. wy1,wn)dPy <00, n=
Qn
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are true, then the set of bounded random values o, ({w}l; {w}?), satisfying the con-
ditions (20) - (22), is a nonempty set.

Proof. If the random values
0<c <ar({wl,. .., wih{w? . .. ,w2}) <cy<oo, n=1,N, (24)

are bounded as from below and above, then the random values

an({w%, o ,w}z}; {w%, o ,wi}) =
1 1 1. 2 2
an(fwl,...,lwn},{wzl,...,w;}) =T, (25)
T({wh’"7wn71};{w1="'7wn71})

where ) . ) )
T({wlﬂ te 7wn71}; {wh ce 7wn71}) =

//XQ; (UJ%, tet 7w711)XQI<w%7 te 7("')721)04711({(*)%7 te 7“711}; {wi tee 7w'r21}>><
Q0 Q0
AP, (wy)d Py (wy),
is also bounded as from below and above. Really,

C1

caP2(2, ) P(82))

S O‘n({wi s 7wrlt}; {wfv s 7w72L}) S

C2

cr P8 PR (L)

=Cp<oo, ({whi{wh) €9, xQ), n=1N. (26

It is evident that the random values (25) satisfy the condition (20) - (21). Really,

due to the inequalities (26), the random values a,,({w}l:{w}?}), n = 1,N, are
strictly positive. Therefore, the conditions (20) are true.

Owing to the boundedness of a, ({w}L; {w}?}) < C,, n =1, N, the inequalities

/ XQ;(ML"‘7wrlLfl7wrlz)XQ$<w%7"‘7wn717wn)x

Q9 xQ0

an({wiﬂ e 7“}%—1’ w}b}; {UJ%, e 7w72L—1>w72¢})X
AST(wry ey wno1, w)AS (W, -y wpo1, W)

dP?(w!)dP°(w?) <
Vn(wlv <y Wh—1, w}” (,UTQL) n(wn) n(wn) —

Cn/ASn(wl, e Wn,wh)dPY(wh) < 0o, m=1,N, (27)
00
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are true for almost everywhere (wi,...,w,—1) € Q,-1, n = 1, N, relative to the
measure P, ;, owing to the inequalities (23) and Foubini Theorem. This proves
the inequality (21). The equality (22) is also satisfied, due to the construction of

an({w}l; {w}?). Lemma 1 is proved.

On the basis of the set of random values a,({w}!; {w}?), n =1, N, constructed
in Lemma 1, let us introduce into consideration the family of measure po(A) on the
measurable space {Qy, Fn} by the recurrent relations

ME\Lfdl,...,wN—l)(A) = / XQ;](wlv ce, WNZT, W}V)XQx(wh e, WNT, W?V)X
Q% x0%,
ay({wi, .- wy-n,wyt; {wr, - whor, Wi ) X
AS]—C'(CL)l, . e ,WN_l, W]QV) (wl,...,wN_l,w]l\,)
T 3 HN (A)+
VN(UJl, s ,(UN_l,CL)N,U)N)
AS&(wl Co L WNZT CUJIV) (W1, WN_1 w?\,)
- ’ ENTENI(A) | dPR (wy)d PR (wh), 28
VN(Wlw--aWNflaw]lVaw]QV)uN ( ) N( N) N( N) ( )

uilw_li”"w"‘l)(A) = / Xoz (Wi -+ Wno1, Wi)XQi (Wi, Woo1, w2) X

09 xQ0
an({wi, .. wnen, Wil {wr, o w1, W) X
2
e
AS, (Wi, ... wee1,w;)

D) AP, 0 =B, (29

1 .,,2\Fn
Vn(wla cee 7wn717wn7wn)

o) = [ oy @hxas an(ulin?)x

QIxQ9
AST(wP) @ AST (W) (@)
1 A. 1 A. dPO ]'dPO 2
Vl(—w%,w%) 1 ( )+—V1(w%,wf) 1 ) 1(“’1) 1(“1)7 (30)
where we put
ME\L,U17"'7wN71’wN)(A) = XA(wl, - ,wN_l,wN), Ae .FN. (31)

Lemma 2. Suppose that the conditions of Lemma 1 are true. For the measure
wo(A), A € Fy, constructed by the recurrent relations (28) - (30), the representation

po(A) = /Hl/)n(wl,...,wn)XA(wl,‘..,wN)HdPio(w,-) (32)
Gy =1 i=1
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is true and po(Qxn) = 1, that is, the measure po(A) is a
equivalent to the measure Py, where we put

probability measure, being

V(Wi -y wn) = Xo (Wi, - -  Wne 1, W )WL (W1, -+ Wi )+
ng(wla e Whe 1, W )YP2 (W, -, W), (33)
lp}q(wh cee 7wn—17wn) -
/XQ;(wl, . ,wn—1,w721)an<{w1, e ,wn_l,wn}; {wl, . ,wn_l,wi})x
Q9
ASHT(wry .oy wpo1,w?)
Vn((jl = lnw1 J2)dp7?(wi)7 (wl, c. ,wn_l) € Q1 (34)
PRI —1yWnH»Wn
YW1y W1, W) =
/XQn (wh o 7wn—17wi)an({wl7 oo 7&)“_1,(,0;}; {wb ) 7wn—17wn})><
Q9
AST (Wi ey wno1,wl)
Vn(gl = 1nw1’ JQ)dP,S(w;), (Wi Wn1) € Q1. (35)
VAR | — 1 n?’ n

Proof. Due to Lemma 1 conditions, the set of strictly positive bounded random
values a,({w}l;{w}?), n = 1, N, satisfying the conditions (20) - (22), is a non
To prove Lemma 2, we need to

empty set. The proof of formula (32) see in [2].
prove that ¥, (wq,...,w,) >0, n =1, N. Really,

lp”ll(wl""’wn—lawn) Z
AST w2
o 1,220 117 wn2) dP,?(wi) >0, (w1,
ca ) Valwr, .o, wpo1,wh w?)
9t
lpi(wl""vwn—lawn) Z
C1 AST: (U)l, e 7wn71’wi) 0 )
Co dP%(w>) > 0 w
Co 0/ Vn(wl,...,wn_l,w%7w%) n( n) 5 ( 1,
00~

London Journal of Research in Science: Natural and Formal

s 7wn71) € anlv

- 7wn_1) € Q1. (37)
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From the inequalities (36), (37) we have what we need. To prove that u(Qn) = 1,
let us prove the equality

/lﬂn(wl,...,wn)dﬂg(wn) =1, (wi,...,wp_1) € Qp_1, n=1,N. (38)

We have
/ Y, (wr, ..., wn)dP2(w,) =
Q)
//Xﬂg(wl,...,wn1,w}l)XQ¢(w1,...,wn1,wi)x
Q9 Qf
an({wla'"7wn—17wrlL};{w17'"7wn—17w72L})><
ASH(wry .oy wp_1,w?)
Volwi, ooy wp1, wh w?)
ASf(wl,.. s Whn—1,W ) 0 0
dP dP
(Wi, Wno1, Wl w?2) w(wn) P (wr) =
//XQ Wiy ey W1, W )XQ+(w1,.. , Wi 1,w2)><
00 Q0
an({wr, ... ,wn,l,wi}; {wi, ..., Wn_1, wi})dpg(wi)dpg(wi) =1. (39)

The last equality follows from the fact that the set of random values ay, ({w; }L; {w }2),
n = 1, N, satisfies the condition (22). The equalities (38) proves that every measure

(32), defined by the set of random values a,({w;,...,wl}; {w}, ..., w2}),n =1,N,
satisfying the conditions (20) - (22), is a probability measure, being equivalent to
the measure Py.

This proves Lemma 2.

Note 1. Assume that for a,({wi,. .., wl | wih{w? ... w2 |, w?2}), constructed in
Lemma 1, the inequalities

0<cn <an({wi,...,wl L wih{w?, ... W [, w}) <C, < oo,

are true. Suppose that the conditions

AS (wiy .. wne1,wn) < B, <00, n=1,N, (40)

are valid, where ¢,, C,, B, are constant, then the set of equivalent measures to the
measure Py, described in Lemma 2, is nonempty one.

Proof. Due to Lemma 2 conditions, the equality (20) is true. Further,
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//XQ;(WL cee 7w7lzflaw71L)XQI(w%7 ce ,wi,l,wi)x

Qf Qf,
an({w%,...,wi_l,wi};{wf,...,wi_l,wi})x
AS T (wry .y wno1, w)AS (Wi, -y wn1, W)
dP°(whdP°(w?) < B
Vn(wlg--'ywnflaw}wwg) n( n) n( n) — s

({w%, . ,wi_l};{wf,...,WQ e Qg x 1, (wi,...,Wn-1) € U1,

n—1

/ XQ;(wia"'7w711—17w71L)XQ,'1[<w%7"'7w721—17wr2z)><
Q0 xQ0
an({w%, s 7("}711—17("}711}; {wia e 7w72l—1a w?z})dPS(wrll)dPS(wZ) = 1a
{wi, .. wh  B{w? . w2 )) € Dot X Q. (41)

The last inequality and the equality (41) means that the conditions (20) - (22)
are satisfied. Note 1 is proved.

For a nonnegative random value fxn(ws,...,wy) let us define the integral relative
to the measure pg(A), given by the formula

N N
EMOfN = / H ¢n(wl, . ,wn)fN(wl, e ,wN_l,wN) HdPlO(wZ) (42)
n=1 =1

Qn

Theorem 1. Suppose that the conditions of Lemma 1 are true. Then, the set of
nonnegative random values a,,({w}l: {w}2),n =1, N, satisfying the conditions

EFIAS, (wry .. ywp_1,wy)| =

N

N
/Hl/)i(wl, o W) |AS (W - Wi, wh) | HdPiO(wi) <oo, n=1,N, (43)
Gy =1

=1

is a nonempty one and the convex linear span of the set of measures (32), defined
by the random values a,({wl, ... wil;{w?, ..., w2}), n = 1, N, and satisfying the
conditions (43), is a set of martingale measures, being equivalent to the measure Py.

Proof. Taking into account the equality (38), the right hand side of equality (43)
can be written in the form
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i=1

N N
/ [[wilwr, . w)|AS,(wr - - wnr,wn) | [ [ AP (wi) =
On =1

i=1

/Hlpi(wlw"7wi>|ASn(wl7'"7wn—17wn)|Hd‘PiO(wi) =
G, =1
n—1
2 / Hl/ii(wl,...,wi)//XQ;(wh...?wn1,wi)xﬂx(w1,...,wn1,w2)><
Q) | =1

Qp Qf
an({wla'"7wn717w711};{w17'"7wn717w721})><
ASJ(wl,...,wn_l,w%)ASg(wl,...,wn_l,wﬂl)x
Volwi, ooy wp1, wh w?)
dP%(w})dP?(w HdPO w;), n=1,N. (44)

Since the conditions of Lemma 1 are true, then the set of bounded random val-
ues a,({wi, ... Wil {w?, ..., w?}), n = 1, N, satisfying the conditions (20) - (22),
is nonempty one. From the equality (44) for the set of bounded random values
an({w}l; {w}?), n =1, N, figuring in Lemma 1, we obtain the inequality

N
/sz Wiy ..., W IAS (wla'--awn—17wn)|HdPiO(wi) S

i=1
N
H 262 /AS(wl ey Wp1,wh)dPy <00, n=1,N. (45)
o1 bR Q) PR AR ’ ’
This proves that the set of nonnegative random values o, ({w;, ..., wl}; {w?, ..., w?}),

n = 1, N, satisfying the conditions (43), is a non empty set.

Let us prove that

/¢n(w1, ey Wn)AS, (Wi, - - ,wn)dP,?(wn) =0,

(wla s 7wn71> € anla n= 17N (46)

Really,
/l/)n(wl, oo W) AS, (wr, - ,wn)dP,,?(wn) =
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//XQ;(WIW"’CUHlawi)XQ:(wla”'awnlawi>x

Qg Qf
an({wla'"7wn—17w711};{w17'"7wn—17wi})x
ASf{(wl, ey W1, w%)
— AS, (Wi, W1, W)+
{ Vi(wiy oy w1, wl w?) w (@1 net )

AS (@t Wn) Ngry o o P aPY W) =0, (47)

Vo(wi, .o wp1, wh w?)

due to the condition (21).

To complete the proof of Theorem 1, let A belong to the filtration F,,_1, then
N
A = B x [] QY, where B belongs to the o-algebra F,_; of the measurable space

{1, ]—"n_z}. Taking into account the equality (39), (47), we have, due to Foubini
theorem,

/1_[1/)Z Wiy wi)Xa(wr, - wn)AS, (W, .. w HdPO (w;)

/Hl/), Wiy wW)XB(WI - wWh1)AS, (W, . w l_IalP0 w;)

n—1

/ Hl,bz Wiy ey XB(wl,...,wn_l)HdPiO(wi)x
=1

/wn(wl, W) AS, (Wi, we)dPY (wy,) = 0. (48)

The last means that EF{S, (w1,...,wy)|Fn_1} = Sp_1(wi,...,w,_1). Since every
measure, belonging to the convex linear span of the measures considered above, is
a finite sum of such measures, then it is a martingale measure, being equivalent to
the measure Py. Theorem 1 is proved.

Our aim is to describe this convex span of martingale measures.
V. INTEGRAL REPRESENTATION FOR MARTINGALE MEASURES

In this section we consider the spot measures fig,1 .2}, . (w1 2} (4), introduced in [2].
Let us consider the random values

Yn(wi, . wn) = Xq- (Wi, .. W1, W) YL (W1, - oy W)+

Xﬂi(wlv oy, Wn—1, wn)lpz(wla cee 7wn)a (49)
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where

lp}l(wl? s 7wnflawn) = XQ$<W17 e 7(«Un71>W72L)><
AS;(wl, e, W1, w?l)
1) EQ _ 50
Vn(wh"wwn—l,W%,w,%)’ (wl’ » Wn 1) n—1, ( )
wi(wl? e 7wn—17wn) = XQ;(wly e 7wn—17w7}z)x
AS;(W1>"->WH—1,W711)
ceyWne1) € Qg 51
Vn<w1’-'-,wn—17w%,w%)’ (wl’ » Wn 1) n—1 ( )

Definition 1. Let the evolution of risky asset, gz’ven by the formula (1), satisfies the
conditions (6) - (8). On the measurable space {H [QV~ x Q9] H [F)~ x F*]}, being
the direct product of the measumble spaces {QO x QU FPT x ]-"0+} for every point

Hwi,wi}, ... {wh,wi}} € E[Q?’ x Q] let us introduce the set of spot measures

(see also [2])
oot ol w2} (A) =

2 2 N
Z . Z H ll)n(wil,...,w;")XA(w?,...,w?{,v), A€ Fu, (52)

=1 in=1n=1
where Y (w1, ..., wy,) is determined by the formulas (49) - (51).

Let us define the integral for the random value fy (wi,...,wn_1,wy) relative to
the measure u{w%’w%}’m’{w}ww%}(A) by the formula

/ fN(wla s, WN-1, wN)d/L{w%,w%},...,{w}\,,w?\,} =

2 2 N
ZZH wl,...,w;j)fN(wil,...,wj{,V). (53)
=1 iy=1j=1

To describe the convex set of equivalent martingale measures, we introduce the

family of a-spot measures, depending on the point ({w{,{w}},...,{wk,{w%}) be-
N
longing to JT[Q0~ x Q9F] and the set of strictly positive random values
i=1
an({wl, .. w L wih{wd Wk W), n=1,N, (54)

at points W, = ({wi,...,wl};{w} ..., w?}), being constructed by the point
{wh,wit, . {wy, wi})-

Let us determine the random values

Yo (Wi, wWn) = Xo- (Wi, - - -  Wne 1, W )W (wy, .. wn )+
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Xot (W1, sy Wno1, Wn)lpi’a(wla s 7wn)7 (55)
lpr,ll7a(wl7 ceeyWp—1, (Un) =
[ o noswanl b s (6w
Q)
AS T (wiy .y wn1, w?)
n T O T Tl dPY(w?), yee oy Wno1) € Qpq, 56
Vn(wly'--ywn—bw}pwz) n(wn) (wl W 1) 1 ( )
¢3L7a(w17 R wn) =
/XQ; (wlﬂ sy, Wn—1, w}l)an({wi, e 7(")711—17 w711}; {wfa cee ,wi_l,wi})x Té‘
Q0 E
.=
AS; (wy Wno1,w}) 0/ 1 g
L L N , ey Wn1) € Qg 57 =
Vn<w1,' - 7wn71>wrlww72l) n(wn> (wl % 1) 1 ( ) §
>
Let us define the set of the measures on the o-algebra Fy by the formula %
=
N 2
Q
fio(A) = / [Jeslfwi, . whi{wl, . Wi} 2
Z:1 .-
{1 09~ x00*) E
i=1 (a3
5]
(B
N &
Ly ot w2y (A) [ d[P? x PP, A€ Fy. (58) °
M{wl,wl},...,{wN,wN} i il N =
i=1 g
=
=
Theorem 2. Suppose that the strictly positive random value g
=
o ({wh, . wid {w? W), n=1,N, (59) 3

N N
given on the measurable space {[[[Q0" x QY] TT[F>-

,WN)dPN

x FPT)Y, satisfies the con-

(60)

=1 i=1
ditions of Lemma 1, then for the measure uo(A), given by the formula (58), the
representation
fo(A) =
N
/H’l’?(wla---awi)XA(wh---
Gy =1
18 true.
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Proof. Due to Lemma 1, the set of random values «,({wi,...,wl}; {w? ... w?}),
n = 1, N, satisfying the conditions (20) - (22), is a non empty set. Introduce into
consideration the sequence of measures

u;}ilwn_1(A>: / HQZ {wl,.,.,wil};{w%,...,u}?})x

T (20~ x00*]

i=n

Z ZHIIJJ Wiy e W1, W, ,...,w;j)XA(wl,...wn_l,w%",...,wf\?’)x

in=1 iN=1j=n
APY(W!)AP)(W?) .. dPY(wh)dPY(Wh), n=T.N. (61)
and find the recurrent relations between them. Using Fubini Theorem, we have

p T (4) =

//dpg( YAPY @2 )an({wh, .. w0t {2, ) Z‘l’ Wty et win)

_ in=1
09~ 00t "

/ H ap({wl, . wlh {w? WP x

N 1=n+1
I1 (907 <]
1=n-+1

Z Z H Yi(wi, W1, W)W )X AW W, W W)X

int+1=1 in=1j=n+1

dP’r?—i—l( n+1)dPn+1( n+1) dPN( )dpz(\)f(WQ ) =

an({wiv"'vwi};{w%a-” n} len Wiy .. Wp— 1>w )X
Q% a5t tn=1

gt (A) AP (wh) AP (w7) =
/ / an({wi, .. wih{w?, DWW, W1, W) ) X
- ot
i (A)d P () AP (wh)+

/ / an({wi, . wi b {w?, DY (wr, W, W) X

Q9 ot

s (A) AP () AP (). (62)
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In accordance with the formulas (49) - (51), for ¥, (wy,...,w,) we have

Y (wr,. .. wh) = X (Wi - - Wne 1, WP (W, . wh)+
XQ;t(wla s 7wn—1)w711,)¢2(w17 s 7wrll) -
XQ; (wla sy Wne1, wi)XQi (wla ceey Wn1, wi)x
AS,J[(wl, Ce ,wn_l,wi)
Vo(wi, .oy wno1, wh w?)
Xoi (W1, -+ - ,wn,l,w}t)xm (Wi, v, Wno1,wh) X
AST (Wi ey wno1,wh) _ ~
Valwi, oo ywpo1,wh, w?2) £
S
XQ;(wl,...,wn_l,w}l)xgi(wl,...,wn_l,wi)x %
&
—
AST(wry -y wpo1,w?) o
T2 (63) £
Vn(wlu sy Wn—1, wn’wn) 2
Further, g
Y, (wr, ... w2 = Xa (Wi, W1, WP (W, ..., w2+ _g
A
XQx(wl,...,wn,l,wi)lpi(wl,...,wfb) = E
2 2 g
XQ; (Wla sy Wno1, wn)XQi (wla ey Wn1, wn)x 8
w0
ASH(wry .oy wno1,w2) Sqd:
Valwi, oo wpo1,wh, w?) %
XQz(wla"'awn—bwi)XQ;(wla---awn—lvwi)x g
=2
AST(wry -y wno1,wh) _ g
Volwi, .oy wp_1,wh w?) %
-
XQ:{ (wlu s 7wn—1’wr2L)XQ; (wla <oy Wn—1, wrlz,)x
ASJ (wl, . ,wn_l,wi) (64)
Vo(wi, .o wn1, wh w?)
Substituting (63), (64) into (62), we obtain the recurrent relations
L (4) =
1 . g, 2 2 1 2
an({wy, - wn b {wr, W )Xo (Wi - Wne1, W) X (W1 -+ Wi, W) X

Qb oot

|: AS:(W]_; N 7wn717 wi) uwl,...wn,hw}b (A) +
Vn<w17 s 7wn—17w71mw121> "
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AST . 1, wh 2
Sn (W1, y Wn 1,wn) ,U,wl"“wnl’w”(A):| dPS(W:L)dPS(WTZL) (65)

1 .,,2\n
Vn(W1, <oy Wn—1, Wnawn)

To prove Theorem 2, we need to prove that the recurrent relations for

() =
N
/ H Y (wi, ..., wi)xalwr, ..., w H dP?(w
N i=n+1 i=n+1
I 9
k=n+1
are the same as (65). Really,
pt o (A) =
[ AP it o)
%
/ H Yt (wry e wi)xalw, .. w H dP?(w dPSH( V) =
1=n+2 1=n+2
o
k=n-+2
/ l/)f:_:,_l(wla- . wnawnﬁ—l)ﬂﬁilwmwwﬂ (A)dp +1<wn+l) (66)
QO

Substituting (55) - (57) into (66), we obtain

pt o (A) =

1
/ XQ;H(le sy Wn, Wiﬂ)%ﬁél(wla sy Wy W}Hl)/i:ilwmwnﬂ(A)dpr?H( 711+1)+

Xo,, (@1, @ W2 YR (w1, w2 ) (A)APE (W2 =

/Xﬂn+1(w17"'7wnvw71z+1) / XQI_H(wlﬁ"'awmwi—H)x

0— 0+
Q"+1 Q'n+1

AST (wiy .y wn,w?y )
Om+1({w%,...,wiﬂ};{w%,...,wZH})Vﬂ(ZI 7w 7w1“ 124;21 )
n ey Wny W1, Why

wl...wn,w}L
Mg H(A)dPSH( n+1)dp ( n+1)+

2 1
/XQI+1(W17"'7wn>Wn+1) / XQ;H(wl,...,wn,wnH)x

0+ 0—
Q"+1 Qn+1

Risk Hedging in Financial Markets

Volume 23| Issue 4 |Compilation 1.0 © 2023 Great Britain Journals Press



© 2023 Great Britain Journals Press

Asg_;’_l(wl) LR 7wn7 w}'l,-‘rl)

ozn+1({w%,...,w}lﬂ};{w%,...,wi+1}>v+1(wl W W w2 )
n sy Wn11yWntl

W1 .. Wy

11 e (A)dprg—l-l(wgz+1)dpfg+1(w721+l)'

So, we obtained the recurrent relations

i (4) =
XQEH(M’ ey Wy, w711+1)XQI+1(W1’ W, W2 )X
AR A
ASH (wry e wn, w2 ) 1
1 1 Lr2 2 n+1 ) » Wy W11 WieWn Wty g
O[n-‘rl({wl,..-,wn+1}7{w1;-.-;wn+l}) |:Vn+1(w177wn,w%+1,w721+1) n+1 < ) +
AS;—H (wh <oy Wiy, w711+1) wi...w w2+1
LAY dPY (Wl ) dPY (WP 67
VnJrl(wl, e, W, w}H_l’ w5+1)un+1 ( ) n—i—l( n+1) n—i—l( n+1)7 ( )

which are the same as (65). Theorem 2 is proved.

Theorem 3. Suppose that the conditions of Lemma 1 are true. Then, the set of
strictly positive random values o, ({w}l; {w}?),n =1, N, satisfying the conditions

EMIAS, (wry .y Wn1,wy)| =

N N
/Hlpf‘(wl,...,wi)|ASn(w1,...,wn_l,wn)|HdPio(wi) oo, n=TN, (68)
On i=1 =1

is a non empty set for the measures po(A), given by the formula (60). The measure
po(A), constructed by the strictly positive random values o, ({w}t; {w}?),n =1, N,
satisfying the conditions (68) is a martingale measure for the evolution of risky
asset, given by the formula (1). Every measure, belonging to the convex linear span
of such measures, is also martingale measure for the evolution of risky asset, given
by the formula (1). They are equivalent to the measure Py. The set of spot measures
u{w%7w%}""’{w11\17w12\f}(14) is a set of martingale measures for the evolution of risky asset,

given by the formula (1).

Proof. The first fact, that the set of random values o, ({w}t;{w}?),n = 1, N, sat-
isfying the conditions (68), is a non empty one, follows from Lemma 1. From the
representation for the set of measures po(A), given by the formula (60), as in the
proof of Theorem 1, it is proved that this set of measures is a set of martingale
measures, being equivalent to the measure Py .

Let us prove the last statement of Theorem 3. Since for the spot measure
[l w?},... fwl w2} (A) the representation

M{w%,w%},...,{w}v,w%\,} (A) =
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2 2 N A '
ZZH Pi(wi, o wl xawl W), A€ Fu, (69)
=1 in=1j=1

2 , N
is true, let us calculate Y ¥;(wi',... ,w/). We have

ij=1

2
lej(wil,...7w;.j):¢j(w?,... 31, )—i—lﬂ(wil,...,w;-j:f,wf.):

ij=1
Xa; (Wi, ... ,w;j_’ll,w;)lpjl-(wil, . w;J wi)+
Xﬂﬁ(w?a e ;] 1w )1/Jg (wit, - W;J_llw )+
Xa; (Wi, ... ,w;jjll,w?)lpjl-(wil, o w;J 11w2)+
Xat (Wit ... ,w;jjll,w?)i,b?(w?, . wjj_fw )=

+ (0 -1 2
ASF (Wi wi wy)

1 i1 i1 2
Xo- (Wit . w? T wi) xor (W . wi T w? .
Qj(l, A ) QJ(l’ A ])Vj(wil,...wjl,wluﬂ)

—(, i -1 1
ASy (Wi wi W) N

J

in 1 j
XQj(% ,...,wj_l,wj)xgj—(wl yee Wi W - o —
Vi(wy', .. wiT, wi, wj)

+(, 0 Gi-1 2
AST(wi'y . wi, w3)

i1 g 1,2
Vil .. wiT wi,w?)

i1 ij—1 2 1
XQJ._(wl e Wiy 7%’))(9}*(“1 e Wi, Wy

AS (w ... ,w?jjll,wl)

i1 ij— i1 o1 1 J _
XQj(Wl pee Wi )XQ (wits. ..,wj_l,wj) - =
Vj(wl,...wjl,w w;)
+(, ij—1 2
0 o1 1 0 i oy AST (Wi wi w3
XQ;(C% 7---,Wj—17wj)XQ].+(W1 7'-'7wj—17wj) i 1 1 2
V}(wl 7"'7"‘)]'717(")]7(*)])

J

— (i1 -1 1
i ) . AS; (wl,...,w._l,wj)
Xﬂj(wl,...,wj_l,wj)xg;(wl,...,wj_l,w- A

if wl e Q)W e}, j=1,N.
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N
So, for every point {{w},wi}, ..., {wy, w3t} € [T[Q)" x Q7] the spot measure
j=1
(69) is nonzero probability measure on the o-algebra Fy. Further,

2
ST it WA W) =

ij=1
Wi(wit, ... ,w;j_’f,wjl-)ASj(w?, o ,wéff,w})—i—
YWl Wi WDAS (WL wi T wh) =
Xo: (Wit ... ,w;j:f,w;)xﬂj(w?, . ,w;j:f,wjz)x

AST (Wi Wi w?) ~
G\ Wi Y — (i1 -1 1
— AST (wi'y . wi T wi )+

i1 b1 012
Vi(wi's . wit wiwi)

—(, i1 -1 1
ASy (Wi wi T wy)

. - ASHW™, .. Wi W) | =0, j=1,N. 70
V}(w?,...,w;]_’ll,w]l,w}) ]< ! it J) (70)

Let us prove that the set of measures [k w2}, ol w2, 1(A) is a set of martingale
measures. Really, for A, belonging to the o-algebra F,_; of the filtration, we

N
have A = B x [] Y, where B belongs to o-algebra F,_; of the measurable space
{Q’I’L—17 ]:n—l}' TI’IGII,

/Asn(wb s 7wTL)du{w%,w%},...,{w}v,w]z\,} =
A

2 N

2
SN T e xs(l W ) AS W i) =

1=1 iy=1j=1

~

2 2 n
Z . Z H Wi(wit, ... ,w;j)XB(wil, LW DAS (W win) =
=1 in=1j=1
2 2 n—l '
Do 2 TIwtt e xmletts i) x
i1=1 in—1=1 j=1
2
Z Yo (Wit W AS, (W W) =0, A€ F, . (71)
in=1

The last means the needed statement. Theorem 3 is proved.
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Below, in Theorem 4, we present the consequence of Theorems 2, 3.
Let us introduce the denotations

(ks @) = [Dxo (el ol Dxar (o0, n=TR.  (72)

From the assumptions (6) - (8), it follows that

Tu({w}i; {w}tn) = HXQO wi )Xo+ (WF), n=1LN. (73)
We also use the denotations

Py = {{{whn {w}i} € H[Q? x ), n({why, {wliy) = 1}, (74)

UN = {{{w}N7 {w}N} S H QO QOJF :u{w},w%} ..... {w}v,w?v}(QN) = 1} (75)

. From the construction of spot measures (i1 .2y . (wl w21 (A) and assumptions (6)

- (8), it follows that these sets (74), (75) coincide.

Theorem 4. Let the evolution of risky asset, given by the formula (1), satisfy the
conditions (6) - (8) Suppose that the random value an({w}; {w}% ), given on the

measurable space {H[Qg_ x Q) H[]:O_ x F1}, satisfies the conditions

=1 i=1
1 1.7, 2 2 (76)
0<eny <ay({Hwi,...,wy b {wi,...,wi}) < Cn < 0.
If
/ an({wi, ... ,wh b {w?, ... Wi} x
[T 00 x00*]
HdPO DdP(w?) =1, (77)
then the measure py(A), given by the formula (78)
@)= [ anll ok b @k x
]_[[QO’XQ(”]
N
Pt w2t w2y (A TT AP (w]) x P (w3)], (78)
i=1

18 a martingale measure, being equivalent to the measure Py.
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Proof. 1t is evident that

/ Yoo ({6l 0 P xgs (1, w2 ]

Q0 xQ9
ap({wr, s wn e b {w?, - wn o, W AP, (w,)dP (w)) = 1,
where
Oéll\f({w%7 e 7(")7%,—17(")711}; {w% e 7w3b—1a wrzl}) =
aN({w%a' .- 7("}]1\1};{(")%7' .- 7w]2V})

J w{wiyvi{olian{wr, . wpti{etl, Wi ) ZIJ_VIN AP (w;)dP (w})

N

IT [29x27]

i=N

1

aqlz({w%? s 7wn—17

I mawhyi{oli)an{wr,

N
IT [29x97]
i=n+41

wpti{wi, ... w

Swy{wl

Y

72L—1a w?z}) =
2 N 1 2
OB ARG

S mwlyi{wlt)an(wr, .oy bi{wt, w0} }) lf[ AP (w})d P (w})

T (20 %2

(2

[

n =

The set of positive random values o ({w}}; {w}?),n = 1, N, given by the formula

(79), are bounded as from below and

1

an({wr, - wp,

LN -1

above. Really,

wé}; {wi s 7w72L—17wr2L}) S

?

(79)
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J o (ol )2 T1 dPP(w!)dPP(w?)

ﬁ Q9% Q9] =l
@i:n-&-l ¢ ¢ o
CN N N
o m{wini{wlyy) [T dR (w)dPY(w})
T (9% o
Cy
< Q.
en P(Q07) PR(0T)
Further,
04711<{w%’ e ’UJ}L—D w}w}; {w%? tet 7w’r2b—17w3l,}) Z
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I (el @) T1 dPP(w!)dP(w?)

N i=n-+1
IT [2?xQ?]
CN i=n+1

Cx

I et )3 ﬁ AP (w))dPY(w?)

N 0 0
T [29%Q0]
=N

CN

B () PR (Q207)Cn
Therefore, they satisfy the conditions

> 0.

EFIAS, (Wi, .. ywp_1,wy)| =

N N
/Hl/)i(wl,...,wi)|ASn(w1,...,wn_l,wn)|HdPiO(wi) <oo, n=LN. (80)
Qn =1 =1

1(f,1 1 1. [, 2 2 2 —
The boundedness of random values «,, ({wy, ..., wp_1,w, };{wi, ..., wi_,wi}), n=

1, N, means that they satisfy the conditions (20) - (22). It is evident that

an({wl, . wpdi{el, wih) = [ enwl, . whhi{wr . wl}). (81

Owing to Theorem 3, p(A), given by the formula (78), is a martingale measure,
being equivalent to the measure Py. Theorem 4 is proved.

Theorem 5. Let the conditions of Theorem 4 be true. If the contingent claim
fv = fy(wi, ..., wy) satisfies the condition

{{wlw?l,..., {wk

sup /fN(wh"wwN)du{w},w%} ..... (Wl w2} < 00,
7W12V}6HN}QN

then the equalities

inf B fy = inf / Wiy ooy WN)A gt o wl w2 1 82
P IS o S e ] T oyt (82)
Qn
P
sup E" fy = sup / In(Wr, - WN) A 2y gt w2 ) (83)
PeM, {ohet)o ok widen) D

are true, where M, is the set of all martingale measures, figuring in Theorem 4, with
anv({wi, ..., wh}; {w? ..., wk}) running all nonnegative bounded as from below and
above the random values.
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Proof. The inequality

. P Q
Juf B < (1= )yt a [ flon o omddigguy ety 0<a <1,
Qn

-----

or

inf BT fy < inf / Wiy ee s WN) A1 Wl w21
RL A (ot i s demn) Iulon o omdhieg . ety
N

To prove the inverse inequality, we use the representation
E°fy =

/ an({wi, ... ,wn i {w?, .. Wi} X

N
11 ()~ xQ) ]

=1

N
/ fN(wla <o 7WN)d:u{w%,wf},..,,{w]l\,,wlzv} H d[PzO(wzl) X on(w12>] (84)
Qn

Using the representation (84), we obtain the inequality

EQfN > inf / fN(wla s 7wN)d/*L{w%,w%},...,{w}v,w?\,}' (85)
Qn

{{w% 7“]%}7“'7{“}11\]7“)?\[}6.“‘1\7}

Taking into account the inequality (85), we obtain the inequality

inf E9fy > inf / Wiy e e s WN) A1 Wl w2 1- 86
QEeM, Iz {{w%7wf},...,{w11v,w12v}€uN}Q fN( ' N) ot et (whwid ( )
N

This proves the equality (82). As before, (1—a)Q+afig1 w2y, ] w2} I8 @ martingale
measure, being equivalent to Py, therefore the inequality

SUIB EPfN > (1 - OC)EQfN + / fN(wla ce 7wN)dﬂ{w%,w%},...,{w}\,,w?\,}7 0<ac< 17
€My
Qn

is true. Tending « to one, we have

P
1:?;11\1/)11, E"fn > /fN(Wh e 7WN)d/i{w%,w%}w{w}VM?v}’
Qn
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or

sup EPfN > sup /fN(wl, . 7wN)d’LI/{wi’w%}w'?{w]l\f’w?\l}.

PeM, ok} ook benn) g
N

To prove the inverse inequality, we use the representation

B9y =

[ atul bl

N
100 <0

N
/ fN(wla SR 7wN)dM{w},wf},...,{w}V,w]QV} H d[RO(w'Ll) X RLO<wz2)] (87)
oy i=1
From (87) we have
EQfN S sup / fN(wla .. ,(.UN)d[L{wl w2} {wl w? } (88)
Hehethedwkwiden) ) s

Taking into account the inequality (88), we obtain the inequality

Q
SU.p E fN S Sup / fN(w:b . e 7wN>d/,L{w17w2},”.,{w1 ,UJ2 } (89)
QeM, {{w{,w%},...,{w}v,w?\,}euN}QN 1)W1 NoWh

This proves the equality (83). Theorem 5 is proved.

Let us introduce into the set of measure M, the norm. If P, P, € M, where

A= ] el ekt b

N
TT 1) ]

N
Fofl w2 ol w2 ) (A) H [P (w}) x PP (w})], (90)

i=1

Py(A) = / ({wh W) {eh W)X

N
I1[07 %))

i=1

N
u{w%,w%},...,{w}\,,w?\,}(A) H d[Pz()(wzl) X Pio (%2)], (91)

i=1
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then we put
|1P1 = Bf| =

/ aly (fwhh: {13 — o ({whk: {w)2) %

N
1T [0 %9
i

H d[P] (w;) x P(w])]. (92)

Denote M;, the completion of the set M, in the introduced metrics.
Theorem 6. Let the conditions of Theorem 5 be true. Then, the equalities

inf E¥fy = inf / Wiy e ey WN)Apg 1 Wl w21 93
PeMy fN {{w%,w%},...,{w}v,w?\,}ENN} fN( ! N) Iu{ %’ %}77{ ]1\,7 12\]} ( )
Qn
P
Sup E fN = sup / fN(wla B 7wN)dﬂ{w1,w2},...,{wl w2} (94)
PeM, A A S v N
are valid.

Proof. For arbitrary small € > 0 there exists a measure Py € M, such that
|Pin]\f4 Effx — EP fy] < e. Since |EDt fy — E2 fy] < ||Py — P|, then there ex-
€Mo

ists a measure P, € M, such that |[E™» fy — ET0 fy| < ||P, — Py|| < &. Due to the
above inequalities, we have

. . P
{{w%7w%},---,l{r<}Jf];v,w12\,}€ltN} / fN(wla s 7WN)d:U/{w%,wf},...,{w}v,wsz} - Plellﬂf;[b E fN >
QN

inf EVfy > —e+ Efy > —2e+E™ fy >
PeMy

{wlwit vy,

—2e + inf w%\,}euN}Q/ fN(wh C ,WN)dH{w%,wf},...,{w}\”w]Z\,}.
N

Since € > 0 is arbitrary small we have the proof of (93).

Analogously, for arbitrary small € > 0 there exists a measure Py € Mj such that

| sup Ef fy — EPofy| < e. Since |EPt fy — EP2fy| < ||PL — B||, then there exists
PeMj

a measure P, € M, such that |E™ fy — BT fx| < || P, — Py|| < &. Due to the above

inequalities, we have

sup / fN(wh e ,WN)d,lJ,{w1’w2 o{wl w2} = Sup EPfN <
{{w%7w%}7"-7{w11\;,w]2v}€,u,]\/}9 171 NYN PeM,
N
sup EF fy < e+ B fy <2+ B fy <
PeMy
2e + sup / fN(CUl, .. 7wN)d:u{w1,w2},..l,{w1 w2}
{{w%’w%}""’{wzlww?v}GHN}QN 11 NWN

Since € > 0 is arbitrary small we have the proof of (94).

Risk Hedging in Financial Markets

Volume 23| Issue 4 |Compilation 1.0

London Journal of Research in Science: Natural and Formal




London Journal of Research in Science: Natural and Formal

Denote M C M, the subset of all martingale measures from the set Mj, which
are equivalent to Py. As a consequence of Theorem 6, we obtain

Theorem 7. Let the conditions of Theorem 5 be valid. Then, the equalities

inf BT fy = inf / Wiy e ey WN)Afg 1 wl w21 95
peM I Hwiwit Aoy wi teun} fuler )iy Pt dehoeid (95)
QN
P
sup BV fy = sup / SN, N 2y gt w2y (96)
PeM {{wlw?},..., {w}v,w?V}EuN}QN e NN
are true.

Proof. The proof of Theorem 7 follows from the inclusions M, € M C M, and
Theorems 5, 6.

Theorem 8. On the probability space {Qn, Fn, Px}, being the direct product of the
probability spaces {Q°, FO, PO}, let the evolution of risky asset be given by the for-

mula (12), with a,(wy,...,w, ) = by(wi,...,w,—1), n =1, N, where the random
variables fo(wi, ... ,wn), bu(wi, ..., wn_1), Mul(wy) satisfy the inequalities
bp(wiy .y wisg,wn) >0, folwr, ..., wp1,wy) >0, sup n,, (wy) < 00,
wn €99 5 (wn)>0
sup bn(wla <oy Wn, wn) <
{wi, o, wn}EQR
! TN (o7)
, n=1N.
sup  fulwi, ..o wewn)  osup 1y (wn)
{wi, . wn}€Q wrn €09 ,nn (w;)>0

For such an evolution, the family of martingale measures (78) described in Theorem

4 does not depend on the random variables b, (w1, ... ,w,—1), n =1, N.

Proof. Due to the representation (78) for the measure py(A) in Theorem 4, to prove
Theorem 8, it needs to prove that all spot measures M{w},w%},.l.,{w}v,w?v}(A> do not

depend on the random variables b,(wi,...,w,_1), n = 1,N. For this purpose,
it is need to prove that w,(wq,...,w,) do not depend on the random variables

bn(wi, ..., wy—1), n =1, N, where

Yn(Wi, - Wn) = Xo- (W1 -+, Wno1,Wn) W (wr, .. W)+
Xﬂx(wl,...,wn,l,wn)zpi(wl,...,wn), (98)
l/)TIL<w1’ s 7wn—17wn) =
AST(wi, .. Wy, w?

XQ;&L- (wl, . ,wn,l,wi) ( ! ! ) (wl, .. ,wn,l) c anl, (99)

1 .,2)’
Vn(wlu s 7wn717wn7wn)
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lpz(wlv ce. 7wn717wn) -

AS‘(wl e, Wn—1 wl)
1 n ) y Wn y Wn
XSZ;(Wl’...7wn_17wn)vn(wl,...7(,0”,17(,()71”(,(]721)7 (wl,...,wn_l) € Q1. (100)
It is evident that xq (wi, ..., wn—1,wn) and xgt (w1, . .., wn_1,wn) do not depend on
the random variables b,, (w1, ..., w,_1), n =1, N, where
Since,
AS:[(wl, Ce ,wn_l,wi) =
Sp—1(wWiy ey wne1)bp (Wi, oy W) fr(wr, - ,wi)nf{(wz), (101)
AST (Wi, Wno1,wh) =
Snfl(wh cee 7wn71)bn(w17 <o 7wn71)fn(w17 o ,(,UTIL)’I];(CU}L), (102)
we have
AS;{(wl, C.e ,wn,l,wz)
Valwi, ooy wpo1,wh, w?) N
fn(wla s awn—bw?z)n;(wi) (103)
fn<w17 s 7Wn717w7%)777—l_(w121> + fn(wla cey Wn1, W%)ﬁﬁ(w}z)’
AST (Wi, wWng, W)
V(Wi ..y W1, Wk w?)
fn(wla s awn—bwrlb)n; ((JJ}]) (104)
fn(wl’ B ,Wn—lawg)nﬁ(wr%) + fn(wlv ey Wn—1, W%)Uﬁ(w}y

(wla s awn—l) € Qn—l-
The equalities (103), (104) prove Theorem 8.

V. ASSESSMENT OF CONTINGENT CLAIM

In this section, we prove Theorems, giving us the formula for the fair price of super-
hedge for the evolution of risky asset, given by the formula

n

Sp(Wi, . Wn_1,wn) = So H (1 + a; (e”i(“”"“’“’ifl)&(“i) — 1)) , n=1,N, (105)

i=1

where the random value &;(w;), w; € QV,i = 1, N, takes all real values from R!,
So > 0. The random values o; (w1, . . . ,w;_1) satisfy the inequalities o; (w1, ..., w;_1) >
0 >0,0<a <1,i=1,N. Due to Theorem 8, the set of equivalent martingale
measures constructed by the evolution of risky asset, given by the formula (105),
do not depend on parameters 0 < a; < 1,7 = 1, N. The proposed parametric model
based on the canonical model of the evolution of risky asset (9), which takes into
account both memory and clustering, takes into account the fact that the price of a
risky asset cannot fall to zero.
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Theorem 9. On the probability space {Qn, Fn, Py}, let the evolution of risky asset
be given by the formula (105) and the conditions of Theorem 7 are true. Suppose

that 0 < a; <1, 00 > 0y > oy(wi, ..., wi1) > 02 >0, i = 1, N. If the nonnegative
continuous payoff function f(x), x € [0,00), satisfies the conditions:
1) f(0) =0, f(z) <azx, lim %m) =a, a > 0, then the inequalities

T—>00

f (So H(l - ai)> + aSoy (1 - H(l - a¢)> < sup EF f(Sy) < aSy (106)

i=1 i=1 PeM
are true. If, in addition, the nonnegative payoff function f(x) is a convexr down one,

then
inf E¥f(Sy) = f(So), (107)

PeM

where M is a set of equivalent martingale measures for the evolution of risky asset,
given by the formula (105).

Proof. Due to Theorem 7,

sup Epf<SN) = sup /f(SN)du{w%,w%},...,{w}v,w?\,}'

PeM {{oh @}l Yenn )
N

So, we have

a/SO Su /f SN d'u{wh }7"'7{"‘)]1\77('012\7} -

{{wl 7w1}7 7{"'}]\77""1\]}6“1\7}

sup /f(SN)dM{wi,w%}7-~-7{w11v=W?v} -

{wre)™ w2eQ)t, i=1,N}
Qn

2

N
sup Z Hlpjwl,..., ;j)x

0— 0 . TN
{w}eQ]™ w2, i=1N} =1, iy=1j=1

s=1

N ‘ . i
ooy

Further,
2

i1 iN
sup E Dy (wity .. W) x
0— 0
{w]l\reQN 7w12\reQN+} in=1

(SOH (1 ta, ( Oawp ety 7 es (8 _ 1))) —

T iNc1 2
ASG(wiy .. Wy W)

i1 IN—1
VN(wlw' yWN— 17wN’wN)

sup
{w}\, EQ?{ ,w?\, EQ(I)\,+ }
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f(sN,1 <1+aN< o (@it Den >_1>>> N

— 7 IN-1
ASN(W117 s W 1>WN) f (SNfl (1 +ay ( oN(wf, ,wlefv 11)€N(°-’N) — 1>)> Z
Vi (wit, ... w%v L wh,wd)
- . AST (W .. w%v Wi
en(w)—o0 ey (wh)——o00 VN(W?, .. wj\]}’ 11,0011\[, WJQV)
F (Sws (1 ay (ermtetonsinil 1))
g IN—1 ; i
ASN(WII7 c OJN 17WN) f (SNf]_ <1 + an (eUN(UJ;l,~..,UJNN_711)5N(UJ]1\7) — 1))) =
Vi (wit, .. w?{,v L wh,wi)
f(SN_1<1 — CLN)) + aanSn_1, (109)
where we put
N-1 ) o )
SN_l — SO H (1 + s <60'5(W11,...,WSS_1 )85("-}55) —_ 1>> . (110)
s=1
Really,
i lim AS;{,(wil, .. w%v L wi)
en (W) —oo en (wi)——o0 VN(Wila .- W%V 117wN7 WN)

F (-1 (15 ay (et osthentetn _ 1)) =

(eoN(wllv 70,)1\1[\] ll)sN(wN) _ 1)
X

lim lim — —
en (W) oo ey (wh)——o0 <60N(w11,...,w1\,_1 en (w3) _ eUN(w11:-~~7wN—1 )EN(w]l\,))

f (SN—l (1 +an (60N(wil"“’ijN:11)EN(W}V) - 1))) = f(Sn-1(1 —an)).
Further,

— i1 IN—1
_ , ASy (Wi, .o Wi wh)
lim lim ; P
en (W) oo en (wi)——o0 VN(Wlla s W WN> WN)

F (-1 (15 ay (et sthenttn _ 1)) =

X

(1 ol 11)5N(w11v)>
lim lim

; iN_ ; iN_
en (W) —oo ey (wh)——o0 <60N(w117""wNN_11)5N(""12\’) . GUN(""?:""""NN_ll)EN(WJIV))
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f (SN—l (1 T ay <60'N(Wi1v"'vw;\fN7711)5N(W12V) _ 1))) = aanySn_1.
Substituting the inequality (109) into (108), we obtain the inequality

2 2
sup Z Z H W (wit, -'j)x

0 0
{wleq) w2e)t, i= 1N} 4= 1, iny=1i1=1,..ixy=1j=1

N ) i ;
f (SU H (1 + s <€Js(w;17..‘,w3_11)gs(ws ) o 1))) 2

s=1
2 N-1 '
sup Z Yi(wi', .., wi)x
{w} EQO_ w2690+, i=1,N—1; — Lin_1=1 j=1
N-1 v
f (So(l —av) [] (1 +a, (e"s@”?w e 1))) +aaynSy.  (111)
s=1

Applying (N — 1) times the inequality (111), we obtain the inequality

sup/f Sw) Q>fSOH —l—aSchzl H 1—a,)

QEM =1 S= 7,+1

f (50 [Ta- al-)> + aSy (1 -] - ai)> . (112)

i=1

Let us prove the equality (107). Using the Jensen inequality, we obtain
i P > 113
;E&E f(Sn) = f(So)- (113)

Let us prove the inverse inequality. The inequality

Z H¢ Wit w )><

=1,....ixy=1j5=1

s=1

f (Soﬂ (1—1—615 <€as<w?,...,wii?)as(w;;w _ 1))) > inf B7f(Sy) (114)

is true. If to put e,(w!) = 0, s = 1, N, then the inequality (114) turns into the
inequality

f (Soﬁ[l (1 +a (e"sW?---vWiO%W@ - 1))) > inf B”f(Sw). (115)

In the considered case Q) = {w; € OV, &;(w;) < 0}, VT = {w; € QY &;(w;) > 0}.
Since the value £4(w?) > 0 can be made as small as it needs for w? € Q% then
we can do the left side of the inequality (115) as close to f(Sp) as it needs, since
os(wi, ..., w? ) is bounded and f(z) is a continuous one. The last proves the needed

inequality. Theorem 9 is proved.
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Theorem 10. On the probability space {Qn, Fn, Pn}, let the evolution of risky asset
be given by the formula (105) and the conditions of Theorem 7 are true. Suppose
that 0 < a; <1, 00 > 0; > 04(wy, ..., wi—1) >0 >0, i=1,N. If the nonnegative
continuous payoff function f(x), x € [0,00), satisfies the conditions:

1) f(0) = K, f(z) <K, then

N
f (So [0 - ai)> < sup E”f(Sy) < K. (116)
ity PeM
If, in addition, the nonnegative payoff function f(z) is a convex down one, then
it B f(Sx) = (o), (117)

where M is the set of equivalent martingale measures for the evolution of risky asset,
given by the formula (105).

Proof. Let us obtain the estimate from below. Due to Theorem 7,

sSup EPfN = sup /f(SN>d/J“{w%,w%},...,{w}v,w?\]}'

PeM ok} Yenn )
N

So, we have

K> sup /f (SN)digol w2y, fwl et =

{{wl 7""1}» »{WN’WN}G/J‘N}

sup /f(SN)d:u{w%,w%} ..... (whwd) =
i=1,N}

0— 0 .
{w}eQd™ w2eQdT, i=
2

sup Z Hz/)j(wil,...,w;j)x

0— 0
{w €Q, wEQ +,’L 1N}7,1 1,..in=1j=1

N i ig—1 is
f (So H (1 + ag (e"s(wil""’wsfl Jes(ws®) _ 1))) ) (118)

s=1

Further,

2
iN
E wl s W)X
{wNGQ wJQVEQO+} -1

N ) i .
(5 (e et 1>>) =
s=1

4+, i1 IN-1
sup ASH (Wit Wi wh)
B 11 IN—1
fwhead wieadty | Vv(wi's - oo wyT wi, w)
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f (SN,I (1 Tay ( on(wil,. ,WJ\IIV Hen@l) _ 1))) 4

ASy (Wi, ... Wi
N.(wl e 17WN))JC (SN—l (1 + ay ( (ool ) 1>>>] >

11 IN—1 1 2
V(Wi .. s wN g, Wy, Wiy
+ i1 IN—1
_ _ ASH (Wi, Wi wh)
lim lim - P
en(Wi)=ooen(wi)=—oo | Vy(wil, ... ,wy 1, wh,w%)

f (SN_1 (1 —f-aN( on (it ’szjrv Hen(wh) _ 1))) +

— i1 IN_1 . i
A‘SYN(C"')ZL wN ]_’wN>)f <SN,1 <1 + a/N <60'N(w7il’..,,WNNf_ll)eN(w]lV) B 1)>)] -

Vv (wit, .. w}{,v L wh,wk
f(Sn-1(1 = an)), (119)
where we put
N-1 v
K3 —1
Sr= S0 TL (1, (e ittt 1)) (120)
s=1
Really,
- . ASH (W .. w?{,v Wi
en(Wi)—ooen (wi)——o0 Vi (wi, .. wj{,v 1wk, wd)

f (SN—l (1 + an (eUN(“?"“""jV:I Jen(wy) _ 1))) =

(661\’(‘”11’ ’“’NN en (@) _ 1)

lim lim X

1 N i TN
en (W3) =00 en (why)——00 (eawil,...,w]év_f)smﬁv) _ eaw;l,...,wNN_f)amw}v))

f (SN—l <1 +an (6”(“?’“"“@{?)EN(“’}V) - 1))) = f(Sn-1(1 — an)).

Further,
lim lim AS&.(W?’ — wj\],v 1 wy)
en (W) o0 en(wh)o—o0 Vi (wi, ... wid =} wh, w?)
f <5N71 <1 ¥ ay (eoN(wil,m,wﬁv_‘l Jen (W) _ 1))) _
(1 N 11>aN<w}v>>
lim lim

- - - -
aN(wJQ\,)ﬁoo EN(W}V)%foo <€JN(wil7...,wN711)5N(w12\,) . GJN(""?v~"’wN,1l)€N(w11\’)>
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f (SNfl (1 + an < on (! o 3 e () _ 1))) =0.

Substituting the inequality (119) into (118), we obtain the inequality

2 2
sup Z Z Hllijwl,..., :j)><

07 0 -
{w St 2€Q *, = 1N}21 1,...iny=141=1,..iny=1j5=1

(SOH <1+as( ! e, T ) 1>>> >

2
sup Z %(wiﬂ...,w?)x

{wle?™ w2eQft, i=T,N— LN—1} ;= 1,

N-1
f (50(1 —an 1:[1 (1+a, (et el 1>)) . (121)

Applying (N — 1) times the inequality (121), we obtain the inequality

sup [ F5wdQ = (s T[0 - ) (122)

QeM
Q
Let us prove the equality (117). Using the Jensen inequality, we obtain
inf B f(Sy) = f(S0). (123)

Let us prove the inverse inequality. It is evident that the inequality

2 N

> I wwi . wy)x

i1=1,...in=1 j=1

STT (o (s ) ) g s o

s=1

is valid. If to put e,(w!) = 0, s = 1, N, then the inequality (124) turns into the
inequality

(SOH (1+a < ouhnl )ea(2) 1))) > inf BV f(Sy). (125)

In the considered case Q0 = {w; € Q0 &;(w;) < 0}, QF = {w; € QY &5(w;) > 0}.
Since the value £4(w?) > 0 can be made as small as it needs for w? € Q% we can do
the left side of the inequality (125) as close to f(Sp) as it needs, since o¢(w?, ... ,w? ;)
is bounded and f(z) is a continuous one. The last proves the needed inequality.

Theorem 10 is proved.
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Theorem 11. On the probability space {Qn, Fy, Py}, let the evolution of risky asset
be given by the formula (105) and the conditions of Theorem 7 are true. Suppose
that 0 < a; < 1, 00 > 07 > o4(wi,...,wi_1) > 0) >0, i =1,N. For the payoff
function f(z) = (x — K)*, x € (0,00), K > 0, the fair price of super-hedge is given
by the formula

sup E9f(Sy) =

QeM
(So—K)+, Zf SolZ_V[(l—al)) ZK,
N N (126)

N
For So [I(1 — a;)) > K, the set of non arbitrage prices coincides with the point
i=1

N
(So — K)7T, in case if Sy [[(1 — a;) < K the set of non arbitrage prices coincides
=1

with the set ((50 — K)*, S (1 - ;r:[lu - @)) .

Proof. Let us introduce the denotations

f (Soﬂ (1 +a, (easwil ..... WD (Wi 1))) , (127)

N ) . .
h (So H (1 + as (e"s(wil""’”s—ll)gs(% ) — 1))) : (128)

N
I8 = sup Z Hlpj(wil,...,w;j)x

N i ig—1 i
f (So H (1 + a, <€”S(wil """ wsor Jes(ws”) 1))) , (129)

where we put fi(z) = (K — x)". Let us estimate from above the value Iy. For this,
we use the equality

In=1I+S — K, (130)
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which follows from the identity: f(z) = fi(z) + 2 — K, x > 0. Since

. A M es(wif) _ N .
fi (SOHI(H% (eas<w1 ..... T e(wl) 1))) < f (sog(1 as)>, (131)

we obtain the inequality

In <So— K+ fi (So H(l - as)) : (132)

s=1

From the inequality (132), we have

IN<So— K+ fi (SOH(l - Gs))) =
(So — K)™, if Sy lj_v[(l—ai)) > K,
. 5 (133)
So (1—1:[(1—@)), if Sol:[(l—ai)<K.

=1

From the inequality (106) of Theorem 9

% > f(Soﬁ(l—ai)> +SO<1—ﬁ(1 —ai)> (134)

i=1
and the inequality
I}y > (So - K)7, (135)

which follows from the Jensen inequality, we have

=1

IR, > maX{Sg — K)+,f (So H(l _ai)> + So (1 - H(l —ai))} =

(So — K)*, it SoT[(1 - a)) > K,

N

%

N N1 (136)
So (1 10— ai)) it SeT[(1—a) < K.

i=1 =1

This proves Theorem 11.

Theorem 12. On the probability space {Qn, Fn, Py}, let the evolution of risky asset
be given by the formula (105) and the conditions of Theorem 7 are true. Suppose

that 0 < a; < 1, 00 > 0; > 04(wy,...,wi_1) > 0 >0, i =1N. For the payoff
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function fi(z) = (K —x)*, x € (0,00), K > 0, the fair price of super-hedge is given
by the formula

N
sup E9f1(Sy) = fu (so [Ja- ai)> . (137)
QeM i=1

The set of non arbitrage prices coincides with the interval

(-5 (o -a0) )

Proof. The inequality

]11v: Z HIIJ Wity wd)x

=1,....ixy=1j5=1

<50H< +as( oo (@ T e (i) 1>)) < f <50ﬁ(1 - ai)> (138)

is true. Taking into account the inequality (116) of Theorem 10, we prove Theorem
12.

Theorem 13. On the probability space {Qn, Fn, Py}, let the evolution of risky asset
be given by the formula (105) and the conditions of Theorem 7 are true. Suppose

that 0 < a; < 1, 00 > 0y > 04(wy,...,wi_1) >0 >0, i =1, N. For the payoff

N +
> S
function fi(So,S1,...,5n) = | K — 5 , K >0, the fair price of super-hedge
s given by the formula
So Z H (1—as)
E®f1(Sp, S1,...,9v) = | K — —=%= . 139
sup f1(S0, 51 N) N+1 (139)

The set of non arbitrage prices coincides with the interval

; +
(K —So)t, | K 05 e
st [ k- ZEe ™

N+1

Proof. Let us denote

n

Sl <1 +a, (eas(w%,~..,w;_1>es<w;> _ 1)) . n=T1,N,

s=1

&~

b—‘E)—‘

€

3=
I

(eosw%, Awlop)es(w?) _ 1)

N
t
vl =11 ( 0a (@]l 1)ea(@?) _ goa(wlwl_y)es(w s>)

(140)

s=1
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It is evident that
2 N '
I} = sup Z Hlﬂj(w?,...,w;j)x

{{UJ%,OJ%},,{UJ}V,W?V}EMN} i1=1,....ixy=1 jzl

f1 (S(),Sl(w/il), .. .,SN(W?, . ,w%v)) Z (141)
lim fl (80751((*}%)7'-wSN(w%v'-'aw]lV)) X

es(wl)=—o0, es(w2)—00,s=1,N

N
tn(wi,. .. wy) = fi <50750(1 —@1)7---7501_[(1 _as)> :

s=1

So, we obtain the inequality

N i +
N So 2. [T(1 = as)
2 _ i=0 s=1
Iy > fi (SOaSO(l_al)a--'a‘SOSl—[l(l_a5)> = | K- N1 - (142)
Let us prove the inverse inequality. We have
N .
I3 < sup Wi (Wit ..., W)X
{{w},w%},...,{w}v,w?v}ew}i1:1§N:1£[1 !
N
fi (S(): 50(1 - al)a S0 H(l - as)) =
s=1
N N +
N S > 101 —ay)
1—ay),... l—ay) | = | K - =2 . (14
fl <S()7SO< CL1>, 7502( a )) N +1 ( 3)
Therefore,
N i +
So . [T(1 = as)
2 _ i=0s=1
Iys | K N1 : (144)

The inequalities (142), (144) prove Theorem 13.

Theorem 14. On the probability space {Qn, Fn, Pn}, let the evolution of risky asset
be given by the formula (105) and the conditions of Theorem 7 are true. Suppose

that 0 < a; <1, 00 > 0y > oi(wy,...,wi_1) > 0 >0, i =1,N. For the payoff
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N +
> 8
function f(So, S1,...,9n) = ;H — K| , K >0, the fair price of super-hedge

18 given by the formula
sup E9f(Sy, S1,...,Sn) =

QeM
. S ZO 1'[1(1 a;)
zosnla as) S 1) (145)
So|1— NIl , So= J_\/—|—1 <K
N i
So > 1 (1-a;)
The set of non arbitrage prices coincides with the point (So—K)™ for —=E— 2
o) (e . B
K, in case if S()T < K the set of non arbitrage prices coincides with the
N i
| . 3 Ien
interval | (So — K)*, S0 [ 1 — =5 5—
Proof. Let us introduce the denotation
2
Vy = sup Z Ht/)]wl,..., .)><
{{wlv }7 7{"JN7WN}€/’LN} 1= ]., ,ZN 1] 1
£ (So, S1(wi), ..., Sn(wit, ... wid)). (146)
Then, we have
2 N ‘
Vv = sup Z Hlpj(wil,...,w”)x
ot wih i Wl Yennt i =1, iy=1j=1 ’
f1 (So, Sl(w?), ey SN(U.)?, Ce ,wj{,\’)) + SO - K. (147)
Due to Theorem 13,
N i +
So Z [T(1—ay)
Vv = S - K K — =0 s=1 _
v = (5 —K)+ N +1
N i
So 3 11 (1-a;)
(So — K)J;, if ;VN*H > K,
5A0e S0 (149)
Sol1— NIl , if S07 N1l <K
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In the formula (147) we introduced the denotation

N
> Si
f1(507517"'7SN) == K ;\7:_1 . (149)

Theorem 14 is proved.

If So,..., Sy is a sample of the process (105), let us denote the order statistic
Sy, - - -» Sy of this sample.

Theorem 15. Suppose that Sy, ..., Sy is a sample of the random process (105).

Then, for the parameters ay,...,ayn the estimations
S(N_i R
a;=1— =07 i TN, (150)
S(N—i+1)

are valid. Under such estimations 0 < a; < 1, 1 =1, N, the equalities

N—k
@) = Sw o g (151)
i=1 (N)
are true.
Proof. The estimation of the parameters ay,...,ay we do using the representation

of random process S,,, n = 1, N. The smallest value of the random variable .S,, is

n —
equal S [][(1—a;), n =1, N. Let us determine the parameters a; from the relations

N N—k
So H(]_ - CLZ‘) = TS(O), ceey S() H (]_ - ai) = TS(k),
1=1 =1

N—-k-1

SO H 1-— (IZ == TS (k+1)5 S()(l - al) == TS(N_l), (152)
=1

London Journal of Research in Science: Natural and Formal

where 7 > 0. Taking into account the relations (152), we obtain

So(1 —a1) = 7Sw-1),

S _
(1—ayp)=—E k=0,N—1 (153)
Stk+1)
Solving the relations (153), we have
S(r) TN _9

4 =1-—Suy ay p=1-——®_ LT N_2 154
' So ! N S(k+1) (154)
It is evident that if to put 7 = <2, then 1 — a; = &= Therefore Nl:[k(l —a;) =
p - Sy’ 1 — Sy ) P i) —

;(;)), k=0, N — 1. Theorem 15 is proved.
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Theorem 16. On the probability space {Qn, Fn, Py}, let the evolution of risky asset

be given by the formula (105), with parameters a;, i = 1, N, given by the formula
(150). For the payoff function f(x) = (x — K)T, x € (0,00), K > 0, the fair price
of super-hedge is given by the formula

sup EQf(SN) =
QeM

(So— K)*,  if So2 > K,

Sy —
s . 5 (155)
S, (1 _ —S;g)) i SR < K.

If SO% > K, then the set of non arbitrage prices coincides with the point (Sy —
K)*t, in case if So% < K the set of non arbitrage prices coincides with the set

<(So — K)*, S (1 _ %)) .

Corollary 1. Suppose that the strike price K = Sgo©

Sy’

then the set of non arbitrage

prices consists of one point Sy (1 — S50 ) Fisa fair price of a standard call option
S

of European type with the payoff function (Sy — K)™.

This corollary is very important for practical application. The fair price of a
standard call option of European type is proportional to the initial spot price of the
underlying asset multiplied by the value of the relative swing of the market in the
given horizon.

Theorem 17. On the probability space {Qxn, Fn, Py}, let the evolution of risky asset

be given by the formula (105) with the parameters a;, i = 1, N, given by the formula
(150). For the payoff function fi(z) = (K —x)*, x € (0,00), K > 0, the fair price
of super-hedge is given by the formula

S
sup E9f1(Sy) = fi (SO%> . (156)
QeM (N)

The set of non arbitrage prices coincides with the interval

(= 80", fi (S052)).

Sy

Theorem 18. On the probability space {Qn, Fy, Py}, let the evolution of risky asset

be given by the formula (105) with the parameters a;, i = 1, N, given by the formula

N +
2 S
(150). For the payoff function fi(So, S1,...,9v) = | K — F5 , K >0, the fair
price of super-hedge is given by the formula
N-1 g \ 7T
So+So Y #N’)
E9f1(So, 1y, Sy) = | K — = 157
5161]1\)4 f1(S0, S1, -+, SN) (N +1) (157)
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The set of non arbitrage prices coincides with the interval

N-—1 5(.)
So+S0 Y, ==

£s S
(K_ SO)Jra K — (N:g) &

Theorem 19. On the probability space {Qxn, Fn, Py}, let the evolution of risky asset
be given by the formula (105) with the parameters a;, i = 1, N, given by the formula

N +
> S
(150). For the payoff function f(So,S1,...,5n) = | g — K | , K >0, the fair
price of super-hedge is given by the formula
sup E9f(Sy, S1,...,Sn) =
QeM
So+ 8 ;0 S<(ZN)>
(SO - K)+7 Zf (NZ_T_l) > K7
N—-1 . N-—1 .
So+ 8 z';o ;((Ji’)) . So+5o0 g:o ;((ZN)> (158)
So (N+1) , if (N+1) <K
N—-1 g,.
So+So0 > S“N))
If (Nl—fl’)( > K, then the set of non arbitrage prices coincides with the point
SotS0 S o ©
(So — K)™T, in case if (Nl—fi)() < K the set of non arbitrage prices coincides
So+50 Nil SS((ZN))
with the interval | (So — K)*, | So — — w75

VI, DISCOUNTED EVOLUTION OF RISKY ASSET

In this section, we formulate Theorems, giving us the formula for the fair price of
super-hedge for the evolution of risky asset, given by the formula

e’i

n eai(wl,...,wi_l)si(wi)
Sn(wl,...,wn_l,wn):SOH(I—HLZ»( : —1>), n=1,N.(159)
i=1

where the random value &;(w;), w; € Q%4 = 1, N, takes all real values from R!,
So > 0. The random values o; (w1, . . . ,w;_1) satisfy the inequalities o; (w1, ..., w;—1) >
0 >0and 0 <a; <1, 0<r; < oo. This parametric evolution (159) is built on
the discounted evolution of risky asset (17) for which the representation (12) is
valid. From this representation, it follows that for such a discounted evolution,
all proven Theorems regarding the existence of a family of martingale measures
are valid, since the representations (18), (19) is true. Due to Theorem 8, the set
of martingale measures do not depend on parameters 0 < a; < 1. The proof of

Theorems formulated below is analogous to the proof of Theorems 9 - 14.
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Theorem 20. On the probability space {Qn, Fn, Py}, let the evolution of risky asset
be given by the formula (159). Suppose that0 < a; < 1,00 > 0; > oy(wy, ..., wi—1) >
0 >0, 0<r <oo, i=1,N. If the nonnegative continuous payoff function
f(z), = €[0,00), satisfies the conditions:

1) f(0) =0, f(z) <azx, lim @ =a, a > 0, then the inequalities

T—00

i1 PeM

f <So H(l - CLI)> + CLS() (1 — H(l — CLZ)> S sup EPf(SN) S CLS() (160)

are true. If, in addition, the nonnegative payoff function f(x) is a convexr down one,
then

inf B"[(Sy) = (o) (161)

where M is the set of equivalent martingale measures for the evolution of risky asset,
given by the formula (159).

Theorem 21. On the probability space {Qn, Fn, Py}, let the evolution of risky asset

be given by the formula (159). Suppose that0 < a; < 1,00 > 0; > o4(wy, ..., wi—1) >

o) >0, 0<r; <oo, i=1,N.If the nonnegative continuous payoff function
T), T € [ ,00), satisfies the conditions:

i
Uf()

K, f(z) < K, then
N
/ (So H(l - ai)) < sup Ef(Sy) < K. (162)
paie} PeM
If, in addition, the nonnegative payoff function f(x) is a convexr down one, then
P (163)
inf BT f(Sy) = f(So),

where M is the set of equivalent martingale measures for the evolution of risky asset,
given by the formula (159).

Theorem 22. On the probability space {Qn, Fn, Py}, let the evolution of risky asset
be given by the formula (159). Suppose that0 < a; < 1,00 > 0; > oy(wy, ..., wi—1) >
o) >0, 0<r; <oo, i =1N. Forthepayoﬁfunctzonf( )= (r—K)", = €
(0 o0), K >0, the fazr price of super-hedge is given by the formula

sup B9 f(Sy) =
QeM

(SO—K)Jr, Zf So ﬁ(l —(IZ)) 2 K,

N N (164)
SO <1 — 1;[1(1 — (I,Z)> , Zf S() 1;[1(1 — ai) < K.

N
For Sy [1(1 —a;)) > K, the set of non arbitrage prices coincides with the point
i=1

N
(So — K)T, in case if So [[(1 — a;) < K the set of non arbitrage prices coincides
i=1

with the set ((50 — K)*, 5 (1 - le(l - ai)>) .
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Theorem 23. On the probability space {Qxn, Fn, Py}, let the evolution of risky asset
be given by the formula (159). Suppose that0 < a; < 1,00 > 0; > oy(wy, ..., wi—1) >
o) >0, 0<r <o, i=1,N. For the payoff function fi(x) = (K —x)%, = €
(0,00), K >0, the fair price of super-hedge is given by the formula

up BN = (SoH 1), 165)

The set of non arbitrage prices coincides with the interval

(st (s [l an)).

Theorem 24. On the probability space {Qn, Fn, Py}, let the evolution of risky asset
be given by the formula (159). Suppose that 0 < a; < 1,00 > 0; > 04wy, ..., wi—1) >
o) >0, 0<r < oo, i =1,N. For the payoff function fi(So,Si,...,Sn) =

N +
2 5 o o
K — ’]Q(’Jrl , K >0, the fair price of super-hedge is given by the formula
N-1 4 +
SO + SO Z S((Z)
Q _ =0
sup B f1(S0,51,...,95v) = | K —
sup 1 ) N+ 1) (166)
The set of non arbitrage prices coincides with the interval
_l’_

N 4
5 10700

(K_ SO)JF? K — N+1

Theorem 25. On the probability space {Qn, Fy, Py}, let the evolution of risky asset
be given by the formula (159). Suppose that0 < a; < 1,00 > 0; > o4(wy, ..., wi—1) >
0 >0, 0<r; <oo, i=1,N. For the payoff function f(Sy,S1,...,Sn) =

N +
> s
N+1 , K >0, the fair price of super-hedge is given by the formula
sup E9f(Sy, S1,...,Sn) =
QeM
N 1
N 5 ZO l_[l(l*fli)
(50— K)', f e — = K
> 11 (1-a.) . 20 1 (1—a2) (167)
S() 1—H]_V—+1 , ’Lf SOZSN—_H<K
N 1
So 3 T1 (1-a;)
The set of non arbitrage prices coincides with the point (So— K)™* for —=e— 2
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N i
> [l (1-as)

K, in case if So="5 77— < K the set of non arbitrage prices coincides with the
N i

| X £ M-

interval | (So — K)*, S0 [ 1 — =5 5—

Theorem 26. On the probability space {Qn, Fn, Py}, let the evolution of risky asset

be given by the formula (159), with parameters a;, i = 1, N, given by the formula
(150). For the payoff function f(x) = (x — K)*, x € (0,00), K >0, the fair price
of super-hedge is given by the formula

sup EQf(SN) =
QeM

(So— K)*,  if Spo@ > K,

Sy
5 o8 (168)
So(1-52), i Sz < K.

If SOS<°) > K, then the set of non arbitrage prices coincides with the point (So —

K)™, in case if Sy S(N)) < K the set of non arbitrage prices coincides with the set

(50775 (1= 55))

Corollary 2. Suppose that the strike price K = SOS(

9. then the set of non arbitrage

prices consists of one point Sy (1 — 55—3)) . It is a fair price of a standard call option

of European type with the payoff function (Sy — K)™.

This corollary is very important for practical application. The fair price of a
standard call option of European type is proportional to the initial spot price of the
underlying asset multiplied by the value of the relative swing of the market in the
given horizon.

Theorem 27. On the probability space {Qn, Fn, Py}, let the evolution of risky asset

be given by the formula (159) with the parameters a;, i = 1, N, given by the formula
(150). For the payoff function fi(x) = (K —x)*, x € (0,00), K > 0, the fair price
of super-hedge is given by the formula

S
sup EQfl(SN) = fl (S()%) . (169)
QeM (N)

The set of non arbitrage prices coincides with the interval

(=51 (s0555))

Theorem 28. On the probability space {Qn, Fn, Py}, let the evolution of risky asset
be given by the formula (159) with the parameters a;, i = 1, N, given by the formula
N +
> S

(150). For the payoff function fi(So,S1,...,Sn) = | K — §55 , K >0, the fair
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price of super-hedge is given by the formula

N=1 g \ T
So+So 3 S(ﬁj)
E9f1(Sy,S1,...,9v) = | K — =0 170

The set of non arbitrage prices coincides with the interval

N-1 S(->
So+So Y. —2+

P
(K — Syt | K — ——t ™

Theorem 29. On the probability space {Qn, Fn, Py}, let the evolution of risky asset

be given by the formula (159) with the parameters a;, i = 1, N, given by the formula

N +
2. S
(150). For the payoff function f(So,S1,...,9v) = | 557 — K| , K >0, the fair
price of super-hedge is given by the formula
sup E9f(Sy, S1,...,Sn) =
QeM
So+50 3 S
0+S0
(S — K)*, if — ™ > K,
So+So Nil ;ﬂ So+So NZ_I ;ﬂ (171)
S i=0 "(N) Zf i=0 (V) <K
0 (N+1) ) (N+1)
N—-1 g,.
So+So 3 s((;,))
If (N—f;) > K, then the set of non arbitrage prices coincides with the point
Sotsn > 5
(So — K)*, in case if (N—:‘;)() < K the set of non arbitrage prices coincides

RS0
So+Si :
oo igo Sy

with the interval | (So — K)*, | So — N+D)

VI, UNIQUENESS OF THE MARTINGALE MEASURE

In this section, the necessary and sufficient conditions of the uniqueness of martingale
measure in terms of the evolution of risky assets are obtained. Under the fairly wide
assumptions about the evolution of risky assets, an expression for a single martingale
measure is found. Based on the explicit construction of the martingale measure and
its invariance with respect to a certain type of evolutions, it is possible to construct
the models of non arbitrage markets, both complete and incomplete.

In this and section 8, we put that QY = {w},w?}. Denote by F? the o-algebra
of all subsets of the set QY. Let P? be a probability measure on F;. We assume
that P2(w$) > 0, i = 1, N, s = 1,2. As before, we put that the probability space
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{Qn, Fy, Py} is a direct product of the probability spaces {Q?, F?, P’}, i = 1, N,
and we put N < co. We also consider the probability spaces {2, F,,, P,},n =1, N,
being the direct product of the probability spaces {QY, 72, P’}, i = 1, n. We assume

that the evolution of a risky asset is given by the formula

Sp(wiy ..o wp) =

n

So H(l +ai(wi, - w)ni(wi), {wi, . Wi, W} € Qyy n=1,N, Sy > 0,(172)

i=1

where the random values a,(wi,...,wn—1,wn), Mu(wy), n = 1,N, given on the
probability space {£2,,, F, P,}, satisfy the conditions

1
G (W1y .oy Wp_1,wWy) >0, max an(wy, ...,wn,,w}l < ,
( ! ! ) {w1, wn_1}€Qn_1 ( ! ! ) 775(%%)
Ma(w2) >0, nu(wp) <O. (173)
So, for AS, (w1, ..., wy_1,ws), n =1, N, the representation

ASn(wla ey Wn—1, Wn) -

Sn—1(W1y - oy Wne1) @ (W - ey W1, Wy ) (W) =

dp(Wiy ooy W1, W) (wWn), dp(wi, .. wp_g,wp) >0, n=1N, (174)

is true, From these conditions, we obtain 2, = Q, ; x Q2= OQFf = Q, ; x Q0
where Q%™ = {w,, € 2%, 1, (w,) < 0}, Q0" = {w, € QO n,(w,) > 0}.
Further, we assume that P2(Q%7) > 0, P%(Q%") > 0. The measure P’ is a

contraction of the measure P on the o-algebra 72~ = QV"NF?, P is a contraction
of the measure P? on the o-algebra Fo+ = Q0T N FP.
Let us introduce the following denotations. For every point {wy, ..., wy_1,w,} €
2, we introduce the set A(wy,...,wy_1,w,) € Qy, where
2 .
Alwr, -y Wpo1,Wp) = U {wl,...,wn_l,wn,w:{ff,...,w;{f )

ing1=1,...in=1

Sometimes, for fixed indexes i, ..., %, we also use the denotation
) ) )
il Tn—1 2 _ ’L'l,.“,i
AW, . w w) = Attt

It is evident that every set Ain has the form

2
01yeeyin i1 i In+1 iN
Attrtn = U {wit, .o wr wt W

ing1=1,...in=1
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where indexes i5, s = 1, N, take values from the set {1,2}. Then, A1 =
Azl,...,ln_l,l U All,...,ln—172 c fn_17 Where

2
01 yeeyin—1,1 __ i1 in—1 1 Tn41 IN
Attt — U {wit, o wr T Wy Wt - W E Fa,
int1=1,in=1
2
Dl yeenyin—1,2 __ i1 in—1 2 T4l iN
Abtin-1.2 U {wi's W we W € Fa.
inp1=1,in=1

If Py is a measure on Fy, then

2
PN(A(wl,...,wn,l,wn)): Z PN({WIV"7wn717wn7w;7i:117"'7(")3\]7\7})‘

ing1=1,....in=1

We give an evident construction of martingale measure for risky asset evolution,
given by the formula (172). Let us put P°(w}) = p,, P’(w?) = 1 — p,, where
0 < p, < 1. Then, to satisfy the conditions (14) - (16), (see [2]) we need to put that

AST (Wi, ..y wpo1,wh) <00, (Wi,. .., wp_1,wl) € Q)

AST (Wi, wWno1,w2) <00, (Wi, . ., Wno1,w2) € QF. (175)
The next Lemma 3 is a consequence of results in [2].

Lemma 3. On the probability space {0y, Fn, Pn}, being the direct product of the

probability spaces {QV, F?, PP}, for the evolution of risky asset given by the formula

(172) only one spot measure fi,1 .2y, gt w2y (A) exists, where {w}, w7} € QF, i =

1, N. For it the representation

1o(A) = figut w2y, qwhw} (A) =

2 2 N
Z o Z H (Wit wim ) a(wlt, Wi, A€ Fy, (176)

is true. This measure is a martingale one for the considered evolution of risky asset,
where

Yn(Wi, -5 Wn) = Xq- (Wi, - - - W1, W) WL (W1, .y W)+
Xﬂx(wl,...,wn,l,wn)llli(wl,...,wn), (177)
I!J}L((Uh.--,wn_l,wn) —
ASH(wy, .y wn1,w?)

2 n ) yn—1y ¥ 2 0+
XQ%+(wn)Vn(w1,---,wn_1,w}l,w%)’ (Wiyee oy Wno1) € Doy, ws € Q0 (178)
Vn(wlu s 7wn717wrlww2) = Asg(wh s 7wn717w711) + ASI(wb s 7wn717w721>7

V2 (Wi, W1, Wy) =
AST (Wi, Woo1, w))

1 n ) yn—1y¥n 1 0—

- , ey Wno1) € Qp1, e (179
X0 (w")Vn(wl,...,wn_l,w}“w%) (w1 Wn—1) 1, W (179)
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Next Theorem 30 appeared first in [24] (Theorem 1.4.1), where it was proved
under the less general conditions.

Theorem 30. On the probability space {Qn,Fn, Pn}, being the direct product

of the probability spaces {QV, F?, P}, suppose that the evolution of risky asset

1

{Sn(wi, ... wn) N, is given by the formula (172). The necessary and sufficient
conditions of the uniqueness of martingale measure po(A), A € Fy, are the inequal-

ities
Sp(wit, o wn Wy £ S (Wit W W), n=1,N, (180)
for every set of indexes iy, ..., i, 1. For any martingale {my, (w1, ...,wn_1,wn) N,

relative to the unique measure po(A) the representation
mn(wla cee 7wn—17wn) ==

Z Cr(wi, .o wi—1)[Sk(wr, - -+ w1, wi) — Se—1 (Wi, -+ we—1) ]+
k=1

mg, n=1N, (181)
18 true, where
2
C’k(wl, . ,wk_l) = Z dil,...,ik,leil ..... ig_1 (wl, .. ,wk_l), (182)
i1=1,...ig_1=1
diy,..ijoy =
(Wi, wl wh) — mg(Wit L wiE w?) —
o E— . T k=1 N. (183)
Sp(wit, . wl T, wp) — Se(wits o w T wi)

Proof. The necessity. On the probability space {Qy, Fn, Py}, let the evolution
{Sn(wi, ... ,wn) 1, of risky asset be such that the martingale measure p(A), A €
Fn, being equivalent to the measure Py, is unique. Then, for every contingent liabil-

ity mu (w1, . ..,wx) the representation (181) is true [13] for some Fj_;-measurable fi-
nite valued random value Cy (w1, ..., wi_1), k =1, N, where m,,(wy, ..., w,_1,w,) =
Ero{my(wy,...,wn)|Fn}t. For my(wi,...,wp 1,w,) and Sp,(wi,...,wu_1,w,) the
representations

M (W1, oy Wpo1,Wy) =

2

XAil,.“,in,l,in (wl, Ce ,wn) B
> e Ciiniie) / my(wi, ... wy)dpo, n =1, N, (184)

=1, in=1 AtLsein—1,in

Sn(wh cee 7wn—1awn) =

2

X Aits-rin—15in (wl, cee ,wn) / —
—— S d =1,N, (185
Z /’LO(AZL---JTL—I,’L") N(Wh 7wN) Ho, T [ ( )

i1=1,...,in=1 Ailrrin—15in
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are true. From the representation (181) and the equality (182) for {wi,...,wp1} €
A'toin=1 e obtain the equality

D] 5eeesipn—1,1 w PPN 70‘]71
XA II’LO(Al’Zl"("viil,l) ) / mN(w17 AR 7wN)dMO+

Aflrin—1,1

i1smin_1,2(W1, -+« Wy
. 1Mo(Alily-(vwii—1,2> ) / my (Wi, - - - wN)dpo—

AfLeesin 1,2

Nt s (1, 1) )
fig(Ait-in-1) / my(wi, ..., wn)dpo =

dil,...,in_lXAil ----- in—1 (Wb cee >Wn71)><

i1t —1,1 W1y« ooy Wp
- 1#0(141"1»(--’;1,1) ) / SN(‘JJb cee >WN)d,U0+

Allsin—1,1

X At15in—1,2 (wl, e ,wn)
fig(Aitin=1.2) / Sn(wiy .o wn)dpo—

AiLsin—1,2

X Ai1r-vin—1 (wl,...,wn_l) / S d
— o 186
/,Lo(Azl,...,znfl) ‘ . N(wl’ ’wN) Hol ( )
Al ip—1
where d;, ;. , is finite. Since
/ mN(Wh e 7WN)d/~60 =
AiLrsin—1
/ my (w1, ..., wn)dpo + / my (w1, ... ,wn)duo, (187)
AiLseerin—1,1 AiLsein—1,2
we have

fro (A" tnt) / my(wi, - .., wn)dpo—

Ailrino1,1

pig(Afrinh) / my(wr, ..., wy)dpo =

AiLssin—1

oA ] o=
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pg(Ail""’i"—l’l) / my(wi, ..., wn)dug + / my(wi, ..., wn)dug| =

Aflrin—1,1 AtLsesin—1,2

fio( A" in=1:2) / my(wi, ..., wn)dpo—

AiLsein—1,1

prg(A™n=11y / my (w1, ..., wn)dpo. (188)
Airrin—12
Further,
(At / my(wi, ..., wn)dpo—
AfLrrin—1,2
,LL()(Ail’""infl’Q) / mN(wl, .. ,wN)d,uO =
AfLoin—1

[MO(Ail,...,in,l,l) 4 MO(Ail,...,in,1,2>] / mN(wb o ,wN)duo—

AiLsein—1,2

MO(Ail""’infl’Q) / mN<LU1, R ,wN)duo + / mN(wl, . ,wN)d,uO =

AiLrstno1,l ALerin 1,2

— uo(Ail""’in_l’2) / mN(wl, . ,O.)N)d,uo—

Ailssino1,1

Mo(Ail""’in_l’l) / mN(wl, . ,wN)duo . (189)

AfLenrin 1,2

If to put

R™MW, ... wnl) = pg(An-in-nl) / my (w1, ..., wn)dpo—

AiLsrin—1,2

M0<Ail""’in_l’2) / mN(wl, e ,oJN)d,ug, (190)

AiLserin—1,1

RfN (wil, R ,wfl"_’f) = ,U,()(Ail"”’in_l’l) / SN(wl, . ,WN)(Z[L()—

AiLseesin 1,2
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MO(Ail,...,in—l,Q) / SN(Wla .., WN

Ailsin—1,1

then the equality (186) is transformed into the equality

m(, i1 In—1Y\ __ SN i1
Rl (wl yee e W ) - di1,~~~,in71R1 (wl yree

»n—1

Due to that Sn(wl‘, . ,wn) and M (wr, .
sure pp and Aroin-tl s Altesin-12 € B we have

) (191)
Wi, (192)

.,wy) are martingales relative to the mea-

/ Sn(wi, ..., wN)dpy = / Sp(Wi, .. wn)dpg =

Ailsrino1,1 AiLseesino1,1

=
. £
MO(A’Lly--.ylnfhl)Sn(w;l7 7("}:1”—_117"‘}711)7 (193) LC:D
a
b=
(2]
e
/ Sn(wi, ..., wy)dpo = / Sp(wi, ... wy)dpg = &
1reesbp—1s ] yeeslp—1s

A A S
NO(AU? ,Zn71,2)Sn(w§1’ ’w;n:f?w )7 (194) 5
.g
R
/ mN(w1>--->wN)dM0 = / mn(wl,--wwn)duo = <
AtLsin—1,1 AfLsin—1,1 %
8
. . ~
o (At (W@ w)), (195) z
=
S
3
/ mN<UJ1>--->WN)d,UO = / mn<w17'~'7wn)d,u0 = )
=
Ail ip—1,2 Ail ip—1,2 '_8
o
Q
i1 ot —1 2 il in—1 2 =

po (A= m (Wit L w T W), (196)

Since d;, ;. is finite and my (wy, . . ., wy) is arbitrary, then RN (Wi, ..., w/™}) #

0. The last means that inequality (180) takes place. This proves the equality

i1 in_1 = (197)
mn(wilv 7“1?:117“111) mn(wilv 7w:zn:1lvw72z)
Sn(wil’ ’w:zn—_llvw111> - Sn(wila ’ :Ln—_llvo‘;r%)
n=1,N,

which means that (183) is true, where we introduced the denotations

M (w1, ..., wn) = EF{my(wy, ...

, W

N)|]:n} =
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2 . , . .
' 122 1m(w1,...,wn,w:[ff,...,w%"),uo({wl,...,wn,w:[ff,...,wﬁf,v )
int1=1,.,in=
nt N . ' A , (198)
7
Z‘ po({wi, ..., wn, W, Wi )

Sn(wl, e ,wn) = E“O{SN(wl, ce ,WN)|fn} =

2 . , . .
‘ 712:‘ ﬂSN(wl,...,wn,w;’ff,...,wﬁ{,v)uo({wl,...,wn,w;’ff,...,w}’{,\’})
= N - . (199)
> uo({wl,...,wn,w;’ff,...,wj{,v})

inp1=1,.in=1
This proves the necessity.

Proof of the sufficiency. Suppose that the inequalities (180) are true. Let us
prove that the martingale measure i is unique. For this purpose, we prove that for
every martingale the representation (181) is true with validity of equalities (182),

(183).

Let us note that the equality (186) is true if for d;, _;, , to choose the right hand
side of the equality (197), since the equalities

[ my(wi,...,wy)duo | my(wi,...,wN)duo
Ailein_1,1 B Allsin_1 o
po(ATini) po (A7)
f Sy (w1, - .., wy)dpo f Sy (w1, - .., wy)dpo -1
Ailsein—1,1 _ Ailsin—1 _
H,O(Ail,...,in_l,l) HO(Ail,.,.,in_l)
f my(wi, ..., wn)duo f my(wi, ..., wN)duo
Ail,...,in,1,2 . Ail ..... ip—1 %
/,LO(Ail""’i'”*lQ) MO(A’il,A..,infl)
f SN(wl,...,wN)duo f SN(wl,...,wN)duo -1
ALreesin 1,2 B Ailevin—1 B
/,LO(Ail”"’i"7172) MO(AilP‘”inil)
di1,...,in_1 (200)

are valid. Taking into account the equality (186) and the equalities

di17--~7in—1XAil ,,,,, in_1 ((JJl, Ce ,wn_l)x

X Ait-rin—1,1 (wl, e ,wn)
o (Ait—in 1) / Sn(wi, ... wn)dpo+

Ailrino1,1

Risk Hedging in Financial Markets

Volume 23| Issue 4 |Compilation 1.0 © 2023 Great Britain Journals Press



© 2023 Great Britain Journals Press

i1t —1,2 (W1 o ooy W
XA l/’LO(Alil“("viil;Q) ) / SN(CL)I, ct 7wN)d/,LO—

X Aitrin—1 (wl,. .. ,wn) B
NO(Ailr--ﬂ'n—l) / SN<UJ1, C ,(JJN)d,uO =

2

XA]'I,.H,jn,l,l(wl, e ,wn)
> 110 (Adtin 1) / Swlen, - en)dpot

J1=1,...jn—1=1 AILrdn—1,1

X 4910 dn—1,2 (wl, R ,wn)
NO(Ajl,m,jn—l,?) / SN(wl, C. ,wN)duo_

AJ1sodn—1,2

J1seees dn—1 (W1, ..., Wy
XA IHO(ATH(’%]"1> ) / SN(wb oo 7WN>d,U,0 = (201)

di1 ..... z’n,1XAi1 »»»»» in—1 (le s 7wn)[8’n(w17 s 7wn—1)wn) - S’n—l(wla s awn—l)]7

we have
X Ai1rin—1,1 (wl, Ce ,wn)
NO(Ail""’i”‘l’l)

X At rin—1,2 (Wi, wn) /

folAT—n17)

X gitssino1 (W1, -« ., Wh) /
MO(Ail,...,in71> ‘

dil,m,in—lXAil ..... i1 ((4.)1, e ,wn)[Sn(wl, e, Wn_1, wn) — Sn,l(wl, e ,wn,l)]. (202)

Summing over all indexes iy, ...,7,_1 the left and right hand sides of the equality
(202), we obtain the equalities

My (W1, Wn) — My (W1, ey Wp1) =

C’n(wl, Ce ,wn,l)[Sn(wl, c. ,wn,l,wn) — Sn,l(wl, e ,wn,l)], (203)
2
C’n(wl, Ce ,wn_1> = Z di1,...,in71XAi1 ,,,,, in_1 (wl, . ,wn_l). (204)
i1=1,00yin—1=1
We proved that for every martingale {m,(wi,...,w,)})_, relative to measure pq

the representation (181) is true, due to the conditions (180). Let us prove that
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the martingale measure is unique. Suppose that there are at most two martingale

measures pp and pi. If to put m(ws, ..., wy) = xa(wi, .. .,wy), then
Xa(wi, ..., wy) =
N
> Cu(wis - wa)[Sn(wr, - wWnot,wn) = Spca (Wi, - wont)] + 0o, (205)
n=1

From this representation, we obtain the equalities uj(A) = p2(A) = o, A € Fn.
Contradiction. The last proves Theorem 30.

Next Theorem is concerned the case as the set of martingale measures consists
of one measure.

Theorem 31. On the probability space {Qn, Fn, Py}, being the direct product of

the probability spaces {0, F?, PP}, suppose that the evolution of risky asset is given
by the formula (172), then the set of martingale measures, being equivalent to the

measure Py, consists of one point

2 2 N
Z...ZHzl)n(w’f,...,w;”)XA(w?,...,w%V), A e Fn. (206)

The fair price vy of European type option with the payoff function p(wi, ..., ,wx) is
giwen by the formula

2 2 N
w0 = Z . Z H P (Wi wmp(wh . W), (207)

i1=1  iy=ln=1

where the number of shares is determined by the formula (208) and the number of
bonds is determined by the formula (209)

VWi, -y wh1) =
mk(wl,...,wk_hwi) _mk(wla"-uwk—lawi> EF=1.N (208)
Sk(wly-'-ywkflaw]i) - Sk(“la---,wkflawlg) 7 C

Bre(wi, ..., wg—1) =

mk_l(wl,...,wk_l)—’yk(wl,...,wk_l)Sk_l(wl,...,wk_l), k= 1,N, (209)

where
mk(wla e ,Wk) = Euo{@(wla cee 7WN)|JT-"€} =

: lgo(wl, . ,wk,w;ﬁ:ll, o ,wj{,v)uo({wl, . ,wk,w,ifj:f, o ,wj{,v})
ipa1=1,..., iN=
k+1 N . ' ‘ ’
3
Z :U“O({wlw"7wk7wk}:-_~_117"'7w§\]lv})

tpp1=1,...,in=1
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Yn(wi, .-, wn) = X (Wi, -+ - 5 Wne1, Wh) W (wr, .. wa)+
Xat Wiy - W1, wo) ¥ (w1, -+ W), (210)
w};(‘*’la'-'awn—l:wn) =
ASH(wy, .y wpo1,w?)
2 n 1, sy MUn—1,Wn 2 0+
XQ%+(wn) Vn(wh - ’wn_hw}”wg), (wl, e 7wn_1) - Qn—ly Wy, - Qn s (211)
¢i<w1>-">wn—l7wn) =
AST (Wi ey wno1,w))
1 n ) yMn—1y"n 1 0—
. ) € Qo e 0. (212 —~
Ko )y ey ) € €8 (1) :
—
S
Proof. Since =
1 o
lpn(wlv"'vwn—hwn) = %
©
ASH(w Who1,w?) -
n 1y yWn—-1,W, 2 0+ =
>0, (wi,...,Wpo1) € Ly, w; €87, 213 <
Valwi, ..oy wp_1,wh w?2) (o 2 ! " " (213) ~
g
<
2
Yo (Wi, ey W1, Wy) = Z
A
R=
AST (Wi ey wno1, w)) ! S
AT TR TR S ), e Wne1) € iy, e 0o, 214 =
Volwi, oo wn_1, w) w?) (1 “n-1) b @n " (214) S
g
we have .
Y (Wi, -+ Wn) = Xoo (W1, -+, Wae1, Wn) W (Wi, wn)+ %
=]
=
Xm(wl,...,wn,l,wn)tpi(wl,...,wn) >0, (Wi,y...,wWn) € Q. (215) 2
=
From this, it follows that po(A) > 0 for every A € Fy. It means that po(A) is '§
equivalent to Py. The inequality S

n—1
Suwr, . wnon,wh) = [J(L+ ailwr, . wimi(wi) (L + an(wr, . w))miw))) #
i=1
Sp(wi, ... Wy, w?) =
n—1 .
H(l + ai(wr, - w)mi(wi)) (14 an(wr, ..., wi)n(w2)), n=1,N, (216)
i=1

is true, since

(14 ap(wy, ...

, W

n)i(w)) #
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(1+an(w177w727,)771(w3))7 n= 17N7 (217)

due to the suppositions relative to the evolutions of risky asset, given by the formula
(172). Thanks to Theorem 30, the martingale measure p is unique.

To prove the rest statement of Theorem 31, we need to construct the self-
financing strategy m such that the capital corresponding this strategy on (B, S)
market satisfies the condition

Xg = E#O¢<w17 s 7wn717wN)7 X]7\r] = gp(wla s 7wn717wN)~
Let us consider the martingale

mn(wla ce 7wn717wn> = Euo{‘p(wla cee 7wn717wN>’fn}-

Due to Theorem 30, for the finite martingale {m,, (w1, ..., w,_1,w,)}2_, relative to
the the measure jo(A) the representation

mn(wla <. awnflawn) =
n

Z Ci(wi, . wim)[Si(wr, -y wim1,ws) — Sz (w2 wisr) ]+

i=1

mo, mn=1,N, (218)

is true, where Cj(wq,...,w;—1) is F;—1 measurable random value, and mg =
Erop(wy,...,ws 1,wn). If to put = {Bn, Yn}2_,, where

Tn = Cn(wla cee 7wn—1)7 Bn = mn—l(wh cee 7wn—1) - rYnSn—l(wly cee 7wn—1)7

then it easy to see that 7 is self-financed strategy. Really, since B,, =1, n =0, N,
we have

A/Bnlgn—l + A’7nSn—1 = Aﬁn + A'Vnsn—l =
Mp—1 — ’YnSn—l — Mp—2 + 'Yn—lSn—Q + (’Yn - ’Yn—l)sn—l =

Mp—1 — Mp_2 — fynfl(Snfl - Sn72) = 0.
Fn_1-measurability of (5,,7,) is evident. It is easy to show that

X:lr(wh s 7wn) = Ban ""YnSn = mn(wl, c ,wn).

Therefore,

Xy =mg=E"p(wi,...,wn-1,wn), Xy =@(Wi,...,Wn-1,WnN).
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V. COMPLETE MARKET HEDGING

In this section, the securities market is constructed, the evolution of which occurs
in accordance with formula (172). Possible for this was the observation that with
respect to a certain class of evolutions of risky assets, the family of martingale

measures is invariant. This fact turned out to be crucial for the construction of
models of non-arbitrage markets. In papers [11], [13], such a possibility of the

existence of non-arbitrage markets is established on the basis of the Hahn-Banach
Theorem. This beautiful result has the disadvantage that it does not provide an
algorithm for constructing models of non-arbitrage markets. How to build them
having the evolution of risky assets is practically a difficult problem.

In Proposition 1, we establish the form of measurable transformations relative
to which the only measure is invariant. Using that, a model of the securities market
is built, which is complete. This result is constructive in contrast to the existence
theorem from [11], [13]. Our denotations in this section are the same as in the
previous section. We consider the evolution of risky asset, given by the formula
(172), on the same probability space.

Proposition 1. On the probability space {Qn, Fn, Py}, being the direct product of
the probability spaces {QV, F?, P’} let the evolution of risky asset be given by the

formula (172), with a;(wy, ..., w;) = bi(wy, ... ,wi—1)fi(wi, ... ,w;), where the random
variables fi(wi, ... ,wi), bi(wi,...,wi_1), satisfy the inequalities
fi(wl,...,wi) > 0, bi(wl,...,wi_l) > 0, max bi(wl,...,wi_l) <
{wl,...,wi71}€91‘71
1 =T, N (219)
Y 1= ) *
max filwi, . wisg, whn; (wh)

{wi,ewim1 YEQ 1

For such an evolution, the unique martingale measure gy does not depend on the
random variables bj(wq,...,w;i_1), i = 1, N, and it is given by the formula

MO(A) - u{w},wf},...,{w}v,w%v}(A> -

2 2 N
SO T et el xalwl L wl), A€ Fy. (220)

i1=1 in=1n=1
where
Y (Wi, - wn) = Xoz (W1, Wat, wn) Wy (w1, - wn)+
Xag (Wi, -+ Wne1, Wn ) P (W1, -+ - 5 W), (221)
ASH(wr, .y Wit w2)
1 2 n ) y Wn y Wn
W1, e vv s Wpet, W) = w;, =
Yl nmtsn) = Xape L) g s
fn(wb cee ’Wn—lawi)n:(w%) 2 c QO+ (222)
fn(wh"wwn—l?wg)n;(u}%)+fn(w1""’wn—bwrlL)nr:(w%,)’ “n "
AST (Wi ey Wi, wl)
1/12 e Wi, W) = (] n > -1, %n)
n(wl P ¥ ) XQ% <wn>Vn<w1>'">wn—17wqgaw721)
fTL(wl? s 7wn*17w711)7777<w71¢> 1 c QO— (223)
Fa@1, - W1, Q)0 @B) + Jawr, - W, @) @)
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Proof. The proof of Proposition 1 is the same as proof of Theorem 8.

Suppose that the market consists of d assets the evolutions of which are given
by the law

Spl(wi, .. wn) = {S (Wi oy wn)y o, SY(wr, .. wn)}, n=1,N,  (224)
SE(wr, - wa) = ST+ (@i - wict) filwr, - wimilwy)), k= 1,4, (225)
i=1

and the random values n;(w;), fi(wi,...,w;), i =1, N, does not depend on k, and
satisfy inequalities

fi(wl,...,wl-) >O, bf(wl,...,wi,l) >O, max bf(wl,...,wi,l) <
{wisewi—1}€Q1
1 k=1,d, i=1N (226)
) = ) ) 1= Y N
max_ fi(wi,. .o wien, w0l (W])

{wiyewi—1}EQ—1

Proposition 2. On the probability space {0y, Fn, Pn}, being the direct product of
the probability spaces {Q2, F2, P?}, if the evolution of d risky assets is given by the
formula (224), (225), then such a market is complete non arbitrage one. The unique

martingale measure does not depend on the random variables W (wi, .. wii1), k=
1.d, =1 N, a,ndiis determined by the formula (220). For the contingent claims
@i(wr, ..., wn),i=1,d, the fair prices @}y are given by the formulas

2 2 N
b = Z . Z H (wit ) (Wi Wi, i =1,d, (227)
ii=1  in=ln=1

where the number of i-th shares is determined by the formula (228) and the number
of i-th bonds is determined by the formula (229)

Yi(wr, ... wp1) =
m%(u}h"wwk—l;w%) _Wiz(wla"'awk—lau;]%)7 k:L_N, (228)
Sk<w17"'7wkflawk) _Sk<w17"'7wk717wk)

ﬂli(wla"'awk—l) -

m};_l(wl, e WE—1) — W,i(wl, o ,wk._l)S,i_l(wl, oo wig—1), k=1,N, (229)

m};(wl, coowg) = ER{ei(wr, .. wn) | Fr) =
2

‘ 12 1<pi(w1,...,wk,w;’j:f,...,wf\}\’)ug({wl,...,wk,w,i’ff,...,wji\}v})
ipa1=1,. iny=
k+1 N . ‘ ' 7
1
> po({wi, .. Wik, wyiy, . Wy })

tep1=1,...,in=1
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Corollary 3. (Cox, Ross, Rubinstein, see [25]) On the probability space {Qy, Fn, Pn},
being the direct product of the probability spaces {0, F?, PP}, let the evolution of
risky asset is given by the formula

n

SH(wry - ., wn) = So H(l +pi(wy)), n=

i=1

LN, (230)

where the random values p;(w;), i = 1, N, are such that p;(w}) = a, p;(w?) =b, and
let the bank account evolution be given by the formula

B,=By(1+n)", r>0, By>0, n=1N. (231)

Then, for the discount evolution of risky asset

n

So TT(X + pilw:))

Su((Wi, ... wy) = E(Hr)n ., n=1,N, (232)

the martingale measure pig is unique if a < r <b. It is a direct product of measures
ph(A), Ae FP, i=1,N, given on the measurable space {Q, FP}, where pj(w}) =
b—r

=, ph(w?) = 5=2. The fair prices @o of the contingent liability o (wy, ... wy) is

giwen by the formula

Vo = /gpN(wl, cown)dpy =
Qn

N

S > ewletts ) T b, (233)

11=1 in=1 k=1

where the number of shares is determined by the formula (234) and the number of
bonds is determined by the formula (235)

London Journal of Research in Science: Natural and Formal

Ye(wiy ooy wp—1) =
me(wi, ..o wi_1, wi) — mg(wr, ..o Wp_1, WE) TN (234)
Sk(wi, .oy wp—1,wp) — Sk(wr, .« oy w1, w3) C
Br(wr, .. wi1) =
Mmp_1(wi,y ..o wr—1) — Ye(wry ooy We—1)Sk—1 (w1, - -+, Wk—1), (235)

mk(wl, e ,Wk) = EMO{QON(WI) s ’WN)|]:k} =
2

‘ 123 1g0N(w1,...,wk,wli’f:f,...,wj{,v)uo({wl,...,wk,w,i’ff,...,wj{}’ )
k+1=1,....AN=

2 . .

> ,uo({wl,...,wk,w;’ﬁf,...,w%\’ )

ip1=1,...,in=1
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Proof. For the discount evolution (232), the representation

n

Sp((wr, ... wn) = So H (1+ni(wi)), n=

i=1

I, N, (236)

is true, where 7;(w;) = pg‘fﬁ:f Due to Theorems 30, 31, since n;(w;) = {7 < 0,

ni(w?) = ll)_T:: > 0, then the measure ji is unique. The rest statement of Corollary
follows from Theorem 31.

Theorem 32. On the probability space {Qn, Fn, Py}, being the direct product of
the probability spaces {Q9, F?, PP}, let the evolution of risky asset be given by the
formula

S((wr, ... wy) = So H(1 + pi(w;)), n=1,N, (237)

where the random wvalues p;(w;), i = 1, N, are such that p;(w}) = b}, pi(w?) =
b2, i =1,N, and let the bank account evolution be given by the formula

n

B, =B [[(1+ria(wis1)), Bo>0, n=1N, (238)
=1

where the random values r;(w;), i = 1, N — 1, are such that ry(w}) = r}, ri(w?) =
r?2, i=1,N —1, rg > 0. Then, for the discount evolution of risky asset

So TT(L + pi(wi)) -
Sn((wi, ... wy) = —= ., n=1,N, (239)

By [T(1+ 71 (wim1))

=1

the martingale measure g is unique, if bi < ro < b, by <rl, <ri, <bl i=
2, N. It is determined by the formula (220) with

m(wr) = pi(wi) —ro,  nilwi) = pi(wi) =174, i=2,N,

1
filwr) = 1+’ filwr, ..., w) =
pz‘(wz‘) - 7’171(%71) i — 2,_N (240)

(pilwi) =7 ) (1 +ria(wis1))’

The fair price ¢o of the contingent liability pn (w1, ...,wy) s given by the formula

2 2 N
Z Z H1/)n(wil,...,wfl")wN(w?,...,w%\’), (241)
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where the number of shares is determined by the formula (242) and the number of
bonds is determined by the formula (243)

%(wla e 7wk—1) =
mk(wh e 7“%—1;“%) - mk(wla s 7wk—17u}2]%>7 L — L_N, (242)
Sk(wi, .. we—1,wi) — Sk(wr, - ., Wk—1,W7)
ﬁk(wl, Ce ,wk,l) =
Mp—1 (Wi, -+ w—1) — Ve(wi, - We1) k1 (Wi, -+ W), (243)

mk(wl, . ,Wk) = EMO{QON(WI) s ’WN)|]:]€} =
2

‘ ~ 1901\7(("}17"'7wk7wlzcli:117"'7w§\]lv)u0({w17'"7wk7wlirr117"'7w§\]lv )
k+1=1,....,AN=

2 . .

Z MO({wla"'awk’wllck—:ll7"'7w§\lfv )

ipp1=1,...,in=1

Proof. To prove Theorem 32 it is necessary to prove the existence of unique spot
measure. The discount evolution (239) can be represented in the form

Sp((wiy . wn) =

B, | (I+ filwr, .. wimi(wi)), n=1,N, (244)

where ) '
771(w1) = P1(W1) — To, 772‘(%') = Pz’(wz’) -7, ©1=2,N,

f1<w1) = 3 fi(wl,...,wz-) =

London Journal of Research in Science: Natural and Formal

pi(wi) = 1i1(wi1) —
(pi(wi) - T?—l)(l + Ti—l(wi—ﬂ)’ 1=2,N. (245)

It is evident that n;(w}) < 0, n;(w?) > 0, fi(wi,...,w;) > 0. Therefore, from the rep-
resentation (244), (245) it follows that we can construct only one spot measure, which
is martingale measure, being equivalent to the initial measure Py. In accordance
with Theorem 30, since S, (wy,...,wl) # Sp(wi,...,w?), {wi, . ;W 1} € Ly
such a measure is unique. Theorem 32 is proved.

Theorem 33. On the probability space {Qn, Fn, Py}, being the direct product of
the probability spaces {Q9, F?, PP}, let the evolution of risky asset be given by the

7
formula

Sp((wr, . wp) = S [ em@rwmatd - = TN, (246)

=1
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where the random values &;(w;), i = 1, N, are such that &;(w}) < 0, &(w?) > 0,
oi(wi,...,wi1) >0 >0, i=1,N, and let the bank account evolution be given by
the formula

n

B, =By H(l + ri_l(wi_l)), By > 0, n=1, N, (247)

=1

where the random values r;(w;), i = 1, N — 1, are such that ri(w}) = r}, ri(w?) =

r?2, i=1,N—1, rg > 0. Then, for the discount evolution of risky asset

SO ﬁ ecri(wl,“.,wifl)si(wi)
So(wr, ... wy) = —= ., n=1N, (248)

n

BO H (1 —+ n-,l(wi,l))

i=1

the martingale measure pg s unique, if

exp{a?el(w%)} <71y < exp{a?sl(w%)},

exp{olei(wh)} <ri, <1, <exp{olei(w}))}, i =2, N. (249)
It is determined by the formula (220) with

1
]_—f—’l"o7

m(wi) = exp{ofer(w)} —ro,  fi(wr) =
ni(wi) = exp{ojei(w)} — iy, filwr,. .. wi) =

egi(wl,.‘.,wi_l)ei(wi) — 71 (wl—l)

oo le @] =7 )0 £ @)’ {wi,...,wi} €Q,, i=2/N. (250)

The fair price vo of the contingent liability pn (w1, . ..,wy) is given by the formula
¥o = /@N(wl, o wN)dpg =

QN

2 2 N ‘ . .
Z Z Hl,bn(wil,...,w;")goN(wil,...,w%V), (251)
ii=1  iy=1n=1

where the number of shares is determined by the formula (252) and the number of
bonds is determined by the formula (253)

'yk(wl,...,wk_l) ==
mk(wl, R ,wkfh(ﬂ]};) - mk(wlu < 7wk717wlz) L=1.N (252)
Sk(wl,...,Wk;_l,wli) —Sk((.adl,-.-,wk—l,w]%) ’ ’ ’
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5k(w1, S 7Wk—1) =

mk—l(wh - 7wk—1) - %(Wl, .. 7Wk—1)Sk—1(W1; e ;Wk—l); (253)

mk(wla S ,Wk) = EMO{C)DN@JM R 7WN)“FI€} =

2 A , , )
2y lgoN(wl,...,wk,w,:kjf,...,w?{,\’)uo({wl,...,wk,w,:’rf,...,w;\’,\’})
le+1=1,...AN=

2 . ,

> ,LLO({wl,...,wk,w;‘ﬁf,...,w%\’ )

tep1=1,...,in=1

Proof. For the discount evolution (248), the following representation

Sn((W1y .. wy) =

B, (I + filwr, ..., wi)mi(wi)), n=1N, (254)

is true, where

1
1—|—7"0’

m(w) = exp{ofer(wi)} —ro,  fi(wi) =
ni(wi) = eXP{UzQEi(Wi)} - ri2—l7 filwr, ... wi) =

eOi(Wswim1)ei(wi) _ rioq (wifl)

(exp{ayei(wi)} —r7 )1+ ric1(wi1))

;o {wr, o wib €Q,, 1=2,N. (255)

It is evident that n;(w}) < 0, m;(w?) > 0, fi(wi,...,w;) > 0. From this, we obtain
that the spot measure exists and it is unique. Theorem 33 is proved.

On the probability space {Qy, Fn, Py}, being the direct product of probability

spaces {QV, F?, P?}, suppose that the market consists of d assets the evolution of
which is given by the law

Su((Wiy - wn) = {S (w1, wn)y oo, S ((wr, - - ywn)y, n=1,N,  (256)

where
SE(wr, . wn) = SETJQ + df filwr, . wimi(wi),  k=T1,d, (257)
i=1
and the random values 7;(w;), fi(wi,...,w;), i =1, N, and constants a¥ satisfy the
inequalities
777«(("}7,1) <07 nl(wf) >07 fi(w17"‘7wi) >07
0<al< ! i=1,N, k=1, (258)
' max filwr, .. ;w0 (w}) T T

{wi,ewim1}EQ 1
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Proposition 3. On the probability space {Qn, Fn, Py}, being the direct product of
the probability spaces {QY, F2, PP}, let the evolution of risky assets be given by the
formulas (256), (257), where constants a¥ i = 1, N, k = 1,d, satisfy the inequalities
(258). For such an evolution of risky asset the martingale measure py does not de-
pend on af and is unique. It is determined by the formula (220). For the contingent

claims @i (wi, ..., wy), i = 1,d, the fair prices ¢} are given by the formulas
2 2 N
0y = Z . Z H Yo (Wit W)y (Wit . W), = 1,4, (259)

where the number of i-th shares is determined by the formula (260) and the number
of i-th bonds is determined by the formula (261)

fy,i(wl,...,wk_l) =
m%(wlyywk—lyw%) _77/27];((401,..-;(&;]6—1’&)2]3)7 k:L_N, (260)
Sk(wh s 7wk717wk) - Sk<w17 s 7wk717wk)

5}2(0‘)1’""“}]9—1) =

mzfl(wl, e WE—1) — fy,i(wl, o ,wk_l)S,ifl(wl, ooy wig—1), k=1,N, (261)

m};(wl, e ,Wk;) - E“O{gpi(wh e 7WN)|F’€} =
2

> wi(wi, ... ,wk,wz’jjf, . ,wﬁ{,")po({wl, . ,wk,w,irj:f, . ,w%\’ )
ins1=Loin=1
2 ; .
> po({wi, - wiywiy Wy}
i1 =Loin=1
If filwy,...,w;)) =1, i =1, N, the unique martingale measure is a direct product of
measures jh(A), A€ F?, given on the measurable space {0, FP}, i =1, N, where
(2 (1
i, 1 n; (wy) i, 2 n; (w;)
po(w;) = ——= ;o pp(wi) = ——= : (262)
’ (i (wh) + 0 (7)) 7° (n; (W) + 1" (w7))

The fair prices @), i = 1, N, of the contingent liability o' (w1, ..., wxn), i = 1, N,
are given by the formula

2 2 N
PORED DEENCEINT 3] | (O} (263)

where the number of i-th shares is determined by the formula (264) and the number
of i-th bonds is determined by the formula (265)

yli(wl, W) =
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e Who1, wh) — mi(wr, .

<y WE—1, wl%)

St(wr, .oy wr-1, wy) = Sh(wr, - We—1, WE) k=1N, (264)
Bi(wi, ..., wp1) =
mi_(wi,. . we) — V(e we1)SE (W, wker), k=1,N,  (265)
mi(wi, ..., wg) = EX{p;(wr, . ..,wy)|Fr} =
ik+1:§:m7i]v:1%(w1""’wk’wli}ill""’wj\]fv)ﬂo({wlw--,wk,w,irj:f,...,wj\]}’ )
i NO({Wla---,wk,(JJZﬁf,...,wj\]," )

ipp1=1,..,in=1

IfSO7 1y N>

Proposition 4. Suppose that S}, Si, ...
(256), (257). Then, for the parameters a’, ..

i = 1,d, are the samples of the processes (256), (257) let us
denote the order statistics S(io), Sgl), cee SZN)’ i=1,d

i

a, =

18 valid.

In the formulas (266) we put that f; =

1, N.

Proof. The proof of Proposition 4 is the same as the proof of Theorem 15.

IX. MARTINGALE MEASURES ON DISCRETE PROBABILITY SPACE

This section presents all the necessary results for constructing a non-arbitrage in-

_ Siv-n) ]
Si
(N—k+1)
k

feng (W)

=1,N, i

max

{w1,e Wi —1}E€EQR 1

1, d, of this samples.

,S% is a sample of the random processes
., a’y the estimation

(266)

k=

1
W1, W),

fk(wl, ..
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complete market on a discrete probability space. The conditions under which the
entire family of martingale measures is described for the considered class of evolu-
tion of risky assets are minimal. In particular, conditions are presented under which
the family of martingale measures considered is equivalent to the original measure.
They are minimal. The entire set of equivalent martingale measures is a convex
combination of a finite number of spot martingale measures. On this basis, new
formulas were found for the fair price of the super hedge.

In this section, we put that QY = {w}, ...

,wMl i =1, N, and we assume that 2 <

M < oo, the o-algebra F? consists from all subsets of QY. We suppose that P?(wF) >
0,wF e QY k = 1,M, i = 1,N. As before, the probability space {Qny,Fn, Py}

%

is a direct product of probability spaces {9, F?, P’} i =

1

1, N. Sometimes, any

elementary event wf € Q2 it is convenient to denote by w; not indicating the index
k. Further, we use the both denotations. As in section 2, we introduce filtration
F,. on the probability space {Qy, Fn, Pv}. As before, it is convenient to introduce

© 2023 Great Britain Journals Press
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the family of probability spaces {Q,, F,, P,},n = 1, N, being a direct product of
probability spaces {Q9, F?, P°}.i = 1,n.

(]

The evolution of risky asset is given by the formula (1) with the assumptions
given in the section 2. In this case

Q= x7 QF =0, x QF. (267)
Further, we also use the measurable space with measure
N N N
(Tl ot Tt TTit < 21} 265)
i=1 i=1 i=1

The measure P°~ is a contraction of the measure PY on the o-algebra F°= =
Q0= NFY P is a contraction of the measure P° on the o-algebra F0T = Q0T N FY.

Additionally, we assume
P)({wn € Q) I (wn)| < 00}) = 1. (269)
Let us consider the random values

Palwr - wn) = Yo (@n) Y (w1, o)+

XQQ+(wn)¢fL(w1,...,wn), n=1N, (270)
where lrbrlL(wlv ceeyWh—1, wn) -
AST (Wi, wno1, w?)
2 n ) yYn—1y¥n 2 0+
X )y ey ) € G €05 2T
V(Wi W1, Wh) =
AST (Wi .y wno1, wl)
1 n ) yYn—1y¥n 1 0—
- , e Wh1) € Q1 e Q. (272
X9 (wn)vn(wl,'“,wn_l’w}wwz) (wl % 1) 1 Wn n ( )

Definition 1. Let the evolution of risky asset be given by the formula (1). On
the measurable space {Qn, Fy}, being the direct product of the measurable spaces

N
{Q0, FOY, for every point {{wi,w?}, ... {wk,w%}} € TT[Q x QY] let us introduce
i=1

the spot measure
Fft w2} (A) =

2 2 N
Z . Z H W (Wi wimxa(wl W), A€ Fu, (273)
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Lemma 4. The spot measure fi,1 .2}

(A), giv

o{wh Wi

en by the formula (273),

1s a martingale measure for the evolution of risky asset, given by the formula

N
(1), for every point {{wi,w?},... {wk, w3} € TI[Q0™ x Q). If the point
i=1

{wl Wi}, ... {wh,wk} is such that AS,, (wi, . .
0, {wi,...,wn_1} € Qu1, n=1,N, then the spot measure ! w2}

<y Wp—1, w%)

<0, AS, (Wi, .. Wy 1,w?) >
,...,{w}v,w?v}(A> is

a martingale measure, being equivalent to the measure Py.

Proof. Let us prove that Pl w2} ks 2, }(A) is a probability measure. Let us cal-

culate
2 . ) .
Z 1,[)‘7((,&)?, e ,CU;J) - lpj(w’il7 oo 7w;'J:117w‘71') + l/)](ufil, e ’wéj:ll’wjz) =
ij=1
oo () W) 3
. : . H
Xaos (WDRAWP, . W wh)+ =
. > . g
Yo LWL, )+ k
e
: . =
e+ () Bt o u?) = z
. o ASH(wi, L wi T wh) é
XQ‘;* (Wj)XQ(” Wj) i1 tji-1 1 2 + 3
V}(wl,...,wj_l,wj,wj) R
' N o
AS (W, Wit ) ’
Xad+ (W;)XQE?‘ <°‘JJ1')V ]i1 ij71j 1 ]1 T 5
G Wi whhw) p
. y . @
) b AST(Wit, W w?) &
X9~ (%‘)XQ?* (wj> i G112 + o
V}(wla"'awj—l7wjawj) Té
. y ;-‘
AS; (Wl Wi w)) g
Xao+ (WJQ')XQ‘]?* (ng) jil ij—lj 1 ]1 o Z
Vilw's - wiy, wiw)) 3
" ;. q
ASHWE, ... wi w?) S
1 2 1> ’ -1 —
XQ?* (Wj)XQ;’+ <wj> jil ij—lj 1 ]2 +
Vj(w1 ey Wi a%’a%‘)
AST (Wi, ... Wi wl)
2 1 j 1 » =193 1 2
Vo () () 25 — o ()Xo (62) = 1
T i wg e whwhy T T

The last equalities proves that gy, .2y rwr w23 (Q2n)

N
{{wi, i}, {wh, wi b € TTI™ x Q7). Further,
=1

i
9 wj

. ,w;j)ASj(wil, .

1 for every point

)=

© 2023 Great Britain Journals Press
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Py (Wil ... Wi} WwHAS; (W ... Wi wh)+

» Mg —10%g »g—=19g
i i1 2 i1 i1 2\
(Wi Wi wh)AS (W wi T wy) =

X0~ (W;)XQ‘JH (WJQ) X

+( i bj-1 2
ASI(wity . wi T wi) P
— : AST (wit w! T, wi)+
Vi (win ij-1 1, 2 JATL e =10
Gwis Wi Wi w;
AST (wi Wi wh) , —
JANT o g1 + (0 -1 2| -
- A5 (wi's . wiwi)| =0, j=1,N. (274)
Vilwi's . wit), wi,wj)

Let us prove that the set of measures g1 2y . g1 021(A) is a set of martingale
measures. Really, for A, belonging to the g-algebra F,_; of the filtration we have

N
A = B x [[Q), where B belongs to o-algebra F,_; of the measurable space
{Qu_1, Fur}. Then,

2 2 N
SN T et wi)xswi . wr ) AS (it . win) =

2
> (Wi W AS (W wi) =0, A€ F. (275)
in=1

To prove the last statement it needs to prove that ¥, (wi,...,w,) > 0, n = 1, N.

But,

AST(wy, .. wpo1, w?)
%(W]_, e ,wn) - XQ%‘ ((A.)n) Vn<w1, o ,wn717w71”w7%)
AS (wiy ey wno1,w)) —
n e 1 > (), =1, N. 276
Xags (@ >Vn(w1, e Who1, W w2) " (276)

The last means the needed statement.
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Suppose that the random values a; (w1, .. .,w;), 7:(w;) satisfy the inequalities

1
ai(wla'”awi) >07 sup ai(wla"'awi) < — )
{wl ..... wi}EQi Sup T]z (wl)
w; €929,m; (w;)<0

PP(ni(w;) <0) >0, P(mi(w;)>0)>0, i=1N, (277)

(2

the evolution S,,(wy,...,w,) is given by the formula

n

Sn(wl)"')wn) = SU H(1+az(w177wz)nl(wz))7 n :L_N) SO > 0. (278)

=1

Below, we describe the convex set of equivalent martingale measures.
We use for ay({w],...,wi};{w}, ..., w%}) the denotation ay({w}y; {w}3)-

Theorem 34. Let the evolution of risky asset be given by the formula (278). On
N N N
the measurable space with measure { [J[Q0 x QY] TT[F>~ x FoH), [11PY x P13,

i=1 i=1 i=1

suppose that the random value ay({w}}; {w}%) satisfies the conditions

ay({whyi{w}k) > 0. {wlwih .o oo} e [0 < 9], (279)

=1

[ axtiel bl i) [[aPrehirtel =1 (250

N
120~ 00*]
1=

The measure po(A), given by the formula

po(A) =

/ OZN({W}}V; {w}?\]):u{w%,w%},..‘,{w}v,w%\,}(A)dH[Pio_ X f)io+]7 (281)

i=1
N
100 <02

18 a martingale measure, being equivalent to the measure Py.

Proof. Introduce the denotations

O‘TL({W%? SR 7w71hl’wrll}; {wfa s 7wi717 wi}) -

I an(wh byt wd ) T1 AP AP W)

T 0wl e
_ L n=TN 1,
I an({wl, . wn kel wi ) TT dPY (W) dP(w?)

1T (00 w0

7

A=
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O[N({w%a cee anlV—hw]lV}; {wia cee 7(")]2\[—1’(")]2\/'}) =

av({wl,. .. wh b {wl .. W}
S an({wls L wi i {et, s wi DAPR (Wi )dPR (WR) (282)

0— 0+
Qy XQy

It is not difficult to note that

N
[Tenlwl, o pwndi{ef, o wnh) = av({wl, - wi ks {wf, - wi)).
n=1

Since the random values o, ({wi, ..., wl |, wi}; {w?, ... w2 |, w2}) are finite valued,

then

an({w%, te 7w7lz—1v OJ?lz}; {w%’ te ’wi—hwi})x
Q) =t
AST(wy, ... ,wn,l,wi)AS;(al)l, - ’wnfl’w’i)dPS(wi)dPg(wi) < oo,
Volwi, ooy wn_1, wh w?)
(Ldl, Ce ,wn,l) € anl- (283)

It is evident that the set of strictly positive finite valued random values
an({w}t;{w}?),n =1, N, given by the formula (282), satisfy the conditions

EFIAS, (wyy .. ywp_1,wy)| =
N N
/H iwr, - wi)|AS, (Wi - wan,wn)| [ [dP)(wi) < 00, n=T,N. (284)
Gy =1 i=1
Moreover, for the measure (281) the representation (32) is true, meaning that it is

equivalent to the measure Py. The last proves Theorem 34.

Let us define the integral for the random value fy(wi,...,wn_1,wy) relative to
the measure fig,1 .2y . 1ot w23(A4) by the formula

/ fN(wlv <, WN-1, WN)d/L{w%,w%},...,{w}\,,w?\,} =
Qn

2 2 N ‘ ' '
DD T vnlwtt o win) v (wits o wil). (285)
i1=1 in=1n=1

Theorem 35. Let the evolution of risky asset be given by the formula (278). If
the conditions of Theorem 34 are true, then the fair price of super-hedge fo for the
nonnegative payoff function f(x) is given by the formula

fomsw B'fS) = max [ S (250)

PeM wleQd™ w2eQdt i=I.N
Qn
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Moreover,

. P . .
AL BTSN = e B, / FON) Attty ook} (287)
Qn

Proof. Let us prove the formula (286). Denote M the set of all martingale measure,
being equivalent to Py. If an equivalent martingale measure Py € M, then aFPy +
(1— a)#{w},w%},“.,{w}v,w?\]} € M for arbitrary 0 < a < 1. We have the inequality

aEPOf(SN) + (]' - Oé) / f(SN)du{w%,w%},...,{w}\,,w?\,} S sup EPf(SN)
PeM
Qy ©
Since a > 0 is arbitrary, we obtain the inequality

PeM

[ £ y.onny < 50 B F(Sx).
Qn

From here, we obtain the inequality

< P .
et 5 | TVt 1k < BT (5
Qn

The inverse inequality follows from the representation (281) for any martingale mea-
sure, being equivalent to the measure Py. Really,

EPfy = / a({whh {w}3)x

N
IT [0 <]

i=1

=1

N
/ fN(wla e, WN-1, (-“-)N)du{w%,w%},...,{w}v,w?\,}dH[Pfi X PiOJr]‘ (288)
Qn

From the formula (288) it follows the inequality

EFf fy < max /f(SN)du 1,2 L2
— wy,w? by {wn,wi e
w} €] wieQ =N forerd. oy ot
QN
Or,
P
SupE fN < max /f(SN)du wl w2 ol 2.
PcM w,}EQgi,w?EQ?Jr,i:l,N { 1 1}7 7{ N N}
Qn

The proof of (287) is analogous. We have the inequality

QB 1(Sx) + (L= ) [ F(Si)dingty.ohuy 2 jnf, E"F(Sx)
Qn

Risk Hedging in Financial Markets

Volume 23| Issue 4 |Compilation 1.0

London Journal of Research in Science: Natural and Formal




London Journal of Research in Science: Natural and Formal

Tending « to zero and taking the minimum all over the spot measures we obtain

VARl w2), (w0l 2} = Hlf E"f(SN).

min
wileflof QGQ(H i= 1N
Using the representation (288) we have

E"fy > min
wleQd™ w2eQft i=I.N

VAol w2, (k-

Taking the infimum all over the martingale measures we obtain

inf EF fy > min Sn)d )
PeM I W10l W2eQ0t i=T.N SNt ity ity
Qn

Theorem 35 is proved.

X. MODELS OF NON-ARBITRAGE INCOMPLETE FINANCIAL MARKETS

Using the construction of the family of spot measures introduced in the previous
section, this section presents the conditions under which the considered family of
spot measures is invariant with respect to a certain class of evolutions of risky
assets. For a certain class of contingent liabilities including a standard call option,
the fair price of the super hedge is shown to be less than the spot price of the
underlying asset. Specific applications of the results obtained for the previously
known evolutions of risky assets are considered. New formulas is found for the non-
arbitrage price range. A model of a non-arbitrage incomplete market is proposed
and estimates are obtained in the case of a multi-parameter model of a non-arbitrage
market.

On the probability space {Qy, Fn, Py}, let us assume that the random values
bi(wi, ... wis1), filw,...,w;), mi(w;), i =1, N, satisfy the inequalities

b’i(w17-.‘7w7:—1) >07 fl’(w17~..7wi> >07
bon o or ) <
{w1,...,Z.;Iilfll}iegii1 z(uﬂ, , Wy 1)
1

max max (w1, ..., - (wi)
{wi,ewi—1}€Qi1 {wi,m(wi)<0}f( ! )77 ( )

P2(ni(w;) < 0) >0, P’(ni(w;)>0)>0, i=1N. (289)

As before, we put Q)" = {w; € QF, ni(w;) <0}, W = {w; € O, ni(w;) > 0}. We
assume that the evolution S,,(ws,...,w,) of risky asset is given by the formula

n

Sn(wis - wp) = So H(l (Wi, wi) filwrs - w)mi(w), =1, N. (290)

i=1

Risk Hedging in Financial Markets

Volume 23| Issue 4 |Compilation 1.0 © 2023 Great Britain Journals Press



© 2023 Great Britain Journals Press

N
With every point v = {(w},w?),..., (wk,w?)} € V, where V = ][0 x QF], we
i=1
connect the spot measure

u{w},w%},...,{w}v,wf\,}(A) =
2 2 N ‘
ST T et wimxawit, . wi), A€ Fy. (291)
i1=1 in=1n=1

N N

Let us denote v,(A) = [] vurw2(Ai), A =[] Ai, € Fun, the direct product of the
=1 i=1

measures v, 2(4;), A € FY, i = 1, N, where v = {(wj,w]),..., (wy,wi)} € V,

N
V=112 x QF], and
i=1

n; (w?)
n; (W) +nf (W)

2 n; (W)
BRI R

le.l,wf (AZ) = XA (wzl>

for w} € QY7 w? € QY A; € FP. Then, there exists a countable additive function
vy(A), A € Fy, on the o-algebra Fy for every v € V.

Theorem 36. On the probability space {Qn, Fn, Py}, being the direct product of
the probability spaces {Q0, F?, PP}, let the evolution of risky asset be given by the

formula (290). For every point v = {(wi,w?), ..., (wk,w)} €V, the spot measure
u{w%’w%}“_”{w}ww%}(A) given by the formula (291) does not depend on the random

values by(wy, ... ,wi—1), © = 1,N. In the case as fi(wi,...,w;) =1, i = 1, N, the
formula

oot} w3} (A) = 1u(4) (293)

is true.  For the evolution of risky asset (290), the set of martingale mea-
sures being equivalent to the measure Py does not depend on the random values

bi(wl, ce ,wi_l), 1= 1,N

Proof. The proof of Theorem 36 is the same as proof of the Theorem 8.

Theorem 37. On the probability space {Qn, Fn, Py}, being the direct product of
the probability spaces {Q9, F?, PP}, let the evolution of risky asset be given by the

formula (290). Suppose that the nonnegative conver down payoff function f(x) on
the set 0 < x < oo satisfies the inequality 0 < f(x) < x. Then, the inequalities

f(So) < sup B f(Sy) =

pPeM

o 38, e | Ty < S0 (204)
7 K ™ 1 7QN

are true.
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Proof. Since the set of points v = {(w},w?),. .., (wk,w%)} in the set V is finite then
the minimum in the formula

1min [Sy (w1, ..., wn) — f(Sn(wi,...,wN))] =d >0 (295)
W1y s WN
is reached at a certain point vy = {(w;”, "), ..., (wy’,wi’)}. Therefore, the in-
equality

SN(wla"'awN)_f(SN(wla"'awN))Zda {wla"‘awN}GQJ\U (296)
is true

Integrating left and right parts of inequality over the measure fig,1 2y (wl w2} (A),
we have

/ SN(wlﬂ e ’wN)dlu{w%vw%}v”'v{w]l\ﬂwJQV}_
Qn

/dﬂ{w},wf},...,{wgv,wg}f(SN(Wla cwN)) > d (297)
Qn
Since
/ SN<w17 s 7wN)d/*L{w%,w%},...,{w}v,w?\,} = SU (298)
Qn

we obtain the needed. It is evident that from the convexity down of payoff function
f(z) and Jensen inequality we obtain the inequality

/ f(SN<w1> s 7wN))d:u{w%,w%},...,{w}v,w?\,} > f(SO) (299)
Qn

Theorem 37 is proved.

Let us note that the interval of non arbitrage prices for a certain processes was
found in the papers [26], [27].

Corollary 4. For the standard call option of Furopean type with payoff function
f(z) = (x — K)*,K > 0, the conditions of Theorem 37 are true. Therefore, the
inequalities (294) are valid.

Theorem 38. On the probability space {Qn, Fn, Py}, being the direct product of
the probability spaces {Q0, F?, PP}, let the evolution of risky asset be given by the
formula (290). Suppose that the nonnegative convex down payoff function f(x) on
the set 0 < x < oo satisfies the inequality 0 < f(z) < K, K > 0. Then, the

mequalities

Sy) < sup EX f(Sy) = max SNV 2 gt w2 < K (300
F(50) < Pent f(Sn) Wl €0l W2eQ0t i=T,N SNt oy, . )y < K (300)
QN

are true.
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Proof. The proof is evident.

Corollary 5. For the standard put option of European type with payoff function
flx) = (K — )", K > 0, the conditions of Theorem 38 are true. Therefore, the

inequalities (300) are valid.

Corollary 6 For the standard call option of European type with payoff function
flz) = (x — K)*, K > 0, the interval of non arbitrage prices coincide with the
interval

min f(SN)du wl w2 wl w2,
wleQ?™ w2edt i=1,N fop et tonownd
Qn

ol ead- il;gg)z{@r ile/f(SN)dM{w},wf} ..... {whwd} | - (301)
2 T R ’ QN

Corollary 7. For the standard put option of European type with payoff function
flx) = (K —x)T, K > 0, the interval of non arbitrage prices coincide with the
interval

min f(SN)dM wi,w? whw? b
wgeﬂf,wfeszg’+,i—1,1\// foreihdonwid
QN

e B [ TSVt | (302
2 T 07 i ’ QN

Corollary 8. On the probability space {Qn, Fy, P}, being the direct product of
the probability spaces {QF, F?, PP}, let the evolution of risky asset is given by the
formula

Sh(wr, o wa) = So [J(+ pilwi)), n=TN, Sh>0, (303)

i=1

London Journal of Research in Science: Natural and Formal

where the random value p;(w;) is given on the probability space {Q9, FP, PP}, i =
1, N, and let the bank account evolution be given by the formula

Bn=DBo(l+71)", r>0, By>0, n=T1N. (304)

Then, for the discount evolution of risky asset

n

So [T(1 + pifwi))

Sul(wiy ..o ywy) = i21()<1+7«)“ , n=1,N, (305)

the set of martingale measure is nonempty one if the following conditions are true

Pio(pi(wi) —r<0)>0, Pio(pi(wi) —r>0)>0,
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P2(pi(w;) —7r < 0) + P*(ps(w;)) —r>0)=1, i=1N.

For every point v = {(wi,wd),...,(wk,w%)} in the set V the spot measure
“{wivwf}v---v{w}waQv}(A) is a direct product of measures uy(A;), A; € FP, i = 1, N,
given on the measurable space {0, F{'}, where ji5(A;) = v 42(Ai), and v, 2 (A;)

1

is given by the formula (292) with n;(w;) = p"(f)—i)r_r, i =1,N. The fair price g of
super-hedge of the nonnegative contingent liability oy (w1, ... ,wy) is given by the

formula

Yo = max / On (Wi, ..., wN)dyy.
veY
Y

The interval of non-arbitrage prices is written in the form

min/@N(Wl,---,wN)de ma§/¢N(w1,---,wN)dVv
ve

veY
QN QN

Theorem 39. On the probability space {Qy, Fn, Pn}, being the direct product of
the probability spaces {QY, F?, P}, let the evolution of risky asset be given by the
formula

S(wy, .. wn) = S H(1 +pi(w)), n=1,N, (306)

where the random wvalue p;(w;), is given on the probability space {Q9, F? PP},
P’({pi(w;) < 0}) >0, P°({pi(w;) > 0}) > 0, i = 1, N, and let the bank account
evolution be given by the formula

B, =By [[(1+ri(wis1)), By>0, n=1N, (307)

i=1

where the strictly positive random wvalues 1;(w;) are given on the probability
{QV, F2 PP} i =1, N. Then, for the discount evolution of risky asset

n

So H(1+Pi(%’)) o
So((Wi, .. wy) = =l ., n=1,N, (308)

n

BO H (]. + n-_l(wz-_l))

i=1

the set of martingale measure is nonempty one if the following conditions are true

max riq(wi1) < min - piw),
wi—1€Q1 Wi €Q4,pi(w;i)>0

min Ti_l(u)i_1> > 0, 1= 2, N
wi—1€Q-1

0<ry < min wy). 309
0 wleﬂl,pl(w1)>0p1< 1) ( )
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The fair price po of super-hedge of the nonnegative contingent liability on (w1, . .., wN)
1s given by the formula

0 = max /@N(wl, e WN) AL W2yl w2
wilEng, w?EQ?Jr, 'i:l,NQ {wpert oy W)
N

The interval of non-arbitrage prices is written in the form
min N (W1, WON) AR 02y ol w2 )

wil GQ(Z.)*, w?EQ?+, i=1,N
QN

SDN(w17 s 7WN)d,u wl w2}, {wl w2
SIED" w2t i:LN/ {od @i}k R}
QN

Proof. The discount evolution (308) can be represented in the form

Sn(wiy ... W) =

=
g
S
©
o
=
b
E
=
Z
Bo 1 =+ To g 1 —+ Ti,l(wi,l) %
=
2
n Q
S 7
=TT+ filwr, o wimiws) (310) £
Bo i <
&
where 2
&
1 —
filwr) = 1 , m(wr) = p1(wr) — 1o, (311) ©°
+ To <
2
fi(wla s 7wi) = ’Ol(wz) - Ti_l(u)i_l) ’ §
(pi(ws) — ,, rict(wi—1) (L + rim1(wi-1)) g
7—1 7—1 Fg
1S
. —
T]Z((,L)Z) = pz(w,) — min ’I"Z'_1<wi_1) 1= 2, N. (312)
wi—1€Q 1
Since
fi(wl,...,wi) >0, 1=1,N, (313)
PY(mi(w;) <0) >0, P’(ni(w;)>0)>0, i=1N, (314)

then it means that the set of martingale measures, being equivalent to Ry, is a
nonempty set. Theorem 39 is proved.
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Theorem 40. On the probability space {Qy, Fn, Pn}, being the direct product of
the probability spaces {QY, F?, P’} let the evolution of risky asset be given by the

formula
Sp((wr, . ,wp) = S [ em@rmwmatd - n = TN, (315)
i=1
where the random values ¢;(w;), i = 1, N, are such that
Pio(€i(w7;) < 0) > 0, PiO(Ei(wi) > O) > 0,
PY(es(wi) < 0) + P(ei(wi) > 0) = 1,
oi(wi,...,wi1) >0) >0 i=1N,
and let the bank account evolution be given by the formula
B, =B [[(1+ria(wi1)), Bo>0, n=1N, (316)

i=1

where the random values r;(w;), i = 1, N — 1, are strictly positive ones, 1y > 0.
Then, for the discount evolution of risky asset

n
So H eCi (Wi, wi—1)ei(wi)
=1

Sn((wry ... wp) = — , n=1N, (317)
By Z.];[1(1 +7ic1(wi-1))
the set of martingale measure is nonempty one, if
exp{o?} {w1,§i§<0} e1(wr)} < 1o < exp{o? {M,arlr&}llbo} e1(w1)},
exp{oy {wi,{fﬂ%m} gi(wi)} < {wi_Ilneiéli_l}ﬁ—l(wi—l) <
{wif?gé_l}mq(wi—ﬁ < eXP{UzQ {wi,g(li?)w} eilw)}, i=2,N. (318)

Then, the fair price of super-hedge o of the nonnegative contingent liability
on(wi, ..., wN) is given by the formula

po = max / ON (Wi - WN) AR w2), o (0l w2 ) =
Qn

2 2 N
2%3(2 . Zl 1_[1 Yn (Wi W™ on (Wi . W), (319)
1= in=1n=
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Proof. For the discount evolution (317), the following representation

Sn((Wry .. wy) =
B, (T+ filwr, .., wi)mi(wi)), n=1N, (320)

is true, where

1
m(w1) = eXP{0(1)€1(w1)} —ro,  filwi) = 1+’
ni(w;) = exp{oVe;i(w))} —  max i (wi1),
{wi—1€9Q;-1}
fi(wl, N ,wi) =
Ui(w17...7wi_1)€i(wi) _ ) )
_ e ri-1(wi-1) -0,
(exp{ojei(wi)} — max  rig(wi—1))(1 +rim1(wi-1))
{wi—1€Qi-1}
{wl,...,wi} e, 1=2N. (321)
In this case, the spot measures
M{w%,w%},...,{w}v,w%\,}(A> -
2 2 N
Z . Z H Yo (Wit o ) xalwr, . wy), A€ Fn, (322)
=1  iy=1n=1

figuring in the formula (319), are determined by the formulas

Y(wr, e wn) = Xa (@1, s @t @) Y (@1, )+

Xﬂi(wla sy Wno1, wn)lpi(wlu s uwn)u (323)
wi(wla"'awn—lawn) =
AST(wyy .oy wp1,w?)
2 n 1, yWn—1, Wy, 9 0+
XQ%Jr(wn)Vn(wh ol al) (Wi Wae1) € Loy, wi € Q0. (324)
¢i(w1,...,wn_1,wn) =
AST (Wi, Woo1, wl)
1 n ’ yWMn—1,%n 1 0—
_ , e Wn1) € Dy, wh e Q07 (325
X0 <wn)Vn(w1,---,wn—hw}“uﬁ) (w1 Wn—1) 1, W (325)

Risk Hedging in Financial Markets

Volume 23| Issue 4 |Compilation 1.0

—
<
£
St
o

F

o
(=}
3]

—
3]
i
=

o}
<

Z
&
(]
[=}

=
Q

N

=

=
9}
—
3]
5]
w0
L

[

Gy
@)

—
<
=t
~
=
]

ar]
[}
]

o
=i
Q

—

101




London Journal of Research in Science: Natural and Formal

where

AST (Wi, wn1, w?) B
V(Wi ..y W1, Wk w?)
fn(wli ey Wn—1, WZ)U:(%%) (326)
folwi, .y wn1, w2)ntH(W2) + fu(wr, oo wno1, wh)ns (wh)
AST (Wi, -y wno1,wh)
Vilwi, ..y w1, wk w2)
fn(wla R b erb)n; <w711) (327)
fn(wh s 7(")”—17(")121)777—1—((“}%) + fn(wlv sy Wn—1, W%)UE(W}LY
(wla s awn—l) € Qn—l-
and the random values 7;(w;), fi(wi,...,w;), ¢ = 1, N, are given by the formulas
(321). The obtained representation (320) proves Theorem 40.
~ Suppose that the random values ny.(wy), fi(wi, ..., wk), k=1, N, and constants
a;, satisty the inequalities
) 1 I L —
0<a;,< k=1,N, 1=1,d,

max ma frolwr, .. we)n, (w)’
{wiewr—1 Y€1 {wr, M (wi)<0} (w1, ’ )k( )

filwr, @) >0, BY(ni(w;) <0) >0, P(n(w) >0)>0, i=1,N. (328
We assume that the evolutions of d risky assets Sy, (w1, . . ., wy,) is given by the formula

Sp(Wiy .y wn) = {8 (wr, . wa) P, (329)
where

Si(wr, . wa) =Sy [ [+ afrlwr, - we)me(wr), n=1TN, i=14d. (330)
k=1

Proposition 5. On the probability space {0y, Fn, Pn}, being the direct product of
the probability spaces {9, FP, P}, let the evolution of risky assets be given by the
formulas (329), (330), where the random values ng(wy), fe(w1, ..., wk) and constants
ai, k= 1,N, i = 1,d satisfy the inequalities (328). For such an evolution of risky
assets the set of martingale measures py does not depend on al,. The spot measures
u{w%’w%}w{w}v,w%}(A) are determined by the formulas (322) - (327). The fair price
©b of super-hedge of the nonnegative contingent liability @’ (w1, . .. ,wy) is given by
the formula

()06 = Ivneagc / cpflv(wla s aWN)d:u{w%,wf},...,{w}v,wlzv}7 1 =1, d.
QN
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The interval of non-arbitrage prices is written in the form

min / 903\7(("}17 s 7wN)du{w%,w%},.‘.,{w}v,w?\,} ’

veY
Qn

max / @7}\7((&)17 o ,WN)dM{w},w‘f’} ..... {whw2} | i=1,d.

vey
Qn

In the case fi(wy,...,wp) = 1,k =1, N, for every point v = {(wi,w?),..., (wk,w3)}
in the set V the spot measure /‘{w%,w%},.-.,{w}v,w?v}(A) 15 a direct product of measures

pi(Ay), Ay € F2, i =1, N, given on the measurable space {QY, F°}, where pi(A;) =

K3 K3

Vot w2 (Ai), and v 2 (A;) is given by the formula (292).

If S§,S%,...,S%, i = 1,d, are the samples of the processes (329), (330), let us
denote the order statistics Séo)a Sél), ceey SE'N), 1 = 1,d, of this samples. Introduce
the denotations

1 1
fi = max . frelwy, .. wp—1,wy), k=1, N.
{wiyewp—1YEQ_1, wieN]™

Proposition 6. Suppose that S}, Si,...,S% is a sample of the random processes
(329), (330). Then, for the parameters a}, ..., a’ the estimation

[1_M}

S’L

(N—k+1) — . T
k

=1,N =1,d 331
foma el FT T TR o

1
wy €88

(-
a, =

18 valid.

Xl. . CONCLUSIONS

Section 1 provides an overview of the achievements and formulates the main problem
that has been solved. Section 2 contains the formulation of conditions which must
satisfy the evolution of risky asset. In Section 3, the conditions for the evolution of
risky asset and random variables are formulated, on the basis of which a recursive
method of constructing a family of martingale measures equivalent to the original
measure is proposed. Lemma 1 gives a simple proof of the non-emptiness of the set of
random variables satisfying conditions (20) - (22), in contrast to similar results in [2].
In Lemma 2, an integral representation is obtained for the measure constructed by
the recursive method (28) - (30), from which it follows that it is equivalent to
the original measure. In Theorem 1, the conditions under which the recursively
constructed measure is martingale one and equivalent to the original measure are
formulated.

The Section 4 introduces a family of spot measures and a measure built on
the basis of these spot measures and a family of random variables. In Theorem
2, an integral representation is found for the introduced family of measures, which
means that this family of measures is absolutely continuous to the original measure.
Theorem 3 guarantees the conditions under which the constructed family of measures
are martingale and equivalent to the original measure. Theorem 4 gives a complete
description of martingale measures equivalent to the original measure. Theorems
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5 and 6 are auxiliary. Theorem 7 guarantees conditions when the infimum and
supremum of the average value of the payment function over the set of martingale
measures coincide with the infimum and supremum of the average value of the
payment function over the set of all spot measures. Theorem 8 proves that the family
of martingale measures is invariant with respect to a certain class of transformations.

In Section 5, based on Theorem 8, a parametric family of evolutions of risky
assets based on some evolution of risky asset is introduced. The proposed parametric
model based on the canonical model of the evolution of risky assets, which takes
into account both memory and price clustering, takes into account the fact that the
price of a risky asset cannot fall to zero.

For a wide class of payment functions, in Theorem 9, an estimate is obtained
both from above and from below for the supremum of the average value of the
payment functions over the set of all martingale measures. A similar result as in
Theorem 9 is obtained in Theorem 10 only for another class of payment functions.
For the considered parametric evolution, in Theorem 11, a fair superhedge price is
found for the payment function of a standard European-type call option. The same
Theorem 11 specifies the interval of non-arbitrage prices. In Theorem 12 , for the
considered parametric evolution of the risky asset, a fair superhedge price is found
for the payment function of a standard European-type put option. In Theorems 13
and 14, similar results are obtained as in Theorems 11, 12 only for the payment
functions of Asian call and put options. On the basis of the sample, in Theorem 15,
the estimates of the parameters of the introduced parametric model of the evolution
of risky assets are obtained.

In Theorems 16, 17 the fair price of the superhedge for the payment functions
of the standard call and put options are given in terms of the obtained parameter
estimates. Analogous results are given in Theorems 18 and 19 for fair superhedge
prices for Asian-type call and put option payment functions.

Another parametric model of the evolution of risky assets is considered in Section
6. It differs from the previous one in that it considers the discounted evolution of
risky asset. Theorems 20 - 21 are proved, in which estimates are obtained both
from above and from below and established. Theorems 22 - 23 derive formulas for
the fair price of a superhedge for the payment functions of call and put options,
respectively. A similar result is obtained in Theorems 24 - 25 for the payment
functions of Asian-type put and call options. In Theorems 26 - 29, based on the
sample for the evolution of the risky asset, the formulas for the fair price of the
superhedge through parameter estimation are presented.

Section 7 contains Theorems 30 and 31, which give the necessary and sufficient
conditions for the evolution of risky assets for which the martingale measure is
unique. Formulas for the fair price of option contracts and investor hedging strategies
are found. A clear construction of such martingale measures and hedging strategies
of the investor is given.

In section 8, Proposition 1 establishes the invariance of a single martingale mea-
sure with respect to a certain class of evolutions of risky asset. On this basis, propo-
sition 2 builds a parametric model of the financial market and finds formulas for the
fair price of an option contract and the investor’s hedging strategies. In Corollary
3 and Theorems 32, 33 examples of various evolutions of risky asset are given and
the conditions for the existence of a single martingale measure are established. An
explicit construction of a single martingale measure is given and formulas for the
fair price of an option contract and investor’s hedging strategies are constructed.
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Proposition 3 constructs a parametric securities market model with a single
martingale measure and provides formulas for the fair prices of options contracts and
investor hedging strategies. Proposition 4 provides an estimate of the parameters of
the introduced parametric models through realizations of risky assets.

Section 9 contains models of incomplete financial markets in discrete probability
space. Theorem 34 gives a complete description of all martingale measures equiv-
alent to the original one. Theorem 35 establishes formulas for both the lower and
upper limits of the interval of non-arbitrage prices for the evolution of risky assets
through the minimum and maximum of the average value of the payment functions
over a finite set of spot measures.

Section 10 considers models of the evolution of risky assets that are invariant
with respect to a certain class of evolutions of risky assets. Theorem 37 establishes
that for a certain class of payment functions and for a wide class of evolutions of risky
assets, the fair price of the superhedge is strictly less than the price of the underlying
asset. Among such payment functions is the payment function of the standard call
option of the European type. Theorems 39, 40 give various examples of discounted
evolutions of risky assets that satisfy the conditions of the proved theorems 35 - 37,
and find the conditions under which the family of martingale measures is nonempty.
Formulas for a fair superhedge price have been found. Proposition 5 contains the
construction of a parametric model of an incomplete financial market, a family
of martingale measures of which does not depend on the considered parameters.
Proposition 6 provides an estimates of the parameters of the constructed models of
incomplete markets through realizations of the considered evolutions of risky assets.
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