

CrossRef DOI of original article:

- 1 Review of Fundamentals of Covariant Quantum Mechanics in the
- 2 Dual 4-Dimensional Space-Time? Substance of Wave Function,
- 3 the Origin of Quantum Probability and the Cause of Quantum

4

5 *Received: 1 January 1970 Accepted: 1 January 1970 Published: 1 January 1970*

6

7 **Abstract**

8 English

9

10 *Index terms—*

11 **1 I. INTRODUCTION**

12 The physical meaning of the wave function and the origin of quantum probability are two of the most concerning
13 problems of quantum mechanics. For the physical meaning of the wave function, The realist school, represented
14 by Einstein, De Broglie, and Schrodinger, indicates that the wave function has a physical meaning and describes
15 physical reality; The indeterminist school, represented by Bohr, Born, Heisenberg, and Dirac, believes that the
16 wave function has no physical meaning but just describes the probability distribution of the microscopic particle,
17 the square of the absolute value of the wave function describes the probability density of the microscopic particle
18 appearing in space and time. The indeterminist school considers that the wave functions are knowledge of the
19 cognitive world (cognitivism), known as the school of nondeterminism. 1 Some scholars even directly believe
20 that the wave function is a mathematical reality. Thus, there are two opposite opinions about the origin of
21 quantum probability. One school represented by Einstein believes that "God does not play dice", thus quantum
22 probability derives from external uncertainties, which are defined as "hidden variables" by Bohm 1 . The other
23 school, represented by Bohr, believes that microscopic particles have natural uncertainty, and quantum probability
24 originates from the nature of particles 1 .

25 London Journal of Research in Science: Natural and Formal

26 Zhao Guoqiu ? & Zhao Cancan ? Microscopic objects have some spatial distribution, which influences
27 quantum phenomena. The particle model does not apply to the microworld. In this work, we use a rotating field
28 matter sphere model. The size of the sphere changes along with the movement state, harmonizing with special
29 relativity. Thus, we independently construct a dual 4-dimensional space-time to describe the microscopic quantum
30 phenomenon and establish the objective reality of plural description, which has obvious theoretical advantages.
31 In the dual 4-dimensional space-time, the wave function describes matter waves as physical waves. Which is
32 the physical basis of quantum communication. Quantum probability originates from the tangible structure and
33 matter density distribution of the microscopic objects and is reflected in the transformation of space-time. Matter
34 waves and probability waves can be transformed by using Fourier transformation.

35 For the difficulty of quantum mechanics, Thom 2 , Sakata 3 , and Yukawa 4 believed that microscopic objects
36 could not be treated as point particles in microworld. The superstring theory should be considered as a non-
37 point model, which was a great success. Up to now, although the superstring theory is hard to be determined
38 experimentally, it continues to grow 5 . The basic research of quantum mechanics is still developing.

39 In this work, we abandoned the point model and adopted the rotating field matter sphere model, to
40 establish a dual 4-dimensional space-time for describing the microscopic quantum phenomena. In the dual
41 4-dimensional space-time, wave function describes matter waves as physical waves. In the present model, the
42 microscopic quantum objects could be described using complex numbers. Quantum probability originates from the
43 physical structure and matter density distribution of the microscopic objects. Quantum measurement introduces
44 new continuous interactions through local transformation to eliminate fixed phase differences, leading to the
45 transformation of dual 4 -dimensional space-time to classical space-time description, and the evolution of matter

5 GEOMETRICAL CONSTRUCTION OF THE MICROSCOPIC OBJECTS

46 waves into probability waves 7 . It is of great significance to discuss the physical nature of quantum entanglement
47 and quantum communication.

48 2 Matter sphere model of rotating field in the dual 4- 49 dimensional space-time covariant quantum mechanics

50 3 Experimental Evidence of the Field Matter Sphere Model

51 1. Study on electronic dipole moment of advanced cold molecules Doyle's team 10 found that an Electron is
52 a perfect sphere. This research provides an important experimental basis for applying the field matter sphere
53 model in the basic theory of the dual 4-dimensional space-time covariant quantum mechanics. The theoretical
54 values show good agreement with experimental values. However, Ding's measurement accuracy was improved to
55 10 -17 cm, still proving that electrons are not points.

56 Category

57 4 Uncertainty of Landau's single mechanical quantity

58 In 1930 Landau indicated that there were two uncertainties for measuring a single mechanical quantity, position
59 measurement uncertainty and momentum uncertainty (δ) =

60 11

61 The uncertainty of electronic position is the theoretical value of the "radius" of electronic Distribution Landau's
62 explanation of δ should come from the point particle hypothesis. But an electron is not a point particle, and a
63 true distribution radius R is exist for the electron. If the electron is regarded as a "point", then the "point" must
64 be dispersed in a range of cycles with a diameter of 2 . An electron couldn't be positive more accurate than 2
65 meanwhile, the electron's position is uncertain. This is an important theoretical basis for the field matter sphere
66 model provided by Landau.

67 (δ $X_0 = \delta / m_0 c$) $m_0 c$). $R_0 = \delta / m_0 c$ 2. Comparison between experimental and theoretical values of Hofstadter
68 particle radius $R_0 = \delta / m_0 c$, $R_4 = \delta / m_0 c$ take this as a theoretical value of the microcosmic object distribution
69 "radius". A comparison of the theoretical values with the experimental values is shown in the following table:

70 Table ???: Comparison of experimental values of electron, proton, and neutron radii with theoretical values of
71 Compton wavelength (static $-R_0$, dynamic $-R_4$) 9 The microscopic objects are not point particles, but have
72 a certain "spatial distribution", and the distribution radius R decreases with increased movement speed. The
73 comparison of experimental and theoretical values shows that it is reasonable to use Compton wavelength δ_0 (δ)
74 4) to construct the extension distribution of the static (dynamic) microscopic objects. $P_0 x_0 R_0 R_4$, 0

75 Previous research reveals that, in modern physics, spatial coordinates of microscopic objects should not be
76 smaller than the Compton wavelength δ_0 (δ) c (δ $c = h/mc$) 8 . Furthermore, the radius of the electron shows good
77 agreement with the Compton wavelength 9 , which was experimentally proved.

78 London Journal of Research in Science: Natural and Formal

79 5 Geometrical construction of the microscopic objects

80 State description of the microscopic objects in the sphere model 7 : In static status, the radius of curvature is
81 (1)

82 In dynamic status, the radius of curvature is defined as(3)

83 Curvature is defined as

84 Where m is the motion mass. As m increases, the radius of curvature decreases, and the curvature increases.
85 A sphere of matter is a quantum object of variable form. In translation and spin rotation, the linear velocity of
86 the edge of the sphere does not exceed the speed of light, which is coordinated with the relativity theory. It is a
87 physical entity 7 in the theory of physics.

88 In three-dimensional (four-dimensional) space mapping, curvature radius is defined as (5) Curvature is defined
89 as (6) Rotation frequency is defined as(7) $K_0 = 1/R_0 = m_0 c/h$ $R_4 = \delta / m_0 c$ $K_4 = 1/R_4 = m_0 c/\delta$ $R_i = \delta / m_0 c$ $K_i = m_0 c/\delta$

90 M_0 is defined as the static mass of the matter field, and R_0 shows the extension of the matter distribution
91 in the intrinsic rotating field of a static microscopic object. And the curvature K_0 is determined as R_0 and
92 K_0 define the microscopic object. They are two invariants for any reference frame, independent of position x
93 in space. The microscopic object represented by R_0 and K_0 is similar to the physical noumenon. A physical
94 noumenon cannot be observed directly, but it is real. Observations are all phenomenal entities. K_0 is called the
95 quantum curvature of the microscopic object. $P_i = m v_i$ is relativistic momentum, which is observable. $i = 1,2,3$.

96 R_i and K_i are "representations" of physical noumenon R_0 and K_0 in physical space, respectively. Physical
97 noumenon cannot be observed directly, but "representation" can be observed. Quantum "motion" carries all
98 quantum phenomena. $E_0 = m_0 c^2$, $E = m_0 c^2$, which is consistent with the basic assumptions of quantum
99 mechanics and relativity. $E_0 = E_0/h$, $E = E/h$, ($E_i = E_i/h$) i ($E_i = m_0 v_i^2/2$ or $E_i = m v_i^2/2$),

101 6 London Journal of Research in Science: Natural and Formal

102 The field matter density is defined as (8) V is the volume of the field matter sphere, $V=V(R)$, $R=R(k)$, and ρ ,
103 the density of the matter field, is a function of the curvature It can be proved that with a decrease or increase of
104 V , k and ρ increase or decrease, respectively. $\rho(k)$ is positively correlated with k .

105 In the rotating field matter sphere model, we can establish the attachment relationship of the waves to
106 the rotating field matter sphere, which is similar to the relationship hypothesis between energy, momentum,
107 wavelength, and frequency in the Einstein and De Broglie point model. Here, the equations of $E=h\rho$, $p=h/\lambda$
108 will evolve into the real physical process of field matter sphere movement, as show as follow:

109 7 The Energy Formula of Special Relativity and the Estab- 110 lishment of the Field Matter Sphere Model and the Dual 111 4-Dimensional Space-Time in Quantum Mechanics

112 8 Revelation of Relativistic Energy Formula

113 According to the relativistic energy formula of the microscopic objects, as shown as follow: (9) $\rho = m/V =$
114 $(k)E=h\rho = p=h/\lambda = kE^2/(mc^2) = m^2c^2/(m^2c^2 + m^2k^2)$

115 According to our understanding, R_0 and R_4 should not be less than the Planck length, and the field matter
116 density and energy density of the field matter sphere cannot be infinite. Thus, the problem of infinite curvature
117 of point particle theory is solved.

118 The physical state corresponding to the spherical model is described by the above formulas. ω denotes the
119 rotational frequency of the field matter sphere, κ denotes the curvature of the field matter sphere ($k=K_0, k_4$
120, k_i), which describes the density change of the field matter sphere. But the corresponding physical model is
121 the rotating field matter sphere, not a point particle. Hence, matter waves of microscopic objects there is a new
122 definition.

123 A microscopic object is a rotating field matter sphere with mass evenly distributed, which has a certain spatial
124 distribution. Position x is uncertain for the microscopic object. $2R$ ($2R_0, 2R_4$) is the uncertainty of position
125 x .

126 If the microscopic object does not move, then $v_i=0, K_i=0$, in the physical space-time, the release map of
127 the ontology structure K is 0, there is no change in the morphological structure and field matter density, and the
128 phenomenon of quantum fluctuation disappears. In addition, according to the relativistic momentum (curvature)
129 triangle, the microscopic object does not move, $mv=0$. Meanwhile, the angle between m_c and mc is $a=0$, along
130 the movement direction of the microscopic object. $x=0$ ($v=x/t, v=0, x=0$). The spatial release mapping of
131 ontology R_0 in physical space-time is 0, and the position coordinates do not appear. Although ontology R_0
132 still exists. Therefore, quantum motion is a necessary condition for K_0 and R_0 to present quantum phenomena
133 in physical space-time. x and k are the basic variables to describe quantum phenomena, quantum phenomena
134 could be described in the physical space-time (x, k) constructed by the moving microscopic object itself. But
135 the position x of the microscopic object is uncertain and within a range. $k = k_0, k_i, k = P/\lambda$

136 9 London Journal of Research in Science: Natural and Formal

137 A momentum triangle can be obtained: (10) Divide both sides of equation (??0) into a ρ^2 , resulting in a
138 sphere model curvature triangle:

139 (11) The vector relation is: (12) Therefore, the 4-dimensional curvature space K and the related 4-dimensional
140 coordinate space X of the motion microscopic object can be defined.

141 10 Establishment of Double 4-Dimensional Space-Time in 142 Quantum Mechanics

143 (13)(14)

144 The spatial invariant of 4-dimensional curvature K is given by formula (12) (15) 4-dimensional coordinate space
145 x invariant is 16) (17) 4-dimensional curvature k -space is $k^2K(k_4-k_1-k_2-k_3)$ 4-dimensional coordinate x -Space is
146 $x^2X(x_4-x_1-x_2-x_3)x_0^2-x_4^2-x_1^2-x_2^2-x_3^2k_0^2-k_4^2-k_1^2-k_2^2-k_3^2W=x^2+ik^2W^2=x^2-ik^2$ ($(x,k)=$
147 $A(x,k)-ikx^2p_4^2-p_1^2p_0^2k_4^2-k_1^2k_0^2, i=1, 2, 3, K_0, k_4-k_i$)

148 x_0 can be seen as the projection of R_0 of the microscopic object associated with k_0 onto a 4-dimensional
149 space x . k_0 and x_0 are invariants under two 4-dimensional coordinate transformations. It just reflects the
150 existence of the microscopic object, that is physical noumenon, independent of space-time transformation. The
151 two Spaces k and x can jointly construct a dual 4-dimensional complex space-time $W(x,k)$ associated with the
152 state description of the moving microscopic object. $\rho=1,2,3,4, k=(1,2,3,4)$ and $x=(1,2,3,4)$ are two 4-dimensional
153 releases of hidden spatial degrees of freedom for the point model 7.

154 x (1,2,3,4) is the location of the microscopic object and has uncertain properties. x and k are Lorentz
155 covariants. Hence, Dual 4-dimensional space-time is supported by relativity. Let the state wave function
156 describing microscopic quantum phenomena in $W(x,k)$ be:

11 PHYSICAL PROPERTIES AND SPACE-TIME METRIC OF THE DUAL 4-DIMENSIONAL SPACE-TIME W(X, K) (18)

157 It's a complex function. A (x,k) is amplitude, which is complicated. The phase of the wave function is
158 constituted by coordinate k ? x ? , which is dimensionless. The wave function ? (x,k) is described in the
159 phase space k ? x ? . Wigner's prediction, "the use of complex numbers is in this case not a calculational
160 trick of applied mathematics but comes close to being a necessity in the formulation of the laws of quantum
161 mechanics", is confirmed. 12 n London Journal of Research in Science: Natural and Formal Equation (??7) is
162 similar to Penrose's 5-dimensional twisted space, in which the state wave function is described in 2-dimensional
163 complex space and 3-dimensional classical real space. In the present model, the space is the relativistic covariant
164 dual 4-dimensional complex space, the state wave function is described in 4-dimensional imaginary space +
165 4-dimensional real space. It could be proved that the dual 4-dimensional complex space-time W(x, k) can be
166 generated automatically in the derivation of the wave function. In dual 4-dimensional complex space-time, the
167 value of curvature k represents the particle property, and the change of curvature k (the change of matter density)
168 shows fluctuation. Thus, the matter wave could be described as a physical wave by the wave function which
169 establishes the objective reality of complex numbers. (note 1). The wave-particle duality of microscopic objects
170 could be uniformly and intrinsically understood very well.

171 The amplitude A(x,k) cannot be compared with that of classical waves, and the image is unimaginable . It
172 is expected to be understood in the derivation of the matter wave function. Wigner gave an expanded form
173 of A(x,k) 14 , which could be used to discuss the wave equation in dual 4-dimensional space-time. Formula (??0) and (12) show that the hidden spatial freedom of the microscopic object point model could be released in a
174 4-dimensional space. The releasement could be observed, and is related to the motion of the microscopic object.
175 This will be demonstrated in the derivation of wave functions in the next section.

177 11 Physical properties and space-time metric of the dual 4-dimensional space-time W(x, k) (18)

178 When the microscopic quantum object spins locallyg ?? ?diag(1, -1, -1, -1) x 2 ?x?g ?? x??x4 2 -x1 2 -x2 2 -x3
179 2 k 2 ?k?g ?? k??k4 2 -k1 2 -k2 2 -k3 2 |W| 2 ?WW ?x 2 ?k 2 ki =0, xi=0, i=1,2,3. |W| 2 ?A0 2 ?x4 2 +k4 2
180 ?x0 2 +k0 2

181 A denotes the amplitude of the microscopic quantum object(the physical noumenon—the rotating field matter
182 sphere).

183 x and k are Lorentz invariants, and the space-time is uniform and flat. Therefore, we consider W(x,k) to be a
184 complex extension of M 4 (x). The Dirac equation is invariant in Lorentz transformation.

185 Vector K (k 1, k 2 , k 3 , k 4) describes the spatial structure of the microscopic object itself, presenting the
186 existence form and matter density distribution of the microscopic object.

187 Vector X(x 1 ,x 2 ,x 3 ,x 4) describes the position of the microscopic object, with uncertainty (or probability).
188 And then uncertainty corresponds to the matter density distribution of the microscopic object.

189 Further study shows that all quantum phenomena are described in the Dual 4-dimensional complex phase
190 space W(x, k) composed of vectors X and K.

191 This results from the combination of two different kinds of spatial. The amplitude A is complex and contains
192 new coordinate variables. p, x, E, and t are relativistic quantities. And P=mv E=mc 2 ,m is the motion mass.
193 Under the condition of relativity (classical conditions will be discussed separately) 7,13 , Equation (20) is the
194 fluctuating motion of field matter, which is matter waves –physical waves. It is often mistaken for a probability
195 wave of a point particle in 3 -or 4-dimensional real space. No, it's just the same mathematical version. A little
196 transformation of phase i(px-Et)/? of equation (20) is given k =mc/??x = ct. Wave function equation (20)
197 becomes?0=A0? i? 0 t 0 ?=A? i?t =A? i(px-Et)/? i(px-Et)/?i(kixi-k4x4) =-ik?x? ?=A? i?t =A? i(px-Et)/?
198 =A? i(kixi-k4x4) = A? -ik?x? (21)

199 There are two basic physical quantities, R 0 and K 0 . R 0 represents the space occupation of the sphere and
200 corresponds to the position coordinate x, which is uncertain. K 0 represents the structure and matter density
201 of the sphere and corresponds to the curvature coordinate k. The amplitude A 0 of ? 0 should be associated
202 with them, and it's probably complicated, but can be learned through in-depth discussion. Penrose described the
203 microscopic object with a unit circle, letting A 0 =1, which is simplified, just focus on the phase. But this is just
204 a mathematical representation, without clear physical meaning. Here we take the two-dimensional projection of
205 the field matter sphere –the rotating field matter circle. I think so. Eq. (??9) is expected to be the source
206 of quantum phenomena. If the coordinate system K 0 is built on the "rotating field matter sphere", the sphere
207 moves uniformly along the positive direction of x-axis from resting state. Using the Lorentz transformation:t 0
208 =(t-vx/c 2)/(1-v 2 /c 2) 1/2

209 , in the observation system K, we obtain the new plural described matter wave function

210 In the present equation (??1), x and k are the new phase space coordinate variables. The product of k ? x ?
211 happens to be dimensionless. It is automatically generated when Lorentz time transform is introduced after the
212 motion of "the field matter sphere", which integrates the complex and real Spaces.

213 It can be considered that k ? is the 4-dimensional physical space-time release of k 0 , and x ? is the 4dimensional
214 physical space-time release of R 0 . The descriptive space-time also becomes a new combination of complex-real
215 space-time –the dual 4-dimensional complex space-time W(x,k),

216 We have defined a static rotating field matter sphere with a radius R o =?/ m o and a curvature K o =m o c/?.

218 Rotational angular frequency $\omega = 2\pi c / h$. R_0 , k_0 , and ω are all constants, the whole space
219 is invariant. A Static rotating field matter sphere is natural object and physical noumenon without observation.
220 Let the wave function of this rotating field material sphere be described with a complex number function $K =$
221 $K(K_4 - K_1 - k_2 - k_3) K_0 = K_4 - K_1 - k_2 - k_3$ $x = X(x_4 - x_1 - x_2 - x_3)$ $x_0 = x_4 - x_1 - x_2 - x_3$ 2 4-dimensional
222 curvature k-space:

223 and invariant of 4-dimensional k-space:

224 4-dimensional coordinate x-space:

225 and invariants of 4-dimensional x-space:

226 instead of Penrose's 5-dimensional twisted subspace. The amplitude $A = A(x, k)$ is a very complicated function.
227 $i = 1, 2, 3, ? = 1, 2, 3, 4, k_4 \times 4 = mc^2 t / ? = (mc/?)ct$. It is an important step to write $mc^2 t / ?$ as $(mc/?)ct$,
228 which represents a physical process on the light cone. This is the introduction of the theory of relativity into
229 a new space-time. The phase space $k ? x ?$ is consistent with the own construction space of the microscopic
230 object sphere model, namely Dual 4-dimensional complex space, as shown as the follow equiptions: Equation (??9)
231 is consistent with Penrose's thought and method of 5-dimensional twisted space, except that we confirm
232 the existence of an in-itself structure R_0 and its "rotation" in complex space, and observe the movement of
233 microscopic objects using relativistic space-time instead of classical Newtonian space-time 7,13. In fact, from
234 the relativistic momentum triangle, we can know that the expansion of 4-dimensional curvature space and 4-
235 dimensional coordinate space is presented in the electron from "static" to "dynamic". If the electron changes from
236 "moving" to "static", $P_{1,2,3} = 0$, that is, $k_{1,2,3} = 0$, $k_0 = k_4$, then the included Angle between $m_0 c$ and mc
237 is 0, so the observation space x release - mapping = 0. Quantum phenomena disappear. In our method, through
238 the electron from "static" to "dynamic", it is illation into a unified. Dual 4-dimensional complex space-time
239 describing quantum phenomena. This is a relativistic advance on the Penrose 5 -dimensional twisted subspace.

240 The description space of the wave function ψ is on the phase, as same as that of Equation (??7). The wave
241 function equation (??7) can be derived from the relativistic Lorentz time transformation through the motion of
242 the quantum object field matter sphere. It is further confirmed theoretically that the wave function ψ is a physical
243 wave. The overall picture of the wave function is complex, where the amplitude is $A = A(x, k)$, and Wigner gives
244 an expanded form. We will apply the expanded form in the derivation of the equations of motion of quantum
245 mechanics in the Dual 4-dimensional space-time In 4-dimensional coordinate x space, x_0 is an invariant of the
246 distance between two points in coordinate transformation. The microscopic object is stationary, $P = 0$, $k_{1,2,3}$
247 $= 0$, $k_4 = k_0$, x release - mapping = 0. Meanwhile, $x_{1,2,3} = 0$, $x_0 = x_4$, and $x_0 = R_0$, x_0 is the projection of
248 "the field matter sphere of ontology" in coordinate space, which is an invariant and cannot be observed directly,
249 and no observable quantum effects. When $P \neq 0$, $k_{1,2,3} \neq 0$, and $k_4 \neq k_0$, x release - mapping is the release and
250 mapping of coordinate x of the moving microscopic object in 3-dimensional or 4-dimensional space. x release
251 - mapping $\neq 0$, at this time, $x_0 \neq x_4$, the quantum motion effect of the microscopic object in space-time can
252 be observed. Due to the Lorentz covariant of x and k , relativity and quantum mechanics are unified based on
253 physical models. Special relativity spacetime is extended to the quantum mechanical dual 4-dimensional complex
254 spacetime.

255 The above analysis shows that the rotating field matter sphere described in the complex number (19) releases
256 four components $x(x_4 - x_1 - x_2 - x_3)$ along the spatial direction x and $k(k_4 - k_1 - k_2 - k_3)$ along the curvature
257 $k(P/?)$. It is the ingenious expansion of the space structure of the moving microscopic quantum object in dual
258 4-dimensional complex space-time. That is, $k_{1,2,3}$ are the 3-dimensional release of k_0 , and $x_{1,2,3}$ are the
259 3-dimensional release of R_0 . Since Equation (20) can describe all quantum phenomena, equation (??1) can
260 completely describe all quantum phenomena in the Dual 4-dimensional complex space-time $W(x, k)$.

261 London Journal of Research in Science: Natural and Formal

262 In addition, it must be noted that although equation (20) is the same as the mathematical form of the
263 wave function in traditional quantum mechanics, the traditional quantum mechanical wave function is only an
264 assumption under the point particle model, with unclear physical significance 13, and is a probabilistic wave
265 in 3d or 4d real space-time $M_4(x)$. This leads to a lot of cognitive contradictions. Here, the wave function
266 formula (20) is derived from the movement of the field matter sphere in the rotating. It describes the fluctuating
267 movement of the rotating field matter and has a clear physical meaning. It is matter waves - physical waves.
268 It is in the dual 4-dimensional complex space-time $W(x, k)$. A further study shows that the conversion between
269 the dual 4-dimensional complex space-time $W(x, k)$ and the 4-dimensional real space-time $M_4(x)$ is realized by
270 quantum measurement, and the probabilistic properties are shown.

271 We predict that matter waves, like electromagnetic waves, will have communication and other applications.
272 But it's not electromagnetic waves, which require the movement of charged objects. Matter waves with no
273 need for charged objects. The propagation of matter waves is both realistic and deterministic. Its probabilistic
274 properties need to be represented in quantum measurements. The electromagnetic wave properties of moving
275 electrons and their matter wave properties may be applied separately through experimental design.

16 WIGNER FUNCTION METHOD –WAVE FUNCTION ? (X) POSITION REPRESENTATION AND WAVE FUNCTION ? (K) CURVATURE K REPRESENTATION

276 12 Covariant Quantum Mechanics Equations of Matter-Wave 277 in the Dual 4-Dimensional Space-Time

278 13 Establishment of the Classical Wave Equation in the Dual 279 4-Dimensional Space-Time

280 The matter wave function described by the dual 4-dimensional space-time $W(x,k)$ (22)
 281 The amplitude of the matter wave is a function of the space coordinate x and the structure space k . It satisfies
 282 the following differential equation 7 (23)

283 Where $H(x, k)$ is the classical Hamiltonian function of the system. * The operation is the Moyal product,
 284 defined as follows:

285 Where $y = k$, the average of any quantity $F(x,k)$ in this stationary state can be written as(24)
 286 The mean of the general wave function of a physical system can be defined by the generalized

286 The wavelength of the general wave function of a physical system can be defined by

287 de Broglie relation, which also applies to the wave-motion of the matter field. $\psi(x,k) = A(x,k) \exp[i(k \cdot x - Et/\hbar)]$
 288 $A(x,k) \exp[i(k \cdot x - mc^2/\hbar \cdot ct)]$ $\psi(x,k) = A(x,k) \exp[-i(k_4 \cdot x_4 - kx)]$ $A(x,k) \exp(-ik \cdot x) H(x,k) \exp[i/2(x \cdot k \cdot k \cdot x - \dots)]$
 289 $A(x,k) = H(x,k) A(x,k) = EA(x,k) F(x,y) g(x,y) = F(x,y) \exp[i/2(x \cdot y \cdot y \cdot x - \dots)] g(x,y)$
 290 $A(x,k) = 0 \cdot C_n \cdot A_n(x,k) \cdot F(x,k) A(x,k) dx dk$

291 In the stationary state, $k_1 = k_2 = k_3 = x_1$,

292 14 Discussion

293 Dirac equation of free electron: When $H(x, k)$ is the relativistic Hamiltonian function of the system, the Moyal
 294 multiplication rule is adopted to obtain the wave equation of the dual 4-dimensional space-time (25),
 In addition, due to the equivalence of the two forms of the equation, the relativistic equation can be obtained

295 In addition, due to the equivalent meaning of wave function ?, the relativistic quantum mechanical operator
296 15 is adopted:(26-1)

297 15 Static electron p=0

298 (26-2)

299 The Dirac equation for the free electron is(26-3)

300 So this goes back to the traditional quantum mechanical system.

301 16 Wigner Function Method –Wave Function ? (X) Position
302 Representation and Wave Function ? (K) Curvature K
303 Representation

304 The matter wave function of the microscopic object is $\psi(x, k)$, which is a physical wave, the amplitude $A = A(x, k)$
 305 contains the matter information of the microscopic object, and the phase is composed of coordinate variables.
 306 And its motion satisfies the Dirac equation (or Schrodinger equation). And there is a Wigner transformation
 307 relation 7(27)(28)

308 Where ? (x) is the representation of position, and x has an uncertain property for the microscopic object. ?
 309 (k) is the representation of curvature k, corresponding to the property of matter density. So let's integrate these
 310 two things.? $(x) = (? ? ? A(x,k)dk) 1/2$? ? ? A(x,k)dk = $|?(x)| 2 = ?(x) H(x,k) * A(x,k) = E(x,k) H = c?p + m0c$
 311 $2 H = m0c 2 i????/t = H$? A(x,k) = ? ? ? d?e -i?k ? ? $(x^{-1/2})?(x+1/2)$? A(x,k) = ? ? ? d?e -i? x ? ?
 312 $(k^{-1/2})?(k+1/2)$?

313 In Equation (??5 Eliminating the variable k from Equation (??7), the matter wave $\psi(x, k)$ maps to the real
 314 part space. The location representation wave function $\psi(x)$ and probability density distribution function $|\psi(x)|^2$
 315 are obtained.

316 (29-1)(29-2)

317 Normalization is expressed as

318 In dual 4-dimensional space-time, the position x has an uncertain(probabilistic) property for the microscopic
 319 object, ? (x) has a probabilistic significance for the microscopic object, and ? (x) is the probability density of
 320 the microscopic object appearing at x . These are equivalent to traditional quantum mechanics. Conventional
 321 mechanics ? (x) as the probability amplitude and it makes sense. The microscopic object has a certain size, so
 322 $0 < ?(x) < 1$.

323 By eliminating the variable x from Equation (??7), the matter waves $\psi(x, k)$ maps to the imaginary k -space.
 324 The wave function $\psi(k)$ of curvature k and the density distribution function $\rho(k)$ of the matter field are obtained.

325 (31-1)

326 The normalization is written as (31-2) (32)

327 17 A New Understanding of Mapping Relationship Between 328 $\Psi(X, k)$ and $\Psi(X)$, $\Psi(K)$

329 1. Elimination of the variable k , $A(x, k)$ mapping to the real part of the dual 4-dimensional space-time, and obtain
330 the microscopic object probability density distribution function $\Psi(x)$ at x . $\Psi(x)$ mapping to the imaginary
331 part of the dual 4-dimensional space-time, obtain the microscopic object the matter field density distribution
332 function $\Psi(k)$ at x .

333 18 Elimination of the variable x ,

334 If $k = \text{constant}$, the energy level is unchanged, the physical structure of the microscopic object is unchanged,
335 and the density is unchanged, it is just equivalent to the probability density distribution of the whole space is
336 unchanged, and it is a monochromatic plane wave.

337 If k is constant, the quantum transition, the density of matter changes, and the probability density will also
338 change. Corresponding to different monochromatic plane waves $\Psi(x) = (\Psi_1 \Psi_2 \Psi_3 \Psi_4) A(x, k) dk / 2$ $\Psi_1 \Psi_2 \Psi_3$
339 $A(x, k) dk = |\Psi(x)|^2 = \Psi(x) \Psi(x)^\dagger = \Psi(x) \Psi(x)^\dagger = 1$ $\Psi(k) = (\Psi_1 \Psi_2 \Psi_3 \Psi_4) A(x, k) dx / 2$ $\Psi_1 \Psi_2 \Psi_3$
340 $\Psi_1^2 = \Psi(k) v c \Psi_1 \Psi(k)^\dagger = v c \Psi_1 \Psi_1^\dagger = v c$ $\Psi_1^\dagger = v / v = 1$

341 The midpoint of the dual 4-dimensional complex space-time (x, k) represents: the vector k (k_1, k_2, k_3, k_4)
342 describes the spatial structure or matter density distribution of the microscopic object itself; Vector: X (x_1, x_2, x_3, x_4) describes the location of the microscopic object, has a certain spatial distribution, and has uncertain
343 properties.

345 19 The Uncertainty of Microscopic Object Position—a New 346 Understanding of the uncertainty relation

347 1. $R=0$, mass density $\Psi=0$, the particle model can be adopted, the position is completely determined, uncertainty
348 $D=0$, the probability of microscopic object appearing at x is $\Psi(x)=1$, not belonging to the dual 4-dimensional
349 space-time description object; 2. $R=0$, mass density $\Psi=0$, position X is completely uncertain, uncertainty $D=0$,
350 the existence of microscopic object can not be found, the probability of occurrence at x $\Psi(x)=0$, also does not
351 belong to the dual 4-dimensional description object; 3. In the dual 4-dimensional space-time quantum mechanics,
352 the field matter sphere has a certain size, the matter density $0 < \Psi(k) < 1$, the position uncertainty $0 < D < \infty$, and
353 the probability density $0 < \Psi(x) < 1$ at x .

354 However, in classical mechanics, if the microscopic quantum is treated as a classical particle without
355 external interference, its position x is determined. Thus, the probability distribution phenomenon of quantum
356 measurement is attributed by the Copenhagen school to the "inherent" position uncertainty of the microscopic
357 quantum object themselves. Bohr is the representative of this cognitive route.

358 Einstein disagreed with the Copenhagen school that God did play dice. The quantum probability phenomenon
359 of the microscopic object must have external and unknown objective reasons. Bohm later called its development a
360 "hidden variable", but Einstein himself was not satisfied. of course, there are also people looking for the objective
361 reason for external interference of quantum probability, but it is still not successful at present.

362 20 Discussion on the New Theory of the Origin of Quantum 363 Probability

364 The microscopic object is not a point, but the rotating field matter sphere, Uniform distribution of mass, with a
365 certain spatial distribution radius R , and uncertain position x . The uncertainty D depends on R . With a certain
366 mass, the smaller the microscopic quantum object is, the greater the density is, and the smaller the position
367 uncertainty D is. On the contrary, the larger R of the same microscopic quantum object is, the smaller the
368 matter density is, and the greater the position uncertainty D is. Discussion:

369 The dual 4-dimensional space-time quantum mechanics ascribes quantum probability to a certain spatial
370 distribution of the microscopic quantum object. The nature of the position of the microscopic quantum object
371 is uncertain. In other words, for the microscopic quantum object, coordinate x in wave function $\Psi(x)$ has the
372 property of uncertainty. This transforms the uncertain cognition of the microscopic quantum object's position into
373 the uncertain attribute of x coordinates of the real part of dual 4-dimensional space-time. This is a transformation
374 from subjective cognition to physical time and space, and realizes the dichotomy of subject and object. It can be
375 seen that the physical properties of the real part of the dual 4-dimensional space-time quantum mechanics ascribe
376 quantum probability to a certain spatial distribution of the microscopic quantum object. The dual 4-dimensional
377 space-time quantum mechanics ascribes quantum probability to a certain spatial distribution of the microscopic
378 quantum object. The dual 4-dimensional space-time is not the same as those of special relativity $M_4(x)$.

379 According to the relationship between the density of field matter and quantum probability, the uncertainty
380 relation in the dual 4-dimensional space-time can be understood as follows: the greater the density of field matter
381 $\Psi(k)$, the smaller the position uncertainty D ; The smaller the field density $\Psi(k)$ is, the greater the position
382 uncertainty D . The uncertainty relationship is easy to understand. , and its value is

25 GENERATION OF THE SPACELIKE INTERVAL BETWEEN EIGENSTATES

21 London

383 (a-2)

384 This is a theoretical value in the dual 4-dimensional space-time and cannot be observed directly.
385 In fact, the imaginary part K is the wave-vector space of quantum field theory. k makes the infinite calculation
386 of interaction in quantum field theory stop at the quantum curvature and overcomes the infinite difficulty of the
387 point particle model in quantum field theory.

388 The matter wave $\psi(x, k)$ is mapped to the real part space, and the positional representation wave function $\psi(x)$,
389 corresponding to the microscopic object, the x representation of wave function has a probabilistic property.
390 Probability amplitude(a-3)

391 The position of the microscopic object at x is uncertain, and the theoretical probability of occurrence is(a-4)
392 This is also a theoretical value in dual 4-dimensional space-time, again not directly observable. ??3) and (34)
393 are the representation transformation of the field matter density distribution and probability density distribution.
394 The density distribution of the field matter and probability density distribution can be transformed into each
395 other. The density of field matter is evenly distributed, and the probability density is evenly distributed. The
396 density distribution of field matter is large and the probability of microscopic objects is high. The field matter
397 density is zero, and the probability density is zero. The density distribution of field matter is the source of quantum
398 probability 7 , the primacy of matter is supported. Quantum probability comes from the spatial distribution and
399 mass density distribution of microscopic objects, which is completely objective. Neither Einstein's god does not
400 play dice nor Copenhagen's subjective understanding of the uncertain nature of particles is needed in a double
401 four-dimensional space-time. The subjective dependence of quantum phenomena on humans can be eliminated
402 by describing the microscopic quantum

22 The Source of

404 $\psi(k) = [\dots \psi(x, k) dx]^{1/2}$ $\psi(k) = [\dots \psi(x) dx]^{1/2}$ $\psi(x) = [\dots \psi(x, k) dk]^{1/2}$ $\psi(x) = [\dots \psi(x) dk]^{1/2}$
405 $\psi(x, k) dk = [\dots \psi(x) dk]^{1/2}$ $\psi(x) dk = [\dots \psi(x) dx]^{1/2}$

406 The matter wave $\psi(x, k)$ of the dual 4-dimensional space-time is mapped to the virtual k -space, and the
407 pure state wave function $\psi(k)$ of the curvature K representation is obtained. The k representation of the wave
408 function has the property of the matter density.

23 IV. THE DIFFERENCE BETWEEN MACRO AND MICRO CAUSALITY

24 On Macroscopic and Microscopic Causality and Quantum Parallelism States

412 Macroscopic classical world, intrinsic localized causality; Microscopic quantum world, intrinsic nonlocality
413 causality. Quantum measurement can eliminate the nonlocality causality and restore the localized causality.
414 It is wrong to treat the causal relationship between the evolution of macro and micro physical states as the same.

25 Generation of the Spacelike Interval Between Eigenstates

415 Quantum transitions take place over time 16 , according to a study published on June 3, 2019, in the British
416 journal Nature. We believe that due to the extremely short transition time, the quantum theory system assumes
417 the mutation $t=0$, which is still valid, and the quantum theory is established. However, the concept of transition
418 velocity can be defined. If the microscopic object moves in a linear, flat and continuous space-time, s is the
419 transition distance, t is the transition time, and the transition speed can be defined as $v=s/t$ 1. Motion
420 properties of the microscopic quantum object in the particle model A particle has no size. In particle model
421 quantum mechanics, within the scope of the structure of the microscopic object itself, before and after the
422 quantum mutation distance $S?0=0$, the mutation time $T?0=0$, ?, ? appear simultaneously. Motion speed

423 In theory, the constant C can be less than, equal to, or greater than the speed of light.

424 In point particle quantum theory, the mutation time $T=0$ implies that the transition speed can exceed the
425 speed of light. Exceeding the speed of light is a basic property of microscopic quantum object motion.

426 This is an additional property that quantum transition and particle models add to microscopic objects. It has
427 human subjectivity and corresponds to the intrinsic specification of point particle theory.

428 Special relativity uses a point model, where energy changes continuously, there are no energy transitions, $t?0$,
429 faster than the speed of light is excluded, which corresponds to a localized causality constraint. According to
430 Einstein's convention in special relativity, the constant C is less than or equal to the speed of light, which just
431 meets the requirement of localized causality.

432 In the quantum mechanics theory of the point particle model, human subjective suggestion contradicts the
433 convention of special relativity.

434 (1) Non-locality of space and the shapes of the microscopic object Real microscopic objects have shape
435 structures. In transition, the minimum transition distance is the overall structure $s=2R$ and R is the field
436 matter sphere radius. The transition distance $s?0$, the transition time still stipulates $t=0$ and the transition

440 speed phenomena by the dual 4-dimensional space-time $W(x, k)$ of quantum mechanics. Just as special relativity
441 does not require a moving object to automatically shrink in length in the direction of motion.

442 $V = s/t = 0/0 = C$ (constant) $n + 1$

443 London Journal of Research in Science: Natural and Formal $v = s/t = s/0 = ?$ Motion, and energy change "faster
444 than light speed"! The quantum transition of the tangible object is accompanied by a space interval $s = 2R$.
445 The sudden insertion of the spacelike partition. The faster-than-light energy change between energy levels has a
446 theoretical basis.

447 (2)

448 In the point particle model, the multi-dimensional state space has the same properties as the background space.
449 The trade-off is that microscopic objects confer faster-than-light properties on motion, contradicting relativity.
450 In the sphere model dual 4-dimensional space-time covariant quantum mechanics, the microscopic object move
451 in space-time, and quantum transition increases the spacelike interval between states, thus changing the physical
452 properties of state space, which is different from point model background space. In the dual 4-dimensional space-
453 time covariant quantum mechanics, the quantization and quantum transition of the microscopic object structure
454 is the root of space-time non-locality.

455 It can be seen that the physical properties of the state space of the point model and sphere model are different.
456 In the sphere model, the quantum state in the dual 4-dimensional complex space-time, the localized interaction is
457 cut off by the spacelike interval, and the matter waves propagate in the timelike space, which is coordinated with
458 relativity. The quantum state of the point model in 4-dimensional real space-time implies that the particle has
459 faster-than-light motion, which is incompatible with relativity. Spacelike interval and faster-than-light motion
460 are equivalent expressions of the two models in different physical Spaces. To describe quantum phenomena,
461 the sphere model of the dual 4-dimensional complex space-time is more reasonable than the point model of
462 4-dimensional real space-time.

463 The point model has localized causality in 4-dimensional real space-time, while the sphere model has non-
464 localized causality in the dual 4-dimensional space-time. Quantum measurement leads to the Under the quantum
465 transition hypothesis, between the quantum states $? n - ? n + 1$, there is an interspace between $?/mc$ that
466 the speed of light cannot communicate 7 . Eigenstates can be superimposed to replace the classical concept
467 that particles cannot be superimposed and to sow the seeds for nonlocalized causality. However, the point
468 model subjectively changes the change of physical space properties caused by objective reasons into the faster-
469 than-light change of energy and motion properties of "point" particles, while the space-time properties remain
470 unchanged, and continue to use the classical space-time, resulting in the disharmony between quantum mechanics
471 and relativity. The fundamental way to eliminate contradictions is to return the subjective to the objective and
472 construct a new physical space-time.

473 Experiments show that the spacelike compartments between quantum states are Compton waves Long $? c$
474 $= ?/mc$ of the microscopic object, which undoubtedly provides theoretical and experimental support for the field
475 matter sphere model. The space-like partition defined in the dual 4-dimensional space-time covariant quantum
476 theory is the Compton wavelength of the microscopic object: $? c = ?/mc$, that is, the field matter sphere radius
477 R of the microscopic object. Here the energy is quantized, the localized space is quantized, and the field is
478 quantized.

479 Quantum mechanical space-time is not ordinary Newtonian space-time or special relativity space-time, but
480 a new space-time that satisfies the laws of quantum mechanics and reasonably explains quantum phenomena.
481 It is the dual 4-dimensional quantum mechanical complex space -time. Dual 4-dimensional quantum mechanics
482 can analyze the interrelations among time-like, light-like, and space-like Spaces by adopting the mathematical
483 method of multi-dimensional state space and introducing a light cone graph from relativity. Dual 4-dimensional
484 space-time quantum mechanics and special relativity have internal consistency and can communicate with each
485 other.

486 London Journal of Research in Science: Natural and Formal introduction of continuous compensating action
487 $U = e ? ?x$, the elimination of non-localization of physical spacetime, and the global transformation from the
488 dual 4-dimensional complex space-time to 4-dimensional real space-time. It leads to the transition from sphere
489 model to point model, from quantum field to classical field, and from matter waves to probability wave. The two
490 Spaces can communicate through quantum measurement 7 .

491 There are only two worlds, one is the microscopic quantum world, and the other is the macroscopic classical
492 world. The microscopic quantum world is inherently non-localized causality and has parallel quantum states.
493 Conversely, the state change of the macroscopic world requires the change of interaction and the change of
494 interaction time, and it is impossible to form the existence of parallel quantum states similar to the quantum
495 world because of the inherently localized causality.

496 In the macroscopic world, internal localized causality, force is the cause, and state change is the effect;

497 The microscopic quantum world is inherently non-localized causality. The spacelike interval is the cause, and
498 the parallel quantum state of the free microscopic object is the effect. The macroscopic world has no parallel
499 worlds with the same meaning as the parallel quantum world.

500 In the dual 4-dimensional space-time covariant quantum theory, the wave function has matter properties and
501 is a physical wave (confirmed by Shi Baosen et al. 17). The time evolution of the Schrodinger equation is
502 deterministic, which means that the time evolution of the density or structure of matter is deterministic. The

29 THE MEASUREMENT OF QUANTUM PROBABILITY

503 randomness of wave function measurement is only the macroscopic experimental emergence of the probability
504 properties of the wave function in the two types of spatial transformation 7 .

505 26 Quantum State Quantum Segmentation Diagram

506 Plane-wave superposition is the product of continuous function quantum partition (quantum mutation added
507 into spacelike interval). Matter waves and probability waves are objective descriptions of quantum phenomena,
508 but they are in different physical spaces. The matter waves are at $W(x, k)$ and the probability waves are at $M 4$
509 (x). Conversion by quantum measurement. (x) and $? (x)$ in the two space-times is unchanged, which indicates
510 that the ontology is continuous without fracture. This is what structural realism and realism of interaction are
511 based on. Kuhn's paradigm is incommensurable and noumenon fracture is wrong. How to realize the probabilistic
512 motion of quantum mechanical matter-wave to point particle involves the physical principle, experiment, and
513 mathematical operation of transforming the dual 4-dimensional space-time into 4-dimensional real space-time 7,8
514 .

515 27 + e mv n mv n+1

516 From Fig. 2 to Fig. 1, it shows that a continuous compensation field U ($U? =?e ??(x) ?$) is introduced in the
517 measurement, which eliminates the fixed phase difference and breaks the non-local causality into local causality.
518 The physical space-time changes from $W(x, k)$ to $M 4 (x)$, the physical model changes, the quantum transition
519 disappears, the continuous mechanical motion resumes, the mixed state is formed, and eliminate the coherence.
520 The eigenvalues are presented in a probabilistic manner, and regression graph 1 continues in the eigenvalues.

521 28 V. PROBABILITY MEASUREMENT DISPLAY AND 522 SPACE-TIME CONVERSION

523 29 The Measurement of Quantum Probability

524 Quantum measurement is understood from three main aspects. Firstly, physical principle. the measurement of
525 the presence or absence of interaction; Secondary, mathematical expression, global, local phase transformation,
526 eigenstate equation; Thirdly, design experimental display, measurement momentum and measurement position.

527 In the dual 4-dimensional space-time, it is considered that in the measurement statement $A? (x) =a ? k (x)$, the
528 left and right wave functions of the equation will not be the same physical space-time considering the interaction
529 factors in measurement. The pure state wave function on the left is in the dual 4-dimensional space-time, and
530 the mixed state wave function on the right is in the 4-dimensional real space-time. At this time, the essence
531 of quantum measurement is to lead to the transformation of cognitive level and the transformation of physical
532 time-space of describing quantum phenomena.

533 The invariance of the mathematical form of $? k (x)$ and $? (x)$ just guarantees the invariance of the form
534 of the Schrodinger equation or Dirac equation, describing the microscopic quantum object in From Fig. 1 to
535 Fig. 2, it shows that the spacelike interval $? c =?/mc$ is inserted, the break the mechanical causal chain, the
536 localized causality is destroyed, and the states co-exist simultaneously, $? =?? n$, pure state, and coherence. Cost:
537 the sacrifice of classic local causality. Into the non-local causality and the quantum parallel state. Eigenvalues
538 come from quantum states of continuous functions. The wave function propagates in $W(x, k)$ space. Although
539 the physical model of the microscopic object in the dual 4-dimensional space-time is the field matter sphere,
540 the field matter sphere has been transformed into matter waves $? (x)$ in the theoretical description. The phase
541 transformation on $? (x)$ will be reflected in the interaction of the microscopic object. In phase transformation,
542 the phase factor $e ?(x)$ multiplied by $? (x)$ is a mathematical statement of this interaction.

543 (1)

544 If the multiplied phase factor $e ?(x)$, causes the waves function fixed phase difference to disappear, this would
545 be the introduction of a substantial continuum interaction. The pure state waves function $? n(x)$ on the left side
546 of the equation is transformed into the mixed state waves function $? k (x)$ on the right side of the equation. In
547 this case, $? k (x)$ is not in dual 4-dimensional space-time, is purely a quantum probability function of a point
548 particle in 4-dimensional real space, and has no coherence. At this time, the essence of quantum measurement is
549 a space-time transformation, which converts dual 4-dimensional space-time to 4-dimensional real space-time, and
550 the matter-wave evolves into a probability wave, and the mathematical form of wave function remains unchanged.

551 The invariance of the mathematical form of the waves function guarantees the invariance of the form of
552 the Schrodinger equation and Dirac equation in the two space-times before and after the measurement. The
553 description of space-time has changed, and the physical model will change, too. The sphere model of the dual
554 4-dimensional space-time has evolved into a point model of 4-dimensional real-time space. The wave phase of the
555 microscopic object evolves into the particle phase. The space-time transformation transforms the probabilistic
556 property of the dual 4-dimensional space-time into the probabilistic motion of point particles in 4-dimensional
557 space-time.

558 The $? (x)$ collapse will reflect the transformation of cognitive level, the transformation of physical space-
559 time describing quantum phenomena, entanglement resonance, and so on. During the space-time transition,
560 there are no collapse process waves and no direct faster-than-light motion of the microscopic object. The

561 single measurement result a_k appears, is the microscopic object probability motion and instrument measurement
562 resonance display. Multiple measurements reflect the transformation of the probabilistic properties of space-time
563 into the probabilistic motion of the microscopic objects.

564 Through measurement, quantum probability can be able to render by cognitive level change, space-time
565 transformation, and physical model change. Its origin is different from both classical thermodynamic probability
566 and macroscopic classical statistical probability. As mentioned earlier, quantum probability derives from the
567 spatial distribution and the matter density distribution properties of the microscopic objects. It doesn't need
568 an implicit variable. In the dual 4-dimensional space-time, matter tells space-time how to have probabilistic
569 properties, and by quantum measurements, space-time tells matter how to make a probabilistic motion.

570 (2)

571 If the multiplied phase factor $e^{i\phi(x)}$ ($\phi(x) = \text{constant}$), causes the waves function fixed phase difference to
572 remain, it is the coordinate translation of matter waves. Measure the momentum and let the matter waves pass
573 through the single slit and double slit. At this time, the measurement does not introduce substantial interaction
574 and the space-time where the matter waves are located does not change. After the wave packet "collapses",
575 are still matter waves-pure monochromatic plane waves in the dual 4-dimensional space-time. Using diffraction
576 and interference of wave, its wavelength can be calculated accurately. In the dual 4-dimensional space-time,
577 momentum can be accurately measured.

578 30 Unitary transformation

579 The transformation preserves the invariance of the eigenvalues and the trace of the matrix.

580 (2)

581 The gauge transformation

582 For the global gauge transformation, $\phi(x) = \text{constant}$

583 (3) General phase transformation

584 For the global transformation $\phi(x) = \text{constant}$ After the transformation, there is still a fixed phase difference
585 between the eigenstates, and the coherence properties of the pure states remain unchanged. The global
586 transformation has no substantial interaction involved. But it's also supposed to be a quantum measurement.
587 Matter-wave packets "collapse" into pure monochromatic plane waves 13 .

588 Momentum is knowable in dual four-dimensional space-time. We use it to define curvature coordinates. The
589 action quantity in the path integral is also well defined, and the question of Dirac's student does not exist 1,7,8 .
590 At the same time, according to the sphere model, momentum is large and curvature is large (equivalent matter
591 density large), the uncertainty of position is small; Momentum small, curvature small, position uncertainty large;
592 The momentum is infinitely large, the curvature is infinitely large, and the position of falling on the geometric
593 point is completely determinable; Momentum zero, curvature zero, plane, a position completely uncertain, in the
594 dark. Heisenberg's $\Delta p = e^{i\phi(x)} \Delta x = H(t); \Delta p = e^{i\phi(x)} \Delta x = H(t); \Delta p = e^{i\phi(x)} \Delta x = H(t); \Delta p = e^{i\phi(x)} \Delta x = H(t)$
595 uncertainty relation has a realist explanation.

596 In the equation of eigenstate $A \Delta p = e^{i\phi(x)} \Delta x = H(t)$, the wave functions $\psi(x)$ of the left and right sides of the
597 equation are in the dual 4-dimensional space-time, which are physical waves, pure states, and which are coherent
598 of waves. It is the physical basis for defining the mixed state as pure incoherent mixing. In fact, it's a constructed
599 mixed state, and it's needed in quantum communication. By designing experiments and using the interference
600 effect of plane waves, we can know the exact momentum of the microscopic object from the wavelength. Matter
601 waves can be used to measure the momentum of microscopic objects. After the transformation, there is still a
602 fixed phase difference between the eigenstates, the coherence still exists, and the properties of pure states remain
603 unchanged. It's the coordinate translation of the matter wave, still in the dual 4-dimensional space-time.

604 For the local gauge transformation, $\phi(x) = \text{variable (function of } x)$

605 The fixed phase difference between the eigenstates disappears, the interaction is introduced in essence, and
606 the pure state evolves into the mixed state. For electromagnetic action, Lorentz invariance of the Dirac equation
607 can be discussed by adopting vector potential A and introducing The fixed phase difference disappears and the
608 coherence of waves disappears. The pure state evolves into a mixed state. Embodied measurement introduces
609 substantial interactions. It is a nonlinear R process of quantum measurement, which is carried out simultaneously
610 in the whole space, and the invariance of linear equations is destroyed.

611 The free motion of the quantum parallel pure state is destroyed and the spacelike interval disappears. The
612 fixed phase difference between the eigenstates disappears simultaneously in the whole space, the phase difference
613 changes continuously, the wave function evolves into a mixed state, and the coherence disappears. The description
614 space is transformed, and people's cognitive level simultaneously enters the 4-dimensional real space $M^4(x)$.
615 The physical essence of the local transformation $e^{i\phi(x)}$ eradicating coherence is that the continuous potential
616 function and the phase change are introduced simultaneously in the whole space. There is no faster-than-light
617 propagation of information, as Einstein called it.

31 Interaction of the Microscopic Object in the Dual 4-Dimensional Space-Time and Interpretation of Instrument Measurement Function

Gauge field theory is the cornerstone of the Standard Model. However, in standard field theory, the wave function is given a probabilistic interpretation from the very beginning, and matter waves are probabilistic waves 18 . The gauge transformation in gauge field theory is the mathematical operation of probability function, and the introduced gauge field A is the vector potential of the electromagnetic field and is the auxiliary quantity of electric field(E). Gauge transformation gives more impression of mathematical significance than physical ones. Matter waves in the dual 4-dimensional space-time are physical waves 7 . The gauge transformation of physical waves reveals the real physical significance of the gauge transformation.

32 Traditional Global Gauge Transformation

The global gauge transformation of the wave function of the charged free microscopic object is carried out 18 , ? = constant, ?? = 0

The same rules transformation. Gauge invariance is established, the Lorentz covariant Dirac equation is obtained

The solution of the Dirac equation confers a probabilistic interpretation. Wave functions are not deterministic and the meaning of physical realism is unclear.

??e ?(x) ?(x)??cne ?(x) ?n(x)=?cn?n =? e ?(x) ?(x)e ?(x) ?cn?n(x)??cne ??(x) ?n(x)??cn?n =? ? ? ? ?e -i? ? ? ? ? ? ? e i? ??? ??? ??e -i? ??? ? ? ? ? ? ? ? () 0 ir m ? ? ? ? ? ?

Before measurement, the wave function of the measured microscopic object is in a pure state, in W(x,k) space.

If ?(x) ? ? n (x), there is a fixed phase difference between the superposition eigenstates, and there is coherence.

Interaction potential U=e ?(x) is introduced in the measurement, then.

London Journal of Research in Science: Natural and Formal

33 2 Traditional local gauge transformation

In the above formula, if the multiplied phase factor ? is a function of the space-time coordinate x.

Local norm transformation of field quantity ? and its derivative of charged free microscopic object 18 :

Traditional analysis shows that the Lorentz covariant Dirac equation cannot be obtained because ??? (x) ?0, and the transformation of field quantity and its derivative is inconsistent. By introducing the covariant derivative D

The Dirac field equation of the same form can be obtained:

The weak interaction and quantum chromodynamics are similar. In the interaction of quark and gluon fields, mathematics uses group theory. Considering the physical reality of quark and gluon D ieA? ? ? ? ? ? ? ? ? () 0 ir D m ? ? ? ?

Spin in the dual 4-dimensional space-time has a natural physical definition and is no longer a property of point particles 7 . In the experiment of electron spin of the silver atom, the local transformation of the spin wave function ?(x) is carried out, and the nonuniform magnetic field is the classical electromagnetic coupling effect on electron spin. Electrons go from a pure state to a mixture of the spin up and the spin down. Describes the transformation of space-time from W(x,k) to M 4 (x). In the laboratory space, we will observe the fine structure of two lines above and below the orbital motion of the spin up and the spin down mixed state electrons 7, ??9 . Here, the introduction of an inhomogeneous magnetic field is a quantum measurement involving the Penrolaus nonlinear R process.

Dual 4-dimensional space-time considers that the global gauge transformation is the coordinate translation of free electron matter wave. The electrons are already exposed to the electromagnetic field in a local gauge transformation. Embody ? ? ? (x) ?0. The state of free motion and Lorentz covariation are destroyed, so the form of the Dirac field equation is destroyed. The covariant derivative D ? introduces the gauge field A ? to reflect the electromagnetic effect. In fact, it is a physical and mathematical operation to eliminate the effect of the introduced electromagnetic field in the local gauge transformation, eliminate the influence of ? ? ? (x) ?0, restore the free motion state of electrons and Lorentz covariant, and ensure the unchanged form of the Dirac field equation.

It can be seen that by introducing A gauge field A ? through covariant derivative, the interaction between electromagnetic field and charged the microscopic object can be reflected, and the local gauge transformation gauge invariance can be restored.

If the invariance of the Dirac equation and the electromagnetic action of an electron is discussed in the quantum field, the vector potential A ? of the electromagnetic field should be adopted, and a series of mathematical physical operations of the covariant derivative is considered.

34 ? ? ? ?

London Journal of Research in Science: Natural and Formal fields and the physical significance of their phase, quantum chromodynamics can make the same mechanical analysis. The interaction between quark and gluon

676 fields is also realized in the local gauge transformation, and the introduction by the covariant derivative into the
677 gauge field is only a counteracting effect. The invariance of the form of the Dirac field equation can be guaranteed
678 by the quark's free motion again.

679 In the dual 4-dimensional space-time, the essence of quantum measurement is to carry out a full-space
680 instantaneous space-time transformation through the introduction of interaction, transforming the dual 4-
681 dimensional space-time into 4-dimensional real space-time, transforming the sphere model into the point model,
682 and transforming matter waves into probability waves. Matter tells space-time how to have probabilistic
683 properties, and by quantum measurements, space-time tells matter how to Probability of movement. In fact,
684 the introduction of a continuous potential $U=e ?(x)$, the elimination of spacelike partition, and the space-
685 time transformation in full space are mathematical and physical operations. The transformation of the wave
686 function takes place simultaneously in the whole space, There is no "the converted waves" propagation 7 . The
687 instantaneous propagation of information and the formation of entangled states in quantum entanglement are
688 the results of the simultaneous transformation of wave functions in the whole space.

689 **35 Mathematical Representation of Decoherence and Local 690 Transformation for Macroscopic Instruments**

691 In the dual 4-dimensional space-time, the macroscopic measurement instrument can be automatically decoher-
692 ence.

693 The macroscopic instrument is designed and manufactured by the classical point particle theory of 4-
694 dimensional real space-time. There is no quantum mutation hypothesis and no spacelike partition between
695 states. There is continuous interaction between states. It does not constitute a pure quantum state, but can be
696 written as a mixed state at most. Because of the existence of continuous potential, the instrument has the ability
697 of automatic decoherence.

698 The state of the macroscopic instrument can be directly observed, and of course, the measurement display can
699 be directly observed. In quantum measurement, the macroscopic instrument not only changes the cognitive level of
700 the system under test but also transforms the describing space-time to return to the classical space-time to record
701 the measurement results. This is the physical essence of instrument translation in quantum measurement. The
702 irreversible evolution from the pure state to the mixed state in the measurement indicates that the macroscopic
703 measuring instrument is unable to make the microscopic measured system automatically return from the mixed
704 state to the microscopic pure quantum state. This is the inevitable result of the establishment of macroscopic
705 instrument theory, design, and manufacturing principles.

706 However, these are purely hypothetical. The self-coherence properties of instruments have never been observed.
707 Instrument auto-coherence is not allowed in measurement, so a variety of automatic instrument decoherence
708 schemes are proposed. But so far there has been no successful case. It would be absurd for decoherence to
709 require the last glance of God or man.

710 According to von Neumann's measurement theory, the initial state of the macroscopic instrument is assumed
711 to be $X 0(x)$. $X 0n(x)$ is the decomposition pure state, and $X 0(x) =?X 0n(x)$. There is a fixed phase difference
712 between $X 0$ and $X 0n+1$ and there is coherence. The final state of the instrument is $X n(x)$. $X nn(x)$ is the
713 final pure state of decomposition, and $X n(x) =?X nn(x)$. There is also a fixed phase difference between $X nn$
714 and $X nn$ and there is also coherence. The instrument is self-coherent. +1 , n London Journal of Research in
715 Science: Natural and Formal

716 In the dual 4-dimensional space-time, the self-coherence of macroscopic instruments is eliminated automatically
717 in theory and instrument design and production, considering local transformation.

718 (35)

719 The local transformation. The interaction could be a classical potential.

720 **36 VI. CONCLUSION**

721 The physical model of quantum mechanics is a rotating field of matter ball, particle model is not applicable.
722 The physical space-time describing quantum phenomena is dual 4-dimensional space-time, which has the
723 characteristics of construction 20 . It is equivalent to Newtonian space-time, special relativity space-time, and
724 gravitational space-time in describing nature.

725 1. The wave function can be derived strictly from the motion of the field matter ball. Matter waves are physical
726 waves. The traditional cognitive confusion of wave function can be completely eliminated and has new physical
727 applications 21,22 . Such as the coulomb blocking Matter wave cognitive $X0(x)?X0(x)? =e ?(x) X0(x)=e ?(x)$
728 $?X0n(x)=?e ?(x) X0n(x)=?X0n=?X0$

729 $Xn(x)?Xn(x)? =e ?(x) Xn(x)=e ?(x) ?Xnn(x)=?e ?(x) Xnn(x)=?Xnn=?Xn? ? ?? ??e ?(x) ? ?e ?(x) ?cn?$
730 $n=?e ?(x) cn? n=?cn?n$

731 If the macroscopic measuring instrument in quantum mechanics is decomposed into the macroscopic component
732 states, even the microscopic component states, it is clear that the interaction between the component states will
733 be governed by the continuous interaction potential $U=e ?(x)$. This shows that the states $X 0n$, $X 0n +1$,
734 or $X nn$ and $X nn +1$ are governed by the continuous interaction potential $U=e ?(x)$, which is automatically

735 constituted by a local transformation ? is the mixed state mark. $X_{0n?}$ and $X_{nn?}$ are the mixed components
736 of the initial and final states.

737 Under the action of continuous potential $U=e^{-i\phi(x)}$
738 , the initial and final states of the macroscopic instrument automatically evolve into mixed states $X_{0?}$ and $X_{n?}$
739 . Analog wave Function Inside the macroscopic instruments, the continuous interaction potential $U=e^{-i\phi(x)}$ exists,
740 the fixed phase difference between the internal states do not exist at all, and the phase interference of waves does
741 not exist. The states $X_{0(x)}$ and $X_{n(x)}$ of the macroscopic instruments can only appear in the form of mixed
742 states $X_{0?}$ and $X_{n?}$. Therefore, there is a theoretical basis for the absence of self-coherence in the macroscopic
743 instruments. In von Neumann's measurement entanglement model, there are some problems with the pure state
744 assumption of the macroscopic instrument, and the physical essence of the intrinsic continuous interaction and
745 local transformation of the instrument is not taken into account. Therefore, any other assumptions about the
746 automatic decoherence of the instrument are redundant.

747 The biological and physiological organs of the Schrodinger cat, even if observed down to the molecular and
748 atomic level, are dominated by macroscopic continuous interaction. The macroscopic cat can only be a mixed
749 state $|n\rangle$, there is no dead cat, live cat parallel pure state existence. Its decoherence is self-completed by biological
750 mechanisms, and the mathematical expression is also an equation (??5). There are also theoretical reasons why
751 we don't observe the phase interference of waves of the macroscopic cat. London Journal of Research in Science:
752 Natural and Formal experiment (electronic wave barrier-free through the Coulomb blocking), matter-wave chip
753 engrave technology experiment, matter-wave communication technology experiment, and so on.

754 37 ACKNOWLEDGMENTS

755 Note Note 1: China university of science and technology of Jian-wei Pan, Zhao-yang Lu, Xiao-bo Zhu, and
756 professor at the university of Seville, Spain Cabello, using ultra-high precision superconducting quantum circuits
757 for deterministic entanglement exchange, at more than 43 standard deviations of the experiment proved that the
758 precision of real number cannot complete description standard quantum mechanics, established the objective
759 reality of complex numbers description. The findings were published as an "editor's recommendation" in Physical
760 Review Letters. Viewpoint and News & Views were respectively invited by the website of American Physical
761 Society Physics and the journal Nature. (China University of Science and Technology News Network Mozi
762 Salon 2022-01-30 16:06) Note 2: Some important nouns: 1) interaction realism, 2) time-like space, 3) spacelike
763 space , 4) phenomena, 5)sphere model, 6) particle model, 7) microscopic quantum object, 8) matter waves, 9)
764 rotating field matter sphere, 10) physical space-time?11)dual 4-dimensional space-time?12) macroscopic object.
765 2. Matter tells space-time how to have probabilistic properties, and space-time tells matter how to behave in
766 probabilistic motion. 3. The spatial distribution and mass density distribution of microscopic objects are the
767 origins of quantum probability. Quantum probability is completely from thermodynamic probability and classical
768 statistical probability.

769 38 5.

770 Different macro and micro physical mechanisms and different causal relationships. Quantum superposition
771 states have microscopic physical mechanisms to follow. Quantum measurement changes the nature of causality
772 correlation, and the pure state becomes a mixed state. It is crucial to thoroughly understand the physical
773 mechanism of phase transformation of the wave function.

774 39 6.

775 In dual 4-dimensional space-time, the calculation of field interaction cutoff is at the curvature K_0 , and there is
776 no infinite divergence difficulty.

777 The deep application of the Wigner function method based on dual 4-dimensional space-time covariant
778 quantum mechanics penetrates the new understanding of many important physical meanings of the quantum
779 mechanical formal system. The cognitive difficulties in the traditional quantum mechanical formal system are
780 almost eliminated. Wigner Moyal product (*) wave equation is equivalent to Schrodinger equation, Diracequation,
781 and Feynman path integral equation.

782 Thanks to many scholars experts and leaders different periods for their discussion, care, support, and guidance
783 on theoretical development. Professor Li Hongfang of the University of Chinese Academy of Sciences proofread
784 the English translation of this paper. ^{1 2 3}

¹ Review of Fundamentals of Covariant Quantum Mechanics in the Dual 4-Dimensional Space-Time?
Substance of Wave Function, the Origin of Quantum Probability and the Cause of Quantum Superposition
State

² Review of Fundamentals of Covariant Quantum Mechanics in the Dual 4-Dimensional Space-Time?
Substance of Wave Function, the Origin of Quantum Probability and the Cause of Quantum Superposition
State Volume 23 | Issue 2 | Compilation 1.0 © 2023 Great Britain Journal Press

³ Volume 23 | Issue 2 | Compilation 1.0 © 2023 Great Britain Journal Press

13

Figure 1: 13

44

Figure 2: 4 4 c

Figure 3:

2

Figure 4: matter 2 London

Review of Fundamentals of Covariant Quantum Mechanics in the Dual 4-Dimensional Space-Time? Substance of Wave Function, the Origin of Quantum Probability and the Cause of Quantum Superposition State

Figure 5:

785 [Inman and Miller ()] , F W Inman , C E Miller . *Contemporary Physics* 1975. Macmillan.

786 [Sakata et al. ()] , S Sakata , Shiochi , Sakata . 1977. Scientific Works. (Publication Committee of Scientific.

787 [Thom and Theory ()] , R Thom , Theory . 1978. Wiley.

788 [Zhao ()] ‘A new study on the role of covariant derivative D? in local gauge transformation’. Guo-Qiu Zhao .
789 *Modern Physics* 2021. 11 p. .

790 [Zhao ()] *Fundamentals of Covariant Quantum Mechanics in dual 4-dimensional space-time*, Guo-Qiu Zhao .
791 2022. Hubei Science and Technology Press.

792 [Hu ()] *Gauge Theory of Field*, Y Hu . 1984. East China Normal University

793 [Zhao ()] ‘Guo-qiu Quantum mechanical description and ontological basis of wave function in dual 4-dimensiona
794 1 Space-Time’. Zhao . *Modern Physics Journal* 2014. 05 (16) p. 51066.

795 [Zhao ()] ‘Meaning of the Wave Function and the Origin of Probability in Quantum Mechanics’. Guo-Qiu Zhao
796 . *International Journal of Quantum Foundations* 2019. 1 p. .

797 [Collaboration ()] ‘Order of magnitude smaller limit on the electric dipole moment of the electron’. A Collabo
798 ration . *Science* 2014. 343 p. .

799 [Jammer ()] *Philosophy of Quantum Mechanics. the interpretations of quantum mechanics in historical perspec
800 tive*, M Jammer . 1974. Wiley.

801 [Landau and Peierls ()] ‘Quantum electrodynamics in configuration space’. L Landau , R Peierls . *Zeit. f. Phys*
802 1930. 62 p. .

803 [Zhang ()] *Quantum Free-talk*, Y Zhang . 2016. Tsinghua University Press.

804 [Zhao ()] ‘Quantum Mechanics description of dual 4-Dimensional Space’. Guo-Qiu Zhao . *Time. Modern Physics*
805 2013. 8 p. 150.

806 [Lewis ()] *Quantum ontology: A guide to the metaphysics of quantum mechanics*, P J Lewis . 2016. Oxford
807 University Press.

808 [Zhou ()] ‘Quantum twisted double-slits experiments: confirming wavefunctions’ physical reality’. Z.-Y Zhou .
809 10.1016/j.scib.2017.08.024. <https://doi.org/10.1016/j.scib.2017.08.024> *London Journal of Research in Science: Natural and Formal Review of Fundamentals of Covariant Quantum Mechanics in the Dual 4-Dimensional Space-Time? Substance of Wave Function, the Origin of Quantum Probability and the Cause of Quantum Superposition State*, 2017. 19. 62 p. .

813 [Penrose ()] *The road to reality*, R Penrose . 2006. (Random house)

814 [Smolin ()] *The trouble with physics: the rise of string theory, the fall of a science, and what comes next*, L
815 Smolin . 2007. HMH.

816 [Wigner (1959)] ‘The unreasonable effectiveness of mathematics in the natural sciences. Richard Courant lecture
817 in mathematical sciences delivered at New York University’. E Wigner . *Communications on Pure and Applied
818 Mathematics* May 11, 1959. 1960. 13 (2) p. .

819 [Yukawa ()] *Theory of Elementary Particles Extended in Space-time*, H Yukawa . 1979. Kyoto University

820 [Minev ()] ‘To catch and reverse a quantum jump mid-flight’. Z K Minev . *Nature* 2019. 570 p. .

821 [Li et al. ()] ‘Wigner functions for Klein-Gordon oscillators in noncommutative space’. K Li , J Wang , S Dulat
822 , K Ma . *International Journal of Theoretical Physics* 2010. 49 p. .

823 [Zhao ()] Guo-Qiu Zhao . *Quantum Mechanics Foundation in Dual 4-Dimensional Space-Time-Space-Time
824 Origins of Quantum Probability*, 2016. Scientific Research Publishing.