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Abstract5

This work demonstrates certain standard fixed point theorems on complex-valued fuzzy metric6

spaces. We show certain fixed point findings in the situation of complex-valued fuzzy metric7

spaces, inspired by Singh et al. [25].To begin, we extend some well-known existing conclusions8

from metric spaces to complex-valued fuzzy metric spaces and then prove them in the9

complex-valued complete fuzzy metric space context. We provide an example that supports10

our main result and supports our hypotheses.11

12

Index terms—13

1 I. INTRODUCTION14

In 1965, Zadeh [3] coined the term ”fuzzy set.” Following that, a slew of authors worked on fuzzy sets, expanding15
the fuzzy set theory and its applications [4][5][6]. The idea of fuzzy metric spaces was given by Kramosil and16
Michalik [7]. After then, George and Veeramani [9] updated this idea. Grabiec [8] investigated fuzzy metric space17
fixed-point theory. The idea of complex-valued metric spaces was introduced by Azam et al. [21].18

Verma et al. [23] recently established ’Max’ functions and the partial order relation’for complex numbers, and19
used properties (E-A) and CLRg to prove fixed point theorems in complex valued metric space. ??ingh et al.20
[25] were the first to present the concept of complex-valued fuzzy metric spaces and to create the complex-valued21
fuzzy version of some metric space results.22

The goal of this study is to expand well-known metric-space results to complex-valued fuzzy metric spaces and23
then prove them in complex-valued complete fuzzy metric spaces.24

2 II. PRELIMINARIES25

Def.2.1. [21]. Let ? be the set of complex numbers and ? 1 , ? 2 ? ?, where ? = ? + ??. Then a partial order26
relation ’? ’ on ? is defined as follows:? 1 ? ? 2 â??” ??(? 1 ) ? ??(? 2 ) and ??(? 1 ) ? ??(? 2 )27

Hence ? 1 ? ? 2 if one of the following satisfies;28
London Journal of Research in Science: Natural and Formal (PO1) ??(? 1 ) = ??(? 2 ) and ??(? 1 ) = ??(? 229

) (PO2) ??(? 1 ) < ??(? 2 ) and ??(? 1 ) = ??(? 2 ) (PO3) ??(? 1 ) = ??(? 2 ) and ??(? 1 ) < ??(? 2 ) (PO4)30
??(? 1 ) < ??(? 2 ) and ??(? 1 ) < ??(? 2 )31

In particular, ? 1 ? ? 2 if ? 1 ? ? 2 and one of (PO2), (PO3), and (PO4) is satisfied, and we write ? 1 ? ? 232
if only (PO4) is satisfied.33

It can be noted that;0 ? ? 1 ? ? 2 ? |? 1 | < |? 2 |, ? 1 ? ? 2 , ? 2 ? ? 3 ? ? 1 ? ? 3 . Def.2.2.[21].34
Complex-Valued Metric Space (CVMS)35

Let ? be a non-empty set. Assume that the mappings ?: ? × ? ? ? satisfies: (CV1) 0 ? ?(?, ?), for all ?, ? ?36
? and ?(?, ?) = 0 iff ? = ? ;37

(CV2) ?(?, ?) = ?(?, ?), for all ?, ? ? ? ;38
(CV3) ?(?, ?) ? ?(?, ?) + ?(?, ?), for all ?, ?, ? ? ? Then ? is called a complex-valued metric on ?, and (?, ?)39

is called a CVMS. Def.2.3. [23]. The ’max’ function with partial order relation ’?’ is defined as(1) ??? {? 1 , ?40
2 } = ? 2 â??” ? 1 ? ? 2 (2) ? 1 ? ??? {? 2 , ? 3 } ? ? 1 ? ? 2 or ? 1 ? ? 341

And the ’min’ functions can be defined as(1) ??? {? 1 , ? 2 } = ? 1 â??” ? 1 ? ? 2 (2) ??? {? 1 , ? 2 } ? ? 342
? ? 1 ? ? 3 or ? 2 ? ? 3 .43

Following Zadeh’s [3] contribution to fuzzy set theory, a number of scholars [4][5][6] contributed to the field’s44
basics and core theories.45
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4 III. MAIN RESULTS

Buckley [10] was the first to present the concept of fuzzy complex numbers. Other authors were inspired by46
Buckley’s work and continued their research on fuzzy complex numbers. Ramot et al. [1] expanded fuzzy sets to47
complex fuzzy sets in this chain.48

3 Singh et al. [25], inspired by Ramot et al. [1,49

] constructed complex-valued fuzzy metric spaces using continuous t -norms, defined a Hausdorff topology on50
complex -valued fuzzy metric space, and gave the concept of Cauchy sequences in CVFMS.51

We establish certain fixed-point conclusions in the situation of complex -valued fuzzy metric spaces, inspired52
by ??ingh et al. [25]. We begin by extending several well-known metric-space results to complex-valued fuzzy53
metric spaces, and then we prove those results in the setting of CVFMS. Def.2.4. [1]. The complex fuzzy set ?54
is given by ? = {(?, ? ? (?)) ? ? ? ?}.55

Where ? is a universe of discourse, ? ? (?) is a membership function and defined as ? ? (?) = ? ? (?). ? ??56
? (?) The triplet (?, ?, * ) is said to be CVFMS if a complex valued fuzzy set ? ? ? × ? × (0, ?) ? ? ? ? ??57
(where ? ? ?, * is a complex valued continuous t-norm) fulfil the following criteria: and ? > 0. Let ?: ? ? ? be58
a mapping that satisfies ?(??, ??, ??) ? ?(?, ?, ?), ? ? ? (0, 1). Then ? has a fixed point that is unique.59

Fisher [24] established the following theorem in complete metric space for three mappings.60
Theorem A [24]. Let S and T be continuous mappings of a complete metric space (X, d) into themselves.61

Then S and T have a common fixed point in X iff a continuous mapping A of X into S(X) ?T(X) exists, which62
commutes with S and T and satisfies;63

?(??, ??) ? ? ?(??, ??) for all ?, ? ? ? and 0 < ? < 1. Indeed ?, ? and ? have a unique common fixed point.64
We can now extend the preceding theorem/result to complex-valued complete fuzzy metric space as follows:65
Theorem -3.1. Let (?, ?, * ) be a complex-valued complete fuzzy metric space (CVCFMS). ? and ? are66

continuous mappings from ? to ?. If ? is a continuous mapping from ? to ?(?) ? ?(?), it commutes with ? and67
?, and if detailed maps satisfy the following contractive condition.68

?(??, ??, ??) ? ???{ ?(??, ??, ?), ?(??, ??, ?), ?(??, ??, ?)} for all ?, ? ? ?, ? ? (0, ?) and 0 < ? < 1 ? (3.11)69
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Additionally, lim ??? ?(?, ?, ?) = ? ?? , for all ?, ? ? ? and ? ? [0, Then ?, ?, and ? have a unique common71
fixed point.72

Proof: ?? ? is a Cauchy sequence?73
Since ? is a continuous mapping from ? to ?(?) ? ?(?) so for ? 1 ? ?, there exists any ? 0 ? ? such that ?? 074

= ?? 1 and ?? 0 = ?? 175
On keep repeating this process for different ? 1 and ? 0 , we get a sequence {? ? } such that In general, we76

get ?(?? ?+1 , ?? ?+2 , ??) ? ?(?? ? , ?? ?+1 , ?), ? ? > 0 ? (???)??77
Hence by lemma (4.2), {?? ? } is a Cauchy sequence in ?.78
Since the space ? is complete, so there exists some ? ? ? such that lim The mappings ? and ? are continuous.79

? is continuous from ? to ?(?) ? ?(?).80
Clearly, ?(?) ? ?(?) and ?(?) ? ?(?)81
This implies that ?(?) ? ?(?) ? ?(?). 1
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Def.2.5. [25]. Complex Valued Continuous t-norm
A binary operation * ? ? 2 ], is
called complex valued continuous t-norm if it satisfies the following conditions:
(1) * is associative and commutative,
(2) * is continuous,
(3) ? 2 ].
(iii) ? * ? = { min{?, ?}

, ?ð�??”
max{?, ?}
= ? ?? ; 0,
?????????,

for a fix ? ? [0, ?
2

].

? ? [0, 1]. Ex.2.5. [25]. The following binary operations defined in (i), (ii) and (iii)
are complex valued continuous t-norm (i) ? * ? = ??? (?, ?). (ii) ? * ? = ??? (? +
? -? ?? , 0), for a fix ? ? [0, Def.2.6. [25]. Complex Valued Fuzzy Metric Spaces
(CVFMS)

Figure 4:

Lemma 2.7 [25]. Let (?, ?, * ) be a CVFMS such that lim ??? ?(?, ?, ?) = ? ?? , for all ?, ? ?
?, if ?(?, ?, ??) ? ?(?, ?, ?), for all ?, ? ? ?, 0 < ? < 1, ? ? (0, ?) then ? = ?.
Lemma 2.8 [25]. Let {? ? } be a sequence in a CVFMS (?, ?, * ) with lim ??? ?(?,

?,
?)
=
?
??
,

for all ?, ? ? ?. If there exists a number ? which lies on (0, 1)such that
?(? ?+1 , ? ?+2 , ??) ? ?(? ? , ? ?+1 , ?), ? ? > 0, ? = 0, 1, 2, . .. Then {? ? } is a Cauchy
sequence in ?.

The following theorem was established bySingh et al. [25], which is the resetting of
the Banach contraction principle in CVFMS. Theorem 2.7 [25]. Let (?, ?, * ) be a
CVFMS such that lim ??? ?(?, ?, ?) = ? ?? , ? ?, ? ? ?,

Figure 5:
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