

CrossRef DOI of original article:

1 Scan to know paper details and author's profile

2

3 Received: 1 January 1970 Accepted: 1 January 1970 Published: 1 January 1970

4

5 **Abstract**

6 This work demonstrates certain standard fixed point theorems on complex-valued fuzzy metric
 7 spaces. We show certain fixed point findings in the situation of complex-valued fuzzy metric
 8 spaces, inspired by Singh et al. [25]. To begin, we extend some well-known existing conclusions
 9 from metric spaces to complex-valued fuzzy metric spaces and then prove them in the
 10 complex-valued complete fuzzy metric space context. We provide an example that supports
 11 our main result and supports our hypotheses.

12

13 **Index terms—**

14 **1 I. INTRODUCTION**

15 In 1965, Zadeh [3] coined the term "fuzzy set." Following that, a slew of authors worked on fuzzy sets, expanding
 16 the fuzzy set theory and its applications [4][5][6]. The idea of fuzzy metric spaces was given by Kramosil and
 17 Michalik [7]. After then, George and Veeramani [9] updated this idea. Grabiec [8] investigated fuzzy metric space
 18 fixed-point theory. The idea of complex-valued metric spaces was introduced by Azam et al. [21].

19 Verma et al. [23] recently established 'Max' functions and the partial order relation' for complex numbers, and
 20 used properties (E-A) and CLRg to prove fixed point theorems in complex valued metric space. ??ingh et al.
 21 [25] were the first to present the concept of complex-valued fuzzy metric spaces and to create the complex-valued
 22 fuzzy version of some metric space results.

23 The goal of this study is to expand well-known metric-space results to complex-valued fuzzy metric spaces and
 24 then prove them in complex-valued complete fuzzy metric spaces.

25 **2 II. PRELIMINARIES**

26 Def.2.1. [21]. Let \mathbb{C} be the set of complex numbers and \mathbb{C}^2 , where $\mathbb{C}^2 = \mathbb{C} \times \mathbb{C}$. Then a partial order
 27 relation ' \leq ' on \mathbb{C}^2 is defined as follows: $(z_1, z_2) \leq (w_1, w_2)$ if and only if $z_1 \leq w_1$ and $z_2 \leq w_2$.

28 Hence $(z_1, z_2) \leq (w_1, w_2)$ if one of the following satisfies;

29 London Journal of Research in Science: Natural and Formal (PO1) $\leq(z_1, z_2) = \leq(z_2, z_1)$ and $\leq(z_1, z_2) = \leq(z_2, z_1)$
 30 (PO2) $\leq(z_1, z_2) < \leq(z_2, z_1)$ and $\leq(z_1, z_2) = \leq(z_2, z_1)$ (PO3) $\leq(z_1, z_2) = \leq(z_2, z_1)$ and $\leq(z_1, z_2) < \leq(z_2, z_1)$ (PO4)
 31 $\leq(z_1, z_2) < \leq(z_2, z_1)$ and $\leq(z_1, z_2) < \leq(z_1, z_2)$

32 In particular, $(z_1, z_2) \leq (w_1, w_2)$ if $(z_1, z_2) \leq (w_1, w_2)$ and one of (PO2), (PO3), and (PO4) is satisfied, and we write $(z_1, z_2) \leq (w_1, w_2)$
 33 if only (PO4) is satisfied.

34 It can be noted that; $0 \leq z_1 \leq z_2 \leq w_1 \leq w_2$ if and only if $|z_1| \leq |z_2| \leq |w_1| \leq |w_2|$. Def.2.2.[21].
 35 Complex-Valued Metric Space (CVMS)

36 Let \mathbb{C} be a non-empty set. Assume that the mappings $\mathbb{C} \times \mathbb{C} \rightarrow \mathbb{C}$ satisfies: (CV1) $0 \leq (z, z)$, for all $z \in \mathbb{C}$
 37 and $\leq(z, z) = 0$ iff $z = z$;

38 (CV2) $\leq(z, w) = \leq(w, z)$, for all $z, w \in \mathbb{C}$;

39 (CV3) $\leq(z, w) + \leq(w, x) \leq(z, x)$, for all $z, w, x \in \mathbb{C}$. Then \leq is called a complex-valued metric on \mathbb{C} , and (\mathbb{C}, \leq)
 40 is called a CVMS. Def.2.3. [23]. The 'max' function with partial order relation ' \leq ' is defined as(1) $\leq(z_1, z_2) = z_1 \leq z_2$
 41 $\leq(z_1, z_2) = z_2 \leq z_1$ if $z_1 \neq z_2$ and (2) $\leq(z_1, z_2) = z_1$ if $z_1 = z_2$

42 And the 'min' functions can be defined as(1) $\leq(z_1, z_2) = z_1$ if $z_1 \neq z_2$ and (2) $\leq(z_1, z_2) = z_1$ if $z_1 = z_2$

43 $\leq(z_1, z_2) = z_2$ if $z_1 \neq z_2$.

44 Following Zadeh's [3] contribution to fuzzy set theory, a number of scholars [4][5][6] contributed to the field's
 45 basics and core theories.

4 III. MAIN RESULTS

46 Buckley [10] was the first to present the concept of fuzzy complex numbers. Other authors were inspired by
 47 Buckley's work and continued their research on fuzzy complex numbers. Ramot et al. [1] expanded fuzzy sets to
 48 complex fuzzy sets in this chain.

3 Singh et al. [25], inspired by Ramot et al. [1,

50] constructed complex-valued fuzzy metric spaces using continuous t -norms, defined a Hausdorff topology on
 51 complex-valued fuzzy metric space, and gave the concept of Cauchy sequences in CVFMS.

52 We establish certain fixed-point conclusions in the situation of complex -valued fuzzy metric spaces, inspired
 53 by ??ingh et al. [25]. We begin by extending several well-known metric-space results to complex-valued fuzzy
 54 metric spaces, and then we prove those results in the setting of CVFMS. Def.2.4. [1]. The complex fuzzy set ?
 55 is given by $\{?, ?, ?, ?\} = \{(?, ?, ?, ?)\}$.

56 Where \mathcal{U} is a universe of discourse, \mathcal{M} (\mathcal{M}) is a membership function and defined as \mathcal{M} (\mathcal{M}) = \mathcal{M} (\mathcal{M}).
 57 \mathcal{M} (\mathcal{M}) The triplet $(\mathcal{U}, \mathcal{M}, \ast)$ is said to be CVFMS if a complex valued fuzzy set \mathcal{M} (\mathcal{M}) $\times \mathcal{M}$ (\mathcal{M}) $\times (0, 1)$ fulfils the following criteria: and $\ast > 0$. Let \ast be
 58 a mapping that satisfies $\ast(\mathcal{M}_1, \mathcal{M}_2, \mathcal{M}_3) = \mathcal{M}_1 \ast \mathcal{M}_2 \ast \mathcal{M}_3$ and $\mathcal{M} \ast 1 = \mathcal{M}$.
 59 Then \mathcal{M} has a fixed point that is unique.

⁶⁰ Fisher [24] established the following theorem in complete metric space for three mappings.

61 Theorem A [24]. Let S and T be continuous mappings of a complete metric space (X, d) into themselves.
 62 Then S and T have a common fixed point in X iff a continuous mapping A of X into $S(X) \cap T(X)$ exists, which
 63 commutes with S and T and satisfies;

⁶⁴ $(?, ?, ?) \mapsto (0, ?, ?)$ for all $?, ?, ?$ and $0 < ? < 1$. Indeed $?, ?, ?$ have a unique common fixed point.

65 We can now extend the preceding theorem/result to complex-valued complete fuzzy metric space as follows:
 66 Theorem -3.1. Let $(?, ?, *)$ be a complex-valued complete fuzzy metric space (CVCFMS). $?$ and $?$ are

continuous mappings from \mathcal{X} to \mathcal{Y} . If ϕ is a continuous mapping from \mathcal{X} to $\mathcal{Y}(\mathcal{X})$, it commutes with ψ and ϕ , and if detailed maps satisfy the following contractive condition.

70 4 III. MAIN RESULTS

⁷¹ Additionally, $\lim_{n \rightarrow \infty} f^n(x) = x$ for all $x \in [0, 1]$. Then x and y have a unique common fixed point.

73 Proof: ?? ? is a Cauchy sequence?

74 Since φ is a continuous mapping from \mathbb{R} to $\mathbb{R}(\mathbb{R})$? $\varphi(\mathbb{R})$ so for $\mathbb{R} \in \mathbb{R}$, there exists any $\mathbb{R} \in \mathbb{R}$ such that $\mathbb{R} \circ \mathbb{R} = \mathbb{R}$
 75 $\mathbb{R} = \mathbb{R} \circ \mathbb{R}$ and $\mathbb{R} \circ \mathbb{R} = \mathbb{R}$

76 On keep repeating this process for different α_1 and α_0 , we get a sequence $\{\alpha_n\}$ such that In general, we
 77 get $\alpha_n(\alpha_1 + 1, \alpha_0 + 2, \dots) > \alpha_{n-1}(\alpha_1 + 1, \alpha_0 + 2, \dots) > \dots > 0$ $\alpha_0(\alpha_1 + 1, \alpha_0 + 2, \dots)$

78 Hence by lemma (4.2), $\{\dots\}$ is a Cauchy sequence in \mathbb{R} .

79 Since the space \mathcal{X} is complete, so there exists some $\{x_n\}$ such that $\lim_n x_n = x$. The mappings φ and ψ are continuous.
80 φ is continuous from \mathcal{X} to $\varphi(\mathcal{X})$ and ψ is continuous from $\varphi(\mathcal{X})$ to $\psi(\varphi(\mathcal{X}))$.

81 Clearly, $\{(\cdot)\} \neq \{(\cdot)\}$ and $\{(\cdot)\} \neq \{(\cdot)\}$

This implies that $\mathbf{?}(?) \mathbf{?} \mathbf{?}(?) \mathbf{?} \mathbf{?}(?)$. 1

Figure 1: (

¹ Volume 23 | Issue 2 | Compilation 1.0 © 2023 Great Britain Journal Press

Figure 2:

2123323331321

Figure 3: 2] 1 2 2]. 3 ? 3 + 2 ; 3 < 3 2? 3 + 1 ; 3 < ? ? 21 And

Def.2.5. [25]. Complex Valued Continuous t-norm

A binary operation $*$? ? 2], is

called complex valued continuous t-norm if it satisfies the following conditions:

- (1) $*$ is associative and commutative,
- (2) $*$ is continuous,
- (3) ? 2
- (iii) ? \ast ? = {

? ? [0, 1]. Ex.2.5. [25]. The following binary operations defined in (i), (ii) and (iii) are complex valued continuous t-norm (i) $\hat{*}$? = ??? (? , ?). (ii) $\hat{*}$? = ??? (? + ? - ? ?? , 0), for a fix ? ? [0, 1]. Def.2.6. [25]. Complex Valued Fuzzy Metric Spaces (CVFMS)

Figure 4:

Lemma 2.7 [25]. Let $(?, ?, *)$ be a CVFMS such that $\lim_{n \rightarrow \infty} ?(?, ?, ?) = ?$ $\forall ?, ?, ?, ?$, if $?(?, ?, ?) \leq ?(?, ?, ?)$, for all $? \in [0, 1]$, $?(0, ?) = ?$.

Lemma 2.8 [25]. Let $\{\mathcal{F}_n\}_{n=1}^{\infty}$ be a sequence in a CVFMS $(\mathcal{X}, \mathcal{Y}, \ast)$ with $\lim_{n \rightarrow \infty} \mathcal{F}_n = \mathcal{F}$.

?,
?)
=
?
??

for all $\epsilon > 0$. If there exists a number $\delta > 0$ such that $|x_n - x_m| < \delta$ whenever $|n - m| > 0$, then $\{x_n\}$ is a Cauchy sequence in \mathbb{R} .

The following theorem was established by Singh et al. [25], which is the resetting of the Banach contraction principle in CVFMS. Theorem 2.7 [25]. Let $(?, ?, *)$ be a CVFMS such that $\lim ??? ?(?, ?, ?) = ? ?? , ? ?, ? ? ?,$

Figure 5:

83 [Ramot et al. ()] , D Ramot , R Milo , M Friedman , A Kandel . *IEEE Transactions of Fuzzy Systems* 2002. 10
84 (2) p. .

85 [Singh et al. ()] ‘A novel framework of complex-valued fuzzy metric spaces and fixed-point theorems’. D Singh ,
86 V Joshi , M Imdad , P Kumam . *Journal of Intelligent and fuzzy system* 2016. 30 p. .

87 [Azam et al. ()] ‘Common fixed point theorems in complex valued metric spaces’. A Azam , B Fisher , M Khan
88 . *Numerical Functional Analysis and Optimization* 2011. Results on Complex Valued Complete Fuzzy Metric
89 Spaces. 32 (3) p. .

90 [Verma and Pathak ()] ‘Common fixed point theorems using property (E.A) in complex-valued metric spaces’.
91 R K Verma , H K Pathak . *Thai Journal of Mathematics* 2013. 11 (2) p. .

92 [Jungck ()] ‘Commuting maps and fixed points’. G Jungck . *Amer Math Monthly* 1976. 83 p. .

93 [Grabiec ()] ‘Fixed points in fuzzy metric spaces’. M Grabiec . *Fuzzy Sets and System* 1988. 27 p. .

94 [Buckley ()] *Fuzzy complex analysis I: Differentiation, Fuzzy Sets System*, J J Buckley . 1991. 41 p. .

95 [Buckley ()] ‘Fuzzy complex analysis II: Integration’. J J Buckley . *Fuzzy Sets System* 1992. 49 p. .

96 [Buckley ()] ‘Fuzzy complex numbers’. J J Buckley . *Proc ISFK*, (ISFKGuangzhou, China) 1987. 597.

97 [Buckley ()] ‘Fuzzy complex numbers’. J J Buckley . *Fuzzy Sets System* 1989. 33 p. .

98 [Klir et al. ()] ‘Fuzzy logic systems for engineering: A tutorial’. G J Klir , B Yuan , J M Mendel . *Fuzzy Sets and*
99 *Fuzzy Logic: Theory and Applications*, (NJ) 1995. 1995. Prentice-Hall. 83 p. .

100 [Kandel ()] *Fuzzy Mathematical Techniques and Applications*, A Kandel . 1986. Reading, MA: Addison-Wesley.

101 [Kramosil and Michalek ()] ‘Fuzzy metric and statistical metric spaces’. I Kramosil , J Michalek . *Kybernetica*
102 1975. 11 p. .

103 [Zadeh ()] ‘Fuzzy sets’. L A Zadeh . *Inform Control* 1965. 8 p. .

104 [Issue 2 | Compilation 1.0 Results on Complex Valued Complete Fuzzy Metric Spaces London Journal of Research in Science: Na
105 ‘Issue 2 | Compilation 1.0 Results on Complex Valued Complete Fuzzy Metric Spaces’. *London Journal of*
106 *Research in Science: Natural and Formal* 15 p. 63.

107 [Fisher ()] ‘Mapping with a common fixed point’. B Fisher . *Math. Sem. Notes Kobe Univ* 1979. 7 p. .

108 [Qiu and Shu ()] ‘Notes on a?AIJOn the restudy of fuzzy ?complex analysis: Part I and part IIa?A? ?I’. D Qiu ,
109 L Shu . *Fuzzy Sets System* 2008. 159 p. .

110 [Qiu et al. ()] ‘Notes on fuzzy complex analysis’. D Qiu , L Shu , Z Wen Mo . *Fuzzy Sets System* 2009. 160 p. .

111 [George and Veeramani] ‘On some results in fuzzy metric spaces’. A George , P Veeramani . *Fuzzy Sets System*
112 64 p. .

113 [Qiu et al. ()] ‘On the restudy of fuzzy complex analysis: Part I. The sequence and series of fuzzy complex
114 numbers and their convergences’. J Qiu , C Wu , F Li . *Fuzzy Sets System* 2000. 115 p. .

115 [Qiu et al. ()] ‘On the restudy of fuzzy complex analysis: Part II. The continuity and differentiation of fuzzy
116 complex functions’. J Qiu , C Wu , F Li . *Fuzzy Sets System* 2001. 120 p. .

117 [Sethi et al. ()] ‘Probabilistic interpretation of complex fuzzy set’. N Sethi , S K Das , D C Panda . *IJCSEIT*
118 2012. 2 (2) p. .

119 [F ()] ‘Rouz ar an M. Im a , Some common ixe point t eorems on comp ex-va ue metric spaces’. F . *Computer*
120 *and Mathematics with Applications* 1012. 64 p. .

121 [Ousmane and Wu ()] ‘Semi-continuity of complex fuzzy function’. M Ousmane , C Wu . *Tsinghua Science and*
122 *Technology* 2003. 8 p. .

123 [Wu and Qiu ()] ‘Some remarks on fuzzy complex analysis’. C Wu , J Qiu . *Fuzzy Sets System* 1999. 106 p. .