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s Abstract

¢ This work demonstrates certain standard fixed point theorems on complex-valued fuzzy metric
7 spaces. We show certain fixed point findings in the situation of complex-valued fuzzy metric

s spaces, inspired by Singh et al. [25].To begin, we extend some well-known existing conclusions
o from metric spaces to complex-valued fuzzy metric spaces and then prove them in the

10 complex-valued complete fuzzy metric space context. We provide an example that supports

11 our main result and supports our hypotheses.

12

13 Index terms—

w 1 1. INTRODUCTION

15 In 1965, Zadeh [3] coined the term "fuzzy set.” Following that, a slew of authors worked on fuzzy sets, expanding
16 the fuzzy set theory and its applications [4][5][6]. The idea of fuzzy metric spaces was given by Kramosil and
17 Michalik [7]. After then, George and Veeramani [9] updated this idea. Grabiec [8] investigated fuzzy metric space
18 fixed-point theory. The idea of complex-valued metric spaces was introduced by Azam et al. [21].

19 Verma et al. [23] recently established "Max’ functions and the partial order relation’for complex numbers, and
20 used properties (E-A) and CLRg to prove fixed point theorems in complex valued metric space. ??ingh et al.
21 [25] were the first to present the concept of complex-valued fuzzy metric spaces and to create the complex-valued
22 fuzzy version of some metric space results.

23 The goal of this study is to expand well-known metric-space results to complex-valued fuzzy metric spaces and
24 then prove them in complex-valued complete fuzzy metric spaces.

» 2 II. PRELIMINARIES

26 Def.2.1. [21]. Let ? be the set of complex numbers and ? 1,7 2 7? ?, where ? = 7 + ?7. Then a partial order
27 relation ’? 7 on 7 is defined as follows:? 17 7 24?77 ?7(? 1) 7 ?2(? 2)and ?7?2(? 1) 7 72(? 2)

28 Hence 7 1 7 7 2 if one of the following satisfies;

29 London Journal of Research in Science: Natural and Formal (PO1) ??7(? 1) =7?(? 2 )and 77(? 1) = 7?7 (7 2
0 ) (PO2) 72(7 1) < 22(7 2 ) and 22(2 1) = 22(2 2 ) (PO3) 22(2 1) = 22(? 2 ) and 22(? 1) < 72(2 2 ) (PO4)
s 722 1) < ?2(?2)and 72(? 1) < 72(7 2)

32 In particular, ? 1?7 7 2if ? 1 ? 7 2 and one of (PO2), (PO3), and (PO4) is satisfied, and we write 7 1 7 ? 2
33 if only (PO4) is satisfied.

34 It can be noted that;0? ? 172 72 27 |27 1| < |?2]|,21772,?2277377177 3. Def2.2[21].
35 Complex-Valued Metric Space (CVMS)

36 Let ? be a non-empty set. Assume that the mappings 7: 7 x ? 7 ? satisfies: (CV1) 07?7 ?(?,7), forall 7,7 7
3w Tand 7(?,7) =0iff ? =7 ;

38 (Cv2) ?7(?,7) =2(7,7), forall 72,7 7 7,

39 (CV3) ?2(2, ) 72 2(2,7) +72(?,7), forall 7, 7,7 ? 7 Then ? is called a complex-valued metric on 7, and (?, ?7)
a0 is called a CVMS. Def.2.3. [23]. The 'max’ function with partial order relation ’?’ is defined as(1) 7?77 {? 1,7
4 2} =724ar77?1772(2)?1777{?72,73}771?2?220r?1773

a2 And the 'min’ functions can be defined as(1) ??? {7 1,72} =7 147?777 1772 (2)?7?7 {?1,72}773
43 7717730r72773.

44 Following Zadeh’s [3] contribution to fuzzy set theory, a number of scholars [4][5][6] contributed to the field’s
45 basics and core theories.
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4 III. MAIN RESULTS

Buckley [10] was the first to present the concept of fuzzy complex numbers. Other authors were inspired by
Buckley’s work and continued their research on fuzzy complex numbers. Ramot et al. [1] expanded fuzzy sets to
complex fuzzy sets in this chain.

3 Singh et al. [25], inspired by Ramot et al. [1,

] constructed complex-valued fuzzy metric spaces using continuous t -norms, defined a Hausdorff topology on
complex -valued fuzzy metric space, and gave the concept of Cauchy sequences in CVFMS.

We establish certain fixed-point conclusions in the situation of complex -valued fuzzy metric spaces, inspired
by ??ingh et al. [25]. We begin by extending several well-known metric-space results to complex-valued fuzzy
metric spaces, and then we prove those results in the setting of CVFMS. Def.2.4. [1]. The complex fuzzy set ?

Where 7 is a universe of discourse, ? 7 (7) is a membership function and defined as ? 7 (?) =7 7 (7). ? 77
? (?) The triplet (?, 7, * ) is said to be CVFMS if a complex valued fuzzy set ? 7 7 x ? x (0,7) ? 7 7 7 7?7
(where ? 7 7, * is a complex valued continuous t-norm) fulfil the following criteria: and ? > 0. Let ?: 7 ? 7 be
a mapping that satisfies 7(77, 77, 77) 7 ?2(?,7?7,7),7 7 7 (0, 1). Then ? has a fixed point that is unique.

Fisher [24] established the following theorem in complete metric space for three mappings.

Theorem A [24]. Let S and T be continuous mappings of a complete metric space (X, d) into themselves.
Then S and T have a common fixed point in X iff a continuous mapping A of X into S(X) ?T(X) exists, which
commutes with S and T and satisfies;

2(77,77) 772?77, 7?7) forall 7,7 ? 7 and 0 < 7 < 1. Indeed ?, ? and ? have a unique common fixed point.

We can now extend the preceding theorem/result to complex-valued complete fuzzy metric space as follows:

Theorem -3.1. Let (?, 7, * ) be a complex-valued complete fuzzy metric space (CVCFMS). ? and ? are
continuous mappings from ? to 7. If ? is a continuous mapping from ? to ?(?) 7 ?(?), it commutes with ? and
?, and if detailed maps satisfy the following contractive condition.

277, 72,07) 7 0L (27, 72, ), 2(P, 70, 7), 2(?0, 77, )} forall?, 777,77 (0,7) and 0 <? <17 (3.11)

4 TIII. MAIN RESULTS
Additionally, lim ??? ?(?,7,?) =7 ?? ,forall?,? 7 ? and ? 7 [0, Then 7, ?, and 7 have a unique common
fixed point.

Proof: 7?7 ? is a Cauchy sequence?

Since ? is a continuous mapping from ? to 7(?) ? ?(?) so for ? 1 7 ?, there exists any ? 0 ? ? such that ?? 0
=771and??70=771

On keep repeating this process for different ? 1 and ? 0, we get a sequence {? 7 } such that In general, we
get 7(?77 741,77 742, 77) (77,741, 7),7 7 >07 (777)77

Hence by lemma (4.2), {77 ? } is a Cauchy sequence in ?.

Since the space ? is complete, so there exists some ? ? 7 such that lim The mappings ? and ? are continuous.
? is continuous from ? to 7(?) 7 7(?).

Clearly, 7(?) 7 ?(?) and 7(?) 7 ?(?)

This implies that ?(?) ? 2(?) ? 2(?).

Figure 1: (
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Figure 3: 2]122].373+4+2;3<32?73+1;3<7721And



Def.2.5. [25]. Complex Valued Continuous t-norm

A binary operation * 7 7 2], is

called complex valued continuous t-norm if it satisfies the following conditions:
(1) * is associative and commutative,

(2) * is continuous,
(3)72 ].
(iii) ? * 7 ={ min{?, 7} forafix? ?7[0, ?7 |
: 70777
max{?, 7}
=7 77,0,
279927977

......... 5

7?0, 1]. Ex.2.5. [25]. The following binary operations defined in (i), (ii) and (iii)
are complex valued continuous t-norm (i) 7 * 7 =777 (7, 7). (ii)) ? * 7?7 =777 (? +
? =777 ,0), for afix 7 7 [0, Def.2.6. [25]. Complex Valued Fuzzy Metric Spaces
(CVFMS)

Figure 4:

Lemma 2.7 [25]. Let (7, 7, * ) be a CVFMS such that lim 777 207 =777 forall?, 77
7oA (7, 0,07 72,0, 7)), forall?,? 7 ?,0<? <1,?77(0,7) then? = 7.
Lemma 2.8 [25]. Let {7 ? } be a sequence in a CVFMS (7, 7, * ) with lim 77?7  ?(?,

7

7)

?

77

for all 7, 7 7 7. If there exists a number 7 which lies on (0, 1)such that
27 741,77 742,77) 72272741 ,7),22>0,7=0,1,2, ... Then {? ? } is a Cauchy
sequence in 7.

The following theorem was established bySingh et al. [25], which is the resetting of
the Banach contraction principle in CVFMS. Theorem 2.7 [25]. Let (7, 7, * ) be a
CVFMS such that lim 777 2(?,2,?7) =727 77 ;27,77 7,

Figure 5:
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