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l. INTRODUCTION

In 1965, Zadeh [3] coined the term "fuzzy set." Following that, a slew of authors worked on
fuzzy sets, expanding the fuzzy set theory and its applications [4-6]. The idea of fuzzy
metric spaces was given by Kramosil and Michalik [7]. After then, George and Veeramani
[9] updated this idea. Grabiec [8] investigated fuzzy metric space fixed-point theory. The
idea of complex-valued metric spaces was introduced by Azam et al. [21].

Verma et al. [23] recently established 'Max' functions and the partial order relation'for
complex numbers, and used properties (E-A) and CLRg to prove fixed point theorems in
complex valued metric space. Singh et al. [25] were the first to present the concept of
complex-valued fuzzy metric spaces and to create the complex-valued fuzzy version of some
metric space results.
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The goal of this study is to expand well-known metric-space results to complex-valued fuzzy
metric spaces and then prove them in complex-valued complete fuzzy metric spaces.

Il PRELIMINARIES

Def.2.1.[21]. Let C be the set of complex numbers and 14,1, € C, wheren = u + iv. Then
a partial order relation ‘< ‘ on C is defined as follows:

N1 S N2 © Re(ny) < Re(n,) and Im(n,) < Im(n,)

Hence 1, < 1, if one of the following satisfies;
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(PO1) Re(n1) = Re(nz) and Im(ny) = Im(ny)
(PO2) Re(n1) < Re(nz) and Im(n,) = Im(ny)
(PO3) Re(n,) = Re(nz) and Im(n1) < Im(n,)
(PO4) Re(n,) < Re(n,) and Im(n,) < Im(n,)

In particular, n; < 1, if n; # 1, and one of (P02), (PO3), and (P0O4) is satisfied, and we
write n; < 1, if only (PO4) is satisfied.

It can be noted that;

0snsn=Ind <Inal, i Snm, <n3 =1 <ns.

Def.2.2.[21]. Complex-Valued Metric Space (CVMS)

Let X be a non-empty set. Assume that the mappings d: X X X — C satisfies:
(CV1) 0 s d(a,t), forall a,4 € Xandd(a,4) =0iffa=4;
(cv2)d(a,4) =d(b,a), forall a, & €X;

(Cv3)d(a,c) s d(a,t)+d(b,c), forall a,b,c € X

Then d is called a complex-valued metric on X, and (X, d) is called a CVMS.
Def.2.3.[23]. The 'max’ function with partial order relation ‘<’ is defined as

(Dmax {ny,n2} =1, © 11 SN,
(2)n, s max{nz,n3} > ny Snyorn; SN3

And the ‘min’ functions can be defined as

Mmin{ny,n}=m ©n. S,
2)min{ny,n} Sn3 >Ny SnNz0rn,; Sns.

Following Zadeh's [3] contribution to fuzzy set theory, a number of scholars [4-6]
contributed to the field's basics and core theories.

Buckley [10] was the first to present the concept of fuzzy complex numbers. Other
authors were inspired by Buckley's work and continued their research on fuzzy
complex numbers. Ramot et al. [1] expanded fuzzy sets to complex fuzzy sets in this

chain.

Singh et al. [25], inspired by Ramot et al. [1,] constructed complex-valued fuzzy metric
spaces using continuous t - norms, defined a Hausdorff topology on complex - valued
fuzzy metric space, and gave the concept of Cauchy sequences in CVFMS.
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We establish certain fixed-point conclusions in the situation of complex -valued fuzzy
metric spaces, inspired by Singh et al. [25]. We begin by extending several well-known
metric-space results to complex-valued fuzzy metric spaces, and then we prove those
results in the setting of CVFMS.

Def.2.4.[1]. The complex fuzzy set S is given by S = {(x, ,us(x))/x € U}.

Where U is a universe of discourse, y;(x) is a membership function and defined as
s (x) = r,(x). e™s™, (i = +/—=1) where r;(x) and w,(x) both real-valued, with r;(x) €
[0,1].

Def.2.5. [25]. Complex Valued Continuous t-norm

A binary operation *: ;e x r,e®® — r.e® whereinr, € [0,1]andafixf € [O,g], is

called complex valued continuous t-norm if it satisfies the following conditions:

(1) =is associative and commutative,

(2) = is continuous,

3) a * e = aq,Va € r,e’®, wherery; € [0,1],

(4) a *b S ¢c * dwhenevera S candb < d,foralla,b,c,d € rseig,where
s € [0,1].

Ex.2.5.[25]. The following binary operations defined in (i), (ii) and (iii) are complex
valued continuous t-norm

(i) ax*b =min(a,b).

(i) a*b =max(a+ b — e"?,0),forafixgd € [0,2].

min{a, b}, if max{a, b} = e'¢;
0, otherwise,

N

— i i
(i) a*b = { forafix@ € [0,2].

Def.2.6. [25]. Complex Valued Fuzzy Metric Spaces (CVFMS)

The triplet (X, M,*) is said to be CVFMS if a complex valued fuzzy set M :
X x X x (0,00) - r,e! (where X # @, * is a complex valued continuous t-norm) fulfil
the following criteria:
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(CF1)) M(a,4,t) >0,

(CF2) M(a, &,t) = e forallt > 0 © a = 4,
(CF3)M(a,b,t) = M(¥4,a,t),

(CF4) M(a, b,t) * M(¥,c,s) = M(a,c,t + 3),
(CF5) M(a,&,.) : (0,0) — r,e' is continuous,

foralla,t,c € X,s,t > 0,1, € [0,1]and 6 € [O,E].
2
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Note- Wherever appropriate to our study, we refer to [25] and the references
mentioned in [25] for further basic definitions, examples, and fundamental features of
CVMS.

Singh et al. [25] demonstrated the following lemmas in CVFMS before establishing the
result on complex-valued fuzzy metric space, i.e. Theorem 2.7.

Lemma 2.7 [25]. Let (X, M,*) be a CVFMS such that tlim M(a,&,t) = e, foralla, 4 €
X,if M(a, b, Kt) = M(a,t,t),foralla,r € X,0 <K < 1, t € (0,00) thena = 4.

Lemma 2.8 [25]. Let {#,,} be a sequence in a CVFMS (X, M,*) with gim M(a, &,t) = €9,
forall a,& € X.If there exists a number K which lies on (0, 1)such that

M(bpy1, bnia, Kt) =2 M(by, bpi,t), VE > 0, n = 0,1,2,... Then {4} is a Cauchy
sequence in X.

The following theorem was established by Singh et al. [25], which is the resetting of the
Banach contraction principle in CVFMS.

Theorem 2.7 [25]. Let (X, M,*) be a CVFMS such that tlim M(a, 6,t) = e, Va, b € X,

andt > 0.LetT:X — X be amapping that satisfies M(Ta,T4,Kt) = M(a,,t),
VK € (0,1). Then T has a fixed point that is unique.

. MAIN RESULTS

Fisher [24] established the following theorem in complete metric space for three
mappings.
Theorem A [24]. Let S and T be continuous mappings of a complete metric space (X, d)

into themselves. Then S and T have a common fixed point in X iff a continuous mapping
A of X into S(X) NT(X) exists, which commutes with S and T and satisfies;

d(Ax,Ay) < ad(Sx,Ty) forallx,y € Xand 0 < a < 1.Indeed S, T and A have a unique
common fixed point.

We can now extend the preceding theorem/result to complex-valued complete fuzzy
metric space as follows:

Theorem -3.1. Let (X, M,*) be a complex-valued complete fuzzy metric space (CVCFMS).
S and T are continuous mappings from X to X. If A is a continuous mapping from X to
S(X) N T(X), it commutes with S and T, and if detailed maps satisfy the following
contractive condition.

M(Ax, Ay, kt) = Min{ M(Ty, Ay,t), M(Sx, Ax,t), M(Sx, Ty, t)} forallx,y € X,t € (0, )
and0<k< 1
- (3.11)
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Additionally, th_)rg M(x,y,t) = e forallx,y € Xand®8 € [0, g]
.. (3.12)

Then S, T, and A have a unique common fixed point.

Proof: Ax, is a Cauchy sequence?

Since A is a continuous mapping from X to S(X) N T(X) so for x; € X, there exists any
Xo € X such that Axy = Sx; and Axy = Tx;

On keep repeating this process for different x; and x,, we get a sequence {x,,} such that
Ax, = Sx,,1and Ax, = Tx,4q
Or Ax,, = Sxyp4q1 and Axyy, = Txope1,n = 1,2,3, ...

On setting x = x5, and y = x,,,4 in (3.11), we get forr = 1,2,3, ...

M(AxZT’ Ax2T+1, kt) ~>., Mln { M(Ter_l_l, Ax2T+1' t), M(szT, Aer, t), M(sz-r, Tx2T+1, t)}
M (Axyr) AXopy1, kt) R Min { M(Axyr, AXop iy, t), M(AXpr_q, AXpr, t), M(AXpr_q, Axay, 1)}
M(Axyy, AXgpiq, kt) = Min { M(AXyy, AXpiq, t), M(AXxyp_q, AXxop, £)} ... (1)

Now suppose Min { M(Ax,y, AXp i1, t), M(AXgp_q, AXop, )} = M(AXyy, AXopyq, t)

Then by (1), we have M (Axy,, AXopyq, kt) = M(Axyy, AXgpyq, t)

By lemma (4.1) or (5.1), we have Ax,, = Axy,41
Which is not possible

Hence by (1), we must have M (Axy,, AXyp i1, kt) = M(Axgr_q,Axyp, t),Y t >0 ...(1])
In general, we get M(Ax, 11, AXy 40, kt) = M(Ax,, AXyyq1,t),V t > 0 ... (II)

London Journal of Research in Science: Natural and Formal

Hence by lemma (4.2), {Ax,} is a Cauchy sequence in X.

Since the space X is complete, so there exists some p € X such that lim Ax,, = p

n—-oo

andp = lim Sx,,,q = lim Tx, 44
n—-0oo n—-oo
It follows that Ap = Sp = Tp, and

M (Ap, A%*p, kt) = Min { M(TAp, AAp,t), M(Sp, Ap,t), M(Sp, TAp, t)}
M(Ap, A?p, kt) = M(Sp,ATp,t)
M(Ap, A%*p,kt) = M(Ap,A®p,t)
t
M(Ap,A*p,kt) = M (Ap, A?p, ﬁ) - (IV)

On taking n — oo, then by lemma (4.1), we have; Ap = A%p

Results on Complex Valued Complete Fuzzy Metric Spaces
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This implies that Ap = p

Thus p is a common fixed point of 4, S, and T.

Uniqueness: - let q(# p) be another fixed point of 4, S, and T. Then, by (3.11), we have
M(Ap,Aq, kt) = Min { M(Tq, Aq,t), M(Sp, Ap,t), M(Sp,Tq, t)}

Which implies that
M(,q,kt) = Min {e%,e®, M(p,q,t)}

AsM(p,q,t) € 1,e¥, r, € [0,1] and 6 € [0, g], also M(p,q,t) < e®

Then certainly we get, Min { e?,e®, M(p,q,t)} = M(p, q, t)
M(p,q,kt) = M(p,q,t)
Which implies that p = q.

As aresult, p is unique.
Ex. 3.1. Let X = [3,21] with the metric d defined by d(x,y) = |x — y|,Vx,y € X.

Forallx,y € X andt € (0, ), we define M(x,y,t) = e[ JorM(x,y,t) =

t+d(x,y)

; 1 . . ,
et [m], k= > and t -norm ' =" is defined as a * b = min {a, b} where a,b €

re’®,for 7, € [0,1]and 6 € [0,5]. Here, lim M(x,y,t) = ¢, forallx,y € X.

(X, M,*) is a CVCFMS with a given t-norm .

S, T: X - X are defined as:

3;at x =3

3;at x =3
S(X)={§+2; 3<x<21 ,andT(X):{Zx

?+1; 3<x<21

And A: X - S(X) NT(X) as:
3;at x =3

_ 21
AX) {3’61; S 3<x<21

The mappings S and T are continuous. A is continuous from X to S(X) N T (X).
Clearly, A(X) € S(X) and A(X) € T(X)
This implies that A(X) € S(X) N T(X).
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Existing results from complete metric space have been extended to complex-valued complete fuzzy
metric spaces in this study. We tested the extended version of the result using a new form of
weaker contractive condition. We've offered an example that backup our major finding and proves
our hypotheses. In this line, various complete metric space results can be extended and

V. CONCLUSION

demonstrated in the context of complex-valued complete fuzzy metric spaces.
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