

Scan to know paper details and
author's profile

The Discrete Ordinates and the Riccati Equation Methods in the Estimation of Growth of Solutions of Systems of Two Linear RST Order Ordinary Differential Equations

G. A. Grigorian

ABSTRACT

The method of comparing the solutions of a system of linear equations with solutions of such a system with piecewise constant coefficients (the discrete ordinates method) and Riccati equation method is used for estimating solutions of systems of two first order linear equations. Two principal (essentially different) cases have been considered, for which some explicit estimates in terms of coefficients of linear systems have been obtained. By examples the obtained results are compared with the results obtained by methods of Liapunov, Yu. S. Bogdanov, T. Wazewski, estimates of solutions by logarithmic norm of S. M. Lozinski and the method of freezing.

Keywords: systems of equations with piecewise constant coefficients, the Riccati equation, normal and extremal solutions, main, nonprincipal and ordinary solutions of the system, the theorem of Wazewski.

Classification: MSC Code: 34C10

Language: English

Great Britain
Journals Press

LJP Copyright ID: 925614

Print ISSN: 2631-8490

Online ISSN: 2631-8504

London Journal of Research in Science: Natural & Formal

Volume 24 | Issue 10 | Compilation 1.0

The Discrete Ordinates and the Riccati Equation Methods in the Estimation of Growth of Solutions of Systems of Two Linear RST Order Ordinary Differential Equations

G. A. Grigorian

ABSTRACT

The method of comparing the solutions of a system of linear equations with solutions of such a system with piecewise constant coefficients (the discrete ordinates method) and Riccati equation method is used for estimating solutions of systems of two first order linear equations. Two principal (essentially different) cases have been considered, for which some explicit estimates in terms of coefficients of linear systems have been obtained. By examples the obtained results are compared with the results obtained by methods of Liapunov, Yu. S. Bogdanov, T. Wazewski, estimates of solutions by logarithmic norm of S. M. Lozinski and the method of freezing.

Keywords: systems of equations with piecewise constant coefficients, the Riccati equation, normal and extremal solutions, main, nonprincipal and ordinary solutions of the system, the theorem of Wazewski.

I. INTRODUCTION

Let $a_{jk}(t)$ ($j, k = 1, 2$) be complex-valued continuous functions on the interval $[t_0, +\infty)$. Consider the system

$$\begin{cases} \phi'(t) = a_{11}(t)\phi(t) + a_{12}(t)\psi(t); \\ \psi'(t) = a_{21}(t)\phi(t) + a_{22}(t)\psi(t), \end{cases} \quad (1.1)$$

$t \geq t_0$. Study of the question of stability of solutions of differential equations and systems of differential equations, in particular of system (1.1), is an important problem of qualitative theory of differential equations and many works are devoted to it (see [1], [2] and cited works therein [3 - 10]). The fundamental theorem of R. Bellman (see [2], pp. 168, 169) reduces the study of boundedness of solutions of wide class of nonlinear systems to the study of stability of linear systems of differential equations. Many problems of mechanics, physics and other natural sciences are connected with the study of stability of the linear

systems of differential equations (in particular of the linear differential equations) too (see for example [6,7]). One of ways to study the mentioned above question is the use of different methods of estimations of solutions of systems of being studied equations (see [4]).

In this paper some estimates of solutions of the system (1.1) in terms of its coefficients are obtained. To obtain them it was used the method of approximation of solutions of (1.1) by solutions of system with piecewise constant coefficients (the discrete ordinates method).

Denote: $P(t) \equiv a_{12}(t) \exp \left\{ \int_{t_0}^t [a_{22}(\tau) - a_{11}(\tau)] d\tau \right\}$, $Q(t) \equiv a_{21}(t) \exp \left\{ \int_{t_0}^t [a_{11}(\tau) - a_{22}(\tau)] d\tau \right\}$. In this article we will study the following two principal cases:

A) $P(t) > 0$, $Q(t) < 0$, $t \geq t_0$;
 B) $P(t) > 0$, $Q(t) > 0$, $t \geq t_0$

(the case $P(t) < 0$, $Q(t) > 0$, $t \geq t_0$, is similar to the case A), and the case $P(t) < 0$, $Q(t) < 0$, $t \geq t_0$, is reducible to the case B) by the simple substitution $\phi(t) \rightarrow -\phi(t)$. The case A) can be geometrically interpreted as a case, when the origin of coordinates of phase plane of variables u, v is a "center" or a "focus" and the case B) as a "saddle" with respect to the curves $\{(u(t), v(t))\}$, $t \geq t_0$, where $\{(u(t), v(t))\}$ are the solutions of the system

$$\begin{cases} u'(t) = P(t)v(t); \\ v'(t) = Q(t)u(t), \end{cases} \quad (1.2)$$

$t \geq t_0$. On examples the obtained results are compared with the results obtained by methods of Liapunov, Yu. S. Bogdanov, T. Wazewski, estimates of solutions by logarithmic norm of S. M. Lozinski and of freezing.

II. AUXILIARY PROPOSITIONS

Lemma 2.1. *For each solution $(\phi(t), \psi(t))$ of the system (1.1) and for each $\varepsilon > 0$ and $t_1 > t_0$ there exists piecewise constant functions \tilde{a}_{jk} , $t \geq t_0$, $j, k = 1, 2$, such, that the solutions $(\tilde{\phi}(t), \tilde{\psi}(t))$ of the system*

$$\begin{cases} \phi'(t) = \tilde{a}_{11}(t)\phi(t) + \tilde{a}_{12}(t)\psi(t); \\ \psi'(t) = \tilde{a}_{21}(t)\phi(t) + \tilde{a}_{22}(t)\psi(t), \end{cases} \quad (2.0)$$

$t \geq t_0$. with $\tilde{\phi}(t_0) = \phi(t_0)$, $\tilde{\psi}(t_0) = \psi(t_0)$ satisfy the inequalities: $|\tilde{\phi}(t_1) - \phi(t_1)| \leq \varepsilon$, $|\tilde{\psi}(t_1) - \psi(t_1)| \leq \varepsilon$.

The proof of this lemma is not difficult, and we omit it.

Remark 2.1. By a solution of the system (2.0) we will mean a pair of absolutely continuous functions $\phi(t)$ and $\psi(t)$, satisfying (2.0) almost everywhere on $[t_0, +\infty)$.

Let $t_0 < t_1 < \dots < t_n < \dots$ be a finite or infinite sequens, and let $\tilde{p}(t) = p_j > 0$, $\tilde{q}(t) = q_j > 0$, $t \in [t_j; t_{j+1})$, $j = 0, 1, 2, \dots$. Consider the Cauchy problem

$$\begin{cases} u'(t) = \tilde{p}(t)v(t); \\ v'(t) = -\tilde{q}(t)u(t); \\ u(t_0) = u_{(0)}, \quad v(t_0) = v_{(0)}, \end{cases} \quad (2.1)$$

$t \geq t_0$. Any solution of this system we will seek in the form

$$u(t) = A_j \sin(\sqrt{l_j}t + \omega_j), \quad v(t) = A_j \sqrt{h_j} \cos(\sqrt{l_j}t + \omega_j), \quad t \in [t_j, t_{j+1}), \quad (2.2)$$

where $l_j \equiv p_j q_j$, $h_j \equiv \frac{q_j}{p_j}$ and A_j , ω_j are the sought constants, $j = 0, 1, 2, \dots$. By virtue of initial conditions of problem (2.1) the unknowns A_0 and ω_0 we determine by solving the system

$$\begin{cases} A_0 \sin(\sqrt{l_0}t_0 + \omega_0) = u_{(0)}; \\ A_0 \sqrt{h_0} \cos(\sqrt{l_0}t_0 + \omega_0) = v_{(0)}, \end{cases} \quad (2.3)$$

and the remaining unknowns by successive solving of the systems

$$\begin{cases} A_{j+1} \sin(\sqrt{l_{j+1}}t_{j+1} + \omega_{j+1}) = A_j \sin(\sqrt{l_j}t_{j+1} + \omega_j); \\ A_{j+1} \sqrt{h_{j+1}} \cos(\sqrt{l_{j+1}}t_{j+1} + \omega_{j+1}) = A_j \sqrt{h_j} \cos(\sqrt{l_j}t_{j+1} + \omega_j), \end{cases} \quad (2.4)$$

$j = 1, 2, \dots$. From (2.3) it follows

$$A_0 = u_{(0)}^2 + \frac{v_{(0)}^2}{h_0}. \quad (2.5)$$

Denote: $\alpha_j \equiv \sqrt{l_j}t_{j+1} + \omega_j$, $\beta_j \equiv \sqrt{l_{j+1}}t_{j+1} + \omega_{j+1}$, $j = 0, 1, 2, \dots$. From (2.4) it is easy to derive the equalities:

$$A_{j+1}^2 = A_j^2 \left[\frac{h_j + h_{j+1}}{2h_{j+1}} + \frac{h_j - h_{j+1}}{2h_{j+1}} \cos 2\alpha_j \right], \quad A_j^2 = A_{j+1}^2 \left[\frac{h_j + h_{j+1}}{2h_j} + \frac{h_{j+1} - h_j}{2h_j} \cos 2\beta_j \right],$$

$j = 0, 1, 2, \dots$. From here it follows

$$|A_{j+1}| \leq |A_j| \leq \sqrt{\frac{h_{j+1}}{h_j}} |A_{j+1}| \quad \text{for} \quad h_j \leq h_{j+1}; \quad (2.6)$$

$$|A_j| \leq |A_{j+1}| \leq \sqrt{\frac{h_j}{h_{j+1}}} |A_j| \quad \text{for} \quad h_j \geq h_{j+1}; \quad (2.7)$$

$j = 0, 1, 2, \dots$. From (2.2) it follows:

$$u^2(t) \frac{1}{h_j} + v^2(t) = A_j^2, \quad t \in [t_j, t_{j+1}), \quad j = 0, 1, 2, \dots \quad (2.8)$$

Let the initial values $u_{(0)}$ and $v_{(0)}$ be real. Then $u(t)$ and $v(t)$ will be real valued. Therefore, from (2.8) we will have:

$$\min\{1, h_j^1\} A_j^2 \leq u^2(t) + v^2(t) \leq \max\{1, h_j^1\} A_j^2, \quad t \in [t_j, t_{j+1}), \quad (2.9)$$

where $h_j^1 \equiv \frac{p_j}{q_j}$, $j = 0, 1, 2, \dots$

Definition 2.1. We shall say, that a continuous on the interval $[t_0; +\infty)$ function $f(t)$ belongs to the class $C_\sim = C_\sim[t_0, +\infty)$, if there exists an infinitely large sequence $\xi_0 = t_0 \leq \xi_1 \leq \dots \leq \xi_n \leq \dots$ such, that $f(t)$ is a nondecreasing on the interval $[\xi_{2n}, \xi_{2n+1}]$ and nonincreasing on the interval $[\xi_{2n+1}, \xi_{2n+2}]$ function, $n = 0, 1, 2, \dots$. The numbers ξ_n , $n = 0, 1, 2, \dots$ we shall call points of possible extrema of the function $f(t)$.

Let $S(t) \in C_\sim$, and let ξ_n , $n = 0, 1, 2, \dots$ be the points of possible extrema of $S(t)$. Note, that if $\xi_{2n+1} = \xi_{2n+2}$, $n = 0, 1, 2, \dots$, then $S(t)$ is a nondecreasing function and if $\xi_{2n} = \xi_{2n+1}$, $n = 0, 1, 2, \dots$, then $S(t)$ is a nonincreasing function. Let $S(t) > 0$, $t \geq t_0$. Consider the functions

$$r_S^-(t) \equiv \begin{cases} 1, & t \in [\xi_0; \xi_1]; \\ \sqrt{\frac{S(\xi_1)}{S(t)}}, & t \in [\xi_1; \xi_2]; \\ \prod_{k=1}^n \sqrt{\frac{S(\xi_{2k-1})}{S(\xi_{2k})}}, & t \in [\xi_{2n}; \xi_{2n+1}], \quad n = 1, 2, \dots; \\ \left[\prod_{k=1}^{n-1} \sqrt{\frac{S(\xi_{2k-1})}{S(\xi_{2k})}} \right] \sqrt{\frac{S(\xi_{2n-1})}{S(t)}}, & t \in [\xi_{2n-1}; \xi_{2n}], \quad n = 2, 3, \dots, \end{cases}$$

$$r_S^+(t) \equiv \begin{cases} \sqrt{\frac{S(t)}{S(\xi_0)}}, & t \in [\xi_0; \xi_1]; \\ \prod_{k=0}^n \sqrt{\frac{S(\xi_{2k+1})}{S(\xi_{2k})}}, & t \in [\xi_{2n+1}; \xi_{2n+2}], \quad n = 0, 1, \dots; \\ \left[\prod_{k=9}^{n-1} \sqrt{\frac{S(\xi_{2k-1})}{S(\xi_{2k})}} \right] \sqrt{\frac{S(t)}{S(\xi_{2n})}}, & t \in [\xi_{2n}; \xi_{2n+1}], \quad n = 1, 2, \dots, \end{cases}$$

Let $S(t)$ be absolutely continuous. Then $\sqrt{\frac{S(\xi_{2n+1})}{S(t)}} = \exp \left\{ -\frac{1}{2} \int_{\xi_{2n+1}}^t \frac{S'(\tau)}{S(\tau)} d\tau \right\}, \quad n = 0, 1, 2, \dots,$

$\sqrt{\frac{S(\xi_{2k-1})}{S(\xi_{2k})}} = \exp \left\{ -\frac{1}{2} \int_{\xi_{2k-1}}^{\xi_{2k}} \frac{S'(\tau)}{S(\tau)} d\tau \right\}, \quad k = 1, 2, \dots$ Therefore

$$r_S^-(t) = \exp \left\{ \frac{1}{2} \int_{t_0}^t \frac{S'_{(-)}(\tau)}{S(\tau)} d\tau \right\}, \quad t \geq t_0, \quad (2.10)$$

where $S_{(-)}(t) \equiv \begin{cases} -S(t), & \text{if exists } S'(t) > 0; \\ 0, & \text{otherwise,} \end{cases} \quad t \geq t_0$. By analogy it shows, that

$$r_S^+(t) = \exp \left\{ \frac{1}{2} \int_{t_0}^t \frac{S'_{(+)}(\tau)}{S(\tau)} d\tau \right\}, \quad t \geq t_0, \quad (2.11)$$

where $S_{(+)}(t) \equiv \begin{cases} S(t), & \text{if exists } S'(t) > 0; \\ 0, & \text{otherwise,} \end{cases} \quad t \geq t_0$. It is clear that $S'(t) = S'_{(+)}(t) - S'_{(-)}(t)$, $|S'(t)| = S'_{(+)}(t) + S'_{(-)}(t)$ in all the points of existence of $S'(t)$. From here, from (2.10) and (2.11) it follows:

$$r_S^-(t) = \sqrt[4]{\frac{S(t_0)}{S(t)}} \exp \left\{ \frac{1}{4} \int_{t_0}^t \frac{|S'(\tau)|}{S(\tau)} d\tau \right\}, \quad t \geq t_0, \quad (2.12)$$

$$r_S^+(t) = \sqrt[4]{\frac{S(t)}{S(t_0)}} \exp \left\{ \frac{1}{4} \int_{t_0}^t \frac{|S'(\tau)|}{S(\tau)} d\tau \right\}, \quad t \geq t_0, \quad (2.13)$$

Let $p(t)$ and $q(t)$ be positive and continuous functions on the interval $[t_0; +\infty)$. Consider the system of equations

$$\begin{cases} u'(t) = p(t)v(t); \\ v'(t) = -q(t)u(t), \end{cases} \quad (2.14)$$

$t \geq t_0$. Let us introduce some notations, necessary in the sequel: $h(t) \equiv \frac{q(t)}{p(t)}$, $h_1(t) \equiv \frac{p(t)}{q(t)}$, $g(t) \equiv \min\{\sqrt[4]{h(t)}, \sqrt[4]{h_1(t)}\}$, $G(t) \equiv \max\{\sqrt[4]{h(t)}, \sqrt[4]{h_1(t)}\}$, $\|(x(t), y(t))\| \equiv \sqrt{|x(t)|^2 + |y(t)|^2}$, $r_z(t) \equiv \exp\left\{\frac{1}{4} \int_{t_0}^t \frac{|z'(\tau)|}{z(\tau)} d\tau\right\}$, $t \geq t_0$, where $x(t)$ and $y(t)$ are continuous functions on the interval $[t_0; +\infty)$, $z(t)$ is a absolutely continuous and positive function on the interval $[t_0; +\infty)$ with locally finite variation.

Lemma 2.2. *Let $h(t)$ be an absolutely continuous function with locally finite variation. Then for every solution $(u(t), v(t))$ of the system (2.14) the following inequalities hold:*

$$\frac{g(t_0)g(t)}{r_h(t)} \|(u(t_0), v(t_0))\| \leq \|(u(t), v(t))\| \leq G(t_0)G(t) \|(u(t_0), v(t_0))\| r_h(t), \quad (2.15)$$

$t \geq t_0$.

Proof. Let us consider first the case, when $h(t)$ has the additional property: $h(t) \in C_\sim$. Let $(u_0(t), v_0(t))$ be a nontrivial real valued solution of the system (2.14), and let $\xi_0 = t_0 \leq \xi_1 \leq \dots \leq \xi_n \leq \dots$ be the possible extreums of the function $h(t)$. Let $t_1 (> t_0)$ and $\varepsilon (> 0)$ be fixed. By virtue of Lemma 2.1 there exist piecewise constant functions $\tilde{p}(t)$ and $\tilde{q}(t)$ such, that the solution $(\tilde{u}(t), \tilde{v}(t))$ of the system

$$\begin{cases} u'(t) = \tilde{p}(t)v(t); \\ v'(t) = -\tilde{q}(t)u(t), \end{cases}$$

$t \geq t_0$, with $\tilde{u}(t_0) = u_0(t_0)$, $\tilde{v}(t_0) = v_0(t_0)$ satisfies the inequalities:

$$\begin{aligned} |\tilde{u}(t_1) - u_0(t_1)| &\leq \varepsilon, & |\tilde{v}(t_1) - v_0(t_1)| &\leq \varepsilon. \end{aligned} \quad (2.16)$$

Without loss of generality we will assume that $\tilde{p}(\xi_k) = p(\xi_k)$, $\tilde{q}(\xi_k) = q(\xi_k)$, $k = 0, 1, \dots$, $\tilde{p}(t_1) = p(t_1)$, $\tilde{q}(t_1) = q(t_1)$; $\tilde{p}(t) > 0$, $\tilde{q}(t) > 0$, $t \geq t_0$; the function $\frac{\tilde{q}(t)}{\tilde{p}(t)}$ is nondecreasing on the intervals $[\xi_{2k}, \xi_{2k+1}]$ and nonincreasing on the intervals $[\xi_{2k+1}, \xi_{2k+2}]$, $k = 0, 1, 2, \dots$. Then by (2.5) - (2.7), (2.9) the following inequalities hold

$$g_1(t_0)g_1(t_1) \|(u_0(t_0), v_0(t_0))\| \sqrt{\frac{h(\xi_0)}{h(t_1)}} \leq \|\tilde{u}(t_1), \tilde{v}(t_1)\| \leq G_1(t_0)G_1(t_1) \|(u_0(t_0), v_0(t_0))\|,$$

$$\begin{aligned}
& \text{if } t_1 \in [\xi_0, \xi_1]; \\
g_1(t_0)g_1(t_1) & \|(u_0(t_0), v_0(t_0))\| \sqrt{\frac{h(\xi_0)}{h(t_1)}} \leq \|(\tilde{u}(t_1), \tilde{v}(t_1))\| \leq \\
& \leq G_1(t_0)G_1(t_1) \|(u_0(t_0), v_0(t_0))\| \sqrt{\frac{h(\xi_1)}{h(t_1)}}, \text{ if } t_1 \in [\xi_1, \xi_2]; \\
g_1(t_0)g_1(t_1) & \|(u_0(t_0), v_0(t_0))\| \left[\prod_{k=0}^n \sqrt{\frac{h(\xi_{2k})}{h(\xi_{2k+1})}} \right] \sqrt{\frac{h(\xi_{2n})}{h(t_1)}} \leq \|(\tilde{u}(t_1), \tilde{v}(t_1))\| \leq \\
& \leq G_1(t_0)G_1(t_1) \|(u_0(t_0), v_0(t_0))\| \prod_{k=1}^n \sqrt{\frac{h(\xi_{2k-1})}{h(\xi_{2k})}}, \text{ if } t_1 \in [\xi_{2n}, \xi_{2n+1}], \quad n = 1, 2, \dots; \\
g_1(t_0)g_1(t_1) & \|(u_0(t_0), v_0(t_0))\| \prod_{k=0}^n \sqrt{\frac{h(\xi_{2k})}{h(\xi_{2k+1})}} \leq \|(\tilde{u}(t_1), \tilde{v}(t_1))\| \leq \\
& \leq G_1(t_0)G_1(t_1) \|(u_0(t_0), v_0(t_0))\| \left[\prod_{k=0}^{n-1} \sqrt{\frac{h(\xi_{2k+1})}{h(\xi_{2k+2})}} \right] \sqrt{\frac{h(\xi_{2n+1})}{h(t_1)}}, \text{ if } t_1 \in [\xi_{2n+1}, \xi_{2n+2}], \\
n = 1, 2, \dots, \text{ where } & g_1(t) \equiv \min\{1, \sqrt{h_1(t)}\}, \quad G_1(t) \equiv \max\{1, \sqrt{h_1(t)}\}, \quad t \geq t_0. \text{ It follows from here, that} \\
\frac{g_1(t_0)g_1(t_1) \|(u_0(t_0), v_0(t_0))\|}{r_h^+(t_1)} & \leq \|(\tilde{u}(t_1), \tilde{v}(t_1))\| \leq \\
& \leq G_1(t_0)G_1(t_1) \|(u_0(t_0), v_0(t_0))\| r_h^-(t_1). \tag{2.17}
\end{aligned}$$

By analogy (making the substitution $u(t) \rightarrow -u(t)$, interchanging $p(t)$ and $q(t)$, as well as interchanging $u(t)$ and $v(t)$) we come to the inequalities

$$\begin{aligned}
\frac{g_2(t_0)g_2(t_1) \|(u_0(t_0), v_0(t_0))\|}{r_{h_1}^+(t_1)} & \leq \|(\tilde{u}(t_1), \tilde{v}(t_1))\| \leq \\
& \leq G_2(t_0)G_2(t_1) \|(u_0(t_0), v_0(t_0))\| r_{h_1}^-(t_1),
\end{aligned}$$

where $g_2(t) \equiv \min\{1, \sqrt{h(t)}\}$, $G_2(t) \equiv \max\{1, \sqrt{h(t)}\}$, $t \geq t_0$. From here and from (2.17) we obtain:

$$\sqrt{\frac{g_1(t_0)g_1(t_1)g_2(t_0)g_2(t_1)}{r_h^+(t_1)r_{h_1}^+(t_1)}} \|(u_0(t_0), v_0(t_0))\| \leq \|(\tilde{u}(t_1), \tilde{v}(t_1))\| \leq$$

$$\leq \sqrt{G_1(t_0)G_1(t_1)G_2(t_0)G_2(t_1)}\|(u_0(t_0), v_0(t_0))\|\sqrt{r_h^-(t_1)r_{h_1}^-(t_1)}. \quad (2.18)$$

Obviously,

$$g_1(t)g_2(t) = g^2(t), \quad G_1(t)G_2(t) = G^2(t), \quad t \geq t_0. \quad (2.19)$$

Note (due to (2.12) and (2.13)), that $r_{h_1}^\pm(t) = r_h^\mp(t)$, $t \geq t_0$. Then $r_{h_1}^\pm(t_1)r_h^\mp(t_1) = r_h^2(t_1)$. From here, from (2.18) and (2.19) we obtain:

$$\begin{aligned} \frac{g(t_0)g(t_1)\|(u_0(t_0), v_0(t_0))\|}{r_h(t_1)} &\leq \|\tilde{u}(t_1), \tilde{v}(t_1)\| \leq \\ &\leq G(t_0)G(t_1)\|(u_0(t_0), v_0(t_0))\|r_h(t_1). \end{aligned}$$

From here and from (2.16) it follows:

$$\begin{aligned} \frac{g(t_0)g(t_1)\|(u_0(t_0), v_0(t_0))\|}{r_h(t_1)} - \sqrt{2}\varepsilon &\leq \|(u_0(t_1), v_0(t_1))\| \leq \\ &\leq G(t_0)G(t_1)\|(u_0(t_0), v_0(t_0))\|r_h(t_1) + \sqrt{2}\varepsilon. \end{aligned}$$

By the arbitrariness of $\varepsilon (> 0)$ from here we will have:

$$\begin{aligned} \frac{g(t_0)g(t_1)\|(u_0(t_0), v_0(t_0))\|}{r_h(t_1)} &\leq \|(u_0(t_1), v_0(t_1))\| \leq \\ &\leq G(t_0)G(t_1)\|(u_0(t_0), v_0(t_0))\|r_h(t_1). \quad (2.20) \end{aligned}$$

Let $(u(t), v(t))$ be an arbitrary (complex) solution of the system (2.14). Since $(u(t), v(t)) = (u_1(t), v_1(t)) + i(u_2(t), v_2(t))$, where $(u_j(t), v_j(t))$, $(j = 1, 2)$ are some real solutions of the system (2.14), by (2.20) we will get:

$$\begin{aligned} \left[\frac{g(t_0)g(t_1)}{r_h(t_1)} \right]^2 \sum_{j=1}^2 \|(u_j(t_0), v_j(t_0))\|^2 &\leq \sum_{j=1}^2 \|(u_j(t_1), v_j(t_1))\|^2 \leq \\ &\leq [G(t_0)G(t_1)r_h(t_1)]^2 \sum_{j=1}^2 \|(u_j(t_0), v_j(t_0))\|^2. \end{aligned}$$

Taking into account the equality $\|(u(t), v(t))\|^2 = \sum_{j=1}^2 \|(u_j(t), v_j(t))\|^2$, $t \geq t_0$, from here we will have:

$$\frac{g(t_0)g(t_1)\|(u(t_0), v(t_0))\|}{r_h(t_1)} \leq \|(u(t_1), v(t_1))\| \leq G(t_0)G(t_1)\|(u(t_0), v(t_0))\|r_h(t_1).$$

By virtue of arbitrariness of $t_1 (> t_0)$ from here it follows (2.15). Thus, we have proved (2.15) under the additional assumption $h(t) \in C_\sim$. Let us prove it in the general case. Let $A_C[t_0; T]$ be the space of absolutely continuous functions $f(t)$ of finite variation on the interval $[t_0; T]$ with the norm $\|f(t)\| \equiv \max_{t \in [t_0; T]} |f(t)| + \int_{t_0}^T |f'(\tau)| d\tau$. Obviously the set of rational functions is everywhere dense in $A_C[t_0, T]$. In view of this we choose polynomials $p_1(t)$ and $q_1(t)$ such, that $p_1(t) > 0$, $q_1(t) > 0$, $t \geq t_0$, and such, that for each fixed $t_1 \in (t_0, T]$ and $\varepsilon (> 0)$ the following inequalities hold

$$\left| \frac{g(t_0)g(t_1)}{r_h(t_1)} - \frac{\tilde{g}(t_0)\tilde{g}(t_1)}{r_{\tilde{h}}(t_1)} \right| \leq \varepsilon, \quad \left| G(t_0)G(t_1)r_h(t_1) - \tilde{G}(t_0)\tilde{G}(t_1)r_{\tilde{h}}(t_1) \right| \leq \varepsilon, \quad (2.21)$$

where $\tilde{g}(t) \equiv \min \left\{ \sqrt[4]{\tilde{h}(t)}, \sqrt[4]{\tilde{h}_1(t)} \right\}$, $\tilde{G}(t) \equiv \max \left\{ \sqrt[4]{\tilde{h}(t)}, \sqrt[4]{\tilde{h}_1(t)} \right\}$, $\tilde{h}(t) \equiv \frac{q_1(t)}{p_1(t)}$, $\tilde{h}_1(t) \equiv \frac{p_1(t)}{q_1(t)}$, $t \geq t_0$, as well as (by Lemma 2.1) the following inequalities hold

$$|u(t_1) - \tilde{u}(t_1)| \leq \varepsilon, \quad |v(t_1) - \tilde{v}(t_1)| \leq \varepsilon, \quad (2.22)$$

where $(\tilde{u}(t), \tilde{v}(t))$ is the solution of the system

$$\begin{cases} u'(t) = p_1(t)v(t); \\ v'(t) = q_1(t)u(t), \end{cases}$$

$t \geq t_0$, with $\tilde{u}(t_0) = u(t_0)$, $\tilde{v}(t_0) = v(t_0)$. Since obviously $\tilde{h}(t)|_{[t_0; +\infty)} \in C_\sim$, by already proven

$$\frac{\tilde{g}(t_0)\tilde{g}(t_1)\|(u(t_0), v(t_0))\|}{r_{\tilde{h}}(t_1)} \leq \|(u(t_1), v(t_1))\| \leq \tilde{G}(t_0)\tilde{G}(t_1)\|(u(t_0), v(t_0))\|r_{\tilde{h}}(t_1).$$

From here, from (2.21) and (2.22) it follows

$$\begin{aligned} \frac{g(t_0)g(t_1)\|(u(t_0), v(t_0))\|}{r_h(t_1)} - [\sqrt{2} + \|(u(t_0), v(t_0))\|]\varepsilon &\leq \|(u(t_1), v(t_1))\| \leq \\ &\leq G(t_0)G(t_1)\|(u(t_0), v(t_0))\|r_h(t_1) + [\sqrt{2} + \|(u(t_0), v(t_0))\|]\varepsilon. \end{aligned}$$

By virtue of arbitrariness of $t_1 \in (t_0; T]$, $T (> t_0)$ and $\varepsilon (> 0)$ from here it follows (2.15). The lemma is proved.

Let us consider the Cauchy problem

$$\begin{cases} u'(t) = \tilde{p}(t)v(t); \\ v'(t) = \tilde{q}(t)u(t); \\ u(t_0) = u_{(0)}, \quad v(t_0) = v_{(0)}, \end{cases} \quad (2.23)$$

$t \geq t_0$. Its solution we will seek in the form

$$\begin{cases} u(t) = A_j \sqrt{p_j} \exp\{\sqrt{l_j}t\} + B_j \sqrt{p_j} \exp\{-\sqrt{l_j}t\}; \\ v(t) = A_j \sqrt{q_j} \exp\{\sqrt{l_j}t\} - B_j \sqrt{q_j} \exp\{-\sqrt{l_j}t\}, \end{cases} \quad (2.24)$$

$t \in [t_j; t_{j+1})$, $j = 0, 1, 2, \dots$. The unknowns A_0 and B_0 we can find by solving the system

$$\begin{cases} A_0 \sqrt{p_0} \exp\{\sqrt{l_0}t_0\} + B_0 \sqrt{p_0} \exp\{-\sqrt{l_0}t_0\} = u_{(0)}; \\ A_0 \sqrt{q_0} \exp\{\sqrt{l_0}t_0\} - B_0 \sqrt{q_0} \exp\{-\sqrt{l_0}t_0\} = v_{(0)}, \end{cases} \quad (2.25)$$

and the remaining unknowns $A_j, B_j (j = 1, 2, \dots)$ we can find by successive solving the systems

$$\begin{cases} A_j \sqrt{p_j} \exp\{\sqrt{l_j}t_j\} + B_j \sqrt{p_j} \exp\{-\sqrt{l_j}t_j\} = u(t_j); \\ A_j \sqrt{q_j} \exp\{\sqrt{l_j}t_j\} - B_j \sqrt{q_j} \exp\{-\sqrt{l_j}t_j\} = v(t_j), \end{cases}$$

$j = 1, 2, \dots$. We have:

$$A_j = \frac{u(t_j) \sqrt{q_j} + v(t_j) \sqrt{p_j}}{2\sqrt{l_j}} \exp\{-\sqrt{l_j}t_j\}, \quad B_j = \frac{u(t_j) \sqrt{q_j} - v(t_j) \sqrt{p_j}}{2\sqrt{l_j}} \exp\{-\sqrt{l_j}t_j\}.$$

From here, from (2.24) and (2.25) it follows

$$\begin{cases} u(t) = u(t_j) \operatorname{ch}\{\sqrt{l_j}(t - t_j)\} + v(t_j) \sqrt{\frac{p_j}{q_j}} \operatorname{sh}\{\sqrt{l_j}(t - t_j)\}; \\ v(t) = v(t_j) \operatorname{ch}\{\sqrt{l_j}(t - t_j)\} + u(t_j) \sqrt{\frac{q_j}{p_j}} \operatorname{sh}\{\sqrt{l_j}(t - t_j)\}, \end{cases} \quad (2.26)$$

$t \in [t_j; t_{j+1})$, $j = 0, 1, 2, \dots$. From here it is easy to derive the equalities

$$\sqrt{q_j}u(t) + \sqrt{p_j}v(t) = [\sqrt{q_j}u(t_j) + \sqrt{p_j}v(t_j)] \exp\{\sqrt{l_j}(t - t_j)\}, \quad t \in [t_j; t_{j+1}), \quad (2.27)$$

$j = 0, 1, \dots$. From here it follows

$$\begin{aligned} \sqrt{q_{j+1}}u(t_{j+1}) + \sqrt{p_{j+1}}v(t_{j+1}) &= \sqrt{\frac{q_{j+1}}{q_j}} \left[\left(\sqrt{q_j}u(t_j) + \sqrt{\frac{h_j}{h_{j+1}}} \sqrt{p_j}v(t_j) \right) \times \right. \\ &\quad \left. \times \operatorname{ch}\{\sqrt{l_j}(t_{j+1} - t_j)\} + \left(\sqrt{\frac{h_j}{h_{j+1}}} \sqrt{q_j}u(t_j) + \sqrt{p_j}v(t_j) \right) \operatorname{sh}\{\sqrt{l_j}(t_{j+1} - t_j)\} \right], \quad (2.28) \end{aligned}$$

$j = 0, 1, 2, \dots$. Let $u(t_0) \geq 0$, $v(t_0) \geq 0$, $u(t_0)^2 + v(t_0)^2 \neq 0$. Then from (2.26) it follows that

$$u(t) > 0, \quad v(t) > 0, \quad t > t_0. \quad (2.29)$$

From here, from (2.27) and (2.28) we get

$$\begin{aligned} \sqrt{\frac{q_{j+1}}{q_j}} [\sqrt{q_j}u(t_j) + \sqrt{p_j}v(t_j)] \exp\{\sqrt{l_j}(t_{j+1} - t_j)\} &\leq \sqrt{q_{j+1}}u(t_{j+1}) + \sqrt{p_{j+1}}v(t_{j+1}) \leq \\ &\leq \sqrt{\frac{p_{j+1}}{p_j}} [\sqrt{q_j}u(t_j) + \sqrt{p_j}v(t_j)] \exp\{\sqrt{l_j}(t_{j+1} - t_j)\}, \quad (2.30) \end{aligned}$$

for $h_j \geq h_{j+1}$, $j = 0, 1, \dots$ and

$$\begin{aligned} \sqrt{\frac{p_{j+1}}{p_j}} [\sqrt{q_j}u(t_j) + \sqrt{p_j}v(t_j)] \exp\{\sqrt{l_j}(t_{j+1} - t_j)\} &\leq \sqrt{q_{j+1}}u(t_{j+1}) + \sqrt{p_{j+1}}v(t_{j+1}) \leq \\ &\leq \sqrt{\frac{q_{j+1}}{q_j}} [\sqrt{q_j}u(t_j) + \sqrt{q_j}v(t_j)] \exp\{\sqrt{l_j}(t_{j+1} - t_j)\}, \quad (2.31) \end{aligned}$$

for $h_j \leq h_{j+1}$, $j = 0, 1, \dots$. Let us consider the system

$$\begin{cases} u'(t) = p(t)v(t); \\ v'(t) = q(t)u(t), \end{cases} \quad (2.32)$$

$t \geq t_0$. Denote: $e(t) \equiv \exp \left\{ \int_{t_0}^t \sqrt{p(\tau)q(\tau)} d\tau \right\}$, $t \geq t_0$.

Lemma 2.3. *Let $h(t)$ be absolutely continuous and has a local finite variation. Then for each solution $(u(t), v(t))$ of the system (2.32) with $u(t_0) \geq 0$, $v(t_0) \geq 0$ the following inequalities hold*

$$\frac{d(u, v)e(t)\sqrt{p(t)}}{\sqrt{p(t_0)}r_h^-(t)} \leq \sqrt{q(t)}u(t) + \sqrt{p(t)}v(t) \leq \frac{d(u, v)e(t)\sqrt{q(t)}}{\sqrt{q(t_0)}}r_h^-(t), \quad t \geq t_0, \quad (2.33)$$

where $d(u, v) \equiv \sqrt{q(t_0)}u(t_0) + \sqrt{p(t_0)}v(t_0)$.

Proof. We prove the lemma only in the particular case when $h(t) \in C_\sim$. The proof in the general case by analogy of the last part of the proof of Lemma 2.2. Let $\varepsilon (> 0)$ and $t_1 (> t_0)$ be fixed, and let $\xi_0 = t_0 \leq \xi_1 \leq \dots \leq \xi_n \leq \dots$ be the possible extrema of the function $h(t)$. Let $(u(t), v(t))$ be a solution of the system (2.32) with $u(t_0) \geq 0$, $v(t_0) \geq 0$. By virtue of Lemma 2.1 there exist piecewise constant functions $\tilde{p}(t)$ and $\tilde{q}(t)$ such, that the solution $(\tilde{u}(t), \tilde{v}(t))$ of the system

$$\begin{cases} u'(t) = \tilde{p}(t)v(t); \\ v'(t) = \tilde{q}(t)u(t), \end{cases}$$

$t \geq t_0$, with $\tilde{u}(t_0) = u_0(t_0)$, $\tilde{v}(t_0) = v_0(t_0)$ satisfies the inequalities

$$|u(t_1) - \tilde{u}(t_1)| \leq \frac{\varepsilon}{\sqrt{p(t_1)} + \sqrt{q(t_1)}}, \quad |v(t_1) - \tilde{v}(t_1)| \leq \frac{\varepsilon}{\sqrt{p(t_1)} + \sqrt{q(t_1)}}. \quad (2.34)$$

Without loss of generality we will assume that $\tilde{p}(\xi_k) = p(\xi_k)$, $\tilde{q}(\xi_k) = q(\xi_k)$, $k = 0, 1, \dots$, $\tilde{p}(t_1) = p(t_1)$, $\tilde{q}(t_1) = q(t_1)$; the function $\frac{\tilde{q}(t)}{\tilde{q}(t)}$ is nondecreasing on the intervals $[\xi_{2k}; \xi_{2k+1}]$ and nonincreasing on the intervals $[\xi_{2k+1}; \xi_{2k+2}]$, $k = 0, 1, \dots$;

$$\left| \frac{d(u, v)\tilde{e}(t_1)\sqrt{p(t_1)}}{\sqrt{p(t_0)}r_h^-(t_1)} - \frac{d(u, v)e(t_1)\sqrt{p(t_1)}}{\sqrt{p(t_0)}r_h^-(t_1)} \right| \leq \varepsilon, \quad (2.35)$$

$$\left| \frac{d(u, v)\tilde{e}(t_1)\sqrt{q(t_1)}r_h^-(t_1)}{\sqrt{q(t_0)}} - \frac{d(u, v)e(t_1)\sqrt{q(t_1)}r_h^-(t_1)}{\sqrt{q(t_0)}} \right| \leq \varepsilon, \quad (2.36)$$

where $\tilde{e}(t) \equiv \exp\{\int_{t_0}^t \sqrt{\tilde{p}(\tau)\tilde{q}(\tau)}d\tau\}$, $t \geq t_0$. Then by (2.30) and (2.31) we will have:

$$\frac{d(u, v)\tilde{e}(t_1)}{\sqrt{p(t_0)}}\sqrt{p(t_1)} \leq \sqrt{q_1(t)}\tilde{u}(t_1) + \sqrt{p_1(t)}\tilde{v}(t_1) \leq \frac{d(u, v)\tilde{e}(t_1)}{\sqrt{q(t_0)}}\sqrt{q(t_1)}, \quad \text{if } t_1 \in [\xi_0; \xi_1];$$

$$\frac{d(u, v)\tilde{e}(t_1)}{\sqrt{p(t_0)}}\sqrt{\frac{h(t_1)}{h(\xi_1)}}\sqrt{p(t_1)} \leq \sqrt{q_1(t)}\tilde{u}(t_1) + \sqrt{p_1(t)}\tilde{v}(t_1) \leq \frac{d(u, v)\tilde{e}(t_1)}{\sqrt{q(t_0)}}\sqrt{\frac{h(\xi_1)}{h(t_1)}}\sqrt{q(t_1)},$$

if $t_1 \in [\xi_0; \xi_1]$;

$$\frac{d(u, v)\tilde{e}(t_1)}{\sqrt{p(t_0)}} \left(\prod_{k=0}^{n-1} \sqrt{\frac{h(\xi_{2k+1})}{h(\xi_{2k+2})}} \right) \sqrt{p(t_1)} \leq \sqrt{q_1(t)}\tilde{u}(t_1) + \sqrt{p_1(t)}\tilde{v}(t_1) \leq$$

$$\begin{aligned}
&\leq \frac{d(u, v)\tilde{e}(t_1)}{\sqrt{q(t_0)}} \left(\prod_{k=0}^{n-1} \sqrt{\frac{h(\xi_{2k+2})}{h(\xi_{2k+1})}} \right) \sqrt{q(t_1)}, \quad \text{if } t_1 \in [\xi_{2n}; \xi_{2n+1}], \quad n = 1, 2, \dots; \\
&\frac{d(u, v)\tilde{e}(t_1)}{\sqrt{p(t_0)}} \left(\prod_{k=0}^{n-1} \sqrt{\frac{h(\xi_{2k+1})}{h(\xi_{2k+2})}} \right) \sqrt{\frac{h(t_1)}{h(\xi_{2n+1})}} \sqrt{p(t_1)} \leq \sqrt{q_1(t)}\tilde{u}(t_1) + \sqrt{p_1(t)}\tilde{v}(t_1) \leq \\
&\leq \frac{d(u, v)\tilde{e}(t_1)}{\sqrt{q(t_0)}} \left(\prod_{k=0}^{n-1} \sqrt{\frac{h(\xi_{2k+2})}{h(\xi_{2k+1})}} \right) \sqrt{\frac{h(\xi_{2n+1})}{h(t_1)}} \sqrt{q(t_1)}, \quad \text{if } t_1 \in [\xi_{2n+1}; \xi_{2n+2}], \quad n = 1, 2, \dots;
\end{aligned}$$

Therefore

$$\frac{d(u, v)\tilde{e}(t_1)\sqrt{p(t)}}{\sqrt{p(t_0)}r_h^-(t_1)} \leq \sqrt{q(t_1)}\tilde{u}(t_1) + \sqrt{p(t_1)}\tilde{v}(t_1) \leq \frac{d(u, v)\tilde{e}(t_1)\sqrt{q(t_1)}}{q(t_0)}r_h^-(t_1).$$

From here and from (2.34) - (2.36) it follows that

$$\frac{d(u, v)e(t_1)\sqrt{p(t_1)}}{\sqrt{p(t_0)}r_h^-(t_1)} - 2\varepsilon \leq \sqrt{q(t_1)}u(t_1) + \sqrt{p(t_1)}v(t_1) \leq \frac{d(u, v)e(t_1)\sqrt{q(t_1)}}{q(t_0)}r_h^-(t_1) + 2\varepsilon.$$

By virtue of arbitrariness of $\varepsilon (> 0)$ and $t_1 (> t_0)$ from here it follows (2.33). The lemma is proved.

Consider the Riccati equation

$$y'(t) + p(t)y^2(t) - q(t) = 0, \quad t \geq t_0. \quad (2.37)$$

The solutions $y(t)$ of this equation, existing on the interval $[t_1, t_2] (t_0 \leq t_1 < t_2 \leq +\infty)$ are connected with the solutions $(u(t), v(t))$ of the system (2.32) by equalities (see [11], pp. 153, 154):

$$u(t) = u(t_1) \exp \left\{ \int_{t_2}^t p(\tau)y(\tau)d\tau \right\}, \quad v(t) = y(t)u(t), \quad t \in [t_1, t_2]. \quad (2.38)$$

Let $y_0(t)$ be a solution of Eq. (2.37) with $y_0(t_0) > 0$. It follows from Theorem 4.1 of work [12] (see [12], p. 26) that $y_0(t)$ exists on the interval $[t_0, +\infty)$ and

$$y_0(t) > 0, \quad t \geq t_0. \quad (2.39)$$

Since $p(t) > 0$, $q(t) > 0$, $t \geq t_0$, then from Theorem 3.1 of work [13] (see [13], p. 4) it follows that

$$y_0(s) > \frac{y_0(t)}{1 + y_0(t) \int_t^s p(\zeta)d\zeta}, \quad s \geq t \geq t_0. \quad (2.40)$$

Consider the integral

$$\nu_{y_0}(t) \equiv \int_t^{+\infty} p(\tau) \exp \left\{ -2 \int_t^\tau p(\xi) y_0(\xi) d\xi \right\} d\tau, \quad t \geq t_0.$$

From (2.39) and (2.40) it follows that

$$\nu_{y_0}(t) \leq \int_t^{+\infty} p(\tau) \exp \left\{ -2 \int_t^\tau \frac{p(s)y_0(t)}{1 + y_0(t) \int_s^t p(\zeta) d\zeta} ds \right\} d\tau = \frac{1}{y_0(t)}, \quad t \geq t_0. \quad (2.41)$$

The function $y_*(t) \equiv y_0(t) - \frac{1}{\nu_{y_0}(t)}$, $t \geq t_0$, is an extremal solution of Eq. (2.37) (see [14], p. 194, Theorem 4). From (2.41) it follows that

$$y_*(t) \leq 0, \quad t \geq t_0. \quad (2.42)$$

Let us show that

$$y_*(t) < 0, \quad t \geq t_0. \quad (2.43)$$

Suppose that $y_*(t_1) = 0$ for some $t_1 \geq t_0$. Then by virtue of Theorem 4.1 of work [13] the following inequality holds $y_*(t) \geq 0$, $t \geq t_1$. From here and from (2.42) it follows that $y_*(t) \equiv 0$ on the interval $[t_1, +\infty)$, which is impossible. The obtained contradiction proves (2.43). Since $y_0(t_0) > 0$, then from (2.42) ((2.43)) and from Theorem 4 of work [14] it follows that $y_0(t)$ is a normal solution (a solution $y(t)$ of Eq. (2.37) is said to be normal if there exists a neighborhood of the point $y(t_0)$ such that every solution of Eq. (2.37) with initial value from this neighborhood exists on the interval $[t_0, +\infty)$). Then (see [14], p. 195)

$$\int_{t_0}^{+\infty} p(\tau) [y_0(\tau) - y_*(\tau)] d\tau = +\infty. \quad (2.44)$$

Definition 2.1. The solution $(u_*(t), v_*(t))$ of the system (2.32), satisfying the initial conditions $u_*(t_0) = 1$, $v_*(t_0) = y_*(t_0)$, will be called the canonical main solution of Eq. (2.32). The (a) solution $(u_0(t), v_0(t))$ of the system (2.32), satisfying the initial conditions $u_0(t_0) = v_0(t_0) = 1$ ($u_0(t_0) \geq 0$, $v_0(t_0) \geq 0$, $u_0^2(t_0) + v_0^2(t_0) \neq 0$), will be called the canonical nonprincipal (a real nonprincipal) solution of the system (2.32). The solutions $\lambda(u_*(t), v_*(t))$ and $\lambda(u_0(t), v_0(t))$, where λ is an arbitrary constant and $(u_0(t), v_0(t))$ is an real nonprincipal solution of the system (2.32), will be called a main and a principal

solutions of the system (2.32) respectively. A solution of the system (2.32), which is not main solution will be called an ordinary solution of the system (2.32).

From (2.43) it follows that the canonical main and nonprincipal solutions of the system (2.32) are linearly independent. Therefore for general solution $(u(t), v(t))$ of the system (2.32) the following representation holds

$$(u(t), v(t)) = \lambda_0(u_0(t), v_0(t)) + \lambda_*(u_*(t), v_*(t)), \quad \lambda_0 = \text{const}, \quad \lambda_* = \text{const}, \quad t \geq t_0. \quad (2.45)$$

On the strength of (2.38) we have

$$u_*(t) = \exp \left\{ \int_{t_0}^t p(\tau) y_*(\tau) d\tau \right\}, \quad v_*(t) = y_*(t) u_*(t), \quad t \geq t_0; \quad (2.46)$$

$$u_0(t) = \exp \left\{ \int_{t_0}^t p(\tau) y_0(\tau) d\tau \right\}, \quad t \geq t_0, \quad (2.47)$$

where $y_0(t)$ is the solution of eq. (2.37) with $y_0(t_0) = 1$. From here and from (2.44) it follows that

$$\frac{u_*(t)}{u_0(t)} \rightarrow 0 \quad \text{for } t \rightarrow +\infty. \quad (2.48)$$

Let us show that

$$\frac{v_*(t)}{v_0(t)} \rightarrow 0 \quad \text{for } t \rightarrow +\infty. \quad (2.49)$$

In Eq. (2.37) we make the change $y(t) = \frac{1}{z(t)}$. We will come to the equation

$$z'(t) + q(t)z^2(t) - p(t) = 0, \quad t \geq t_0. \quad (2.50)$$

To prove (2.49) we need to the following

Lemma 2.4. Suppose $\int_{t_0}^{+\infty} p(t) dt = +\infty$ or $\int_{t_0}^{+\infty} q(t) dt = +\infty$. Then $z_*(t) \equiv \frac{1}{y_*(t)}$, $t \geq t_0$, is the extremal solution of Eq. (2.50), where $y_*(t)$ is the extremal solution of Eq. (2.37).

Proof. Above it was shown that $y_*(t) < 0$, $t \geq t_0$. Therefore $z_*(t)$ is defined correct. Obviously $z_*(t)$ is a solution to Eq. (2.50). Suppose $\int_{t_0}^{+\infty} p(t) dt = +\infty$. Let $\tilde{z}_*(t)$ be the extremal solution of Eq. (2.50). Suppose $z_*(t) \neq \tilde{z}_*(t)$. Then the solution $z_N(t)$ of Eq. (2.50) with $z_N(t_0) = \frac{z_*(t_0) + \tilde{z}_*(t_0)}{2}$ is a normal solution to Eq. (2.50). and $z_N(t) < 0$, $t \geq t_0$ (the graph of $z_N(t)$ is between the graphs of $z_*(t)$ and $\tilde{z}_*(t)$). Therefore $y_N(t) \equiv \frac{1}{z_N(t)}$, $t \geq t_0$

t_0 is a normal solution of Eq. (2.37). Hence $\nu_{y_N}(t_0) < +\infty$. On the other hand since $y_N(t) < 0$, $t \geq t_0$ we have $\nu_{y_N}(t_0) \geq \int_{t_0}^{+\infty} p(t)dt = +\infty$. The obtained contradiction shows that $z_*(t)$ is extremal. Suppose now $\int_{t_0}^{+\infty} q(t)dt = +\infty$. Let $z_*(t)$ not be extremal. the the integral $\int_{t_0}^{+\infty} q(t) \exp \left\{ - \int_{t_0}^t q(s)z_*(s)ds \right\} dt$ is convergent. On the other hand since $z_*(t) < 0$, $t \geq t_0$, we have $\int_{t_0}^{+\infty} q(t) \exp \left\{ - \int_{t_0}^t q(s)z_*(s)ds \right\} dt \geq \int_{t_0}^{+\infty} q(t)dt = +\infty$. The obtained contradiction completes the proof of the lemma.

Obviously $z_0(t) \equiv \frac{1}{y_0(t)}$ is a normal solutions of Eq. (2.50). Then since $z_*(t)$ is extremal we have

$$\int_{t_0}^{+\infty} q(\tau)[z_0(\tau) - z_*(\tau)]d\tau = +\infty. \quad (2.51)$$

Let $\tilde{v}_0(t) \equiv \exp \left\{ \int_{t_0}^t q(\tau)z_0(\tau)d\tau \right\}$, $\tilde{u}_0(t) = z_0(t)\tilde{v}_0(t)$, $\tilde{v}_*(t) \equiv \exp \left\{ \int_{t_0}^t q(\tau)z_*(\tau)d\tau \right\}$, $\tilde{u}_*(t) = z_*(t)\tilde{v}_*(t)$, $t \geq t_0$. By virtue of (2.38) $(\tilde{u}_0(t), \tilde{v}_0(t))$ and $(\tilde{u}_*(t), \tilde{v}_*(t))$ are solutions of the system (2.32). From (2.51) it follows that

$$\frac{\tilde{v}_*(t)}{\tilde{v}_0(t)} \rightarrow 0 \quad \text{for } t \rightarrow +\infty. \quad (2.52)$$

Since $\tilde{u}_0(t_0) = \tilde{v}_0(t_0) = u_0(t_0) = v_0(t_0) = 1$, $\tilde{u}_*(t_0) = \frac{1}{y_*(t_0)}$, $\tilde{v}_*(t_0) = 1$, we have $(\tilde{u}_0(t), \tilde{v}_0(t)) = (u_0(t), v_0(t))$, $(\tilde{u}_*(t), \tilde{v}_*(t)) = \frac{1}{y_*(t_0)}(u_*(t), v_*(t))$, $t \geq t_0$. From here and from (2.52) it follows (2.49). From (2.44), (2.48) and (2.49) it follows

$$(u(t), v(t)) = \lambda_0(u_0(t), v_0(t))[1 + o(1)], \quad t \rightarrow +\infty. \quad (2.53)$$

By (2.32) from (2.43) and (2.46) we will have

$$0 < u_*(t) \leq u_*(t_0), \quad v_*(t_0) \leq v_*(t) < 0, \quad t \geq t_0. \quad (2.54)$$

III. ESTIMATES OF THE SOLUTIONS OF THE SYSTEM (1.1)

In the system (1.1) we make the substitutions

$$\phi(t) = \exp \left\{ \int_{t_0}^t a_{11}(\tau) d\tau \right\} u(t), \quad \psi(t) = \exp \left\{ \int_{t_0}^t a_{22}(\tau) d\tau \right\} v(t), \quad (3.1)$$

We will come to the system (1.2). In the sequel we will assume that the function $\frac{a_{12}(t)}{a_{21}(t)}$ is absolutely continuous and has a locally finite variation. Denote:

$$m(t) \equiv \min \left\{ \sqrt[4]{\left| \frac{a_{12}(t)}{a_{21}(t)} \right|}, \sqrt[4]{\left| \frac{a_{21}(t)}{a_{12}(t)} \right|} \right\}, \quad M(t) \equiv \max \left\{ \sqrt[4]{\left| \frac{a_{12}(t)}{a_{21}(t)} \right|}, \sqrt[4]{\left| \frac{a_{21}(t)}{a_{12}(t)} \right|} \right\},$$

$$\mathcal{F}(t) \equiv \left| \int_{t_0}^t [Re a_{11}(\tau) - Re a_{22}(\tau)] d\tau \right| + \int_{t_0}^t \left| \frac{1}{4} \left(\frac{a_{12}(\tau)}{a_{21}(\tau)} \right)' \frac{a_{21}(\tau)}{a_{12}(\tau)} + \frac{a_{22}(\tau) - a_{11}(\tau)}{2} \right| d\tau, \quad t \geq t_0.$$

Theorem 3.1. *Let the condition A) be satisfied. Then for each solution $(\phi(t), \psi(t))$ of the system (1.1) the following inequalities hold*

$$m(t_0) \|(\phi(t_0), \psi(t_0))\| m(t) \exp \left\{ \int_{t_0}^t \left[\frac{1}{2} \sum_{j=1}^2 Re a_{jj}(\tau) \right] d\tau - \mathcal{F}(t) \right\} \leq \|(\phi(t), \psi(t))\| \leq$$

$$\leq M(t_0) \|(\phi(t_0), \psi(t_0))\| M(t) \exp \left\{ \int_{t_0}^t \left[\frac{1}{2} \sum_{j=1}^2 Re a_{jj}(\tau) \right] d\tau + \mathcal{F}(t) \right\}, \quad t \geq t_0. \quad (3.2)$$

Proof. Let $(\phi(t), \psi(t))$ be a solution of the system (1.1), and let $(u(t), v(t))$ be the solution of the system (1.2), satisfying the initial conditions $u(t_0) = \phi(t_0)$, $v(t_0) = \psi(t_0)$. Then by virtue of (3.1) we have

$$|\phi(t)| = \exp \left\{ \int_{t_0}^t Re a_{11}(\tau) d\tau \right\} |u(t)|, \quad |\psi(t)| = \exp \left\{ \int_{t_0}^t Re a_{22}(\tau) d\tau \right\} |v(t)|, \quad t \geq t_0.$$

From here it follows

$$\|(\phi(t), \psi(t))\| = \sqrt{\exp \left\{ 2 \int_{t_0}^t Re a_{11}(\tau) d\tau \right\} |u(t)|^2 + \exp \left\{ 2 \int_{t_0}^t Re a_{22}(\tau) d\tau \right\} |v(t)|^2}, \quad t \geq t_0.$$

Therefore

$$\begin{aligned} & \exp \left\{ \min \left\{ \int_{t_0}^t \operatorname{Re} a_{11}(\tau) d\tau, \int_{t_0}^t \operatorname{Re} a_{22}(\tau) d\tau \right\} \right\} \|(u(t), v(t))\| \leq \|(\phi(t), \psi(t))\| \leq, \quad t \geq t_0. \\ & \leq \exp \left\{ \max \left\{ \int_{t_0}^t \operatorname{Re} a_{11}(\tau) d\tau, \int_{t_0}^t \operatorname{Re} a_{22}(\tau) d\tau \right\} \right\} \|(u(t), v(t))\|, \quad t \geq t_0. \end{aligned} \quad (3.3)$$

Denote $H(t) \equiv \left| \frac{Q(t)}{P(t)} \right|$, $H_1(t) \equiv \left| \frac{P(t)}{Q(t)} \right|$, $w(t) \equiv \min \{ \sqrt[4]{H(t)}, \sqrt[4]{H_1(t)} \}$, $W(t) \equiv \max \{ \sqrt[4]{H(t)}, \sqrt[4]{H_1(t)} \}$, $t \geq t_0$. By virtue of Lemma 2.2 from the condition of the theorem it follows

$$w(t_0) \|(\phi(t_0), \psi(t_0))\| \frac{w(t)}{r_H(t)} \leq \|(u(t), v(t))\| \leq W(t_0) W(t) \|(\phi(t_0), \psi(t_0))\| r_H(t), \quad t \geq t_0.$$

From here and from (3.3) we will get

$$\begin{aligned} & w(t_0) \|(\phi(t_0), \psi(t_0))\| \frac{w(t)}{r_H(t)} \exp \left\{ \min \left\{ \int_{t_0}^t \operatorname{Re} a_{11}(\tau) d\tau, \int_{t_0}^t \operatorname{Re} a_{22}(\tau) d\tau \right\} \right\} \leq \|(\phi(t), \psi(t))\| \leq \\ & \leq W(t_0) \|(\phi(t_0), \psi(t_0))\| W(t) \exp \left\{ \max \left\{ \int_{t_0}^t \operatorname{Re} a_{11}(\tau) d\tau, \int_{t_0}^t \operatorname{Re} a_{22}(\tau) d\tau \right\} \right\} r_H(t), \quad t \geq t_0. \end{aligned}$$

Since $w(t_0) = m(t_0)$, $W(t_0) = M(t_0)$,

$$m(t) \exp \left\{ \min \left\{ \int_{t_0}^t \frac{\operatorname{Re} a_{11}(\tau) - \operatorname{Re} a_{22}(\tau)}{2} d\tau, \int_{t_0}^t \frac{\operatorname{Re} a_{22}(\tau) - \operatorname{Re} a_{11}(\tau)}{2} d\tau \right\} \right\} \leq w(t),$$

$$W(t) \leq M(t) \exp \left\{ \max \left\{ \int_{t_0}^t \frac{\operatorname{Re} a_{11}(\tau) - \operatorname{Re} a_{22}(\tau)}{2} d\tau, \int_{t_0}^t \frac{\operatorname{Re} a_{22}(\tau) - \operatorname{Re} a_{11}(\tau)}{2} d\tau \right\} \right\}, \quad t \geq t_0,$$

taking into account the equalities

$$\begin{aligned} & \min \left\{ \int_{t_0}^t \operatorname{Re} a_{11}(\tau) d\tau, \int_{t_0}^t \operatorname{Re} a_{22}(\tau) d\tau \right\} = \\ & = \int_{t_0}^t \left[\frac{1}{2} \sum_{j=1}^2 \operatorname{Re} a_{jj}(\tau) \right] d\tau - \left| \int_{t_0}^t \frac{\operatorname{Re} a_{11}(\tau) - \operatorname{Re} a_{22}(\tau)}{2} d\tau \right|, \end{aligned}$$

$$\begin{aligned}
\max \left\{ \int_{t_0}^t \operatorname{Re} a_{11}(\tau) d\tau, \int_{t_0}^t \operatorname{Re} a_{22}(\tau) d\tau \right\} &= \\
&= \int_{t_0}^t \left[\frac{1}{2} \sum_{j=1}^2 \operatorname{Re} a_{jj}(\tau) \right] d\tau + \left| \int_{t_0}^t \frac{\operatorname{Re} a_{11}(\tau) - \operatorname{Re} a_{22}(\tau)}{2} d\tau \right|, \\
\min \left\{ \int_{t_0}^t \frac{\operatorname{Re} a_{11}(\tau) - \operatorname{Re} a_{22}(\tau)}{2} d\tau, \int_{t_0}^t \frac{\operatorname{Re} a_{22}(\tau) - \operatorname{Re} a_{11}(\tau)}{2} d\tau \right\} &= \\
&= - \left| \int_{t_0}^t \frac{\operatorname{Re} a_{11}(\tau) - \operatorname{Re} a_{22}(\tau)}{2} d\tau \right|, \\
\max \left\{ \int_{t_0}^t \frac{\operatorname{Re} a_{11}(\tau) - \operatorname{Re} a_{22}(\tau)}{2} d\tau, \int_{t_0}^t \frac{\operatorname{Re} a_{22}(\tau) - \operatorname{Re} a_{11}(\tau)}{2} d\tau \right\} &= \\
&= \left| \int_{t_0}^t \frac{\operatorname{Re} a_{11}(\tau) - \operatorname{Re} a_{22}(\tau)}{2} d\tau \right|,
\end{aligned}$$

$t \geq t_0$. from (3.4) we will get (3.2). The theorem is proved.

Remark 3.1. Let $a(t)$ and $b(t)$ be some continuous functions on $[t_0; +\infty)$ and let $b(t) > 0$, $t \geq t_0$. Consider the system

$$\begin{cases} \phi'(t) = a(t)\phi(t) + b(t)\psi(t); \\ \psi'(t) = -b(t)\phi(t) + a(t)\psi(t), \quad t \geq t_0. \end{cases}$$

For this system we have $\mathcal{F}(t) \equiv 0$, $m(t) = M(t) \equiv 1$. Therefore by Theorem 3.1 for its general solution $(\phi(t), \psi(t))$ the inequalities

$$\|(\phi(t_0), \psi(t_0))\| \exp \left\{ \int_{t_0}^t \operatorname{Re} a(\tau) d\tau \right\} \leq \|(\phi(t), \psi(t))\| \leq \|(\phi(t_0), \psi(t_0))\| \exp \left\{ \int_{t_0}^t \operatorname{Re} a(\tau) d\tau \right\},$$

$t \geq t_0$, are fulfilled. Hence

$$\|(\phi(t), \psi(t))\| = \|(\phi(t_0), \psi(t_0))\| \exp \left\{ \int_{t_0}^t \operatorname{Re} a(\tau) d\tau \right\}, \quad t \geq t_0,$$

and in this sense the estimates (3.2) are sharp.

Example 3.1. Consider the system

$$\begin{cases} \phi'(t) = (-\lambda + \sin t)\phi(t) + t^\alpha \psi(t); \\ \psi'(t) = -t^\beta \phi(t) + (-\mu + \cos t)\psi(t), \end{cases} \quad (3.5)$$

$t \geq \frac{\pi}{4}$, where λ, μ, α and β are some real numbers. For this system $m(t) = t^{-\frac{|\alpha-\beta|}{2}}$,

$$M(t) = t^{\frac{|\alpha-\beta|}{2}}, \quad \mathcal{F}(t) = |\sqrt{2} + \lambda - \mu + (\lambda - \mu)t| + \int_{\pi/4}^t \left| \frac{\alpha-\beta}{4\tau} + \frac{\lambda-\mu}{2} + \frac{\sqrt{2}}{2} \cos(\tau + \frac{\pi}{4}) \right| d\tau,$$

$t \geq \frac{\pi}{4}$. Using Theorem 3.1 it is easy to find the following regions of values of the parameters $\lambda, \mu, \alpha, \beta$ for which the system (3.5) is asymptotically stable:

$$O_1 \equiv \{(\lambda, \mu, \alpha, \beta) : \lambda + \mu > 3|\lambda - \mu| + \sqrt{2}, \lambda > 0, \mu > 0\};$$

$$O_2 \equiv \{(\lambda, \mu, \alpha, \beta) : \lambda = \mu > \frac{\sqrt{2}}{2\pi}\};$$

$$O_3 \equiv \{(\lambda, \mu, \alpha, \beta) : \lambda + \mu > 3|\lambda - \mu| > 3\sqrt{2}, \lambda > 0, \mu > 0\};$$

$O_3 \equiv \{(\lambda, \mu, \alpha, \beta) : \lambda + \mu > 3|\lambda - \mu| = 3\sqrt{2}, \lambda > 0, \mu > 0, \alpha = \beta\}$; and the following regions of values of parameters $\lambda, \mu, \alpha, \beta$ for which system (3.5) is unstable:

$$O_5 \equiv \{(\lambda, \mu, \alpha, \beta) : \lambda + \mu + 3|\lambda - \mu| + \sqrt{2} < 0, \lambda < 0, \mu < 0\};$$

$$O_6 \equiv \{(\lambda, \mu, \alpha, \beta) : \lambda = \mu < -\frac{\sqrt{2}}{2\pi}\};$$

$$O_7 \equiv \{(\lambda, \mu, \alpha, \beta) : \lambda + \mu + 3|\lambda - \mu| < 0, |\lambda - \mu| > \sqrt{2}, \lambda < 0, \mu < 0\};$$

$$O_7 \equiv \{(\lambda, \mu, \alpha, \beta) : \lambda + \mu + 3|\lambda - \mu| < 0, |\lambda - \mu| = \sqrt{2}, \lambda < 0, \mu < 0, \alpha = \beta\};$$

It is not difficult to verify that the application of the estimates of Liapunov (see [4], p. 432), Yu. S. Bogdanov (see [4], p. 433) and estimate by freezing method (see [4], p 441) to the system (3.5) give no result. The estimates by logarithmic norms γ_I and γ_{II} of S. M. Lozinski (see [4], pp. 435, 436) give result only for $\lambda > 0, \mu > 0, \alpha < -1, \beta < -1$. For comparison now we use the theorem of Wazewski to the system (3.5) (see [4], p. 434). By virtue of this theorem for each solution $(\phi(t), \psi(t))$ of the system (3.5) the following inequalities hold

$$\begin{aligned} \|\phi(t), \psi(t)\| \exp \left\{ \int_{\pi/4}^t \omega_-(\tau) d\tau \right\} &\leq \|\phi(t), \psi(t)\| \leq \\ &\leq \|\phi(t), \psi(t)\| \exp \left\{ \int_{\pi/4}^t \omega_+(\tau) d\tau \right\}, \quad t \geq \frac{\pi}{4}, \end{aligned} \quad (3.6)$$

where $\omega_{\pm} \equiv \frac{-\lambda-\mu+\sin t+\cos t \pm \sqrt{(\lambda-\mu+\cos t-\sin t)^2+(t^\alpha-t^\beta)^2}}{2}$. If $\alpha \neq \beta > 0$ or $\beta \neq \alpha > 0$, then from (3.6) does not follow neither asymptotic stability nor instability of the system (3.5) for every values of λ and μ .

Definition 3.1. A solution $(\phi(t), \psi(t))$ of the system (1.1), satisfying the condition B), is said to be a main (a nonprincipal, an ordinary) solution of the system (1.1), if $\phi(t_0) = u(t_0)$, $\psi(t_0) = v(t_0)$, where $(u(t), v(t))$ is a main (a nonprincipal, an ordinary) solution of the system (1.2).

Theorem 3.2. Let the condition B) be satisfied and let

$$C) \int_{t_0}^{+\infty} a_{12}(t) \exp \left\{ \int_{t_0}^t [a_{22}(s) - a_{11}(s)] ds \right\} dt = +\infty \text{ or} \\ \int_{t_0}^{+\infty} a_{21}(t) \exp \left\{ \int_{t_0}^t [a_{11}(s) - a_{22}(s)] ds \right\} dt = +\infty.$$

Then if:

i) $(\phi(t), \psi(t))$ is a nonprincipal solution of the system (1.1), then

$$D(\phi, \psi)m(t) \exp \left\{ \int_{t_0}^t \left[\frac{1}{2} \sum_{j=1}^2 \operatorname{Re} a_{jj}(\tau) + \sqrt{a_{12}(\tau)a_{21}(\tau)} \right] d\tau - \mathcal{F}(t) \right\} \leq |\phi(t)| + |\psi(t)| \leq \\ \leq D(\phi, \psi)M(t) \exp \left\{ \int_{t_0}^t \left[\frac{1}{2} \sum_{j=1}^2 \operatorname{Re} a_{jj}(\tau) + \sqrt{a_{12}(\tau)a_{21}(\tau)} \right] d\tau + \mathcal{F}(t) \right\}, \quad \psi t \geq t_0, \quad (3.7)$$

where $D(\phi, \psi) \equiv \sqrt[4]{\left| \frac{a_{21}(t_0)}{a_{12}(t_0)} \right|} |\phi(t_0)| + \sqrt[4]{\left| \frac{a_{12}(t_0)}{a_{21}(t_0)} \right|} |\psi(t_0)|$;

ii) $(\phi(t), \psi(t))$ is a main solution of the system (1.1), then

$$|\phi(t)| + |\psi(t)| \leq$$

$$\leq (|\phi(t_0)| + |\psi(t_0)|) \exp \left\{ \int_{t_0}^t \left[\frac{1}{2} \sum_{j=1}^2 \operatorname{Re} a_{jj}(\tau) \right] d\tau + \left| \int_{t_0}^t \frac{\operatorname{Re} a_{11}(\tau) - \operatorname{Re} a_{22}(\tau)}{2} d\tau \right| \right\}, \quad (3.8)$$

$t \geq t_0$;

iii) $(\phi(t), \psi(t))$ is an ordinary solution of the system (1.1), then

$$c_1 m(t) \exp \left\{ \int_{t_0}^t \left[\frac{1}{2} \sum_{j=1}^2 \operatorname{Re} a_{jj}(\tau) + \sqrt{a_{12}(\tau)a_{21}(\tau)} \right] d\tau - \mathcal{F}(t) \right\} \leq |\phi(t)| + |\psi(t)| \leq$$

$$\leq c_2 M(t) \exp \left\{ \int_{t_0}^t \left[\frac{1}{2} \sum_{j=1}^2 \operatorname{Re} a_{jj}(\tau) + \sqrt{a_{12}(\tau) a_{21}(\tau)} \right] d\tau + \mathcal{F}(t) \right\}, \quad t \geq t_0, \quad (3.9)$$

where $c_j = \text{const} > 0$, $j = 1, 2$.

Proof. Let $(\phi(t), \psi(t))$ be a solution of the system (1.1), and $(u(t), v(t))$ be the solution of the system (1.2) with $u(t_0) = \phi(t_0)$, $v(t_0) = \psi(t_0)$. Then by (3.1) we have

$$|\phi(t)| + |\psi(t)| = \exp \left\{ \int_{t_0}^t \operatorname{Re} a_{11}(\tau) d\tau \right\} |u(t)| + \exp \left\{ \int_{t_0}^t \operatorname{Re} a_{22}(\tau) d\tau \right\} |v(t)|, \quad t \geq t_0.$$

From here it follows

$$\begin{aligned} \exp \left\{ \min \left\{ \int_{t_0}^t \operatorname{Re} a_{11}(\tau) d\tau, \int_{t_0}^t \operatorname{Re} a_{22}(\tau) d\tau \right\} \right\} (|u(t)| + |v(t)|) &\leq |\phi(t)| + |\psi(t)| \leq \\ &\leq \exp \left\{ \max \left\{ \int_{t_0}^t \operatorname{Re} a_{11}(\tau) d\tau, \int_{t_0}^t \operatorname{Re} a_{22}(\tau) d\tau \right\} \right\} (|u(t)| + |v(t)|), \quad t \geq t_0, \end{aligned}$$

or, which is the same,

$$\begin{aligned} \exp \left\{ \int_{t_0}^t \left[\frac{1}{2} \sum_{j=1}^2 \operatorname{Re} a_{jj}(\tau) \right] d\tau - \left| \int_{t_0}^t \frac{\operatorname{Re} a_{11}(\tau) - \operatorname{Re} a_{22}(\tau)}{2} d\tau \right| \right\} (|u(t)| + |v(t)|) &\leq \\ &\leq |\phi(t)| + |\psi(t)| \leq \\ &\leq \exp \left\{ \int_{t_0}^t \left[\frac{1}{2} \sum_{j=1}^2 \operatorname{Re} a_{jj}(\tau) \right] d\tau + \left| \int_{t_0}^t \frac{\operatorname{Re} a_{11}(\tau) - \operatorname{Re} a_{22}(\tau)}{2} d\tau \right| \right\} (|u(t)| + |v(t)|), \quad (3.10) \end{aligned}$$

$t \geq t_0$. Let $(u_0(t), v_0(t))$ be a real nonprincipal solution of the system (1.2). Then by virtue of Lemma 2.3 and (2.29) we have

$$\frac{\tilde{D}E(t)\sqrt{P(t)}}{\sqrt{P(t_0)}r_H^-(t)} \leq \sqrt{Q(t)}u_0(t) + \sqrt{P(t)}v_0(t) \leq \frac{\tilde{D}E(t)\sqrt{Q(t)}}{\sqrt{Q(t_0)}}r_H^-(t), \quad t \geq t_0, \quad (3.11)$$

where $\tilde{D} \equiv \sqrt{Q(t_0)}u_0(t) + \sqrt{P(t_0)}v_0(t) = \sqrt{a_{21}(t_0)}\phi(t_0) + \sqrt{a_{12}(t_0)}\psi(t_0)$, $E(t) \equiv \exp\left\{\int_{t_0}^t \sqrt{P(\tau)Q(\tau)}d\tau\right\} = \exp\left\{\int_{t_0}^t \sqrt{a_{12}(\tau)a_{21}(\tau)}d\tau\right\}$, $t \geq t_0$. Obviously

$$\min\{\sqrt{P(t)}, \sqrt{Q(t)}\}[u_0(t) + v_0(t)] \leq \sqrt{Q(t)}u_0(t) + \sqrt{P(t)}v_0(t) \leq \max\{\sqrt{P(t)}, \sqrt{Q(t)}\}[u_0(t) + v_0(t)], \quad t \geq t_0.$$

Therefore,

$$\begin{aligned} \min\left\{\frac{1}{\sqrt{P(t)}}, \frac{1}{\sqrt{Q(t)}}\right\} \left[\sqrt{Q(t)}u_0(t) + \sqrt{P(t)}v_0(t) \right] &\leq u_0(t) + v_0(t) \leq \\ \leq \max\left\{\frac{1}{\sqrt{P(t)}}, \frac{1}{\sqrt{Q(t)}}\right\} \left[\sqrt{Q(t)}u_0(t) + \sqrt{P(t)}v_0(t) \right], \quad t \geq t_0. \end{aligned}$$

From here and from (3.11) we will get

$$\begin{aligned} \tilde{D} \min\left\{\sqrt[4]{\frac{P(t)}{Q(t)}}, \sqrt[4]{\frac{Q(t)}{P(t)}}\right\} \frac{E(t)}{\sqrt[4]{P(t_0)Q(t_0)r_H(t)}} &\leq u_0(t) + v_0(t) \leq \\ \leq \tilde{D} \max\left\{\sqrt[4]{\frac{P(t)}{Q(t)}}, \sqrt[4]{\frac{Q(t)}{P(t)}}\right\} \frac{E(t)}{\sqrt[4]{P(t_0)Q(t_0)}} r_H(t), \quad t \geq t_0. \end{aligned}$$

Therefore,

$$\begin{aligned} \frac{\tilde{D}m(t)}{\sqrt[4]{a_{12}(t_0)a_{21}(t_0)}} \exp\left\{-\left|\int_{t_0}^t \frac{\operatorname{Re} a_{11}(\tau) - \operatorname{Re} a_{22}(\tau)}{2} d\tau\right|\right\} \frac{E(t)}{r_H(t)} &\leq u_0(t) + v_0(t) \leq \\ \leq \frac{\tilde{D}M(t)}{\sqrt[4]{a_{12}(t_0)a_{21}(t_0)}} \exp\left\{\left|\int_{t_0}^t \frac{\operatorname{Re} a_{11}(\tau) - \operatorname{Re} a_{22}(\tau)}{2} d\tau\right|\right\} E(t)r_H(t), \quad t \geq t_0. \end{aligned}$$

Taking into account the equalities $(u(t), v(t)) = \lambda_0(u_0(t), v_0(t))$, $\lambda_0 = \text{const} \neq 0$, $|\phi(t_0)| = |\lambda_0|u_0(t_0)$, $|\psi(t_0)| = |\lambda_0|v_0(t_0)$ from here we will get

$$D(\phi, \psi) \exp\left\{-\left|\int_{t_0}^t \frac{\operatorname{Re} a_{11}(\tau) - \operatorname{Re} a_{22}(\tau)}{2} d\tau\right|\right\} \frac{m(t)E(t)}{r_H(t)} \leq |u(t)| + |v(t)|$$

$$\leq D(\phi, \psi) \exp \left\{ \left| \int_{t_0}^t \frac{Re a_{11}(\tau) - Re a_{22}(\tau)}{2} d\tau \right| \right\} M(t) E(t) r_H(t), \quad t \geq t_0. \quad (3.12)$$

From here and from (3.10) it follows (3.7). The assertion i) is proved. Let us prove ii). Let $(\phi(t), \psi(t))$ be a main solution of the system (1.1). Then by (3.1) we have

$$\phi(t) = \phi(t_0) \exp \left\{ \int_{t_0}^t a_{11}(\tau) d\tau \right\} u_0(t), \quad \psi(t) = \psi(t_0) \exp \left\{ \int_{t_0}^t a_{22}(\tau) d\tau \right\} v_0(t), \quad (3.13)$$

$t \geq t_0$, where $(u_0(t), v_0(t))$ is the canonical main solution of the system (1.2). By (2.54) from C) it follows $|\phi_0(t_0)|u_*(t) + |\phi_0(t_0)||v_*(t)| \leq |\phi_0(t_0)|u_*(t_0) + |\phi_0(t_0)||v_*(t_0)|$, $t \geq t_0$. By (3.10) from here and from (3.13) it follows (3.8). The assertion ii) is proved. Let us prove iii). Let $(\phi(t), \psi(t))$ be an ordinary solution of the system (1.1). By (3.1) we have

$$\phi(t) = \exp \left\{ \int_{t_0}^t a_{11}(\tau) d\tau \right\} \left[\lambda_0 u_0(t) + \lambda_* u_*(t) \right], \quad t \geq t_0, \quad (3.14)$$

$$\psi(t) = \exp \left\{ \int_{t_0}^t a_{22}(\tau) d\tau \right\} \left[\lambda_0 v_0(t) + \lambda_* v_*(t) \right], \quad t \geq t_0, \quad (3.15)$$

where $(u_*(t), v_*(t))$ and $(u_0(t), v_0(t))$ are the canonical main and canonical nonprincipal solutions of the system (1.2) respectively, and $\lambda_0 \neq 0$. Then by (2.29) and (2.52) we can deduce from C) that $\tilde{c}_1[u_0(t) + v_0(t)] \leq |\lambda_0 u_0(t) + \lambda_* u_0(t)| + |\lambda_0 v_0(t) + \lambda_* v_0(t)| \leq \tilde{c}_2[u_0(t) + v_0(t)]$, $t \geq t_0$, $\tilde{c}_j = \text{const}$, $j = 1, 2$. By virtue of (3.10) from here, from (3.14) and (3.15) we obtain

$$\begin{aligned} \tilde{c}_1 \exp \left\{ \int_{t_0}^t \left[\frac{1}{2} \sum_{j=1}^2 Re a_{jj}(\tau) \right] d\tau - \left| \int_{t_0}^t \frac{Re a_{11}(\tau) - Re a_{22}(\tau)}{2} d\tau \right| \right\} [u_0(t) + v_0(t)] &\leq \\ &\leq |\phi(t)| + |\psi(t)| \leq \\ &\leq \tilde{c}_2 \exp \left\{ \int_{t_0}^t \left[\frac{1}{2} \sum_{j=1}^2 Re a_{jj}(\tau) \right] d\tau + \left| \int_{t_0}^t \frac{Re a_{11}(\tau) - Re a_{22}(\tau)}{2} d\tau \right| \right\} [u_0(t) + v_0(t)], \end{aligned}$$

$\psi t \geq t_0$. By (3.12) from here it follows (3.9). The assertion iii), and therefore, the theorem are proved.

Remark 3.2. Let $a(t)$ and $b(t)$ be the same as in Remark 3.1. Consider the system

$$\begin{cases} \phi'(t) = a(t)\phi(t) + b(t)\psi(t); \\ \psi'(t) = b(t)\phi(t) + a(t)\psi(t), \quad t \geq t_0. \end{cases}$$

For this system we have $\mathcal{F}(t) \equiv 0$, $m(t) = M(t) \equiv 1$. Therefore by Theorem 3.2 for its each nonprincipal solution $(\phi(t), \psi(t))$ the inequalities

$$\begin{aligned} |\phi(t)| + |\psi(t)| &= (|\phi(t_0)| + |\psi(t_0)|) \exp \left\{ \int_{t_0}^t [Re a(\tau) + b(\tau)] d\tau \right\} \leq |\phi(t)| + |\psi(t)| \leq \\ &\leq (|\phi(t_0)| + |\psi(t_0)|) \exp \left\{ \int_{t_0}^t [Re a(\tau) + b(\tau)] d\tau \right\}, \quad t \geq t_0, \end{aligned}$$

are fulfilled. Hence

$$|\phi(t)| + |\psi(t)| = (|\phi(t_0)| + |\psi(t_0)|) \exp \left\{ \int_{t_0}^t [Re a(\tau) + b(\tau)] d\tau \right\}, \quad t \geq t_0,$$

and in this sense the estimates (3.7) are sharp.

Example 3.2. Let us consider the system

$$\begin{cases} \phi'(t) = (-\lambda + \sin t)\phi(t) + t^\alpha \psi(t); \\ \psi'(t) = t^\beta \phi(t) + (-\mu + \cos t)\psi(t), \end{cases} \quad (3.16)$$

$t \geq \frac{\pi}{4}$, where λ , μ , α and β are some real constants. For this system the functions $m(t)$, $M(t)$ and $\mathcal{F}(t)$ are the same, which are in the example 3.1. Applying Theorem 3.2 to (3.16) it is easy to find the following regions of parameters λ , μ , α , β for which Eq. (3.16) is asymptotically stable:

$$\begin{aligned} O_1^0 &\equiv \{(\lambda, \mu, \alpha, \beta) : \lambda + \mu > 3|\lambda - \mu| + \sqrt{2}, \lambda > 0, \mu > 0, \lambda \neq \mu, \alpha + \beta < 0\}; \\ O_2^0 &\equiv \{(\lambda, \mu, \alpha, \beta) : \lambda + \mu > 3|\lambda - \mu| + 2 + \sqrt{2}, \lambda > 0, \mu > 0, \lambda \neq \mu, \alpha + \beta = 0\}; \\ O_3^0 &\equiv \{(\lambda, \mu, \alpha, \beta) : \lambda + \mu > 3|\lambda - \mu| > 3\sqrt{2}, \lambda > 0, \mu > 0, \lambda \neq \mu, \alpha + \beta < 0\}; \\ O_4^0 &\equiv \{(\lambda, \mu, \alpha, \beta) : \lambda + \mu > 3|\lambda - \mu| + 2 > 3\sqrt{2} + 2, \lambda > 0, \mu > 0, \lambda \neq \mu, \alpha + \beta = 0\}; \\ O_5^0 &\equiv \{(\lambda, \mu, \alpha, \beta) : \lambda + \mu > 3|\lambda - \mu| = 3\sqrt{2}, \lambda > 0, \mu > 0, \lambda \neq \mu, \alpha = \beta < 0\}; \\ O_6^0 &\equiv \{(\lambda, \mu, \alpha, \beta) : \lambda + \mu > 3|\lambda - \mu| + 1 = 3\sqrt{2} + 2, \lambda > 0, \mu > 0, \lambda \neq \mu, \alpha = \beta = 0\}; \end{aligned}$$

and the following regions of parameters λ , μ , α , β for which eq. (3.16) is instable:

$$\begin{aligned}
 O_7^0 &\equiv \{(\lambda, \mu, \alpha, \beta) : \lambda \neq \mu, \alpha + \beta > 0\}; \\
 O_8^0 &\equiv \{(\lambda, \mu, \alpha, \beta) : \lambda + \mu + 3|\lambda - \mu| + \sqrt{2} < 2, \lambda < 0, \mu < 0, \alpha + \beta = 0\}; \\
 O_9^0 &\equiv \{(\lambda, \mu, \alpha, \beta) : \lambda = \mu < -\frac{\sqrt{2}}{2\pi}\}; \\
 O_{10}^0 &\equiv \{(\lambda, \mu, \alpha, \beta) : \lambda + \mu + 3|\lambda - \mu| < 2, |\lambda - \mu| \geq \sqrt{2}, \alpha + \beta = 0\}.
 \end{aligned}$$

As in the case of the system (3.5) the application of the estimates of Liapunov, Yu. S. Bogdanov and estimate by freezing method to the system (3.16) give no result and the estimates by logarithmic norms γ_I and γ_{II} of S. M. Lozinski give result only for $\lambda > 0, \mu > 0, \alpha < -1, \beta < -1$. For the case $\alpha > 0$ or $\beta > 0$ it is impossible by use of the theorem of Wazewski to verify neither asymptotic stability nor instability of system (3.16).

REFERENCES

1. L. M. Liapunov, The general problem of motion stability. Gosudarstvennoe izdatelstvo texnico - teoreticheskoy literatury, Moscow, Leningrad 1950.
2. L. Cezary, Asymptotic behavior and stability of solutions of ordinary differential equations. Moscow, mir, 1964.
3. R. Bellman, Stability theory of differential equations. Moscow, Foreign Literature Publishers, 1954.
4. L. Y. Adrianoba, Introduction to the theory of linear systems of differential equations. S. Peterburg, Publishers of St. Petersburg University, 1992.
5. B. P. Demidovich, Lectures on the mathematical theory of stability. Moscow, Nauka, 1967.
6. V. A. Yakubovich, V. M. Starzhinsky, Linear differential equations with periodic coefficients and their applications. Moscow, Nauka, 1972.
7. N. V. Mack - Lachlan, Theory and Applications of Mathieu functions. Moscow, Mir, 1953.
8. D. W. Jordan, P. Smith, Nonlinear differential equations. Oxford University press, 2007.
9. Erbe L. H. Stability results for Periodic second Order Linear Differential Equations. Proc. Amer. Math. Soc., Vol. 93, Num. 2, 1985. pp. 272 - 276.
10. Knovles I. On stability Conditions for Second Order Linear Differential Equations, Journal od Differential Equations 34, 179 - 203 (1979).
11. A. I. Egorov, Uravneniya Rikkati (Riccati equations), Moskow, 2011.
12. G. A. Grigorian, Two comparison criteria for the scalar Riccati equations and some their applications. Izv. vuzov, Matematika, № 11, 2012, pp. 20 - 35.
13. G. A. Grigorian, On two comparison tests for second-order linear ordinary differential equations (Russian) Dier. Uravn. 47 (2011), no. 9, 1225 - 1240; translation in Dier. Equ. 47 (2011), no. 9 1237 - 1252, 34C10.
14. G. A. Grigorian, On some properties of solutions of the Riccati equation. Izvestiya NAS of Armenia, vol. 42, № 4, 2007, pp. 11 - 26.

Great Britain Journal Press Membership

For Authors, subscribers, Boards and organizations

Great Britain Journals Press membership is an elite community of scholars, researchers, scientists, professionals and institutions associated with all the major disciplines. Great Britain memberships are for individuals, research institutions, and universities. Authors, subscribers, Editorial Board members, Advisory Board members, and organizations are all part of member network.

Read more and apply for membership here:
<https://journalspress.com/journals/membership>

For Authors

For Institutions

For Subscribers

Author Membership provide access to scientific innovation, next generation tools, access to conferences/seminars/symposiums/webinars, networking opportunities, and privileged benefits. Authors may submit research manuscript or paper without being an existing member of GBJP. Once a non-member author submits a research paper he/she becomes a part of "Provisional Author Membership".

Society flourish when two institutions Come together." Organizations, research institutes, and universities can join GBJP Subscription membership or privileged "Fellow Membership" membership facilitating researchers to publish their work with us, become peer reviewers and join us on Advisory Board.

Subscribe to distinguished STM (scientific, technical, and medical) publisher. Subscription membership is available for individuals universities and institutions (print & online). Subscribers can access journals from our libraries, published in different formats like Printed Hardcopy, Interactive PDFs, EPUBs, eBooks, indexable documents and the author managed dynamic live web page articles, LaTeX, PDFs etc.

GO GREEN AND HELP
SAVE THE ENVIRONMENT

JOURNAL AVAILABLE IN

PRINTED VERSION, INTERACTIVE PDFS, EPUBS, EBOOKS, INDEXABLE DOCUMENTS AND THE AUTHOR MANAGED DYNAMIC LIVE WEB PAGE ARTICLES, LATEX, PDFS, RESTRUCTURED TEXT, TEXTILE, HTML, DOCBOOK, MEDIAWIKI MARKUP, TWIKI MARKUP, OPML, EMACS ORG-MODE & OTHER

SCAN TO KNOW MORE

support@journalspress.com
www.journalspress.com

*THIS JOURNAL SUPPORT AUGMENTED REALITY APPS AND SOFTWARES