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In this paper, we are intersted the following initial value problem for the system of partial differential
equations describing the motion of incompressible micropolar fluid:


∂tu− (χ+ν)∆u+u ·∇u+∇π−2χ∇×ω = 0 in R3 ×R+,

∂tω−µ∆ω+u ·∇ω+4χω−κ∇divω−2χ∇×u = 0 in R3 ×R+,

divu = 0 in R3 ×R+,

(u,ω)|t=0 = (u0,ω0) in R3,

(1)

where u = u(x, t),π = π(x, t) and ω = ω(x, t) are unknown functions representing the linear velocity
field, the pressure field of the fluid and the micro-rotation velocity field, respectively. κ,µ,ν and
χ are positive constants reflecting various viscosity of the fluid. Throughout this paper we only
consider the situation with κ = µ = 1 and χ = ν = 1/2.

Theory of micropolar fluid was proposed by Eringen [8] in 1996, his idea allows us to consider
several physical phenomena which cannot be treated by the classical Navier-Stokes system for the
viscous incompressible fluid, then the problem (1) was presented as a necessary modification to the
traditional Navier-Stokes equations in order to better characterize the motion of real-world fluids
consisting of rigid but randomly oriented particles (such as blood) by examining the influence of
micro-rotation of the particles suspended in the fluid.

There are several results on the weak and strong solvency of the micropolar fluid system and
some related topics. The weak solution of (1) was firstly considered by Galdi and Rionero [11].
The existence theorem of the micropolar fuid system with sufficiently regular initial data has been
showed by Lukaszewicz [15]. Inoue et al. [12] proved similar result for the magneto-micropolar fluid
system. Many authors obtained the well-posedness of the problem (1) in various function spaces.
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For instance in the Besov spaces Ḃ
−1+ 3

p
p,q for p ∈ [1,6) and q = ∞, Chen and Miao [5] obtained

global well-posedness of the problem (1) for small initial data. Zhu and Zhao [21] proved that

the Cauchy problem (1) is locally well-posed in the Fourier-Besov spaces F Ḃ
−1+ 3

p
p,q for 1 < p ≤ ∞

and 1 ≤ q < ∞ and globally well posed in these spaces with small initial data. Recently, Weipeng
Zhu [22] considered a critical case p = 1 and showed that this problem is locally well-posed in
F Ḃ−1

1,q for 1 ≤ q ≤ 2, and is globally well-posed in these spaces with small initial data. Also, Zhu
proved the ill-posedness of (1) in F Ḃ−1

1,q for 2 < q ≤ ∞. In addition, by using a similar argument Zhu
established the ill-posedness of (1) in Besov spaces Ḃ−1

∞,q with 2 < q ≤ ∞. The well-posedness of a
more general model than (1) is established by Ferreira and Villamizar-Roa [9] in pseudo-measure
spaces. For the other studies of the problem (1), we refer to the monographs [6, 16, 17, 20] .

We remark that if χ = 0 and ω = 0, then we have the classical Navier-Stokes equations: ut −µ∆u+(u.∇)u+∇p = 0 (t,x) ∈ R+×R3

∇ ·u = 0,
u(0,x) = u0(x) x ∈ R3.

The local and global well-posedness of the classical Navier-Stokes equations have been established
by a lot of researches in various function spaces, we refer to [13, 14] and references cited therein.

In the present paper, we show that the problem (1) is locally well-posed in Fourier-Besov-Morrey

spaces F Ṅ
λ−1
1,λ,q for 1 ≤ q ≤ ∞, and globally well-posed in these spaces with small initial data.

Before stating the main result of this paper, we first recall the definitions of Morrey spaces, Besov-
Morrey spaces and Fourier-Besov-Morrey spaces and present some properties about these spaces.
Our results on well-posedness of solutions are stated in Section 3. In Section 4, we obtain the needed
linear and nonlinear estimates and we prove the well-posedness result.

Before stating our main result, we shall introduce the notations used throughout this paper.

We denote by C a positive constant such that whose value may change with each appearance, x ≲ y
means that there exists a positive constant such that x ≤Cy, we write (a,b) ∈ X for a ∈ X and b ∈ X
and ∥·∥E∩F = ∥·∥E +∥·∥F . The symbol S

(
R3
)

is the usual Schwartz space of infinitely differentiable
rapidly decreasing complex-valued functions on R3.

By ϕ̂ we denote the Fourier transform of ϕ ∈ S
(
R3
)

in the version

ϕ̂(x) := F ϕ(x) =
1

(2π)3/2

∫
R3

e−ixξ
ϕ(ξ)dξ, x ∈ R3.

and we define its inverse Fourier transform by

ϕ̆(ξ) = F −1
ϕ(ξ) = (2π)−

3
2

∫
R3

eix·ξ
ϕ(x)dx.

For two complex or extended real-valued measurable functions f ,g on R3, the convolution f ∗g
is given by

( f ∗g)(x) :=
∫
R3

f (x− y)g(y)dy, f or x ∈ R3.

II. GENERAL NOTATION
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Let us introduce some basic knowledge on the Littlewood-Paley theory and Fourier-Besov-
Morrey spaces.

Let ϕ,ψ be two radial positive functions such that supp(ϕ)⊂
{

ξ ∈ R3 : 3
4 ≤ |ξ| ≤ 8

3

}
and supp(ψ)⊂{

ξ ∈ R3 : |ξ| ≤ 4
3

}
and

∑
j∈Z

ϕ
(
2− j

ξ
)
= 1, for all ξ ̸= 0

and

ψ(ξ)+ ∑
j≥0

ϕ(2− jξ) = 1 for all ξ ∈ R3.

We denote
ϕ j(ξ) = ϕ

(
2− j

ξ
)
, ψ j(ξ) = ∑

k≤ j−1
ϕk(ξ)

and
h(x) = F −1

ϕ(x), g(x) = F −1
ψ(x).

We define the homogeneous dyadic blocks ∆̇ j and Ṡ j for all u ∈ S′(R3) as follows:

∆̇ ju := F −1 (
ϕ(2− j

ξ)F (u)
)
= 23 j

∫
R3

h
(
2 jy
)

u(x− y)dy,

Ṡ ju := ∑
k≤ j−1

∆k f = F −1 (
ψ(2− j

ξ)F (u)
)
= 23 j

∫
R3

g
(
2 jy
)

u(x− y)dy,

where ∆̇ j = Ṡ j − Ṡ j−1 is a frequency projection to the annulus {|ξ| ∼ 2 j} and S j is a frequency to
the ball {|ξ|≲ 2 j}.

Then for any u ∈ S′(R3)/P (R3) wehre P (R3) is the set of polynomials (See. [19] ) we have the
Littlewood-Paley decomposition:

u = ∑
j∈Z

∆̇ ju and Ṡ ju = ∑
k≤ j−1

∆̇ku.

By using the definition of ∆̇ j and Ṡ j, one easily obtains that

∆̇ j∆̇ku = 0, if | j− k| ≥ 2

∆̇ j
(
Ṡk−1 f ∆̇ku

)
= 0, if | j− k| ≥ 5.

Now, we define the Morrey spaces Mλ
p
(
R3
)
.

Definition 3.1. ( [22]) For 1 ≤ p < ∞,0 ≤ λ < 3, the Morrey space Mλ
p = Mλ

p
(
R3
)

is defined by

Mλ
p
(
R3
)
=
{

f ∈ Lp
loc

(
R3
)

;∥ f∥Mλ
p
< ∞

}
, where

III. PRELIMINARIES AND MAIN RESULTS
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∥ f∥Mλ
p
= sup

x0∈R3
sup
r>0

r−
λ
p ∥ f∥Lp(B(x0,r)).

Remark 3.2. ( [10])

1) The space Mλ
p equipped with the norm ∥ · ∥Mλ

p
is a Banach space.

2) If 1 ≤ p1, p2, p3 < ∞, 0 ≤ λ1,λ2,λ3 < 3 with 1
p3

= 1
p1
+ 1

p2
, and λ3

p3
= λ1

p1
+ λ2

p2
, then we have

the Hölder inequality

∥ f g∥
M

λ3
p3
≤ ∥ f∥

M
λ1
p1
∥g∥

M
λ2
p2
.

3) For 1 ≤ p < ∞ and 0 ≤ λ < 3,

∥ϕ∗g∥Mλ
p
≤ ∥ϕ∥L1∥g∥Mλ

p
, (2)

for all ϕ ∈ L1 and g ∈ Mλ
p.

Lemma 3.3. ( [10]) Let 1 ≤ p2 ≤ p1 < ∞,0 ≤ λ1,λ2 < 3, 3−λ1
p1

≤ 3−λ2
p2

and let γ be a multi-index. If

sup p( f̂ )⊂
{
|ξ| ≤ A2 j

}
, then there is a constant C > 0 independent of f and j such that

∥∥∥(iξ)γ f̂
∥∥∥

M
λ2
p2

≤C2 j|γ|+ j
(

3−λ2
p2

− 3−λ1
p1

)
∥ f̂∥

M
λ1
p1
. (3)

Then, we define the function spaces Ṅ s
p,λ,q

(
R3
)
.

Definition 3.4. ( [7]) (Homogeneous Besov-Morrey spaces) Let s ∈ R,1 ≤ p < +∞,1 ≤ q ≤ +∞,

and 0≤ λ< 3. The space Ṅ s
p,λ,q

(
R3
)

is defined by Ṅ s
p,λ,q

(
R3
)
=

{
u ∈ Z′ (R3

)
; ∥u∥Ṅ s

p,λ,q

(
R3
)
<

∞}, where

∥u∥Ṅ s
p,λ,q(R

3) =


{

∑
j∈Z

2 jqs
∥∥∆̇ ju

∥∥q
Mλ

p

}1/q

, for q < ∞,

sup
j∈Z

2 js
∥∥∆̇ ju

∥∥
Mλ

p
, for q = ∞,

with appropriate modifications made when q = ∞. The space Z′(R3) is the dual space of

Z(R3) =
{

f ∈ S(R3) : (∂β f̂ )(0) = 0, for every multi-index β

}
.

Definition 3.5. ( [7]) (Homogeneous Fourier-Besov-Morrey spaces) Let s ∈ R,0 ≤ λ < 3,1 ≤ p <

+∞, and 1 ≤ q ≤+∞. The space F Ṅ
s
p,λ,q

(
R3
)

denotes the set of all u ∈ Z′ (R3
)

such that

∥u∥F Ṅ s
p,λ,q(R3) =

{
∑
j∈Z

2 jqs
∥∥∥̂̇∆ ju

∥∥∥q

Mλ
p

}1/q

<+∞, (4)

with appropriate modifications made when q = ∞.

Note that the space F Ṅ
s
p,λ,q

(
R3
)

equipped with the norm (4) is a Banach space. Since M0
p = Lp,

we have F Ṅ
s
p,0,q = F Ḃs

p,q, F Ṅ
s
1,0,q = F Ḃs

1,q = Ḃs
q and F Ṅ

−1
1,0,1 = χ−1, where Ḃs

q is the Fourier-
Herz space, and χ−1 is the Lei-Lin space.

Now, we give the definition of the mixed space-time spaces.
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Definition 3.6. ( [7]) Let s ∈ R,1 ≤ p < ∞,1 ≤ q,ρ ≤ ∞,0 ≤ λ < 3 and T ∈ (0,∞]. The space-time
norm is defined on u(t,x) by

∥u(t,x)∥Lρ

(
0,T ;F Ṅ s

p,λ,q

) =
{

∑
j∈Z

2 jqs
∥∥∥̂̇∆ ju

∥∥∥q

Lρ(0,T ;Mλ
p)

}1/q

.

We denote by Lρ

(
0,T ;F Ṅ

s
p,λ,q

)
the set of distributions in S′

(
R×R3

)
/P (R3) with finite

∥ · ∥Lρ(0,T ;F Ṅ s
p,λ,q)

norm.

We will use the next lemma to prove our main theorem.

Lemma 3.7. ( [22]) Let X be a Banach space, B a continuous bilinear map from X ×X to X , and
ε a positive real number such that

ε <
1

4∥B∥
with ∥B∥ := sup

∥u∥·∥v∥≤1
∥B(u,v)∥.

For any y in the ball B(0,ε) (ie., with center 0 and radius ε ) in X , then there exists a unique x in
B(0,2ε) such that

x = y+B(x,x).

Below, we shall present our main result that establishes the local and global existence.

Theorem 3.8. Let q ∈ [1,+∞], α ∈ (0,1) and 0 < λ < 3.

(1) For any initial data (u0,ω0) ∈ F Ṅ

λ

−

1

1,λ,q
(
R3
)

satisfying div u0 = 0, there exists a positive T such
that the system (1) has a unique mild solution such that

(u,ω) ∈ L
2

1+α

(
0,T ;F Ṅ

λ+α

1,λ,q
(
R3))∩L

2
1−α

(
0,T ;F Ṅ

λ−α

1,λ,q
(
R3)) .

(2) There exists a positive constant ε such that for any initial data (u0,ω0)∈F Ṅ
λ−1
1,λ,q

(
R3
)

satisfying
div u0 = 0 and

∥(u0,ω0)∥F Ṅ λ−1
1,λ,q(R3)

< ε,

the system (1) has a unique global mild solution such that

(u,ω) ∈ L
2

1+α

(
0,∞;F Ṅ

λ+α

1,λ,q
(
R3))∩L

2
1−α

(
0,∞;F Ṅ

λ−α

1,λ,q
(
R3)) .

Before proving our main result we will present the corresponding linear system of the nonlinear
system (1).


∂tu−∆u−∇×ω = 0
∂tω−∆ω+2ω−∇divω−∇×u = 0,
divu = 0,
(u,ω)|t=0 = (u0,ω0) .

(5)

The solution operator of the above problem is denoted by the notation G(t), i.e., for specified
initial data (u0,ω0) in suitable function space, (u,ω)T = G(t)(u0,ω0)

T is the unique solution of the
problem (5). The operator G(t) has the following expression, as shown by a simple calculation:
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(Ĝ(t) f )(ξ) = e−A(ξ)t f̂ (ξ) for f (x) = ( f1(x), f2(x))
T ,

where

A(ξ) =

[
|ξ|2I B(ξ)
B(ξ)

(
|ξ|2 +2

)
I +C (ξ)

]
,

with

B(ξ) = i

 0 ξ3 −ξ2
−ξ3 0 ξ1
ξ2 −ξ1 0

 and C (ξ) =

 ξ1
2 ξ1ξ2 ξ1ξ3

ξ1ξ2 ξ2
2 ξ2ξ3

ξ1ξ3 ξ2ξ3 ξ3
2

 .
On the other hand, by applying the Leray projection P to both sides of the first equations of (1), one
can eliminate the pressure π and one check

∂tu−∆u+P(u ·∇u)−∇×ω = 0
∂tω−∆ω+u ·∇ω+2ω−∇divω−∇×u = 0
divu = 0
(u,ω)|t=0 = (u0,ω0) ,

(6)

where P = T +∇(−∆)−1 div is the 3×3 matrix pseudo-differential operator in R3 with the symbol(
δi j −

ξiξ j
|ξ|2

)3

i, j=1
. We denote

U(x, t) =
(

u(x, t)
ω(x, t)

)
, U0 =

(
u(x,0)
ω(x,0)

)
=

(
u0
ω0

)
, Ui(x, t) =

(
ui(x, t)
ωi(x, t)

)
, i = 1,2

and

U1⊗̃U2 =

(
u1 ⊗u2
u1 ⊗ω2

)
, P̃∇ · (U1⊗̃U2) =

(
P∇ · (u1 ⊗u2)
∇ · (u1 ⊗ω2)

)
.

To solve system (6) it suffices to find the solution U of the following integral equations:

U(t) = G(t)U0 −
∫ t

0
G(t − τ)P̃∇ · (U ⊗U)(τ)dτ. (7)

A solution of (7) is called a mild solution of (1).

In this section, we will establish the local and global existence and uniqueness of solution for the
problem (1). For that, we prove some estimates for the semigroup G(·).

Firstly we give the property of semigroup G(·).

Lemma 4.1. [9] For t ≥ 0 and |ξ| ≠ 0. We have

∥e−tA(ξ)∥ ≤ e−|ξ|2t with
∥∥∥e−tA(ξ)

∥∥∥= sup
∥ f∥≤1

∥∥∥e−tA(ξ) f
∥∥∥ . (8)

IV. PROOF OF MAIN RESULT

4.1 Linear estimates
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Here ∥ f∥= maxi |ai| with ∥ f∥=
6

∑
i=1

aivi,v1,v2, . . . ,v6 are the eigenvectors for A(ξ).

Next, we present the linear esimates for the semigroup G(·).

Lemma 4.2. Let q ∈ [1,+∞], 0 < λ < 3. Then there exists a positive constant C such that

∥G(t)U0∥F Ṅ λ−1
1,λ,q

≤C∥U0∥F Ṅ λ−1
1,λ,q

(9)

for all t ≥ 0 and all U0 ∈ F Ṅ
λ−1
1,λ,q.

Proof. By Lemma 4.1, we have

∥G(t)U0∥F Ṅ λ−1
1,λ,q

= ∑
i∈Z

2(λ−1) jq∥∥F
[
G(t)∆̇ jU0

]∥∥q
Mλ

1

) 1
q

= ∑
∈Z

2(λ−1) jq
∥∥∥e−tA(ξ)F

[
∆̇ jU0

]∥∥∥q

Mλ
1

) 1
q

≲ ∑
j∈Z

2(λ−1)qe−|ξ|2qt ∥∥F
[
∆̇ jU0

]∥∥q
Mλ

1

) 1
q

≲ ∑
j∈Z

2(λ−1)q∥∥F
[
∆̇ jU0

]∥∥q
Mλ

1

) 1
q

≲ ∥U0∥F Ṅ λ−1
1,λ,q

.

This completes the proof of Lemma 4.2 .

Lemma 4.3. Let q ∈ [1,+∞], 0 < λ < 3, α ∈ (0;1) and T ∈ (0,∞]. Then there exists a positive
constant C =C(α) such that

∥G(t)U0∥
L

2
1±α

(
0,T ;F Ṅ λ±α

1,λ,q(R3)
) ≤C∥U0∥F Ṅ λ−1

1,λ,q
, (10)

for all t ≥ 0 and all U0 ∈ F Ṅ
λ−1
1,λ,q.

Proof. From Definition 3.6, it is easy to see that

∥G(t)U0∥|
L

2
1±α

(
0,T ;F Ṅ λ±α

1,λ,q(R3)
) = ∑

j∈Z
2(λ±α) jq∥∥F

[
G(t)∆̇ jU0

]∥∥q

L
2

1±α (0,T ;Mλ
1)

) 1
q

= ∑
j∈Z

2(λ±α) jq
∥∥∥e−tA(ξ)F

[
∆̇ jU0

]∥∥∥q

L
2

1±α (0,T ;Mλ
1)

) 1
q

≲ ∑
j∈Z

2(λ±α) jq ∥ e−t22 j ∥∥F
[
∆̇ jU0

]∥∥
Mλ

1
∥q

L
2

1±α (0,T )

) 1
q

≲ ∑
j∈Z

2(λ±α) jq2−(1±α) jq∥∥F
[
∆̇ jU0

]∥∥q
Mλ

1

) 1
q

≲ ∑
j∈Z

2(λ−1) jq∥∥F
[
∆̇ jU0

]∥∥q
Mλ

1

) 1
q

≲ ∥U0∥F Ṅ λ−1
1,λ,q

.

This completes the proof of Lemma 4.3 .
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Lemma 4.4. Let T > 0, s ∈ R and p,q,γ ∈ [1;+∞] and 0 < λ < 3. Then there exists a positive
constant C such that ∥∥∥∥∫ t

0
G(t − τ) f (τ)dτ

∥∥∥∥
Lγ(0;T ;F Ṅ s

p,λ,q)

≤C∥ f∥
L1(0;T ;F Ṅ

s− 2
γ

p,λ,q)

for all f ∈ L1(0;T ;F Ṅ
s− 2

γ

p,λ,q).

Proof. By Young’s inequality, we obtain∥∥∥∥∫ t

0
G(t − τ) f (τ)dτ

∥∥∥∥
Lγ(0;T ;F Ṅ s

p,λ,q)

= ∑
j∈Z

2 jqs
∥∥∥∥∫ t

0
e−(t−τ)A(ξ)F

[
∆̇ j f
]
(τ)dτ

∥∥∥∥q

Lγ(0,T ;Mλ
p)

) 1
q

≤C ∑
j∈Z

2 jqs
∥∥∥∥∫ t

0
e−(t−τ)22 j

∥∥∥∥F
[
∆̇ j f
]
(τ)
∥∥∥Mλ

p
dτ

∥∥∥q

Lγ(0,T )

) 1
q

≤C ∑
j∈Z

2 jq
(

s− 2
γ

)∥∥F
[
∆̇ j f
]
(τ)
∥∥q

L1(0,T ;Mλ
p)

) 1
q

≤C∥ f∥
L1 0,T ;F Ṅ

s− 2
γ

p,λ,q

).

Which finish the proof.

In the framework of homogeneous Fourier-Besov-Morrey spaces, we now gather an essential
multiplication estimates.

Lemma 4.5. Let p,q ∈ [1.+∞], 0 < λ < 3, T ∈ (0,+∞] and α ∈ (0,1). Then there exists a positive
constant C such that

∥uv∥
L1(0,T ;F Ṅ λ

1,λ,q)
≲∥ u ∥

L
2

1+α (0,T ;F Ṅ λ+α

1,λ,q)
∥ v ∥

L
2

1−α (0,T ;F Ṅ λ−α

1,λ,q)

+ ∥ v ∥
L

2
1+α (0,T ;F Ṅ λ+α

1,λ,q)
∥ u ∥

L
2

1−α (0,T ;F Ṅ λ−α

1,λ,q)
.

Proof. We introduce some notations about the standard localization operators. We set

u j = ∆̇ ju, Ṡ ju = ∑
k≤ j−1

∆̇ku, ˜̇
∆ ju = ∑

|k− j|≤1
∆̇ku, j ∈ Z.

Bony’s decomposition for ∆̇ j(uv) reads

∆̇ j(uv) = ∑
|k− j|≤4

∆̇ j
(
Ṡk−1u∆̇kv

)
+ ∑

|k− j|≤4
∆̇ j
(
Ṡk−1v∆̇ku

)
+ ∑

k≥ j−3
∆̇ j(∆̇ku ˜̇

∆ jv)

:= I1 + I2 + I3.

4.2 Bilinear estimates and product laws
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Then by the triangle inequalities, we have

∥uv∥
L1
(

0,T :F Ṅ λ

1,λ,q

) ≤ ∑
j∈Z

2 jλq
∥∥∥Î1

∥∥∥q

L1(0,T :Mλ
1)

) 1
q

+ ∑
j∈Z

2 jλq
∥∥∥Î2

∥∥∥q

L1(0,T :Mλ
1)

) 1
q

+ ∑
j∈Z

2 jλq
∥∥∥Î3

∥∥∥q

L1(0,T :Mλ
1)

) 1
q

:= J1 + J2 + J3.

(11)

The terms I1 and I2 are symmetrical. Using Young’s inequality and Hölder’s inequality we have

2 jλ
∥∥∥Î1

∥∥∥
L1(0,T,Mλ

1)
≤ 2 jλ

∑
|k− j|≤4

∥∥∥( ̂Ṡk−1u∆̇kv
)∥∥∥

L1(0,T,Mλ
1)

≤ 2 jλ
∑

|k− j|≤4
∥v̂k∥

L
2

1+α (0,T,Mλ
1)

∑
l≤k−2

∥ûl∥
L

2
1−α (0,T,L1)

≤ 2 jλ
∑

|k− j|≤4
∥v̂k∥

L
2

1+α (0,T,Mλ
1)

∑
l≤k−2

2λl ∥ûl∥
L

2
1−α (0,T,Mλ

1)

≤ 2 jλ
∑

|k− j|≤4
∥v̂k∥

L
2

1+α (0,T,Mλ
1)
( ∑

l≤k−2
2(λ−α)lq ∥ûl∥

L
2

1−α (0,T,Mλ
1)
)

1
q ∑

l≤k−2
2lαq′

) 1
q′

≤ 2 jλ
∑

|k− j|≤4
2αk ∥v̂k∥

L
2

1+α (0,T,Mλ
1)
∥u∥

L
2

1−α (0;T ;F Ṅ −α+λ

1,λ,q )

≤ ∑
|k− j|≤4

2(α+λ)k2( j−k)λ ∥v̂k∥
L

2
1+α (0,T,Mλ

1)
∥u∥

L
2

1−α (0;T ;F Ṅ λ−α

1,λ,q)
.

Taking ℓq−norm we get

J1 ≤∥ v ∥
L

2
1+α (0,T ;F Ṅ λ+α

1,λ,q)
∥ u ∥

L
2

1−α (0,T ;F Ṅ λ−α

1,λ,q)
,

and in a similar way we obtain

J2 ≤∥ u ∥
L

2
1+α (0,T ;F Ṅ λ+α

1,λ,q)
∥ v ∥

L
2

1−α (0,T ;F Ṅ λ−α

1,λ,q)
.

To estimate I3 , let

Ik
3 = ∆̇ j( ∑

|k′−k|
∆̇k′v∆̇ku) =

1

∑
k′=−1

∆̇ku∆̇k+k′v.

First we use Young’s inequality (2) in Morrey spaces, and Lemma 3.3 with | γ |= 0, to obtain

2 jλ
∥∥∥Î3

∥∥∥
L1(0,T,Mλ

1)
≤ 2 jλ

∑
k≥ j−3

∥∥∥Îk
3

∥∥∥
L1(0,T,Mλ

1)

≤ 2 jλ
∑

k≥ j−3
∑

|k′−k|≤1
∥ûk∥

L
2

1−α (0,T,Mλ
1)
∥v̂k′∥

L
2

1+α (0,T,L1)

≤ 2 jλ
∑

k≥ j−3
∑

|k′−k|≤1
∥ûk∥

L
2

1+α (0,T,Mλ
1)

2λk′ ∥v̂k′∥
L

2
1−α (0,T,Mλ

1)

≤ 2 jλ
∑

k≥ j−3
∑

|k′−k|≤1
2k′(λ−α)q ∥v̂k′∥

L
2

1−α (0,T,Mλ
1)

) 1
q

2αk ∥ûk∥
L

2
1+α (0,T,Mλ

1)

≤C∥v∥
L

2
1−α (0,T ;F Ṅ λ−α

1,λ,q)
∑

k≥ j−3
2(λ+α)k2λ( j−k) ∥ûk∥

L
2

1+α (0,T,Mλ
1)
,

(12)
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taking ℓq−norm on both sides in the above estimate, we get

J3 ≤∥ v ∥
L

2
1−α (0,T ;F Ṅ λ−α

1,λ,q)
∥ u ∥

L
2

1+α (0,T ;F Ṅ λ+α

1,λ,q)
.

Which gives the result.

Below, we shall prove our result.

1) Let T > 0 and α ∈ (0;1) we define the space Xα
T as

Xα
T =

{
U : U ∈ L

2
1+α

(
0,T ;F Ṅ

λ+α

1,λ,q
(
R3))∩L

2
1−α

(
0,T ;F Ṅ

λ−α

1,λ,q
(
R3))}

and equipped with the following norm:

∥U ∥Xα
T
=∥U ∥

L
2

1+α

(
0,T ;F Ṅ λ+α

1,λ,q(R3)
) + ∥U ∥

L
2

1−α

(
0,T ;F Ṅ λ−α

1,λ,q(R3)
) .

For all U ∈ Xα
T we define φ(U) as follows

φ(U) = G(t)U0 −
∫ t

0
G(t − τ)P̃∇ · (U⊗̃U)(τ)dτ. (13)

Our goal is to show that U is a fixed point of φ.
Considering

B(U1,U2) =
∫ t

0
G(t − τ)P̃∇ · (U1⊗̃U2)(τ)dτ. (14)

Then, by Lemma 4.4, Lemma 4.5 and the embedding F Ṅ
λ

1,λ,q ↪→ F Ṅ
λ−1
1,λ,q, we have

∥ B(U1,U2) ∥Xα
T
= ∥

∫ t

0
G(t − τ)P̃∇ · (U1⊗̃U2)(τ)dτ∥

L
2

1+α

(
0,T ;F Ṅ λ+α

1,λ,q(R3)
)

+∥
∫ t

0
G(t − τ)P̃∇ · (U1⊗̃U2)(τ)dτ∥

L
2

1−α

(
0,T ;F Ṅ λ−α

1,λ,q(R3)
)

≲ ∥P̃∇ · (U1⊗̃U2)∥L1(0;T ;F Ṅ λ−1
1,λ,q)

≲ ∥P̃∇ · (U1⊗̃U2)∥L1(0;T ;F Ṅ λ

1,λ,q)

≲∥U1 ∥
L

2
1+α (0,T ;F Ṅ λ+α

1,λ,q)
∥U2 ∥

L
2

1−α (0,T ;F Ṅ λ−α

1,λ,q)
+ ∥U2 ∥

L
2

1+α (0,T ;F Ṅ λ+α

1,λ,q)
∥U1 ∥

L
2

1−α (0,T ;F Ṅ λ−α

1,λ,q)

≤C1∥U1∥Xα
T
∥U2∥Xα

T
.

(15)

Then, by (13) and (15), one concludes

∥φ(U)∥Xα
T
≤ ∥G(t)U0∥Xα

T
+C1∥U1∥Xα

T
∥U2∥Xα

T
.

By Lemma 4.3 , we get

∥G(t)U0∥Xα
T
≤C2 ∥U0∥F Ṅ λ−1

1,λ,q
. (16)

4.3 Proof of Theorem 3.8
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Now, consider the norm ∥G(t)U0∥Xα
T
. Using the given expression for G(t) and the definition of Xα

T ,

we can write:

∥G(t)U0∥Xα
T
= ∥G(t)U0∥

L
2

1+α (0,T ;F Ṅ λ+α

1,λ,q(R3))
+∥G(t)U0∥

L
2

1−α (0,T ;F Ṅ λ−α

1,λ,q(R3))

Now, let’s analyze each term separately. First, note that G(t) is a linear operator, so we can factor
out U0 from the norm:

∥G(t)U0∥
L

2
1+α (0,T ;F Ṅ λ+α

1,λ,q(R3))
≤ ∥U0∥F Ṅ λ+α

1,λ,q(R3))
∥G(t)∥

L
2

1+α (0,T )
.

Similarly for the second term. Now, for sufficiently small T, e−A(ξ)t tends to I (the identity operator)
as t approaches 0. Therefore, for small T, ∥G(t)∥

L
2

1+α (0,T )
tends to 0.

Then ∥G(t)U0∥Xα
T
→ 0 as T → 0, hence α ̸= 1, and there exists T > 0 such that ∥G(t)U0∥Xα

T
< 1

4C1
.

Using Lemma 3.7, system (1) admits a unique mild solution U ∈ Xα
T with ∥U∥Xα

T
< 1

2C1
.

For 2) we replace Xα
T by Xα

∞ and we get

∥ B(U1,U2) ∥Xα
∞
≤C1∥U1∥Xα

∞
∥U2∥Xα

∞
. (17)

Then, by (16) and (17), one obtaines

∥φ(U)∥Xα
∞
≤C2 ∥U0∥F Ṅ λ−1

1,λ,q
+C1∥U1∥Xα

∞
∥U2∥Xα

∞
.

Then, by applying Lemma 3.7 , with ∥U0∥F Ṅ λ−1
1,λ,q

< 1
4C1C2

. Then, system (1) admits a unique global

mild solution U ∈ Xα
∞ with ∥U∥Xα

∞
< 1

2C1
. This completes the proof of Theorem3.8 (2).
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