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ABSTRACT 
X-ray diffraction (XRD) plays a pivotal role in material characterization, offering valuable insights 

into crystalline structures. This study introduces a comprehensive framework for autonomous phase 

identification through a machine learning-guided approach. The proposed methodology comprises 

four key stages. In the pre-processing phase, raw data undergoes meticulous cleaning to eliminate 

noise, followed by normalization and smoothing procedures to ensure data integrity. Feature 

extraction involves a multi-faceted approach. Peak identification meticulously captures critical 

features such as peak position, intensity, and width within XRD patterns. Statistical features, 

encompassing mean, standard deviation, skewness, and kurtosis, provide a robust characterization of 

the dataset. The incorporation of Discrete Wavelet Transform further enriches the feature space by 

capturing both high and low-frequency information. For feature selection, a Hybrid Optimization 

Approach, combining the Kookaburra Optimization Algorithm (KOA) and White Shark Optimizer, is 

employed. This ensures an optimal subset of features for subsequent analysis. Phase identification is 

facilitated by a Bayesian FusionNet, integrating the strengths of Improved GhostNetV2, Bayesian 

Neural Network (BNN), and Feedforward Neural Network (FNN). The outcomes from these models 

are aggregated by taking the mean, enhancing the reliability and accuracy of phase identification. 

This innovative framework not only automates phase identification in X-ray diffraction but also 

showcases the efficacy of a hybridized machine learning approach, amalgamating optimization 

algorithms and neural networks for enhanced performance and interpretability. The proposed 

methodology holds significant promise for advancing material science research and facilitating 

efficient analysis in diverse applications.

Keywords: X-ray diffraction, Discrete wavelet transform, ghost NetV2, BNN, FNN, KOA.
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I. INTRODUCTION

An XRD is a useful non-destructive analytical technique for analyzing crystal structure, phase 

composition, and orientation of powder, solid, and liquid materials [1].  Tiny crystallites include a wide 

variety of materials. The term "phase" refers to these crystals' structural type and chemical makeup. 

Materials may consist of both crystalline and non-crystalline components, and they may be single phase 

or multiphase mixes [2]. An X-ray diffractometer can distinguish between different crystalline phases 

by their respective diffraction patterns [3]. Phase identification is often carried out by comparing 

reference database patterns to X-ray diffraction patterns acquired from unidentified materials. This 

method is comparable to the procedure of comparing fingerprints at a crime scene [4]. XRD is the 
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result of constructive interaction between crystalline sample and X-rays. The wavelength of the X-rays 

used is equal to the distance between atoms in crystalline lattice [5]. The resulting diffraction pattern 

may be analyzed in several ways, most popular being the application of widely recognized Bragg's Law, 

which is used to measure crystals and their phases [6]. An X-ray source, XRD detector, and sample 

container are the three main parts of X-ray apparatus. X-rays that the source emit light the sample. 

After that, sample phase diffracts it so that it may get into detector [7]. Adjusting sample, tube, and 

detector to change diffraction angle determines the intensity and collects diffraction data. Depending 

on sample type and diffractometer's geometry, the angle between incident beam and sample can be 

either constant or variable and is commonly matched with diffracted beam angle [8].

Algorithms for machine learning are ideal for analyzing big and complicated datasets because they can 

recognize patterns and correlations in the data. They have been used in materials research to solve a 

variety of issues, such as the processing of imaging data and the prediction of material characteristics 

[9]. Machine learning has been applied to X-ray diffraction for the purpose of classifying diffraction 

patterns and analyzing crystal structure [10]. An interpretable machine learning model can enable 

data-driven quantification of empirical expert knowledge, and a quick and easy machine learning 

approach can categorize crystal systems and space groups based on powder XRD patterns with high 

accuracy. The powder XRD pattern need to be employed as material descriptor for machine learning 

(ML)-based symmetry detection and property prediction [11]. Recent years have seen a major increase 

in the interest of material scientists and engineers in machine learning as well as high-throughput 

testing and computation. It is common practice to create suitable material descriptors for the 

systematic representation of materials in prospective machine learning models [12]. As long as actual or 

theoretical standard powder XRD patterns are available, knowledge-based material descriptors cannot 

be extracted for use in ML [13]. Full-profile powder XRD patterns, which indicate the material identity, 

may be used in place of conventional descriptors that need complex knowledge-based extraction 

processes. It is difficult to create a flexible ML model that can predict properties and identify symmetry 

for all typical inorganic materials [14]. The incorporation of ML techniques into XRD pattern analysis 

has been driven by need for accurate phase identification, quantification of multiphase mixtures with 

varying raw data quality, and expansion the amount of data that is available [15]. Processing XRD 

observations has become increasingly dependent on ML over past 10 years as processing power has 

increased and both XRD and ML have been made simpler and better.

This study introduces a novel framework for autonomous phase identification in XRD, leveraging a 

hybrid approach that combines feature-optimized ensemble learning with a Bayesian FusionNet. The 

primary aim of this research is to develop a self-sufficient method for phase detection in XRD by 

utilizing machine learning and optimization approaches. Beyond simple automation, a hybrid 

technique combining the best aspects of feature-optimized ensemble learning and Bayesian FusionNet 

is being researched and developed. 

1.1.  Contribution of Study

The following is an overview of the study's contributions:

❖ The paper discusses the necessity of automating the X-ray diffraction phase identification 

procedure. The paper contributes significantly to simplifying XRD pattern analysis, which is 

essential for material characterization, by presenting a complete framework incorporating machine 

learning-led techniques.

❖ The use of a Hybrid Optimization Approach, combining the Kookaburra Optimization Algorithm 

(KOA) and White Shark Optimizer for feature selection, is a notable contribution. By doing this, the 

efficiency and efficacy of the phase identification process are maximized since the most pertinent 

subset of characteristics is chosen for further examination.

Autonomous Phase Identification in X-ray Diffraction_ A Hybrid Approach with Bayesian FusionNet and Feature-Optimized Ensemble Learning 
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❖ Phase identification is made more accurate and reliable by using ensemble learning, namely by 

averaging the results from Improved GhostNetV2, BNN, and FNN. An improved forecast is 

produced by using ensemble approaches, which lessen the biases and mistakes of individual models.

❖ The suggested approach has plenty of potential for developing material science research. The study 

enhances an efficacy and efficiency of material analysis by automating and improving phase 

identification procedure in XRD.

1.2.  Structure of Paper

The remaining part of paper is structured as follows: In Section 2, relevant existing works are provided; 

proposed methodology is covered in Section 3; Section 4 provides an explanation of the findings; 

Finally, Section 5 includes a conclusion and suggestions for further research.

II. LITERATURE REVIEW

The study of literature provides an extensive overview of what is currently known about autonomous 

phase identification in X-ray diffraction. By laying out the background, offering a historical viewpoint, 

and critically assessing the most recent approaches, it prepares the reader for the later sections of the 

work. In the end, it justifies the novelty and applicability of suggested hybrid approach using Bayesian 

FusionNet and Feature-Optimized Ensemble Learning.

In 2020, Hocine et al., [16] described the application of operando X-ray diffraction in laser-assisted 3D 

printing. Operando X-ray diffraction, according to authors, is a method that enables real-time 

observation of structural alterations that take place during printing. To optimize the printing settings 

and raise the caliber of printed goods, the study emphasized how crucial it is to comprehend these 

alterations. Operando X-ray diffraction can offer insightful information about the printing process and 

help enhance 3D printing technology, according to conclusion.

In 2019, Oviedo et al., [17] presented a novel approach that makes use of deep neural networks and data 

augmentation to identify tiny X-ray diffraction datasets. This study provided a quick and 

easy-to-understand method that raises classification accuracy. This paper identified potential 

differences between experimental thin film XRD patterns and simulated XRD powder patterns by 

proposing a physics-informed strategy for data augmentation that expands limited, focused 

experimental and simulated datasets. The process entails training a deep neural network to categorize 

the diffraction patterns and artificially growing dataset using data augmentation techniques. The 

efficiency and precision of X-ray diffraction analysis in materials science research may be improved by 

using this method.

In 2020, Lee et al., [18] presented a simple, quick methodology based on deep learning methods to 

solve complicated multiphase inorganic compound challenges including phase identification and 

measurement.  A viable powder XRD pattern simulation was performed on 170 inorganic compounds in 

Sr-Li-Al-O quaternary compositional pool, where potential LED phosphors have been discovered. 

Finally, 1,785,405 synthetic XRD patterns were produced by combinatorially merging simulated 

powder XRD patterns of 170 inorganic compounds. This large prepared dataset was used to build and 

train convolutional neural network (CNN) models. The fully trained CNN model accurately and rapidly 

detects component phases while working with complex multiphase inorganic substances.

In 2022, Sivaraman et al., [19] addressed the difficulties in figuring out relationships between structure 

and properties of amorphous and liquid metal oxides. This study was suggested predicting chemically 

realistic structures for HfO2 by ML with Gaussian Approximation Potential (GAP). The GAP model used 

training datasets to achieve Density Functional Theory-Strongly Constrained and Appropriately 

Normed (DFT-SCAN) theoretical level. This topology was shown to be consistent with structure of a 
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range of liquid and amorphous transition metal oxides with different ion sizes, including TiO2 and 

ZrO2.

In 2020, Utimula et al., [20] highlighted the use of ML clustering to analysis of powder XRD pattern to 

determine ThMn12-type alloys of compositions. This paper investigates the potential applications of 

this method to further materials science's knowledge of alloy composition. The XRD spectrum patterns 

are subjected to a clustering approach employing dynamic-time-wrapping (DTW) analysis to determine 

microscopic structures of substituents added to main phase of magnetic alloys. This methodology 

developed here was not exclusive to system under consideration; rather, it may be broadly applied to 

systems whose attributes are to be adjusted by atomic replacements within a phase.

In 2022, Dong et al., [21] delivered a deep learning algorithm that can be used to predict XRD spectrum 

based only on a material's composition. This algorithm can then be used to infer important structural 

features for structural analysis that occurs later on, such as classification of crystal systems or space 

groups, calculation of crystal lattice parameters, or prediction of material properties. This DeepXRD 

algorithm may obtain good performance for XRD prediction as assessed across test sets according to 

benchmark tests on two datasets. Therefore, it may be applied to high-throughput screening for 

identification of novel materials in the vast materials composition space.

In 2023, Utimula et al., [22] designed autoencoder to build a feature space describing XRD patterns. In 

this paper, the training of an autoencoder to detect systematics resulting from atomic changes inside 

single phase without structural transitions was presented. The trained autoencoder builds a feature 

space that correctly identifies substitution compositions of XRD patterns. A projected XRD pattern to a 

point and compositions interpolated in feature space coincide rather well. After that, interpolated point 

in feature space is used by autoencoder to create a virtual XRD pattern. When feature space was 

effectively tailored by enough training data, the autoencoder predicts an XRD pattern with 

concentration that is difficult to quantify using potential resolution of supercell technique of ab initio 

calculations.

In 2022, Massuyeau et al., [23] established a machine learning-based method that uses powder X-ray 

diffraction patterns to automatically identify if an unknown substance is a perovskite type. RF and CNN 

models were used to identify the different perovskite structure types based on the hybrid lead halide 

powder X-ray diffraction patterns. The structural types of novel unknown compounds might be 

predicted from their experimental powder XRD patterns once a deep learning network had been trained 

on a dataset of known compounds. In an array of novel hybrid lead halides, this technique was 

employed to discern perovskite-type materials.

In 2021, Banko et al., [24] Applied variational autoencoders (VAE) to analyze thin-film data from 

experiments and simulations for XRD. The structural similarity of textured diffraction patterns is one 

example of latent information that may be revealed by using crystal structure representations that a 

VAE has learnt. Although other artificial intelligence (AI) agents are effective in classifying XRD data 

into known phases, similarly conditioned VAE excels at understanding what it does not know. It can 

identify novel phases and blends, as well as data outside the distribution it was trained on, very rapidly. 

These characteristics highlighted the value of VAE as an AI for deciphering XRD data and supporting 

materials discovery both "on the fly" and during post hoc analysis.

In 2020, Wang et al., [25] presented a convolutional neural network (CNN) model that uses sparse 

experimental data to quickly identify metal-organic framework (MOF) XRD patterns. The noise 

collected from experimental spectra was added to theoretical data to train the model. The investigation 

additionally examined the CNN model's activation properties using class activation maps (CAMs) and 

utilized neighbourhood component analysis (NCA) to cluster XRD data from the same MOF. The 

potential of CNNs for individual material identification is demonstrated by this work.
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2.1  Problem Statement

The statement of problem emphasizes how important it is to develop phase identification techniques 

to stay up with the increasing diversity and complexity of materials under study. X-ray diffraction 

analysis might undergo a revolutionary change with the help of this hybrid solution that attempts to 

close the gap between conventional methods and the rapidly changing area of machine learning. Table 1 

illustrates the features and limitations of various existing techniques.

Table 1:  Comparison of various existing methods

Author Method Features Challenges

[16]

Hocine et al.,

2020

operando

The laser settling time may 

be ascertained with this 

experiment.

This approach becomes 

particularly critical for 

modeling tiny structures.

[17]

Oviedo et al

2019

physics-infor

med data

augmentation

▪ Accessible assessment of 

errors.

▪ A technique for 

augmenting data that 

facilitates quick and 

precise categorization.

The framework may be 

expanded to include any 

spectrum with 

information-rich 

characteristics that need to be 

classified, in addition to XRD 

classification.

[18]

Lee et al

2020

CNN

▪ Recognizing the many 

stages of inorganic 

multiphase structures.

▪ Observe trends and 

formulate forecasts.

It is not applicable to highly 

entropy systems.

[19]

Sivaraman et al

2022
ML with GAP

It offers a way to generate an 

ML-IP with ab initio 

accuracy by directly 

validating model during 

active learning process.

Long-range electrostatics must 

be explicitly included in 

modeling of non-isotropic 

chemical environments

[20]

Utimula et al

2020

DTW

▪ Differentiate between 

substituent concentrations.

▪ The predictive power of 

framework is higher.

The contraction causes a shift 

in peak locations, which is not 

picked up by system.

[21]

Dong et al

2022

DeepXRD

▪ Research using two datasets 

as benchmarks to assess 

performance.

▪ Examination of potential for 

XRD spectrum prediction.

▪ It is expensive to 

experimentally characterize 

crystal structures using XRD.

▪ Restricted to rather small 

systems; it is not suitable for 

extensive screening.

[22]

Utimula et al

2023

Autoencoder

▪ Determining doping levels.

▪ Elucidating pointlessness of 

each top.

▪ Producing synthetic XRD 

patterns.

It was unable to provide a 

plausible explanation for 

XRD’s physics-related 

irrelevance.

[23]

Massuyeau et al

2022

RF 

and 

CNN

▪ Automatically identify the 

perovskite type of a given 

material.

▪ It had the capability to 

forecast the kinds of 

Powder XRD patterns could 

not distinguish between 

perovskites and 

non-perovskites without 

laborious structural 

determination.
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structures of novel, 

unidentified chemicals.

[24]

Banko et al

2021
VAE

▪ It may be applied to 

real-time examination of 

distribution of dataset 

among several structures.

veracity and efficacy of

high-throughput diffraction 

must be increased.

[25]

Wang et al

2020

CNN

▪ Observed that the presence 

of noise and reduced 

crystallinity had a 

significant impact on 

categorization accuracy.

The identification of individual 

XRD patterns from a large 

database of spectra is a 

challenging task.

III. PROPOSED METHODOLOGY

This study proposes a novel and complete framework for autonomous phase identification in XRD, 

using ML-guided approaches for improved interpretability and accuracy. There are four main phases in 

this technique, and each one adds to the overall stability and effectiveness of the phase identification 

process. Pre-processing (data cleaning, normalization, and smoothing), feature extraction (peak 

identification, statistical features, and discrete wavelet transform), feature selection (via a hybrid 

optimization approach utilizing Kookaburra Optimization Algorithm and White Shark Optimizer), and 

Bayesian FusionNet-based phase identification (combining Improved GhostNetV2, Bayesian Neural 

Network, and Feedforward Neural Network, with results aggregated by taking the mean) are the four 

essential stages. This novel method of automating phase identification demonstrates the convergence of 

neural networks, optimization methods, and machine learning. The approach is a potent tool for 

scholars and practitioners, with the potential to further material science research and enable effective 

analysis in a range of applications. The advancement of material characterisation techniques is 

facilitated by the combination of various approaches, which improve phase identification efficiency, 

interpretability, and reliability. The proposed architecture is displayed in Fig. 1.

Figure 1: System model of Proposed technique
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3.1. Preprocessing

Pre-processing for Autonomous Phase Identification in X-ray Diffraction is a method that makes use of 

machine learning to help with and enhance material characterisation. This makes it possible to 

automatically interpret experimental data using methods like XRD. This technique combines analysis 

and diffraction such that measurements are guided toward characteristics that raise confidence of 

model that has been trained for recognize crystalline phases. This allows for utilization of early 

experimental data. The methodology entails integrating a physical diffractometer with an ML algorithm 

to facilitate the detection of transient intermediate phases generated in solid-state processes on-site, 

utilizing a standard diffractometer located within the organization. Accurate identification of minute 

quantities of components in multi-phase mixtures at short measurement durations is also made 

possible by the faster phase detection process. The preprocessing stage includes data cleaning, 

normalization, and smoothing.

A. Data Cleaning

The process of eliminating or rectifying outdated, inadequate, or incorrect information from the raw 

diffraction pictures is known as data cleaning in X-ray diffraction preprocessing. This procedure is 

necessary because the precision and dependability of the structure determination are greatly impacted 

by the quality of the data utilized in X-ray diffraction. The following are a few of the procedures in data 

cleaning for X-ray Diffraction preprocessing:

i. Spot finding: This process eliminates any background pixels and noise by locating and determining 

the strengths of the diffraction spots on each image.

ii. Indexing: In this stage, each spot is given a distinct set of three integers, or Miller indices, based on 

experimental setup.

iii. Parameter refinement: This stage determines the estimated errors associated with each reflection's 

integrated intensity, which is the total of all the spots' intensities that correspond to the same 

reflection.

iv. Integration: The integrated intensity of each reflection, which is the total of the intensities of all the 

spots that belong to the same reflection, is calculated in this phase along with an estimation of the 

related errors.

v. Scaling and Merging: This process merges the data from multiple images into a single dataset and 

corrects the intensity data for a number of variables, including absorption, polarization, and 

exposure duration.

B. Normalization 

A technique for data processing called normalization seeks to lessen the impact of artifacts and 

intensity variations in XRD patterns. Phase identification, peak fitting, and structural determination are 

few of the XRD analyses that can benefit from normalization's increased precision and dependability. 

The category and source of XRD patterns determine which normalization approach is used for XRD 

data. Some of the most popular techniques for normalizing are:

i. Normalization by the background intensity: The measured intensity is divided by the background 

intensity, which may be calculated by fitting a polynomial or spline function to the XRD pattern's 

baseline. This approach accounts for fluctuations in background noise and artifacts. Applications 

of this technique include micro-XRD patterns obtained from liquid phase in-situ studies.

ii. Normalization by the total scattered intensity: The measured intensity is divided by the total 

scattered intensity (which may be computed by integrating the complete XRD pattern) in this 

approach to account for differences in sample transmission and absorption. This technique works 
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well with ultrafast XRD patterns obtained from thin-film materials utilizing a plasma source 

powered by a laser.

iii. Normalization by the incident beam intensity: The incident beam intensity, which can be seen by 

a beam stop or a reference detector, is divided by the measured intensity in this technique to 

account for fluctuations in the X-ray source intensity. Conventional XRD patterns obtained from 

solid materials in an ambient setting can be used with this approach.

Normalization is a crucial preprocessing procedure for XRD data since it improves the comparability of 

various XRD patterns and the signal-to-noise ratio. Normalization can also help with application of ML 

methods for XRD data interpretation.

C. Smoothing

Data noise is minimized by the use of digital filter smoothing, also known as Savitzky-Golay smoothing. 

The application uses the variance approach to assess the amount of noise in the pattern and 

automatically modifies the smoothing settings based on that level. Different smoothing parameters are 

employed for the crystalline and amorphous components of the pattern, if the user chooses to match 

them (for the amorphous instance, often more smoothing is applied).

3.2. Feature Extraction

A crucial part of medical image analysis is feature extraction. From the previously processed data, 

features are extracted. The process of converting pre-processed XRD data into a more compact and 

useful representation that can be utilized for additional analysis is known as feature extraction. This 

stage includes peak identification, statistical features, and discrete wavelet transform.

A. Peak identification

The technique of identifying the distinctive peaks in an X-ray diffraction (XRD) pattern that represents 

a material's crystal structure and content is called peak identification. It is possible to extract and use as 

features for a variety of studies the peak position, intensity, and width of these peak. 

i. Peak Position: The peak position (also known as the diffraction angle) depends on separation 

between reflection planes when wavelength is constant. Consequently, the distance of peak location 

and reflection plane coincide. Peak location is often determined using following techniques: 

▪ Estimating peak position directly from angle of diffraction.

▪ Calculating peak position using maximum angle after smoothing.

▪ Using mathematical functions fitted to measured line.

ii. Peak Intensity: The maximum intensity is height at which an XRD peak is at its highest point. 

Frequently, it lines up with height at Bragg's angle. The geometric relationship between an XRD 

peak's total intensity and HW, Imax, and Sc is as follows:

                    (1)𝐼
𝑝𝑒𝑎𝑘

=  𝐼
𝑟
𝑘𝐹

𝑤
𝑀𝑇 1

𝑣2( ) 1
ρ( ) 𝐴| |2 1 + 𝑐𝑜𝑠22θ( ) 1

sin𝑠𝑖𝑛 2θ ( )φ 1

µ*( ) 𝑆
𝑐

𝐻𝑊( )
Where,  represents raw intensity of XRD;  is physical constant;  denotes weight fraction;  means 𝐼

𝑟
𝑘 𝐹

𝑤
𝑇

temperature factor;  represents multiplicity factor; volume of unit cell is denoted by ;  stands for 𝑀 𝑣 ρ
density;  represents modulus of amplitude scattering in the direction of angle ;  represents 𝐴| | θ φ

distribution factor;  symbolizes mean mass absorption coefficient;  is shape of SRD peak;  µ* 𝑆
𝑐

𝐻𝑊

means Width at half maximum intensity.
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Divergence magnitude is dictated by the aperture of the divergence and the effective focal width of the 

source. The mathematical formula of maximum width is given in following Eqn. (2)

                               (2)𝑊 =  𝐾γ
𝐿𝑐𝑜𝑠θ

In above equation, width is represented by ;  denotes constant;  represents wavelength;  𝑊 𝐾 γ 𝐿𝑐𝑜𝑠θ
denotes diffraction line. 

B. Statistical Features: 

i. Mean: The arithmetic average of the data set is calculated using the mean. It refers to the total 

number of values divided by the sum of all the values. The mean is quite simple. Its estimation of 

the data values is excellent.

(3)µ =  
𝑖=1

𝑛

∑
µ

𝑖

𝑛

ii. Standard deviation: This is a statistical technique used to measure degree of dispersion or variation 

for a set of data points. When describing spread or breadth of diffraction peaks in an XRD 

examination, the standard deviation is frequently employed to provide details about the 

homogeneity and crystalline quality of a material.

                             (4)𝑆𝐷 =  𝑖=1

𝑛

∑ µ
𝑖
−µ( )2

𝑛−1

iii. Skewness: Skewness quantifies how dissimilar a real-valued random variable's probability 

distribution is from one another. The skewness can be calculated using following Eqn.

                                        (5)𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =  𝑛
𝑛−1( ) 𝑛−2( )  

𝑖=1

𝑛

∑
µ

𝑖
−µ

𝑆𝐷( )3

iv. Kurtosis: Kurtosis is a statistical metric that quantifies the peak or flatness of a real-valued random 

variable's probability distribution. The following equation can be used to determine the kurtosis.

           
                                (6)𝐾 =  𝑛 𝑛+1( )

𝑛−1( ) 𝑛−2( ) 𝑛−3( )
𝑖=1

𝑛

∑
µ

𝑖
−µ

𝑆𝐷( )4

−  3 𝑛−1( )2

𝑛−2( ) 𝑛−3( )

Where, n represents number of data;  denotes individual data;  is mean of data; standard deviation µ
𝑖

µ

of data is represented by .𝑆𝐷

C. Discrete Wavelet Transform

A mathematical method known as the Discrete Wavelet Transform (DWT) can divide a signal up into 

its frequency components. Wavelet transform uses a series of basic functions, termed wavelets, which 

are scaled and shifted replicas of a mother wavelet to capture both high-frequency and low-frequency 

information. The wavelets are limited in duration and can adjust to the specific characteristics of the 

signal locally. At every stage of decomposition, the DWT processes the signal through a number of 

filters to provide a comprehensive information at each level as well as a coarse approximation. The 

low-frequency information is contained in coarse approximation, while high-frequency information is 

contained in detailed information. The DWT may be utilized for variety of tasks and applied to wide 

range of data kinds, including vibrations, images, and noises.
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DWT may be practically implemented using two filters: one for low-pass and one for high-pass. Wavelet 

dilation and shifting operations are used to create a wavelet of a prototype signal, sometimes referred to 

as a "mother" or "single modeling" wavelet y (t). The following formula illustrates this connection.

         (7)φ 𝑗, 𝑘( ) 𝑡( ) =  1

2
𝑗 φ 𝑡−𝑘2𝑗( )

2𝑗( )
Where,  represents scaling factor;  denotes time;  is shifting parameter;  denotes function of 𝑗 𝑡 𝑘 φ 𝑡( )
mother wavelet; DWT may be calculated mathematically by convolving the signal with the 𝑥 𝑡( ) 
mother-wavelet  dilated, reflected, and normalized. The mother-wavelet convolution of the data φ 𝑗, 𝑘( )
gives Equation (8).

 (8)𝑑𝑤𝑡 𝑗, 𝑘( ) 𝑡( ) = 𝑦 𝑛[ ] =  𝑥 *  φ 𝑗, 𝑘( ) 𝑡( )( ) 𝑛[ ] =  1

2
𝑗  ∫ 𝑥 𝑡( )φ 𝑡−𝑘2𝑗( )

2𝑗( )𝑑𝑡

The signals are broken down by filters into approximation and detail coefficients, whose computation is 

given as

 (9)𝑦
𝑙𝑜𝑤

𝑛[ ] =  𝑥 * 𝑔( ) 𝑛[ ] =
𝑘=−∞

∞

∑ 𝑥 𝑘[ ]𝑔 2𝑛 − 𝑘[ ]

           (10)𝑦
ℎ𝑖𝑔ℎ

𝑛[ ] =  𝑥 * ℎ( ) 𝑛[ ] =
𝑘=−∞

∞

∑ 𝑥 𝑘[ ]ℎ 2𝑛 − 𝑘[ ]

The aforementioned equations may be more precisely described using following convolution technique 

that stated in Eqn. (11) and (12).

                       (11)𝑦
𝑙𝑜𝑤

=  𝑥 * 𝑔( )↓2

                                                            (12)𝑦
ℎ𝑖𝑔ℎ

=  𝑥 * ℎ( )↓2

The high-frequency and low-frequency components are represented by the low- and high-pass filters in 

equations (9) and (10) respectively. The outputs provide the approximation (from the low-pass filter) 

and detail (from the high-pass filter) coefficients. Fig. 2 depicts the 2-level DWT decomposition process. 

Figure 2: DWT decomposition procedure

The patterns of diffracted X-rays from a crystalline material can be examined using DWT in XRD. The 

phase composition and crystal structure of material are disclosed using XRD data, which may be seen 

as 1D signal. It may be divided into several frequency bands that correlate to various spatial scales of 

crystal lattice by DWT on XRD data. The overall phase composition and average lattice parameters are 
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revealed by low-frequency bands, and crystal structural and local fluctuations defects are shown by 

high-frequency bands. It is also possible to identify and quantify the diffraction peaks more easily using 

DWT to lower noise and improve peaks and in XRD.

3.3. Feature Selection

Feature selection is a method of reducing dimensionality strategy that selects a subset of useful 

characteristics by eliminating noisy, redundant, or irrelevant features from the original set. Feature 

selection frequently leads to higher learning accuracy, increased model interpretability, and lower 

processing costs. It is possible to reduce data effectively by using feature selection techniques. This 

helps locate precise information. Feature selection can reduce measurement and storage requirements, 

training and utilization durations, and curse of dimensionality to improve prediction performance. It 

can also help with data presentation and interpretation. 

In feature selection, hybrid optimization is a methodology that combines many approaches to improve 

efficiency and performance. In this study, Hybrid White Shark Optimizer and Kookaburra Optimization 

Algorithm (HWSKO) is introduced to provide effective feature selection. It is a novel feature selection 

method that combines the advantages of two metaheuristic algorithms: White Shark Optimizer (WSO) 

and Kookaburra Optimization Algorithm (KOA). The benefits of this HWSKO are described as follows:

● The process can reduce computational complexity and storage needs of models by removing 

characteristics that are irrelevant, redundant, and noisy from original feature space.

● It may choose the ideal collection of characteristics to improve classification model performance 

and lower error rates.

● The many behaviours of white shark and Kookaburra, such as hunting Strategy, exploitation, 

chasing, and speed of movement may be used by HWSKO to balance exploration and exploitation 

of search space. This can improve the global optimization impact and keep algorithm from being 

stuck in local optima.

● HWSKO can interact with variety of classifiers and handle several data sets, including numerical 

data, text, and image.

The White Shark and Kookaburra optimization algorithm are discussed in following section:

3.3.1. White Shark Optimizer

A meta-heuristic technique called White Shark Optimizer (WSO) is used for effectively solve Optimal 

Power Flow (OPF) problem. WSO is a novel optimization system designed to help white sharks in the 

ocean depths, modelled after their scholarly hunting patterns in the wild. This algorithm was created to 

address optimization issues in the real world that are challenging to resolve using existing methods, 

both restricted and unconstrained. A large variety of engineering optimization problems, especially 

those with high dimensionality, may be solved with WSO thanks to its mathematical methodology. The 

global optimum problems for difficult optimization problems should be easily and exactly identified by 

it thanks to its durability and simplicity. This section includes details on mathematical models 

developed to characterize hunting behaviours of white sharks and used to support proposed WSO to 

solve OPF problem. Tracking and killing prey are involved in this.

a) Movement Speed Towards the Prey

A white shark may identify the position of its prey by listening for a halt in the wave is given in Equation 

(13).

                      (13)𝑊
𝑘+1
𝑖 =  σ 𝑊

𝑘
𝑖 + ρ

1
𝐿

𝑏𝑒𝑠𝑡
𝑘

− 𝐿
𝑘
𝑖( ) × 𝐶

1
+ ρ

2
𝐿

𝑏𝑒𝑠𝑡

𝑣
𝑘
𝑖

−  𝐿
𝑘
𝑖( ) × 𝐶

2
⎡
⎢
⎣

⎤
⎥
⎦
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Where,  represents location of sharks; The   index vector of sharks reaching the ideal spot is .𝐿 𝑖𝑡ℎ 𝑣𝑖

b) Movement Towards Best Possible Prey

The behavior of white sharks as they approach prey was described in this context using location update 

mechanism given in Eqn. (14).

 (14)𝑃
𝑘+1
𝑖 =  {𝑃

𝑘. 
𝑖 → ⊕𝑃

0
+ 𝑤. 𝑎 + 𝑙. 𝑏;       𝑟𝑎𝑛𝑑 < 𝑚𝑣 𝑃

𝑘 
𝑖 +

𝑊
𝑘
𝑖

𝑓;                              𝑟𝑎𝑛𝑑≥𝑚𝑣  

  (15)𝑚𝑣 =  1

𝑎
0
+𝑒

𝑘
2−𝑘( )
𝑎1⎛

⎝

⎞

⎠

Where,  denotes bitwise EX-OR operation;  represents frequency of shark’s wavy motion. The ⊕ 𝑓
location constants  and  are employed to manage exploitation and exploration.𝑎

0
𝑎

1

c) Movement Towards Optimal Shark

Sharks can maintain their position ahead of most favourable individual at close proximity to the target. 

The expression for this phenomenon may be found in equation (16).

         (16)𝑃
𝑘+1
'𝑖 = 𝑃

𝑏𝑒𝑠𝑡𝑘
+  𝑟

1
𝐷

𝑝

→
𝑠𝑔𝑛 𝑟

2
− 0. 5( ) 𝑟

3
<  𝑅

𝑝

 (17)𝑅
𝑝

=  1 − 𝑒
−𝑎

2
×𝑘

𝑘( )|
|
|
|

|
|
|
|

Where,  is the distance between shark and target,  denotes a location factor used to control 𝐷
𝑝

𝑎
2

exploitation and exploration, and  represents a parameter used to reflect power of white sharks.𝑅
𝑝

3.3.2. Kookaburra Optimization Algorithm

The Dacelo genus of birds includes the carnivorous Kookaburra, which is a member of the Alcedininae 

and Coraciiformes families of terrestrial tree kingfishers. These birds are primarily terrestrial. Australia 

and New Guinea are the natural habitats of this bird. They live in a variety of settings, including as wet 

forests and desert savannahs, as well as next to streams and in neighbourhoods with plenty of tall trees. 

This bird essentially warns its foes not to approach its area by making a sound that is comparable to 

human laughing. 

a. Initialization

The KOA method is a population-based optimizer that generates suitable solutions for optimization 

problems repeatedly by conducting random search in problem-solving space. Every Kookaburra in KOA 

population is a possible vector-based solution since they are all arranged in problem-solving space so 

that, depending on where they are, they may each decide the values for decision variables. The KOA 

population matrix, which is made up of kookaburras may be modelled according to equation (18). The 

starting placements of kookaburras are randomly determined at beginning of KOA implementation 

using Equation (19).

(18)𝑋 =  

[
 
 
 
 
𝑋1

⋮
𝑋𝑖

⋮
𝑋𝑁]

 
 
 
 

=  

[
 
 
 
 
𝑥1,1 ⋯ 𝑥1,𝑑 ⋯ 𝑥1,𝑚

⋮ ⋱ ⋮      ⋰  ⋮
𝑥𝑖,1

⋮
𝑥𝑁,1

⋯
⋰
⋯

𝑥𝑖,𝑑

⋮
𝑥𝑁,𝑑

⋯
⋱
⋯

𝑥𝑖,𝑚

⋮
𝑥𝑁,𝑚]
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  (19)𝑥
𝑖,𝑑

=  𝑙𝑏
𝑑

+ 𝑟𝑎𝑛𝑑.  𝑈𝑏
𝑑

− 𝐿𝑏
𝑑( )

Where, r is random number in the interval [0, 1],  are the upper and lower bounds of  𝑈𝑏
𝑑
 𝑎𝑛𝑑 𝐿𝑏

𝑑
𝑑𝑡ℎ

decision variable, respectively.  denotes KOA population matrix,  represents  kookaburra, and  𝑋 𝑋
𝑖

𝑖𝑡ℎ 𝑥
𝑖,𝑑

is its  dimension in search space.𝑑𝑡ℎ

Given that every kookaburra's location inside the issue-solving space represents a potential solution for 

the related kookaburra problem, it is possible to assess the problem's objective function. Equation (20) 

may be used to express the set of evaluated values for problem's objective function as a vector.

     
(20 )𝐹 =  𝐹

1
 ⋮  𝐹

𝑖
 ⋮  𝐹

𝑁
  [ ] =  𝐹 𝑋

1( ) ⋮  𝐹 𝑋
𝑖( ) ⋮  𝐹 𝑋

𝑁( )  [ ]
According to above equation,  represents the evaluated objective function based on  kookaburra, 𝐹

𝑖
𝑖𝑡ℎ

and  stands for evaluated objective function vector.𝐹

An appropriate criterion for assessing the caliber of population members and potential solutions is the 

assessed values for objective function. The best member is one who has highest assessed value for 

objective function, and worst member is one who has the lowest evaluated value for objective function. 

The position of kookaburras in problem-solving space and function of issue are modified throughout 

each iteration, and best member of population is also updated based on comparison of new values.

b. KOA Mathematical Modeling

The KOA technique changes the positions of kookaburras to enhance potential solutions based on 

modeling of genuine kookaburra behaviours in following two phases: exploration and exploitation. This 

is done through an iterative process.

i. Phase I: Hunting technique (Exploration)

The carnivorous kookaburra bird eats other tiny birds, insects, reptiles, frogs, and mice. Even in 

situations where its legs are weak, this bird's muscular neck aids in hunting. Because of their attack 

strategy and way of choosing their prey, kookaburras cover a lot of ground when in position. This 

approach is represented by idea of exploration, which stands for global search. In order to discover 

primary optimal zone, one must carefully scan problem-solving space to avoid becoming stuck in local 

optimal. In KOA design, each kookaburra considers the position of other kookaburras who have a 

higher objective function value, as prey location, simulating kookaburra hunting behavior. The Eqn. 

(21) shows calculation for available prey set of every kookaburra.

                        (21)𝑃𝐶
𝑖

=  𝐵
𝑘
:  𝐹

𝑘
<  𝐹

𝑖 
𝑎𝑛𝑑 𝑘≠𝑖{ }

In above equation,  is the objective function value, and  denotes a set of potential prey for the  𝐹
𝑘

𝑃𝐶
𝑖

𝑖𝑡ℎ

kookaburra.

Every kookaburra is thought to choose its target at random and launch an assault on it according to the 

KOA design. Equation (22) is used to determine the kookaburra's new position based on the simulation 

of its progress towards prey in hunting strategy.

                             (22)𝑥
𝑖,𝑑
𝑃1 =  𝑥

𝑖,𝑑
+ 𝑟𝑎𝑛𝑑∙ 𝑆𝑃𝐶

𝑖,𝑑
− 𝑁∙ 𝑥

𝑖,𝑑( )
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Where,  is  dimension of selected prey for  kookaburra,  represents a random number from 𝑃𝐶
𝑖,𝑑

𝑑𝑡ℎ 𝑖𝑡ℎ 𝑁

set {1, 2}.  is its  dimension, and  stands for random number with normal distribution in 𝑥
𝑖,𝑑
𝑃1 𝑑𝑡ℎ 𝑟𝑎𝑛𝑑

range of [0, 1].

II. Phase II: Assuring the Death of Prey (Exploitation)

The second distinguishing feature of kookaburra behavior is that, following an assault, the animal 

carries the victim with it and ensures that it dies by striking it against tree several times. The prey is 

then firmly held between the kookaburra's claws before being crushed and consumed. This activity 

causes slight shifts in the posture of kookaburras when it occurs close to hunting area. This approach 

integrates local search with notion of exploitation, and it refers to potential of algorithm for provide 

better solutions near to identified solutions and promising regions. Equation (23) is used in the KOA 

design to determine a random position, simulating the movement of kookaburras about the hunting 

area.

                          (23)𝑥
𝑖,𝑑
𝑃2 = 𝑥

𝑖,𝑑
+ 1 − 2𝑟𝑎𝑛𝑑( )∙ 

𝑈𝑏
𝑑
−𝐿𝑏

𝑑

𝑡

Where, is its  dimension, and  represents algorithm's iteration counter.𝑥
𝑖,𝑑
𝑃2 𝑑𝑡ℎ 𝑡

Once the target is attacked, the kookaburra drags the kill along with it and ensures that it is killed. After 

holding the prey firmly between its claws, the kookaburra smashes and consumes it. The drawback of 

KOA is that kookaburra bird has weak legs. This bird carries the prey in its claws but it has feeble legs. 

This may reduce the efficiency of attacking prey. To improve the efficiency of KOA, the WSO is hybrid 

with KOA in this study.   

3.3.3. Hybrid White Shark Optimizer and Kookaburra Optimization Algorithm

In this study, the hybrid method of HWSKO is introduced. This hybrid algorithm combines both WSO 

and KOA to improve its efficiency. The equation (17) from WSO is optimized with equation (22) in KOA. 

The expression of hybrid HWSKO is given in equation (24).

                          (24)𝑥
𝑖,𝑑
𝑃1 =  𝑥

𝑖,𝑑
+ 𝑟𝑎𝑛𝑑∙ 𝑅

𝑝
*  𝑆𝑃𝐶

𝑖,𝑑
− 𝑁∙ 𝑥

𝑖,𝑑( )
In above equation,  represents the power reflector. This part is introduced in above equation to 𝑅

𝑝

improve the power of claws. This HWSKO may employ movement speed to strike a balance between 

search space exploitation and exploration.

3.4. Bayesian FusionNet -Based Phase Identification

The phase identification process based on Bayesian FusionNet is a major advancement in automating 

and enhancing the precision of XRD analysis. This newly introduced method in this study integrates 

GhostNetV2, BNN, and FNN. In this study, the GhostNetV2 is improved for enhance the performance 

of suggested technique. This proposed method enables more effective and dependable phase detection 

in research by fusing modern neural network designs and utilizing their combined capabilities. This 

opens up significant novel possibilities for study with broad applicability.

3.4.1. GhostNetV2

A lightweight convolutional neural network (CNN) architecture is called GhostNetV2. High 

performance at low computational cost is the goal of GhostNetV2. Ghost modules and DFC attention 
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are only two of the methods it employs to do this. Ghost modules can minimize the number of channels 

in a convolutional layer by using a method known as "channel pruning". This contributes to lowering 

the necessary number of FLOPs and parameters without materially affecting accuracy. The goal of DFC 

is to be a new, effective attention mechanism that works well. Accuracy may be increased by capturing 

long-range relationships between features.

3.4.1.1. Improved GhostNetV2

In this study GhostNetV2 is improved by replacing DFC with transformer-based attention network in 

conventional DFC. This improved network Captures long-range dependencies effectively. It is more 

powerful technique and it models the links between features across various spatial locations by using 

self-attention processes. Fig. 3 shows the structure of Improved GhostNetV2.

Figure 3:  Architecture of Improved GhostNetV2

A model that can successfully extract minor information to distinguish between various materials is 

needed since XRD patterns can be noisy and complicated. The channel reduction and attention 

mechanisms of GhostNetV2 may be useful in this situation.

3.4.2. Bayesian Neural Network

The objective of classical learning is to identify a single optimal model parameter configuration, usually 

using maximum-likelihood optimization. As a result, the learner in the Bayesian framework observes 

the data  and then infers a posterior distribution  over the model's parameters . The posterior 𝐷 𝑃 𝑤|𝐷( ) 𝑤
distribution is determined by Bayes rule, which is as follows:  , where  denotes 𝑃 𝑤|𝐷( )α 𝑃 𝐷|𝑤( )𝑃 𝑤( ) 𝑃 𝑤( )
prior distribution over parameters and  is the likelihood of  as determined by model with 𝑃 𝐷|𝑤( ) 𝐷
parameters . The Bayesian model average (BMA) is then used to determine the model's predictions for 𝑤
a fresh test sample .𝑥
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          (25)𝑃 𝑦|𝑥,  𝐷( ) =  
𝑤
∫ 𝑃 𝑦|𝑥,  𝑤( )𝑃 𝑤|𝐷( )𝑑𝑤

Where, the predictive distribution for a specific value of the parameters w is denoted by . This 𝑃 𝑦|𝑥,  𝑤( )
BMA is especially persuasive in the context of Bayesian deep learning since, for a given issue, a 

contemporary neural network's posterior over parameters might reflect a multitude of complimentary 

solutions that correspond to various parameter values.

3.4.3. Feedforward Neural Network

FNN is one type of artificial neural network that is quite popular. Data moves through hidden layers of 

feedback-neutral network (FNN) in a single direction, from input layer to output layer. Numerous 

neurons make up each buried layer, which may be thought of as a linear change of the output from the 

layer before it. It is possible to characterize the basic functions of neurons as following equation (26).

(26)ℎ 𝑋( ) = 𝑤𝑋 + 𝑏

Where,  stands for weight matrix,  is the bias vector, and  is the input vector. 𝑤 𝑏 𝑋

A nonlinear processing of the neuron's output, controlled by activation function is necessary to increase 

the accuracy of network because many functions are linearly indivisible. The nonlinear transformation 

is then realized by converting the input,  to a different value. For phase identification, sigmoid ℎ 𝑋( )
function is used as the activation function and it can be expressed as following equation (27).

     (27)𝑆𝑖𝑔𝑚𝑜𝑖𝑑 𝑥( ) =  1

1+𝑒−𝑥

The sigmoid function is frequently utilized in neural networks due to its stability and ease of derivation. 

A loss function is also necessary in order to assess the FNN's identification performance. In this FNN, 

cross-entropy function is selected as a loss function.  A different loss function will be used to minimize 

the gradient since the sigmoid function's slope rapidly varies at both the upper and lower boundaries. 

The cross-entropy function may retain a high gradient because of its logarithmic nature, which is 

represented as following equation (28).

 (28)𝐿𝑜𝑠𝑠 =  −  
𝑖=1

𝑛

∑ 𝑌
𝑖
𝑙𝑜𝑔 𝑌

^( )

Where,  denotes ideal output;  represents actual output. 𝑌
𝑖

𝑌
^

The mean is probably used to integrate results or predictions from the three models (BNN, FNN, and 

Improved GhostNetV2). The structure of mean is displayed in Fig. 4. The ensemble technique, which 

averages the predictions from several models, can yield a more reliable and accurate forecast. 

Mathematically this can be expressed in following equation (29).

  (29)𝑀𝑒𝑎𝑛 =  
𝑌

1
+ 𝑌

2
+ 𝑌

3

3
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Figure 4: Structure of mean outcome

The mean reduces the biases and inaccuracies of individual models. This type of model averaging takes 

use of the variety of models that are used. The ensemble technique attempts to provide a more reliable 

and accurate overall forecast by integrating the strengths of each model, which may perform better in 

particular scenarios or with particular kinds of data.

III. RESULTS AND DISCUSSION

This section of this paper discusses about evaluation of results. The various metrices are taken for 

evaluate performance of proposed approach. The metrices are mainly used to analyse efficiency of 

suggested technique with various methods that are currently in use. The main objectives of this section 

are:

➢ Effectiveness of proposed technique using Sensitivity, Precision, Accuracy, Selectivity, FPR, NPV, 

F-score, MCC, and FNR;

➢ Comparison of the suggested approach with alternative existing techniques based on evaluation 

metrics.

➢ The execution is performed in python platform.

4.1. Evaluation of metrices

The following metrics are used in the assessment of the proposed attack detection system:

Accuracy: It represents a percentage of total number of two correct guesses to total number of 

predictions in Eqn. (25).

(25)𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑇𝑁+𝑇𝑃
𝑇𝑃+𝑇𝑁+𝐹𝑁+𝐹𝑃

Where, FP for False Positive, TP stands for True Positive, TN for True Negative, and FN for False 

Negative, an accuracy ratio of 1 denotes perfect accuracy, and 0 for a random guess.

Precision: It is defined as the ratio of the total amount of abnormal and normal data detected to the 

quantity of normal data detected, as given in Eqn. (26).

 (26)𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃
𝑇𝑃+𝐹𝑃

Improved

GhostNetV2

BNN

FNN

Mean
Detected

Outcome

Y1

Y2

Y3
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Sensitivity: It is defined as the ratio of total amount of data in dataset to number of normal data that 

were found, as shown in Eqn. (27).

 (27)𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃
𝑇𝑃+𝐹𝑁

F-score: The harmonic mean of precision and recall metrics is known as F-measure. It is represented in 

following Eqn. (28).

 (28)𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =  2𝑃𝑅
𝑃+𝑅

Specificity: The percentage of real negative cases that model properly detected is called Specificity, 

which is often referred to as True Negative Rate or Selectivity. Specificity is a binary classification 

performance measure. The formula for calculating specificity is as follows:

 (29)𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  𝑇𝑁
𝐹𝑃+𝑇𝑁 

MCC: Matthews Correlation Coefficient or MCC is a statistic used to assess how well binary 

classification model is doing. The following Eqn. (30) is used to compute it:

 (30)𝑀𝐶𝐶 =  𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁
𝑇𝑃+𝐹𝑃( ) 𝑇𝑃+𝐹𝑁( ) 𝑇𝑁+𝐹𝑃( ) 𝑇𝑁+𝐹𝑁( )

NPV: A performance measure called Negative Predictive Value (NPV) is used in binary classification to 

assess how well a model predicts the negative class, or the occurrences that lack a specific condition or 

characteristic. The True Negative Rate is another name for NPV. The following Eqn. (31) is utilized to 

determine Negative Predictive Value:

(31)𝑁𝑃𝑉 =  𝑇𝑁
𝑇𝑁+𝐹𝑁

FPR: The percentage of true negative occurrences that model mistakenly predicts as positive is called 

False Positive Rate (FPR), sometimes called False Alarm Rate. This performance statistic is utilized in 

binary classification. The below formula is used to compute it:

 (32)𝐹𝑃𝑅 =  𝐹𝑃
𝐹𝑃+𝑇𝑁

FNR: In binary classification, the False Negative Rate (FNR) is a performance indicator that quantifies 

the percentage of true positive occurrences that the model mistakenly predicts as negative. It is also 

known as the Miss Rate. The following formula is used to get FNR:

    (33)𝐹𝑁𝑅 =  𝐹𝑁
𝐹𝑁+𝑇𝑃

4.2. Evaluation of proposed technique with existing methods

The proposed technique is compared with various existing methods such as Improved GhostNetV2, 

BNN, and FNN to verify the performance of introduced strategy. For this purpose, the dataset is split 

for training and testing. Initially, the data is split as seventy percentage for training and thirty percent 

for testing. Further, the 80-percentage data was utilised for training purpose and the remaining data 

was used for testing. These split data was mainly used to ensure the effectiveness of developed method.  

The proposed and existing technique is analyzed with various evaluation metrices and these are 

discussed in following section. Table 1 depicts comparison result of proposed and existing method when 

data split is 70/30. The comparison between proposed and current methods when the data split is 

80/20 is shown in Table 2.
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Table 1: Percentage values of various methods for data split 70/30

Model
Bayesian 

FusionNet

Improved 

GhostNetV2
BNN FNN

Accuracy 0.98685 0.95054 0.93023 0.90909

Precision 0.98702 0.94148 0.92105 0.92105

F-Score 0.98385 0.94588 0.92105 0.85

Specificity 0.9878 0.94 0.94 0.94175

Sensitivity 0.98101 0.9775 0.90323 0.85714

MCC 0.98205 0.94118 0.90323 0.92683

NPV 0.98155 0.95161 0.92857 0.95223

FPR 0.04541 0.06341 0.05341 0.07341

FNR 0.03294 0.07954 0.06954 0.08954

Table 2: Percentage values of various methods for data split 80/20

Model
Bayesian 

FusionNet

Improved 

GhostNetV2
BNN FNN

Accuracy 0.99061 0.96591 0.94118 0.91023

Precision 0.98715 0.95588 0.9375 0.93878

F-Score 0.98719 0.95133 0.925 0.8534

Specificity 0.98281 0.94243 0.9434 0.9412

Sensitivity 0.98715 0.9612 0.93023 0.86364

MCC 0.989213 0.95082 0.92683 0.92563

NPV 0.989364 0.95455 0.93478 0.95238

FPR 0.03241 0.05341 0.03341 0.06341

FNR 0.02554 0.06954 0.04954 0.07954

The accuracy values of proposed, Improved GhostNetV2, BNN, and FNN are 0.98685, 0.95054, 

0.93023, and 0.90909 respectively when 70 percentage data sets are involved for training and 30 

percentage for testing. Similarly, when the data sets are split as 20 percentage for testing and 80 

percentage for training, the accuracy values are denoted as 0.99061, 0.96591, 0.94118, and 0.91023 for 

proposed, Improved GhostNetV2, BNN, and FNN respectively. The aforementioned values states that 

the proposed method has highest accuracy than all other existing techniques. The graphical 

representation of accuracy analysis is shown in following Fig. 5.
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Figure 5: Analysis of accuracy

The suggested strategy, Improved GhostNetV2, BNN, and FNN have precision values of 0.98702, 

0.94148, 0.92105, and 0.92105, respectively, when 70% of data sets are used for training and 30% are 

used for testing. Similar to this, precision scores for suggested method, Improved GhostNetV2, BNN, 

and FNN are stated as 0.98715, 0.95588, 0.9375, and 0.93878 correspondingly when the data sets are 

divided into 80 percent for training and 20 percent for testing. The results stated above indicate that 

the suggested method outperforms all other current methods in terms of precision. The following Fig. 6 

displays precision analysis graphically.

Figure 6: Analysis of precision

The F-score values of newly developed method, Improved GhostNetV2, FNN, and BNN are, 

respectively, 0.98385, 0.94588, 0.85, and 0.92105 with 70% of data sets are used for training and 30% 

for testing. Likewise, if data sets were divided into 80 percent for training and 20 percent for testing, 

the F-score results for suggested, BNN, Improved GhostNetV2, and FNN are stated as 0.98719, 0.925, 

0.95133, and 0.8534 respectively. According to provided values, the suggested method is the most 

accurate F-score of all currently used methods. The F-score analysis is displayed graphically in Fig. 7 

below.
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Figure 7: Analysis of F-score

FNN, BNN, Improved GhostNetV2, and proposed approach have specificity values of 0.94175, 0.94, 

0.94, and 0.9878 respectively, with 70% of the data sets utilized for testing and 30% for training. 

Similarly, if 80 percent of data sets are used to training and 20 percent are used for testing, specificity 

for FNN, BNN, Improved GhostNetV2and, and proposed method are 0.9412, 0.9434, 0.94243, and 

0.98281 respectively. The recommended approach has the highest specificity score among all presently 

employed methods, based on given information. Fig. 8 below shows a visual representation of the 

specificity analysis.

Figure 8: Analysis of specificity
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Improved GhostNetV2, FNN, BNN, and established strategy have sensitivity values of 0.9775, 0.85714, 

0.90323, and 0.98101 respectively, with 70% of the data sets employed for testing and 30% for 

t00.00raining. Similarly, the sensitivity for recommended, BNN, Improved GhostNetV2, and FNN are 

0.980….715, 0.93023, 0.9612, and 0.86364 respectively, if the data sets are split into 80 percentage for 

training and 20 % for testing. The recommended approach has the highest sensitivity among all 

presently employed methods, based on aforementioned results. Figure 9 below shows a visual 

representation of the sensitivity analysis.

Figure 9: Analysis of sensitivity

The MCC values are listed as 0.98205 for proposed technique, 0.94118 for Improved GhostNetV2, 

0.92683 for FNN, and 0.90323 for BNN with 70% of data sets utilized for training and 30 percentage 

for testing. Similarly, if data sets are split 80 percent for training and 20 percent for testing, the MCC 

values are 0.989213 for recommended approach, 0.92683 for BNN, 0.95082 for Improved GhostNetV2, 

and 0.92563 for FNN. Based on information provided above, the proposed approach has the highest 

MCC value among all presently available methods. Fig. 10 below shows an illustration of MCC 

evaluation.
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Figure 10: Analysis of MCC

The NPV values for 70% of data sets used for training and 30% for testing are 0.98155 for proposed 

approach, 0.95161 for Improved GhostNetV2, 0.95223 for FNN, and 0.92857 for BNN. Similar to this, 

the NPV values for recommended technique is 0.989364, 0.93478 for BNN, 0.95455 for Improved 

GhostNetV2, and 0.95238 for FNN if the data sets are divided 80 percent for training and 20 percent 

for testing. Out of all currently accessible approaches, the suggested strategy has the greatest NPV value 

according to information presented above. Figure 11 below provides an example of NPV evaluation.

Figure 11: Analysis of NPV

When 70% of data sets are utilized for training and 30% are used for testing, the FPR values of 

proposed approach, FNN, BNN, and Improved GhostNetV2 are 0.04541, 0.07341, 0.05341, and 

0.06341, respectively. Similarly, with the data sets split 80 percent for training and 20 percent for 

testing, the accuracy scores for the proposed technique, BNN, Improved GhostNetV2, and FNN are 

0.03241, 0.03341, 0.05341, and 0.06341, respectively. The above-mentioned results show that the 
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recommended method performs more precisely than any other existing method. The subsequent Fig. 12 

illustrates FPR analysis visually.

Figure 12: Analysis of FPR

The methods FNN, Improved GhostNetV2, BNN, and the recommended strategy have FNR values of 

0.08954, 0.07954, 0.06954, and 0.03294, respectively, when 70% of data sets are utilized for training 

and 30% for testing. Similar to this, when the data sets are split into 80 percent for training and 20 

percent for testing, FNR scores for recommended technique, BNN, Improved GhostNetV2, and FNN 

are reported as 0.02554, 0.04954, 0.06954, and 0.07954 accordingly. The aforementioned findings 

show that recommended strategy performs more precisely than any other existing approach in terms of 

FNR. The following Fig.13 is visually displayed the evaluation of FNR.

Figure 13: Analysis of FNR

From above evaluation results, the suggested approach exceeds current techniques in a range of 

assessment measures. The suggested method outperforms Improved GhostNetV2, BNN, and FNN in 
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terms of accuracy, precision, F-score, specificity, sensitivity, MCC, NPV, and reduced FPR when trained 

with 70% of the data. Even with 80% more training data, this pattern continues. Its solid performance 

across numerous assessment criteria is demonstrated by superiority of suggested technique in terms of 

F-score, accuracy, precision, sensitivity, specificity, MCC, reduced FPR, and NPV.

IV. CONCLUSION

This study presents a novel framework using a hybridized machine learning technique for autonomous 

phase detection in X-ray diffraction. The procedure includes a rigorous pre-processing step that 

includes data cleaning, normalization, and smoothing. This is followed by a multi-pronged feature 

extraction step that extracts important information such as peak position, intensity, and statistical 

characteristics. HWSKO, a novel hybrid optimization technique, is used to choose features, which 

successfully lowers computational complexity and improves model performance. Compared to previous 

techniques, the Bayesian FusionNet-based phase identification shows superiority across several 

assessment measures by integrating Improved GhostNetV2, Bayesian Neural Network, and 

Feedforward Neural Network. The outcomes demonstrate that the suggested method is successful even 

with a larger training dataset in terms of accuracy, precision, and other important parameters. This 

extensive framework highlights the promise of a hybridized machine learning technique for furthering 

material science research and enabling effective analysis across a range of applications, in addition to 

automating phase detection in X-ray diffraction.

Future studies might investigate the incorporation of increasingly more sophisticated designs to 

improve the Bayesian FusionNet as neural network technology advances. Further research into 

attention processes, recurrent neural networks, or innovative convolutional neural networks (CNNs) 

may improve the model's capacity to identify complex patterns in XRD data. An important step forward 

would be to improve the suggested technique for real-time applications. The process entails enhancing 

the Bayesian FusionNet computing performance to facilitate swift phase identification, hence making it 

suitable for real-time analysis in material science labs or industrial environments.
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The Dja Biosphere Reserve is home to immense natural resources. Increasing poaching and other

human activities like shifting cultivation and industrial agriculture are major problems in this area.

This study addresses the need to explore the attitude and perception of local residents toward wildlife

and conservation. Questionnaires, surveys and field observations were used in data collection. A total of

400 people was conveniently selected in 16 villages from October to December 2015. Data analysis

relied mainly on factor analysis and structural equation modelling in SPSS 21 and Smart-PLS software.

The main findings indicate a significant positive relationship between wildlife education, community

wildlife sensitization and the local attitude on community involvement in conservation, which in turn

have a strong and positive significant impact on the perception of the local people towards wildlife and

conservation. Moreover, the perception of local people has a significant positive impact on the level of

discipline towards wildlife and conservation.

Keywords: wildlife conservation, perception of wildlife, dja faunal reserve, local community implication,

wildlife education.
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