

Scan to know paper details and
author's profile

Safeguarding our Atmosphere: Legal Measures and Health

Dr. Ibrahim Badawi

ABSTRACT

The depletion of the ozone layer, a critical shield protecting the Earth from harmful ultraviolet (UV) radiation, has become a global environmental concern. This paper highlights the legal dimensions surrounding Ozone-depleting substances (ODS), their impact on the Ozone layer, and the subsequent risk on human health specially regarding skin cancer and blindness. As countries navigate international agreements, domestic regulations, and enforcement mechanisms, the intricate interplay between legal frameworks and health implication of ozone layer depletion comes to the forefront.

The paper also highlights specific cases of illegal trade in ozone depleting substances provided by parties to the Montreal Protocol, examining statistics provided by parties to the Montreal Protocol. China emerges as a major producer of contraband ODS, while countries such as Bulgaria, Lithuania, Poland, and France report numerous cases. Analyzing these cases provides insights into the effectiveness of legal frameworks and enforcement agencies.

Keywords: ozone-depleting substances, illegal trade, montreal protocol, environmental protection, ozone layers, skin cancer, blindness.

Classification: LCC Code: K3585, K3943

Language: English

Great Britain
Journals Press

LJP Copyright ID: 925613

Print ISSN: 2631-8490

Online ISSN: 2631-8504

London Journal of Research in Science: Natural & Formal

Volume 24 | Issue 12 | Compilation 1.0

Safeguarding our Atmosphere: Legal Measures and Health

Dr. Ibrahim Badawi

ABSTRACT

The depletion of the ozone layer, a critical shield protecting the Earth from harmful ultraviolet (UV) radiation, has become a global environmental concern. This paper highlights the legal dimensions surrounding Ozone-depleting substances (ODS), their impact on the Ozone layer, and the subsequent risk on human health specially regarding skin cancer and blindness. As countries navigate international agreements, domestic regulations, and enforcement mechanisms, the intricate interplay between legal frameworks and health implication of ozone layer depletion comes to the forefront.

The paper also highlights specific cases of illegal trade in ozone depleting substances provided by parities to the Montreal Protocol, examining statistics provided by parties to the Montreal Protocol. China emerges as a major producer of contraband ODS, while countries such as Bulgaria, Lithuania, Poland, and France report numerous cases. Analyzing these cases provides insights into the effectiveness of legal frameworks and enforcement agencies.

The paper concludes with a set of recommendations designed to spread control and enforcement against the illegal trade of ozone-depleting substances. These recommendations encompass multiple aspects, including production monitoring, customs collaboration, mutual verification, cross-border agreements, public-private partnerships, international cooperation, detection equipment, global regulatory standards, resource allocation, public awareness campaigns, alternative substance development, and controlling the trade at its source. By applying these recommendations and enhancing enforcement measures, we aim to protect the ozone layer and create a healthier and safer world for future generations and achieving the sustainable developments goals.

Keywords: ozone-depleting substances, illegal trade, montreal protocol, environmental protection, ozone layers, skin cancer, blindness.

I. INTRODUCTION

This story of ozone depleting began in the in 1985 when Joe Farman, Brian Gardiner and Jonathan Shanklin, discovered a hole in the invisible shield that protects us from solar radiation, he said “The Discovery had a worldwide impact. It’s still having that impact. Because even the smallest changes in ozone readings can reveal interesting things”.

To understand this issue, the Earth’s atmosphere consists of several layers. The lowest layer, the troposphere, extends from the Earth’s surface up to about 6 miles or 10 kilometers. The next layer, the stratosphere, goes from 6 miles to around 31 miles in altitude. Most commercial airplanes fly in the lower stratosphere [1].

In the stratosphere, between 9 to 18 miles (15 to 30 km) above the Earth's surface, you find a significant concentration of ozone, a molecule with three oxygen atoms. According to the U.N. The ozone layer is a thin shield of gas in the Earth's atmosphere that protects the planet, absorbing the sun's ultraviolet (UV) rays and helping to preserve all life on the planet [2]. However, the emergence and widespread use of ODS, such as chlorofluorocarbons (CFCs) and other synthetic compounds, have catalyzed the thinning of this crucial layer [3].

As UV radiation due to ozone layer depletion, the impact on human health becomes increasingly clear. A major concern is the heightened risk of skin cancer, directly associated with prolonged exposure to increased UV radiation. Additionally, the risk of blindness is a significant health consideration. According to the World Cancer Research Fund International, over-exposure to certain types of light, such as ultraviolet rays from the sun or tanning devices, is the primary cause of both melanoma and non-melanoma skin cancers [4].

On the other hand, cataracts and blindness are prevalent eye conditions related to progressive ozone layer depletion and increased UV-B radiation reaching the Earth's surface. These UV-B radiation effects directly to the cornea, lens, and retina [5].

The anticipated increase in UV radiation due to ozone depletion is expected to raise the incidence of cataracts among the population. A mere 1% reduction in stratospheric ozone levels may contribute to an estimated 100,000 to 150,000 additional cases of blindness attributed to cataracts globally [6].

The increased incidence of the skin cancer, blindness, and the broader health risks associated with elevated UV radiation, have prompted international cooperation to address the cause of this global crisis.

The Montreal Protocol comes to the forefront of these efforts, a landmark international agreement crafted to safeguard the ozone layer by applying strict rules and implementation, curbing the production and consumption of ozone-depleting substances (ODS). The protocol serves as a pivotal instrument, embodying the collective commitment of nations to address the complex interplay between environmental preservation, human health, and the regulation of harmful substances.

The Montreal Protocol, initiated in 1987, has evolved into a cornerstone of global environmental governance. Its provisions encompass phased reductions in the production and use of ODS, aiming for a substantial decline to mitigate the risks associated with ozone layer depletion. By prioritizing international cooperation and regulatory measures, the protocol seeks to strike a delicate balance between industrial practices, economic considerations, and the imperative to protect the well-being of populations worldwide. The Montreal Protocol not only addresses the immediate health risks posed by increased UV radiation but also strives to achieve sustainable, long-term solutions.

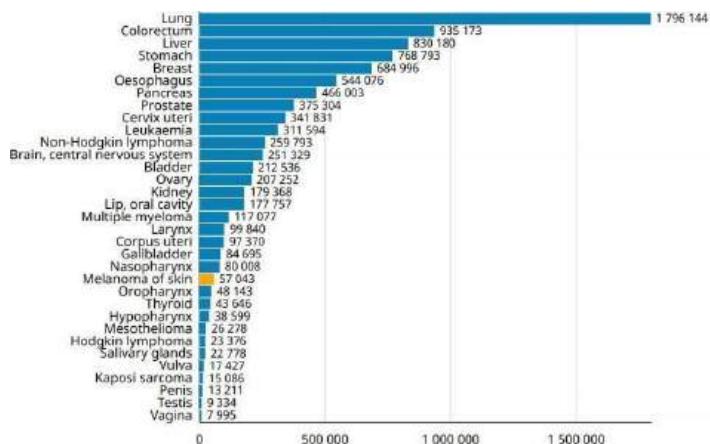
Ozone-depleting substances (ODS), a group of synthetic greenhouse gases, which include chlorofluorocarbons commonly present in everyday items like air conditioners, refrigerators, and aerosol cans, have been causing harm to the ozone layer [7].

The Kigali Amendment to the Montreal Protocol, addressing the substance that deplete the Ozone layer, signifies a crucial milestone on our efforts to control Ozone deleting substances. It calls for leadership countries to accelerate their responsibilities to phasing down faster these substances. Under this Amendment all parties are required to cut their production and consumption of HFCs by more than 80% over next years to avoid the equivalent of more than 70 billion metric tonnes of CO₂ emissions by 2050 [8].

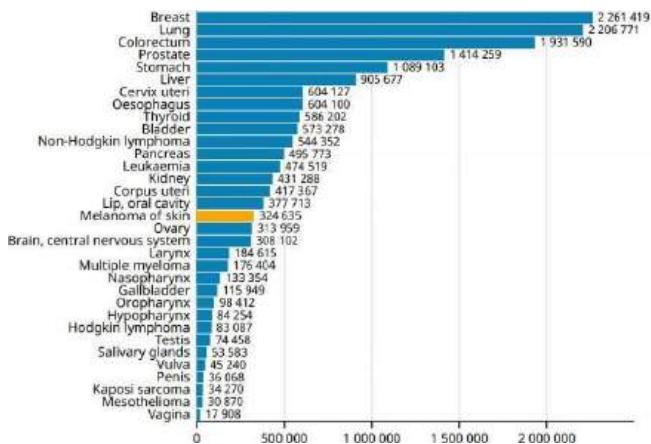
It is crucial to rapidly reduce CO₂ emission, as well as emission of HFCs and the other climate super pollutants as fast as possible. One effective strategy, among many, is the regulation and control the illegal trade of ozone depleting substances.

Illegal trade poses a significant challenge for governments world- wide, in their efforts to combat ozone depleting substances, giving rise to various risks and complexities. These risks include economic distortions, tax revenue losses, increased criminal activities, especially along borders, threats to public health and safety, environmental hazards, and development goals. Addressing and understanding these risks and challenges requires the involvement of law enforcement agencies, international co- operation, regulatory measures, public awareness campaigns, and increasing people's awareness. The illegal trade not only undermines environmental conservation but also has far-reaching consequences on public health, safety, and broader development goals.

Illegal trade, which has various definitions, both common and specific, is often referred to as black market or underground economy, refers to the exchange of goods, services, or commodities that violates the laws and regulations of a particular country or jurisdiction [9]. This trade happens outside the formal, government-regulated market named channels such as smuggling, counterfeiting, tax evasion, and the sale of prohibited or controlled substances. The impacts of this illegal trade extend beyond environmental concerns and directly affect human health, particularly in the context of increased risks of skin cancer and blindness. The substances involved in illegal trade contribute to the thinning of the ozone layer, intensifying the penetration of harmful ultraviolet (UV) radiation. The major faced by the parties under Montreal Protocol is that the illegal trade doesn't have a specific definition and it required further clarification. In recent times, countries worldwide have been grappling with the depletion of the ozone layer, a process that began several decades ago. Governments must work collaboratively to curb illegal trade, not only to protect the environment but also to safeguard public health and safety on a global scale.


II. HOW DO THE OZONE-DEPLETING EFFECTS IMPACT OUR PLANET AND OUR HEALTH?

This in simple terms, when ozone levels decrease, it leads to intensified sunlight and greater exposure to UVB radiation at the earth's surface. This result in reduced protection from the sun's harmful effects. For example, consider the Antarctic, where the amount of the UVB radiation at the surface can double during annual ozone hole [10].


The increased UVB radiation has various adverse effects on human health, the environment, and marine life. Firstly, it can elevate the risk of skin cancer and impact the production of essential vitamin D in the skin, crucial for overall health. UVB exposure is also linked to conditions responsible for approximately half of the world's blindness cases, affecting around 20 million people in 2010 [11].

Notably, UV radiation is responsible for approximately 95 percent of the skin cancer in populations with lighter skin tones, leading to an annual worldwide mortality rate around 60,000 individuals due to melanoma [12]. According to the following charts, they illustrate the global spread of melanoma skin cancer affecting both female and male populations. It is evident that the number of new cases in 2020, reached 324,635 cases. Additionally, the number of deaths in 2020, considering both sexes all ages, amounted to 75,043 persons. This situation has become a significant concern worldwide, prompting serious considerations on how to address this alarming trend.

In response to this crisis, the Montreal Protocol has emerged as the umbrella initiative, combining global efforts to combat the spread of Skin cancer. The Protocol has implemented numerous regulations and stringent rules for countries involved in the production of ozone-depleting substances (ODS). Moreover, it focuses on controlling and minimizing illegal trade of ozone-depleting substances. The Montreal Protocol stands as a pivotal framework, unifying nations in the collective efforts to mitigate the impacts of this health crisis.

Clip 1: Number of deaths in 2020, both sexes, all ages

Source: Globocan 2020

Clip 2: Number of new cases in 2020, both sexes, all ages

Secondly, in terms of the environment, diseases linked to climate change are significantly influenced by ozone depletion. Unchecked ozone depletion puts plants, animals, and microbes in natural ecosystems in risk in addition to food production. Essential services that these ecosystems offer include clean water, clean air, and the removal of carbon dioxide from the atmosphere.

Moreover, in terms of marine life, ozone depletion can have a direct and several harms impact on crustaceans, fish eggs, and corals. Consequently, uncontrolled ozone depletion would pose a threat to fishes and other aquatic resources that play a substantial role in global food supply [13].

III. THE MONTREAL PROTOCOL: A LANDMARK IN GLOBAL ENVIRONMENTAL PROTECTION

In 1987, the Montreal Protocol marked a critical moment in global endeavors to shield the ozone-depleting layers. This international agreement garnered signatures from 197 countries, distinguishing it as one of the inaugural treaties in United Nations history to attain universal ratification. The Protocol not only symbolized a collective commitment but also served as the vanguard for consolidating global efforts to preserve the ozone-depleting layers, underscoring the imperative of international collaboration in environmental protection.

The Montreal Protocol has implemented several measures and procedures to control and phase out the production and consumption of ozone-depleting substances (ODS). Here's what the Protocol has done to protect Ozone Layer:

Phasing Out ODS Production: The Protocol establishes specific phase-out schedules for different ODS, leading to a gradual reduction in their production and consumption.

The Montreal Protocol established an essential quota system to oversee the production and use of ozone-depleting substances (ODS) by participating nations, particularly during the HCFC Phase-out Management Plan (HPMP) implementation. The quota system's core objective is to prevent countries from exceeding their allocated limits for importing and exporting specific substances, in accordance with their national legislation and the Protocol's constraints.

Controlled Substances Lists: The Protocol identifies and lists specific ODS, such as chlorofluorocarbons (CFCs), halons, carbon tetrachloride, methyl chloroform, and others, that are subject to stringent controls and restrictions. These substances are regulated to prevent their harmful effects on the ozone layer.

Regulation of Trade: The Protocol controlled the import and export of new, used, recycled substances ODS through the establishment of licensing systems. Importers and exporters of ODS must obtain licenses, ensuring that their movements are tracked and controlled.

Data Reporting: This aspect plays a pivotal role by providing essential statistics for analyzing the efforts of the parties. Parties to the Protocol are mandated to furnish data regarding the production, consumption, trade, and illegal trade of ozone-depleting substances (ODS). This data serves as a crucial tool for monitoring compliance with the Protocol's provisions.

Enforcement Measures and Control of Illegal Trade: Parties are urged to take action to identify and sanction illegal activities associated with ozone-depleting substances (ODS), including smuggling and unauthorized production. These actions may encompass the imposition of penalties for breaches and the initiation of investigative processes.

International Cooperation: The Protocol fosters international cooperation, information exchange, and capacity-building initiatives to support the efforts of developing countries in controlling ODS and complying with the Protocol.

IV. HOW THE MONTREAL PROTOCOL AFFECTS THE MINIMIZATION AND CONTROL OF SKIN CANCER AND BLINDNESS

The Assessment and Review Committee (ARC) divides benefits from substituting ozone-depleting substances (ODS) into two groups: health and non-health effects. The health effects are classified into

four categories -non-melanoma skin cancer, melanoma skin cancer, skin cancer deaths, and eye injuries (cataracts)- as illustrated in the following tables.

Health Benefit	Number
Avoided cases of non-melanoma skin cancer	19,100,000
Avoided cases of melanoma skin cancer	1,500,000
Avoided skin cancer deaths	1,300,000
Avoided case of cataracts	129,000,000

The estimated health benefits resulting from the reduction of ODS Production and consumption, according to the Montreal Protocol and Kigali Amendment, are outlined in preceding table. Sourced from ARC in 1997, the data includes a reduction in the number of cases for non-melanoma skin cancer (19,100,000 cases), melanoma skin cancer (1,500,000 cases), skin cancer deaths cases (1,300,000), and cataracts (129,00,000 cases). These estimates are based on a model assessing the impact of increased UV radiation, comparing scenarios under the Montreal Protocol with a non-regulation scenario.

The table below provides a detailed breakdown of the non-health benefits specific to agriculture, forest, and fisheries, amounting to US\$ 429 billion, as well as benefits related to the built environment, totaling US\$ 30 billion. These benefits result from the reduction in the production and consumption of ODS in accordance with the Montreal Protocol from 1987 to 2060.

Environmental Benefit	Amount (US\$)
Avoided agriculture, forest, and fisheries to the built environment	429,000,000,000
Avoided damage to the built environment	235,000,000,000

The following table shows the estimated global benefits and costs resulting from reduction of ODS production and consumption: Global Dollar benefits - US\$ 459 billion, Global Dollar Costs - US\$ 235 billion, resulting in a Net Global Benefits of US\$ 224 billion. According to data sourced from ARC in 1997, this implies that each dollar spent on costs related to reducing ODS production and consumption yields a return of US\$1.95 [14]. The previous data shows how the Montreal Protocol is the focal point of global efforts, leading to the minimization and control of skin cancer and cataracts.

Category	Amount (US\$)
Total Monetized Benefits	459,000,000,000
Cost of Montreal Protocol Implementation	235,000,000,000
Net Benefits + Health Benefits	224,000,000,000

V. THE HUMAN HEALTH IMPLICATIONS OF ILLEGAL TRADE IN THE OZONE-DEPLETING SUBSTANCES

The connection between Illegal trade of substances and ozone layer depletion, in addition to human health, is complex and attached. As illegal trade escalates, there is a corresponding increase in ozone layer depletion, exacerbating its effects on human health. Conversely, as illegal trade diminishes, there is a reduction in ozone layer depletion, and its associated health effects. Understanding this

positive relationship is of paramount significance in comprehending the measure required to regulate ozone depleting substance.

Understanding this positive relationship is of paramount significance in comprehending the measure required to regulate ozone depleting substance. Ozone-depleting substances (ODS) comprise a category of synthetic chemicals. Among the most renowned examples are chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), hydrobromofluorocarbons (HBFCs), methyl bromide, carbon tetrachloride, methyl chloroform, and a range of others [15]. These substances find widespread application in various sectors, including home and air conditioning systems, commercial refrigerants, and refrigerators. Furthermore, they serve as constituents in foam blowing agents, aerosol spray propellants, certain components of electrical equipment, industrial solvents, cleaning agents (including those utilized in dry cleaning), fumigants, and fire extinguishing materials.

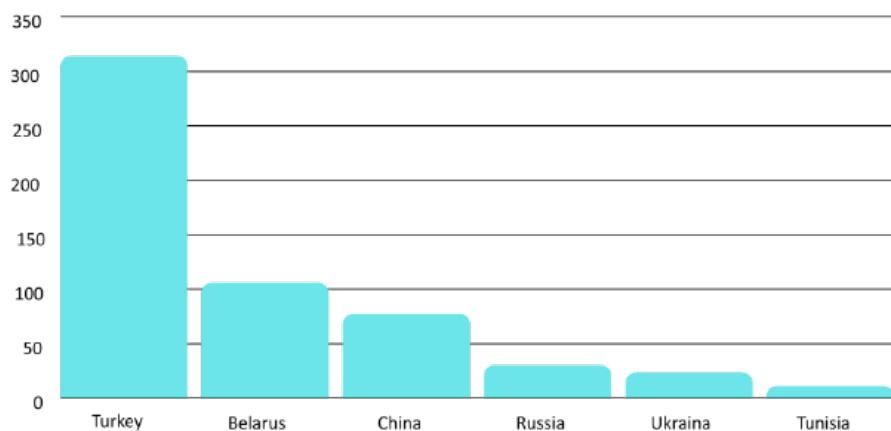
The problems resulting from illegal trade in ozone depleting substances are divided into two categories; short-term and long-term health effects.

For the first short-term effects, it is caused by the processes of transfer, handing, storage, and disposal of ozone-depleting substances. This category results in direct health impact from exposure to ozone-depleting substances, especially in the events of accidental leaks, affecting individuals. This may include respiratory problems, skin irritation and other acute health issues [16].

For the long-term health effects, the most prevalent illness caused by ozone depleting substances include skin cancer and eye disease. UV radiation resulting from stratospheric ozone depletion can lead to more severe sunburn and large increases in skin cancer incidence. There are two types of skin cancer, Melanoma and Non-melanoma. Melanoma is most serious form of cancer and is often fatal, while non-melanoma is most common type and less fatal [17]. Eye diseases, such as 'snow blindness,' which is the ocular equivalent of sunburn, are also associated with UV radiation, uncontrolled ozone depletion depleting substance lead to an increase ozone depleting layers, ultimately significant increases rises in cataracts and skin cancer cases [18].

It is important to realize the impacts of the illegal trade in ozone depleting substances; their negative effects are wide-ranging and include different aspects beyond health, such as economic and criminal perspectives.

The economic consequences of this illegal trade are significant. Sometimes referred to as the underground economy, can undermine the legal market for more environmentally friendly alternatives to ozone-depleting substances. This not only affects the environment but also has direct impact on the tax revenue. It counteracts stand against the economic and environmental benefits associated with transitioning to safer and more sustainable technologies especially the shift toward a circular economy.

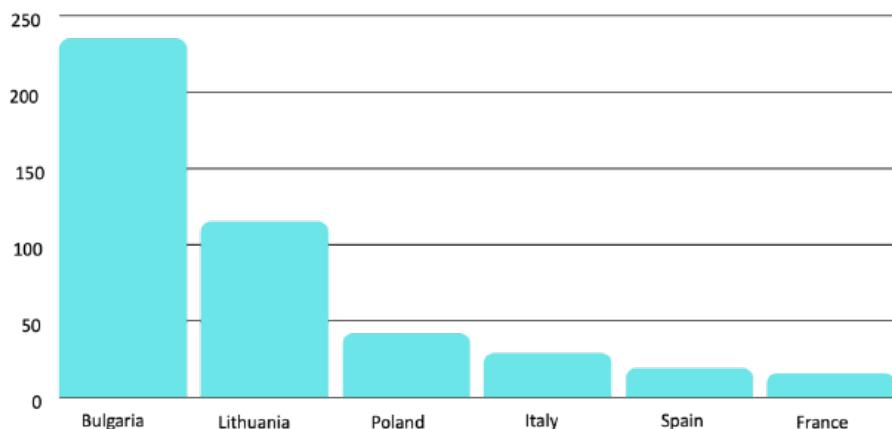

In addition to economic impacts, the criminal implications are profound. Transnational organized crime groups are often involved in the illegal trade of ozone-depleting substances, which are banned or regulated by international agreements like the Montreal Protocol, aimed at protecting the ozone layer. Criminal organizations engage in this trade to profit from the high demand for these substances especially from the developing countries, often driven by the availability of cheaper but harmful alternatives.

VI. HOW THIS ILLEGAL TRADE IS TRAFFICKING?

To determine how the illegal trade of ozone-depleting substances trafficking, that need to know first who is the most producer for these materials. China is the largest single source of contraband

ozone-depleting substances (ODS). At its peak in 1998, China was producing approximately 55,000 tones of CFCs annually. However, through an accelerated production phase-out by 2007, only one CFC plant remained operational, producing a mere 550 tones per year. Despite the decline in CFC production, China's production of HCFCs has significantly increased [19].

According to reports submitted by the parties to the Montreal Protocol as shown in clip 3, it has been demonstrated that most ozone-depleting substances originate from Turkey, Belarus, and China. These countries have emerged as significant sources of contraband ozone-depleting substances, contributing to the global challenge of ozone layer depletion. Understanding the primary suppliers is crucial in addressing the illegal trade and implementing effective control measures [20].


Clip 3: Major Sources of Illegal Trade in Ozone-Depleting Substances.

VII. THE CASES OF ILLEGAL TRADE IN SUBSTANCES CONTROLLED UNDER THE MONTREAL PROTOCOL.

According to reports submitted by the parties to the Montreal Protocol as shown in clip 4, Bulgaria stands out as a country with a significant number of reported cases related to illegal imports of ozone-depleting substances. This trend began in 2007, and most of these cases fall under the category of attempted illegal imports of ozone-depleting substances. Bulgarian customs authorities successfully intercepted and halted these attempts at the Bulgarian border. The cylinders containing these substances were seized and subsequently directed for destruction in facilities recommended by the law.

In the case of Lithuania, which ranks second in terms of the highest number of cases provided by Montreal Parties, these incidents are primarily attributed to smuggling non-refillable cylinders detected during roadside inspection, importing ozone depleting substances (ODS) outside the quota system specified in the Montreal protocol, and some of them are related to goods being mis-declared with the wrong Hs code. In response, the government-imposed fines, and the goods were seized. Similarly, Poland has reported numerous cases related to illegal ozone-depleting substances. These cases encompass a wide range of infractions, including smuggling, goods not declared for customs clearance, use of non-refillable cylinders, violations of regulations 517/2014, false labeling, and imports outside the quota system.

France, too has reported several cases, also starting in 2007. These cases encompass various categories, including the illegal packaging of refrigerants in non-refillable cylinders, which is prohibited within the European Union. Additionally, cases involve the illegal import and export of air conditioning units, which were detected by French customs authorities. [21].

Clip 4: Illegal Trade Cases Reported by Montreal Protocol Parties.

VIII. ANALYSIS OF THE CASES OF ILLEGAL TRADE IN SUBSTANCES CONTROLLED UNDER THE MONTREAL PROTOCOL

These figures pertain to specific instances of illegal imports of substances that deplete the ozone layers, with many of these cases coming from China, aligning with its status as one of the world's primary suppliers of such substances. It is important to acknowledge that these statistics reflect varying perspectives, shedding light on the effectiveness of legal systems and law enforcement agencies across international borders.

On one hand, a high number of cases may indicate that numerous countries lack strict and effective laws or regulations to combat and control the illegal import of these substances. This underscores the necessity for more robust legal measures and enhanced international cooperation to comprehensively address the issue. It may also highlight the challenges associated with enforcing and regulating such matters across borders.

Conversely, a high number of cases can signify a country's implementation of strong enforcement agencies capable of effectively monitoring, seizing, and apprehending those involved in such criminal activities. This underscores the necessity of law enforcement efforts and international collaborations in curbing illegal trade.

On the other hand, countries with few or no recorded cases may indicate two distinct scenarios. They might have relatively weak enforcement agencies or regulatory frameworks, leading to an inability to effectively combat such criminal activity. In such cases, strengthening enforcement and regulations becomes imperative.

Conversely, countries with minimal recorded cases could have highly effective enforcement agencies successfully preventing such occurrences, in these instances, their strict measures act as a strong deterrent against illegal imports of ozone-depleting substances.

In summary, the numbers of recorded cases serve as valuable indicators of the global landscape of illegal ozone-depleting substances trade. Analyzing these figures can inform efforts to develop and enforce regulations, enhance international cooperation, and strengthen enforcement agencies to protect the ozone layer and mitigate environmental harm.

IX. CHALLENGES IN COMBATING ILLEGAL TRADE OF OZONE-DEPLETING SUBSTANCES (ODS)

This section is exploring the challenges and difficulties associated with controlling illegal trade in ozone-depleting substances. These challenges encompass a wide range of factors, each contributing to the complexity of the issue. To provide a comprehensive understanding, we will highlight the struggles and obstacles faced in regulating and combating illegal trade, through the following 13 key points:

1. Global Nature of the Trade: Illegal trade often crosses international borders, making it challenging to coordinate efforts and enforce regulations effectively.
2. Complex Supply Chains: Ozone-Depleting Substances (ODS) may pass through multiple intermediaries, making it difficult to trace the origins and destinations of these substances. Additionally, ODS come in various forms, including liquids and gases, which lack distinct odors, making it challenging for customs officers to detect them.
3. Diverse Range of Substances: ODS encompass various chemicals, each with unique characteristics, posing challenges in regulating and monitoring them. The diverse physical states of these substances, from liquids to gases, further complicate detection and seizure.
4. Inadequate Regulatory Frameworks: Some countries may lack robust legal frameworks to control ODS trade or may have weak enforcement mechanisms. The effectiveness of regulations often depends on the economic and developmental status of individual countries, as well as the awareness of people.
5. Limited Resources: Insufficient funding and manpower for enforcement agencies can hinder their ability to combat illegal trade effectively. Both funding and manpower are crucial elements that work together to address this issue.
6. Lack of Adequate Inspection Equipment: most countries lack advanced equipment to detect and confirm the presence of ODS, which should be highly developed to check these distinctive materials, making it difficult to seize them.
7. Evolution of New Substances: Criminals may continually seek new substances that are not yet regulated, requiring updated regulations and monitoring mechanisms to keep pace with these distinct materials.
8. Corruption and Bribery: Inadequate government oversight can lead to corruption and bribery, undermining efforts to combat illegal trade.
9. Lack of Awareness: Some individuals and businesses may not be aware of the environmental and legal implications of ODS trade.
10. Limited Availability of Alternative Substances: Developing countries with economic constraints often struggle to transition to alternative substances due to limited technological advancements. Support in discovering and adopting alternatives is crucial in overcoming this challenge.
11. Support for Developing Countries: Providing subsidies, additional funds, and incentives can facilitate the development of regulations and laws to control illegal trade.
12. Enhanced International Cooperation: Effective control of illegal trade necessitates strong international collaboration. Differing priorities among nations can present obstacles to these efforts, highlighting the need for effective coordination on a global scale.

X. RECOMMENDATIONS TO STRENGTHEN CONTROL AND ENFORCEMENT AGAINST ILLEGAL TRADE OF OZONE-DEPLETING SUBSTANCES

After conducting a comprehensive analysis of the challenges and complexities surrounding the illegal trade of ozone-depleting substances (ODS) and its detrimental effects on human health, as well as understanding the environmental impact of ozone depletion on our planet and its effects on various sectors of our lives, it is essential to propose a set of recommendation aimed at strengthening control, minimizing, and enforcing measure against this illegal trade. These following recommendations address the various aspects of ODS trade and aim to enhance international efforts to protect the ozone layer, as well as safeguard human health comprehensively.

Production monitoring and transparency are crucial. Encourage major ozone-depleting substance-producing countries to establish transparent and accountable systems for monitoring and reporting their production levels under Montreal Protocol, involving regular reporting to international body responsible for ozone layer protection.

Enhance customs collaboration and joint Training is vital. Collaborate more effectively between customs agencies across nations, enabling the sharing of intelligence and best practices in detecting illegal trade. Organize joint operations and training exercises to strengthen enforcement capabilities, ultimately leading to the establishment of international customs units to oversee the illegal trade of ozone-depleting substances.

Cross border agreements for control should be established. Create bilateral or regional agreements aimed at fostering collaboration in regulating the production and trade of ozone-depleting substances. These agreements would encompass the sharing of information, coordinated inspections, and mutual enforcement support, ultimately reducing the processes of transfer, handling, and storage of ODS. This aims not only to enhance environmental protection but also to mitigate and control the direct human health impacts associated with ODS exposure.

Stringent Penalties and Deterrents must be implemented. Review, develop, and strengthen legal frameworks to impose and apply strict penalties for engaging in the illegal trade of ODS, including substantial fines and imprisonment, for involvement in the illegal trade of ozone-depleting substances (ODS) within the ambit of the Montreal Protocol. Emphasize within each country's legislative system a direct link between illegal ODS trade and its adverse impacts on human health, aligning with both domestic legislation and international agreements like the Montreal Protocol to underscore the severity of the offense.

Allocation resources for enforcement: Provide financial and technical support to developing and resource-limited countries enabling them to strengthen their enforcement agencies and enhance their capabilities to combat illegal trade and develop regulations and laws and transitioning to alternative substances.

Standardized Detection Equipment. Promote the development and distribution of standardized, and user-friendly detection equipment to help customs officers in identifying ozone-depleting substances effectively.

Establish global regulatory standards: Encourage uniform global regulatory standards for controlling ODS trade, aiding countries with inadequate regulatory frameworks in adopting best practices on how control and minimize the ODS trade.

Encourage cooperation between public and private partnership for self-regulation. Engage the private sectors in self-regulation to assume responsibility and propose effective solutions for controlling the illegal trade for ozone-depleting substances by providing them subsidies and incentives.

Through these methods, they will play important role to addressing this issue.

Launch public awareness Campaigns. Launch campaigns to communities about the health risks associated with ODS and the consequence of the illegal trade. Educate individual and businesses about the health impacts and environmental and legal implications of ozone-depleting substance trade, thus reducing demand and involvement in illegal activities.

Promote alternative Substance Development. Enhance research and development efforts to discover and promote environmentally friendly alternatives to ODS with no side effects on human health, especially in developing countries with limited technological advancements.

Minimizing and controlling the trade of Ozone-Depleting Substance at the source. This requires international collaborative efforts. The focus should be on identifying major (ODS) producing countries and establishing new mechanism aimed at reducing and closing illegal trade of (ODS) from the source, rather than allowing it to cross borders. This proactive approach entails close collaboration to limit production and ensure compliance with international agreements like Montreal Protocol, ultimately safeguarding the ozone layer and the environment.

XI. CONCLUSION

In conclusion, the depleting of the ozone layer, a crucial shield protecting our Earth from harmful ultraviolet (UV) radiation, has become as a global environmental concern. This paper outlined the legal dimensions surrounding ozone-depleting substances (ODS), their impacts on the ozone layer, and the consequential risks to human health, specifically regarding skin cancer and blindness.

Furthermore, the paper focuses on severe issue related to illegal trade in Ozone-depleting substances, which disrupt economic stability, diminishes tax revenues, fuels criminal enterprise, threaten public and health safety, and poses a sever threat to the environment. As well as it contradicts the goals of sustainable development.

Moreover, effective international cooperation to regulate and penalize illegal trade significantly influence human health. In the first short-term, immediate health impacts arise from transfer, handing, storage, and disposed of ozone-depleting substances, leading to issues like respiratory problems, skin irritation and other acute healths issues. Over the long-term, the primary linked to ozone-depleting substances encompass skin cancer and eye disease.

The Montreal protocol stands as a landmark, representing significant international cooperation in global environmental protection. This protocol plays a vital role in controlling and phasing out ozone-depleting substances, safeguarding human health from the adverse consequences arising from the depletion of the ozone layer. It signifies a vital step in international collaboration to preserving and protecting the ozone layer from further depleting.

The positive impacts of the Montreal Protocol on human health are apparent in the estimated benefits resulting from the reduction of ODS production and consumption. These benefits include the avoidance of millions of cases of non-melanoma and melanoma skin cancer, skin cancer deaths, and cataracts.

The crucial role of the ozone layer in safeguarding life on Earth is evident, with profound effects on human health, the environment, and marine life. Its significance lies in maintaining the delicate balance essential for life. The consequences of ozone depletion extend widely, impacting human health, ecosystems, and climate. . .

To address the challenges outlined earlier, a set of recommendations is required. These suggestions center around maintaining a global grip on the illegal trade of ozone depleting substances. They encompass aspects such as production monitoring, customs collaboration, cross- border agreements, stringent penalties and deterrents, resource allocation for enforcement, standardized detection equipment, global regulatory standards, cooperation between public and private partnership for self-regulation, increasing public awareness campaigns, enhance research and development efforts, and curbing ozone-depleting substances trade at the sources. By implementing these recommendations and strengthening enforcement measures, governments can strive for future scenario where the ozone layer remains intact, ensuring a healthier and safer world for next generation.

REFERENCES

1. UCAR SciEd. (n.d.). Layers of the Earth's Atmosphere. UCAR Center for Science Education. Retrieved from <https://scied.ucar.edu/learning-zone/atmosphere/layers-earths-atmosphere>
2. United Nations Environment Programme. (n.d.). Ozone and You. Retrieved November 12, 2023, from <https://ozone.unep.org/ozone-and-you>
3. Wurzel, K. A. (2005). In *Encyclopedia of Toxicology (Second Edition)*. Elsevier.
4. World Cancer Research Fund. (Year of access). *Skin Cancer*. Retrieved from <https://www.wcrf.org/diet-activity-and-cancer/cancer-types/skin-cancer/#:~:text=Over%2Dexposure%20to%20certain%20types,an%20non%2Dmelanoma%20skin%20cancers>.
5. Chawda D, Shinde P (October 29, 2022) Effects of Solar Radiation on the Eyes. Cureus 14(10): e30857.
6. Ozone Depletion and Eye Disorders. <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9680333/> Accessed on November 22, 2023.
7. Department of the Environment and Energy, Australia. (n.d.). Ozone-Depleting Substances. Retrieved November 12, 2023, from <https://www.dceew.gov.au/environment/protection/ozone/ozone-science/ozone-depleting-substances>
8. Andersen, S. O., Gonzalez, M., & Rand, S. (Eds.). (Second Edition). *2023 35th Anniversary Protecting the Ozone Layer: Condensed Second Edition*. United Nations Environment Programme.
9. Investopedia Team. (2021, September 30). Black Economy, Aka Black Market. Investopedia. Retrieved from <https://www.investopedia.com/terms/b/black-economy.asp>
10. U.S. Environmental Protection Agency (EPA). Health and Environmental Effects Of Ozone Layer Depletion. Retrieved from <https://www.epa.gov>
11. Wale, Mengistu Zelalem et al. (2020). Cataract and Associated Factors Among Adults Visiting Ophthalmic Clinic At Debre Markos Comprehensive Specialized Hospital, Northwest Ethiopia.
12. National Skin Cancer Centres. "How the Ozone Layer Impacts Skin Cancer Risk." Skin Cancer Centres Blog. Available online: <https://www.skincancercentres.com.au/blog/how-the-ozone-layer-impacts-skin-cancer-risk>.
13. UN Environment Programme's Ozone Layer Protection.

14. Henrik Gåverud, *Benefits from Environmental Taxation: A Case Study of the US Tax on Ozone Depleting Substances*, Master's Thesis, SHU Social Science and Business Administration Programmes, Economics Programme, Department of Business Administration and Social Sciences, Division of Social Sciences, 2004. Supervised by Anna Dahlqvist.
15. Gutberlet J, Uddin SMN. (2017, October). Household Waste and Health Risks Affecting Waste Pickers And The Environment In Low- And Middle-Income Countries. *International Journal of Occupational and Environmental Health*.
16. Kim, S. Y., Kim, E., Kim, W. J. Health Effects of Ozone on Respiratory Diseases. *Tuber Respir Dis (Seoul)*, 2020 Dec.
17. J.J. Wargent and B.R. Jordan. From Ozone Depletion to Agriculture: Understanding the Role of UV Radiation in Sustainable Crop Production. *New Phytologist*, 197, 1058-1076, 2013.
18. James S. Curlin, Nigel Paul, Min Shao, and Robyn Lucas. Network and Policy Manager, UNEP DTIE OzonAction. Reviewed by: UNEP EEAP Co-chairs and UNEP EEAP, 2023.
19. UNEP Ozone Secretariat Article 7 Data Reporting.
20. Badawi, I. (2024) Preserving the Ozone Layers: Battling Illegal Trade in Ozone-Depleting Substances. *Atmospheric and Climate Sciences*, 14, <https://doi.org/10.4236/.2024>.
21. Id.at11.