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17 metrics such as Contract Service Margin (CSM) and Loss Ratio. This approach is
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. INTRODUCTION

The insurance industry is undergoing significant transformations due to evolving regula-
tory frameworks and advancements in actuarial modeling techniques. The implementation
of IFRS17, which aims to enhance transparency and comparability in insurance account-
ing, presents both challenges and opportunities for actuarial practice [1]. This paper intro-
duces an innovative approach to pricing and underwriting travel insurance by integrating
the IFRS17 framework with a sophisticated non-linear regression model. Specifically, we
propose an Inflation Adjusted Frequency-Severity Automated Loss Risk Pricing Model
utilizing Gaussian Process Regression (GPR), a powerful tool known for its flexibility and
ability to model complex relationships [2].
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The proposed model incorporates GPR to address the intricate dynamics of claim fre-
quency and severity in travel insurance. GPR is a non-parametric Bayesian regression
technique that can capture non-linear patterns and uncertainties in data, offering signifi-
cant advantages over traditional linear models [2]. By integrating inflation adjustments,
the model accounts for economic fluctuations, ensuring that the pricing and underwriting
processes remain accurate and relevant over time. This approach aligns with the objec-
tives of IFRS17, which emphasizes the need for a more nuanced and realistic portrayal of
insurance liabilities and assets [1].

The rationale behind using GPR in this context is rooted in its ability to handle non-
linearity and uncertainty in insurance data, which are often prevalent due to the complex
nature of claims [2]. Traditional linear models may fall short in capturing the intricate
relationships between different variables, leading to less accurate predictions and subop-
timal pricing strategies. GPR’s flexibility allows it to model these complex interactions
more effectively, providing a more precise estimation of risk and reserves. The inclusion
of inflation adjustments further enhances the model’s accuracy, as it ensures that changes
in economic conditions are reflected in the risk assessment [1].

The application of the GPR-based model involves several key steps. Initially, historical
travel insurance data is used to train the GPR model, incorporating variables related
to claim frequency, severity, and inflation rates. The model is then validated through
simulations and real-world data to assess its performance in predicting future claims and
determining appropriate pricing strategies. The results are compared with traditional
actuarial methods to evaluate improvements in predictive accuracy and risk management.
This comprehensive approach ensures that the model is both robust and practical for use
in real-world insurance settings.

The importance of this study lies in its potential to revolutionize travel insurance pric-
ing and underwriting by offering a more accurate and adaptive model. By aligning with
IFRS17, the proposed model enhances compliance and transparency in financial report-
ing, which is crucial for maintaining trust and accountability in the insurance industry
[1]. Moreover, the application of GPR provides a significant improvement over traditional
methods, addressing the limitations of linear regression models and offering a more nu-
anced understanding of risk. This advancement not only benefits insurers by improving
pricing accuracy but also contributes to more effective risk management and financial
stability.
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1.1. Actuarl.a | Loss Reserve Metho ds

Loss reserving is a critical aspect of actuarial science, particularly in non-life insurance.
It involves estimating the reserves required to cover future claim payments. Accurate loss
reserving is vital for maintaining the solvency of insurance companies and ensuring fair
pricing of premiums. In modern regulatory frameworks like IFRS17, accurate and reliable
reserve estimates are essential for compliance and financial stability.

1.1.1. Chain Ladder Model: The Chain Ladder model is a widely used actuarial
method for estimating reserves in non-life insurance. It assumes that claims develop over
time following a predictable pattern. The model is represented as a triangle of cumulative
claims, with accident years along the rows and development lags along the columns. In
this section, we present the structure of the basic Chain Ladder model in tabular form
and explain the associated mathematical concepts.
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Table 1. Structure of the Basic Chain Ladder Model

Accident Year ‘ Development Lag 1 Development Lag 2 .- Development Lag n
Year 1 01’1 0172 ce Cl,n
Year 2 02’1 0272 tee 027n71
Year m Cm,l Cm,2 T Cm,nferl

Let C; ; represent the cumulative claims for accident year i at development lag j. The
basic Chain Ladder model assumes that the cumulative claims develop over time according
to a fixed pattern, which can be estimated using development factors.

The development factor for going from development lag j to j + 1 is denoted as f;, and it
is estimated as:

S i
m—j
Zi:l 1,7

This development factor f; represents the average growth in cumulative claims from de-
velopment lag 7 to j + 1.

fi= (1)

Using the development factors f;, future cumulative claims can be projected. For example,
the projected cumulative claims for accident year i at development lag j+1, denoted CA'l 415
is given by:

A

Cij+1=Cij < fj (2)

This process is iterated to estimate the claims for future development lags that are not
yet observed.

The ultimate claims for accident year ¢, denoted éi,ultimate, can be estimated by applying
all the development factors from lag j to the final lag n:

A

Ci,ultimate = Ci,j X fj X fj-l—l X X fn—l (3)

The reserve for accident year ¢ is then calculated as the difference between the ultimate
claims and the observed cumulative claims at the latest development lag j:
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R; = C; ultimate — Cij (4)

The Chain Ladder model provides a structured approach to estimating reserves by project-
ing cumulative claims into the future based on observed development patterns. The tabular
structure in Table 1 illustrates how accident years and development lags are organized,
and the mathematical framework presented here explains the estimation of development
factors and reserve calculations.

Pseudo-Algorithm:

Input: Cumulative claim amounts C;; Output: Estimated reserves R; foreach
Ciy
C@jil

Estimate future claims C; j;1 = C; ; x DF Calculate reserve R; = Z]’(Ci,j—l-l - Cij)

accident year i foreach development year j Calculate development factor DF =

1.1.2. Bornhuetter-Ferguson Method: The Bornhuetter-Ferguson (BF) method combines
prior estimates of ultimate claims with the development patterns observed in the
Chain-Ladder method [14].
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The reserve estimate R; is given by:
R;=C; x (1 - DF) (1.1)
where C’, is the initial estimate of ultimate claims.

Lemma 1.1. The Bornhuetter-Ferguson (BF) method provides a stable reserve estimate
even in the presence of volatile historical data.

Proof. Let R; be the reserve estimate at time ¢, and let C; represent the cumulative claims
observed by time t. The BF method calculates the reserve as a weighted combination of
historical development patterns and an a priori estimate of ultimate claims.

Define the a priori estimate of ultimate claims as U, and let d; be the development
factor at time ¢t. The reserve estimate R; is given by:

Rt = (U — Ct) X (1 — dt) (1)
Where:

e U is the a priori estimate of ultimate claims.

e (U is the cumulative claims up to time t¢.

e d; is the development factor at time ¢, reflecting the proportion of claims expected
to be observed by time t.

The stability of the BF method arises from the weighting mechanism, which combines
the observed data C; with the a priori estimate U. Specifically, the reserve estimate can
be expressed as:

Rt:wx(U—Ct)—i-(l—w)th (2)
Where:

e w € [0,1] is the weight assigned to the a priori estimate.
e H; = d; x C} represents the historical claims development pattern.

By adjusting w, the BF method controls the influence of volatile historical data H;. For
instance, when w is high, the reserve estimate relies more on the stable a priori estimate
U, mitigating the impact of any extreme variations in Hy.

To further illustrate, consider the variance of the reserve estimate Var(R;), which can
be expressed as:

London Journal of Research in Science: Natural & Formal

Var(R;) = w? x Var(U) + (1 — w)? x Var(H;) (3)

Given that the variance of the a priori estimate Var(U) is typically lower than the
variance of the historical data Var(H;), a higher w leads to a more stable reserve estimate:

Var(R;) ~ w? x Var(U) (4)

Thus, by appropriately setting the weight w, the BF method ensures that the reserve
estimate remains stable even when the historical data H; exhibits high volatility.
| O

The proof presented here demonstrates the stability of the Bornhuetter-Ferguson method,
even in the presence of volatile historical data. By combining the a priori estimate of ulti-
mate claims with historical development patterns and appropriately weighting each com-
ponent, the BF method mitigates the effects of extreme data variations, ensuring stable
reserve estimates.
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Pseudo-Algorithm:

Input: A priori ultimate claims estimate C’i, development factors DF Output:
Estimated reserves R; foreach accident year ¢ Estimate future development DF = %

Calculate reserve R; = C; x (1 — DF)

1.1.3. Mack Model: The Mack model provides a distribution-free approach to calcu-
lating the standard error of the chain-ladder reserve estimates [13].

The standard error SE is calculated as:

SE =

Proposition: The Mack model provides an asymptotically unbiased estimate of the reserve
standard error.

Proof

To demonstrate that the Mack model offers an asymptotically unbiased estimate of the
reserve standard error, we consider the variance of the residuals derived from the devel-
opment factors.

Let D = {D; ;} denote the observed development data, where D; ; represents the cumula-
tive claim amount for accident year ¢ and development year j. The Mack model assumes
that the development factors are given by:

i Dij

= L forj=2,....,n (1.3)
>ici Dij—

i
where f; is the development factor for development year j.
The variance of the reserve estimates in the Mack model can be derived as follows. The

reserve estimate R; for accident year ¢ is given by:

—1 ]
Ri=) Dij-
=1 k

3
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Jr (1.4)
1

<
I

where Hizl fr represents the cumulative development factor up to development year j.

The variance of the reserve estimate ]%Z is:
R n—i 7
Var(R;) = Var ZDi,j . H fr (1.5)
j=1 k=1 ’

By considering the residuals e; ; = D; ; — D” where ﬁz] is the predicted claim amount,
the Mack model adjusts for heteroscedasticity, providing an unbiased estimate of the re-
serve standard error.

The residual variance for development year j is:

1
Var(e; ;) = 02 - — (1.6)

J ,
U
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where a?- is the variance of residuals and n; is the number of observations for development
year j.

As n — oo, the estimator for the standard error converges to the true standard error, thus
proving the asymptotic unbiasedness of the Mack model.

Algorithm 1 Estimation of Standard Error for Reserve Estimates
Input: Cumulative claim amounts C; ; for accident year ¢ and development year
J, development factors {DF;} Output: Estimated standard error SE foreach acci-
dent year i Initialize Total Variance 0 foreach development year j Compute the
predicted cumulative claim amount C’Z] = (; j/DF;j Calculate the variance V; ; as:
_ GGy
Vij = DF, ) (1.7)

Update total variance: Total Variance Total Variance + V; ; Compute the stan-
dard error for accident year ¢ as:
SE; = \/Total_Variance (1.8)

Return: Estimated standard error SFE; for each accident year i

1.2. Actuarial Risk Premium Methods

Actuarial Risk Premium methods are essential in pricing insurance products by assess-
ing the risk associated with different policies. These methods help in determining fair
premiums that adequately cover the risk.

1.2.1. Generalized Linear Models (GLM):  GLMs are used to model the relationship
between the response variable and predictors by assuming a specific distribution for the
response variable.

1.2.2. Generalized Linear Models (GLM): Generalized Linear Models (GLMs) ex-
tend traditional linear modeling techniques by allowing the response variable Y to follow
a distribution from the exponential family, thus generalizing the linear regression frame-
work to accommodate a broader range of response types. The relationship between the
predictors X and the response Y is modeled through a link function g(-), which connects
the expected value of Y to a linear combination of the predictors.

Algorithm 2 GLM Estimation Algorithm

Input: Data matrix X, response vector Y, initial parameter estimates B(O), con-
vergence tolerance e, and maximum number of iterations Npyax Initialize parameters
,B(O) fork = 1,2,..., Nmax Compute the linear predictor n*—1) = Xﬁ(k_l) Com-
pute the mean of the response pu*~1 = ¢g=1(n*~1)) Compute the variance function
Var(Y) = ¢V (u*~1) Update weights matrix W*—1) = dia Vi) Compute the

ar(Y) = ¢V (u'"~V) Up g g (M) Comp
working response z*~1) = pb=1) L W=Dy — (k1)) Compute the working weights
matrix W#—1) Update parameter estimates ,B(k) using weighted least squares:

/B(k) — (XTw(kfl)X)71X—rw(k71)z(k71)

London Journal of Research in Science: Natural & Formal

Check for convergence: [|[B%) — B*~D|| < ¢ ifconvergence criteria met break end
ifOutput: Estimated parameters ,B(k)
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The link function g(u) is defined as:

9(p) = Xp (1.9)
Proof
The Maximum Likelihood Estimator (MLE) for the parameters 8 in Generalized Linear
Models (GLMs) is obtained by maximizing the log-likelihood function. The log-likelihood
function £(B) is given by:
L(B) =D _ lyilog(mi) — pi — log(y:!)] (1.10)
i=1

where y; denotes the observed values, p; represents the expected values, and X is the
matrix of predictors.

Proposition: The GLM estimator is consistent and asymptotically normal.

This means that as the sample size n increases, the estimator ,[:3 converges in probability
to the true parameter 8*, and its distribution approximates a normal distribution.
Lemma: The score function for GLMs is given by:

U(B) =X"(y — ) (1.11)

where y is the vector of observed responses and u represents the vector of expected re-
sponses under the model.

Claim: Under reqularity conditions, the GLM estimates converge to the true parameter
values as the sample size increases.

Formally, if certain regularity conditions are met, the GLM estimators B will converge to
the true parameter values 8* in probability, which can be expressed as:

gL B (1.12)
where 2 denotes convergence in probability.

1.2.3. Generalized Additive Models (GAM):  GAMs extend GLMs by allowing for non-
inear relationships between predictors and the response variable using smooth function

Algorithm 3 Generalized Additive Model (GAM) Estimation Algorithm

Input: Data matrix X, Response vector y, Initial smooth functions { fj}, Con-

London Journal of Research in Science: Natural & Formal

vergence criteria e Initialize: Set smooth functions {f;} to initial estimates {f;}
whileConvergence criteria not met For each smooth function f;: Update f;
using Penalized Likelihood Estimation (PLE): Objective function:

n

£ =X (= 507+ [ (10) ar (1.13)

i=1
Solve for f; by minimizing:

fi = argmin {£(£)) (1.14)

Update the smooth function f; accordingly Output: Estimated smooth functions
{f;} and their corresponding coefficients

In this algorithm, the smooth functions f; are estimated by minimizing the penalized
likelihood function:

n

£ =3 [ = Ha)?] + 5 [ (10) (1.15)
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where ); is the smoothing parameter for the j-th smooth function, and f]’/ (t) denotes the

2
second derivative of f;. The penalty term A; [ ( f]’-’ (t)) dt controls the smoothness of the
function f;, ensuring that it does not overfit the data.

The optimization process involves iteratively updating each smooth function f; until the
convergence criteria e are met:

Hf(t“) - f(t)H <e (1.16)

where () represents the vector of smooth functions at iteration ¢, and ||-|| denotes a suit-
able norm for convergence evaluation.

Consider the function f(X) defined as:

P
FX) =3 fila)), (1.17)
j=1
where X = (21, 22,...,2p) denotes the predictor variables, and f; represents the smooth

functions applied to each predictor x;.

Proof:
The estimation of smooth functions within Generalized Additive Models (GAMs) is achieved
by minimizing the penalized likelihood function:

n

L(£) =" [yilog(fi) — fi — log(y)] + A D 15117, (1.18)
j=1

=1

where L(f) represents the penalized log-likelihood, y; is the response variable, f; is the
predicted value, \ is the penalty parameter, and | f;||* denotes the smoothness penalty
for each function f;. The term )\Z;?:l | £;|I> ensures that the smooth functions f; are
regularized, thereby controlling their smoothness.

Proposition: Generalized Additive Models (GAMs) offer a versatile approach to model-
ing non-linear relationships by employing smooth functions. This flexibility allows for the
approzimation of complex patterns in the data.

London Journal of Research in Science: Natural & Formal

Lemma: The penalized likelihood function in GAMs incorporates a penalty term that
requlates the smoothness of the estimated functions. This penalty term is crucial for pre-
venting overfitting and ensuring that the smooth functions are appropriately regqularized.

Claim: Generalized Additive Models (GAMs) are capable of approximating any smooth
function given sufficient flexibility in the specification of the smooth functions. This claim
follows from the fact that with an adequate choice of smooth functions and tuning param-
eters, GAMs can capture a wide range of functional forms.

1.2.4. The Inflation Adjusted Frequency Severity Model: The Inflation Adjusted Frequency
Frequency Severity Model (IAFSM) integrates the impact of inflation on insurance pricing
by meticulously modeling both the frequency and severity of claims. This model is crucial
for precise loss reserving and premium setting. Gaussian Process Regression (GPR) serves
as a powerful, non-parametric Bayesian technique for capturing intricate relationships
between variables.

Consider X € R? as the vector of input features and y € R” as the corresponding outputs.
The GPR model presumes that:
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1.3. Automated Actuarial Underwriting

The Automated Actuarial Underwriting methodology aims to enhance the precision and
efficiency of underwriting processes by leveraging advanced actuarial techniques. This
methodology aligns with the International Financial Reporting Standard 17 (IFRS17),
which governs insurance contracts accounting. The primary objectives are to ensure reg-
ulatory compliance, improve risk assessment, and optimize pricing strategies.

The Automated Actuarial Underwriting process involves several key equations:

Algorithm 4 Gaussian Process Regression
_ Input: Training data (X, y), kernel function k, hyperparameters § Output: Mean
f« and variance Var(f,) of predictions for test data X, Compute the covariance matrix
K for training data X Compute the covariance matrix K, for test data X, Compute
the covariance matrix K., for the joint data (X, X,) Compute the mean prediction:
fo = KIN(K +0%1,) Yy
Compute the prediction variance:
Var(f,) = Kex — K (K + 0°1,) 'K,

Mean f, and variance Var(f,) of predictions

1 n
Loss R = Claim;, 1.19
oss Reserve = 7—— ; aim; (1.19)

where r is the discount rate, and Claim; represents the claim amount for the i-th policy.

1.4. Theorems and Proofs

Theorem 1.2. The expected loss reserve under the Automated Actuarial Underwriting
methodology is unbiased.

Proof. Let X be a random variable representing the loss amount. The expected value
E[X] is defined as:

E[X] = /OO zfx(x)dx

—00

where fx(x) is the probability density function of X. By the properties of expectation
and the linearity of integrals, the expected loss reserve is unbiased. O

London Journal of Research in Science: Natural & Formal

Lemma 1.3. Let N denote the number of claims within a given period, where N follows
a Poisson distribution with parameter X\, i.e., N ~ Poisson()\). Then, under certain
conditions, the distribution of N can be approrimated by a normal distribution.

Proof. Consider N ~ Poisson(\) where the probability mass function is given by:

Aee=A

Pr(N=k)= "5 k=0,12,...

The mean and variance of N are both equal to A.

As ) becomes large, the Poisson distribution can be approximated by a normal distri-
bution due to the Central Limit Theorem. Specifically, for sufficiently large A, N can be
approximated by:

N =~ N\ N)
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where N(u,0?) denotes the normal distribution with mean y and variance o2.

This approximation is valid because the Poisson distribution converges to the normal
distribution in the limit. This can be formally shown by applying the Lindeberg-Levy
Central Limit Theorem which states that if X; are i.i.d. random variables with mean \
and variance A, then:

Sp —nA 4
2n Z A 40,1
o oD

d e e .
where S, = > | X; and — denotes convergence in distribution.

Therefore, for large A, the claim frequency N approximates a normal distribution with
mean \ and variance . 0

1.4.1. IFRS17 Regulations and Expectations: The IFRS17 standard requires insur-
ance entities to measure insurance contracts based on a current estimate of future cash
flows. This involves:

e Identifying and measuring the insurance contract liabilities.
e Applying discount rates to future cash flows.
e Recognizing the Contract Service Margin (CSM) as a liability for future profit.

1.4.2. Compliance Requirements: The Automated Actuarial Underwriting method-
ology must ensure:

e Accurate estimation of future cash flows.
e Proper discounting and recognition of the CSM.
e Adequate disclosures in financial statements.

1.5. Theoretical Foundations and Mathematical Formulation of GPR Regression

Gaussian Process Regression (GPR) is a non-parametric Bayesian approach used for re-
gression tasks. It defines a distribution over functions and uses observations to infer the
posterior distribution of the function values. The key idea is to model the relationship
between input features and output targets as a Gaussian process.

A Gaussian Process (GP) is defined as a collection of random variables, any finite number
of which have a joint Gaussian distribution. Formally, a GP is fully specified by its mean
function m(z) and covariance function k(z,z’).

The mean function m(zx) is given by:

m(z) = E[f(z)] (1.20)

London Journal of Research in Science: Natural & Formal

The covariance function (or kernel function) k(x,z’) determines the covariance between
pairs of function values:

k(z,2) = Cov[f(2), f(a)] (1.21)
1.5.1. Mathematical Formulation: The GP prior over functions is:

f(x) ~ GP(m(x), k(z,2")) (1.22)

Given observed data X = {z1,...,z,} and corresponding targets y = {y1,...,¥yn}, the
likelihood is:
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y | X ~ N(m,K + o21) (1.23)
where m is the mean vector, K is the covariance matrix, and o2 represents the noise
variance.

The posterior distribution of the function values at new inputs X, given the observed data
is:

f. | X., X,y ~ N(f., Cov(f,)) (1.24)

where
f, = K. (K+ o)ty (1.25)
Cov(f,) = K.o — KT (K 4 0%1) 'K, (1.26)

Algorithm 5 Gaussian Process Regression

Input: Training data (X,y), Test data X,, Kernel function k, Noise variance o2

Output: Predictions f, Compute the covariance matrix K for training data Compute
the covariance matrix K, between training and test data Compute the covariance matrix
K.. for test data Compute the mean vector m (typically zero) Compute K + o2
Compute f, = K*T(K—I—UQI)_ly Compute Cov(f,) = K. —K*T(K+J2I>_1K* Return
f, and Cov(f,)

1.5.2. Theoretical Foundations. Theorem: If f is a (Gaussian Process with prior
mean m(z) and covariance function k(z,x’), then the posterior distribution of f, given
observations is also Gaussian.

Proof: The proof involves showing that the joint distribution of observed and test
function values is multivariate Gaussian and using properties of conditional distributions.

Proposition: The computational complexity of GPR is O(n?) due to the inversion of
the covariance matrix K.

Proof: This complexity arises from the cost of matrix inversion and multiplication
operations, which is cubic in the number of observations.

1.6. Novelty for Application of the GPR Regression method

London Journal of Research in Science: Natural & Formal

Gaussian Process Regression (GPR) has emerged as a powerful non-parametric method
for modeling complex, non-linear relationships in data. This paper elucidates the signif-
icance of GPR in the development of the IFRS17 Regulated Travel Insurance Intelligent
Non-Linear Regression Based Inflation Adjusted Frequency-Severity Automated Loss Risk
Pricing and Underwriting Model.

GPR offers several advantages over other machine learning methods such as Support Vector
Machines (SVM) or Neural Networks:

e Non-Parametric Nature: GPR does not assume a fixed form for the function,
providing greater flexibility in modeling complex data.

e Uncertainty Quantification: GPR provides not only predictions but also un-
certainty estimates, which are crucial for risk assessment in actuarial applications.

e Bayesian Approach: The Bayesian framework of GPR allows for natural incor-
poration of prior knowledge and provides a principled way to handle overfitting.

Gaussian Process Regression’s ability to model complex relationships and quantify un-
certainty makes it a robust choice for developing sophisticated actuarial models, such as
the IFRS17 Regulated Travel Insurance Intelligent Non-Linear Regression Based Inflation
Adjusted Frequency-Severity Automated Loss Risk Pricing and Underwriting Model.
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1.7. Overview of IFRS 17 in the General Insurance Sector

International Financial Reporting Standard 17 (IFRS 17) is a comprehensive standard
issued by the International Accounting Standards Board (IASB) that establishes principles
for the recognition, measurement, presentation, and disclosure of insurance contracts.
IFRS 17 aims to improve the transparency and comparability of financial statements
across the insurance industry by introducing a more consistent accounting approach.

1.7.1. Key Objectives of IFRS 17

o Consistency and Comparability:IFRS 17 seeks to harmonize insurance accounting
practices globally, thereby enhancing comparability across different insurance com-
panies and jurisdictions. This is achieved by mandating a consistent measurement
model for insurance contracts [16].

o Transparency and Understandability:The standard requires insurers to provide
more detailed and transparent information about their insurance contracts, in-
cluding the assumptions used in measuring insurance liabilities and the impact of
these assumptions on financial performance [15].

e [mproved Profit Recognition:IFRS 17 introduces a new model for profit recognition
over the coverage period of insurance contracts. This approach aligns the recog-
nition of profits with the service provided under the insurance contracts, moving
away from the traditional practice of recognizing profits when premiums are re-
ceived [17].

IFRS 17 represents a significant shift in the accounting treatment of insurance contracts,
aiming to enhance the clarity, comparability, and transparency of insurance financial re-
porting. By standardizing the measurement and presentation of insurance liabilities and
profits, IFRS 17 is expected to provide more meaningful insights into the financial health
and performance of insurance companies.

1.8 Impact of IFRS17 on General Insurance Sector

The International Financial Reporting Standard 17 (IFRS 17) has significantly impacted
the general insurance sector, particularly in the realm of actuarial work. This standard,
which came into effect on 1 January 2023, replaces IFRS 4 and fundamentally changes how
insurance contracts are recognized, measured, and reported in financial statements. For
actuaries, IFRS 17 introduces more complexity and requires greater precision in calculating
reserves and pricing models.
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1.8.1. Impact on Actuarial Work: TFRS 17 introduces three measurement models:
the General Model (or Building Block Approach), the Premium Allocation Approach
(PAA), and the Variable Fee Approach (VFA). Actuaries need to assess which model is
appropriate for each insurance contract. The General Model is the most complex and
will be used for most non-life insurance contracts. It requires actuaries to estimate future
cash flows, discount them to present value, and add a risk adjustment for non-financial
risks [20].The introduction of the Contractual Service Margin (CSM) in IFRS 17 requires
actuaries to adjust their calculations to ensure that unearned profits are recognized over
time, rather than immediately. This requires a re-evaluation of how profits from insurance
contracts are calculated and reported. Actuaries must now carefully track changes in the
expected profitability of contracts over time [21]. IFRS 17 requires the discounting of
future cash flows, which means that actuaries must incorporate economic assumptions
such as interest rates into their calculations. Additionally, a risk adjustment is required to
reflect the uncertainty in future cash flows. This adjustment represents the compensation
that the insurer requires for bearing the uncertainty of the insurance liabilities [18].
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Moreover, the increased complexity of IFRS 17 means that actuaries will need access to
more granular data. This includes detailed information on policyholder behavior, claims
history, and economic factors. Actuaries will need to collaborate closely with IT and fi-
nance teams to ensure that the necessary data is available and correctly processed [23].
IFRS 17 increases the transparency of insurance companies’ financial statements, requir-
ing detailed disclosures on the assumptions, methods, and judgments used in estimating
insurance liabilities. Actuaries will play a crucial role in preparing these disclosures and
ensuring that they accurately reflect the underlying risks and assumptions [19].The imple-
mentation of IFRS 17 requires actuaries to adapt their existing models or develop new ones
that comply with the standard’s requirements. This includes updating stochastic models,
cash flow projections, and risk adjustment methodologies. The focus on consistency and
transparency means that actuaries must ensure that their models are well-documented
and can be easily understood by others within the organization [22].

IFRS 17 can lead to significant changes in the financial position of insurance companies.
Actuaries must assess the impact on solvency ratios, capital requirements, and profitability.
This may also involve working with management to develop strategies to mitigate any
negative impacts, such as revising pricing strategies or adjusting reinsurance arrangements

[24].

In closing, IFRS 17 presents both challenges and opportunities for actuaries in the gen-
eral insurance sector. The standard requires a deeper understanding of the financial and
economic assumptions underlying insurance contracts, as well as closer collaboration with
other departments within the organization. Actuaries will play a critical role in ensur-
ing that insurers comply with the new standard and in helping to manage the financial
impacts of IFRS 17.

1.9. Novelty of the study

This study introduces several innovative elements that represent a significant advance-
ment in actuarial modeling and insurance pricing. The application of Gaussian Process
Regression (GPR) to model claim frequency and severity represents a novel approach in
travel insurance pricing. GPR’s ability to capture complex, non-linear relationships and
uncertainties in the data allows for more accurate and flexible predictions compared to
traditional linear models. This novel integration addresses the challenges of non-linearity
and data variability in insurance data.The study incorporates a unique inflation adjust-
ment mechanism within the GPR framework. This model dynamically adjusts for inflation
impacts on claim frequencies, severities, and premiums, offering a more responsive and ac-
curate estimation process. The innovation lies in integrating inflation adjustment directly
into the predictive modeling, improving the model’s ability to reflect real-world economic
conditions. The use of k-means clustering to segment policyholders based on Automated
Actuarial Loss Reserves and Risk Premiums (AALRRPs) is a novel approach that en-
hances underwriting strategies. Coupled with sophisticated visualization techniques, such
as boxplots and density plots, this method provides a granular view of policyholder distri-
butions and risk profiles. This innovation aids in more precise and targeted underwriting
decisions.The simulation of additional actuarial features—such as claim cost, claim dura-
tion, customer loyalty, and total premiums—adds depth to the dataset and enriches the
analysis. This approach is novel in its comprehensive integration of simulated features
with real-world data to provide a detailed evaluation of financial health and performance
under IFRS 17. The development of a rigorous robustness and stress testing framework,
including scenario analysis for varying inflation rates, is a key contribution. This ap-
proach evaluates the resilience of the model to economic shocks and provides insights into
how changes in inflation impact actuarial estimates. Such thorough testing is critical for
ensuring model reliability and stability in diverse economic conditions.

London Journal of Research in Science: Natural & Formal
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1.10. Contribution to Actuarial Science Literature

This study contributes to actuarial science literature by advancing the use of Gaussian
Process Regression (GPR) in insurance modeling. The integration of GPR for predicting
claim frequency and severity offers a new perspective on handling complex, non-linear
relationships in actuarial data. This methodological innovation sets a precedent for future
research on advanced statistical techniques in insurance modeling. The introduction of a
dynamic inflation adjustment model within the GPR framework enhances the accuracy
and responsiveness of insurance pricing. This contribution addresses a critical gap in cur-
rent actuarial practices by providing a more refined approach to managing inflationary
impacts on insurance data. By applying k-means clustering and advanced visualization
techniques, this study provides a novel approach to policyholder segmentation and risk
assessment. The insights gained from clustering and visualization techniques offer valuable
contributions to underwriting practices and risk management strategies in the insurance
industry.The detailed calculation of IFRS 17 metrics, including Contract Service Margin
(CSM), Loss Ratio, and Reserve Ratio, demonstrates the study’s contribution to regula-
tory compliance and financial reporting. The incorporation of simulated actuarial features
and expenses into these calculations provides a robust framework for evaluating financial
health under IFRS 17. The development of a comprehensive robustness and stress testing
framework, including scenario analysis for inflation rates, contributes to the literature by
highlighting the importance of model resilience and adaptability. This approach provides
valuable insights into how actuarial models can be tested and validated in the face of
economic uncertainties.

In a nutshell, this study makes significant contributions to actuarial literature by advancing
predictive modeling techniques, improving inflation adjustment methods, and enhancing
underwriting and risk assessment practices. The innovative approaches and comprehensive
evaluations presented here offer new directions for future research and practical applica-
tions in the field of actuarial science

Il SURVEY OF METHODS AND LITERATURE REVIEW

In the field of actuarial science, particularly in the context of non-life insurance, the need
for accurate risk pricing and loss reserving models is paramount. The advent of machine
learning and advanced statistical techniques has led to the development of sophisticated
models capable of handling complex datasets. This paper focuses on the application
of non-linear regression models, particularly Gaussian Process Regression (GPR), in the
travel insurance domain, adhering to IFRS17 regulations. This section reviews existing
methods and literature relevant to inflation-adjusted frequency-severity models, GPR, and
their applications in actuarial loss reserving and risk pricing.
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Inflation-adjusted frequency-severity models are pivotal in ensuring that loss reserving and
risk pricing accurately reflect current and future economic conditions. These models adjust
claim frequencies and severities to account for inflation, which is crucial in maintaining
reserve adequacy and ensuring the solvency of insurance companies [9]. Traditional meth-
ods often relied on linear models, but recent advancements have introduced non-linear
approaches, such as Generalized Linear Models (GLMs) and their extensions [6].

Gaussian Process Regression (GPR) is particularly suited for inflation adjustment due to
its flexibility in modeling non-linear relationships [2]. Unlike GLMs, GPR does not assume
a specific functional form for the relationship between the input variables and the target
variable. This flexibility allows for better modeling of the complex interactions between
inflation, claim frequency, and severity [12]. GPR is a non-parametric, probabilistic re-
gression model that has gained popularity in the actuarial field due to its ability to model
uncertainty and non-linearity. GPR models define a distribution over possible functions
that fit the data, allowing for a more robust estimation of loss reserves and premiums [2].
The application of GPR in insurance has been explored in various contexts, including risk
pricing, reserving, and claims prediction [3].
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In the context of IFRS17, GPR can be particularly useful in estimating the Contractual
Service Margin (CSM) by accurately predicting future cash flows [4]. GPR’s ability to
model heteroscedasticity, where the variance of the target variable changes with the input
variables, is critical in scenarios where claim severity varies significantly across different
policyholders [5].

Other non-linear regression models, such as Artificial Neural Networks (ANNs) and Ex-
treme Gradient Boosting (XGBoost), have also been applied in actuarial science. ANNs
have been used for loss reserving and risk pricing, particularly in situations where com-
plex interactions between variables need to be captured [11]. However, ANNs require
large datasets and extensive hyperparameter tuning, making them less practical in some
actuarial applications compared to GPR [10].

XGBoost, on the other hand, has been effective in handling high-dimensional data and
has been applied in various insurance contexts, including frequency-severity modeling and
loss reserving [7]. However, while XGBoost offers high predictive accuracy, it does not
inherently model uncertainty, which can be a limitation in actuarial applications where
understanding the distribution of possible outcomes is crucial [12].

The implementation of IFRS17 has brought new challenges to actuarial modeling, par-
ticularly in the areas of contract boundary definition, discounting, and risk adjustment.
The use of advanced non-linear regression models, such as GPR, offers a solution to these
challenges by providing more accurate estimates of future cash flows and risk adjustments
[4]. The literature suggests that integrating machine learning techniques with traditional
actuarial methods can enhance the robustness and accuracy of IFRS17-compliant models
[8].

The literature on non-linear regression models, particularly GPR, highlights their potential
in enhancing the accuracy of inflation-adjusted frequency-severity models in the travel
insurance domain. GPR’s flexibility in modeling non-linear relationships and its ability
to incorporate uncertainty make it a strong candidate for IFRS17-compliant actuarial
models. Future research should focus on further integrating GPR with other machine
learning techniques and exploring their applications in different insurance contexts.

. METHODOLOGY

Methodology in research refers to the systematic, theoretical analysis of the methods
applied to a field of study. It encompasses the principles, procedures, and practices that
guide the research process. Methodology not only includes the techniques used for data
collection and analysis but also considers the underlying philosophical assumptions and
the rationale for choosing specific methods over others [25],[26] and [27]
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3.1. Data Generation and Preprocessing

To investigate the actuarial implications of travel insurance under IFRS 17, we began by
generating a synthetic dataset that encompasses various facets of travel insurance policies.
The dataset includes features such as customer demographics, policy details, trip specifics,
claim frequencies, and severities.

The data was simulated as follows:

e Customer and Policy Information: We generated 2,000 records with attributes
including age, gender, country, policy start and end dates, policy duration, and
trip details (purpose, cost, route type, transport type, mode, and usage).

e Claim Data: Claim frequencies were modeled using a Poisson distribution, while
claim severities were drawn from a normal distribution. Base reserves and premi-
ums were also simulated using normal distributions.

e Inflation Rates: Inflation rates were uniformly distributed between 0 and 0.5%.
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The synthetic data was then combined into a comprehensive dataframe and analyzed for
missing values and inconsistencies. This dataset was split into training and testing subsets
(80% training, 20% testing) to ensure model validation and generalizability.

3.2. Exploratory Data Analysis (EDA)

Exploratory Data Analysis (EDA) was conducted to understand the distributions and
relationships among the variables. This involved:

e Histogram and Bar Plot Visualization: Numerical variables such as age, trip cost,
claim frequency, and severity were visualized using histograms. Categorical vari-
ables like gender, country, and trip purpose were analyzed through bar plots.

e Correlation Analysis: A correlation matrix was computed to explore the relation-
ships between numerical variables, visualized using a heatmap.

3.3. Advanced Data Visualization
Advanced visualization techniques were employed to uncover complex patterns:

e Clustering and Dimensionality Reduction: Hierarchical clustering (dendrograms)
and t-SNE were utilized to group similar observations and reduce dimensionality.
Principal Component Analysis (PCA) was also performed to capture the principal
components of the dataset.

e Correlation and Clustering Plots: Visualizations included correlation heatmaps
and clustering dendrograms to identify clusters and dependencies.

3.4. Model Development

Gaussian Process Regression (GPR) models were developed for different aspects of the
insurance pricing and underwriting:

o Frequency Model: A GPR model was trained to predict claim frequency.

e Severity Model: Another GPR model was used to forecast claim severity.

e Base Reserves Model: This model estimated the reserves required for incurred but
not reported (IBNR) claims.

e Risk Premium Model: The GPR model predicted the base premiums required for
coverage.

o Inflation Adjustment Model: This model adjusted for inflation impacts.
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Each model was trained using the gausspr function with radial basis function (RBF)
kernels. The models were evaluated based on their predictive performance using metrics
such as Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared
Error (RMSE).

3.5. Predictions and Risk Estimations
The trained models were used to predict:

e Automated Actuarial Loss Reserves: This was computed as base reserves plus the
product of predicted claim frequency, severity, and inflation rates.

e Automated Actuarial Risk Premiums: Calculated as base premiums plus the prod-
uct of predicted claim frequency, severity, and inflation rates.
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o Automated Actuarial Loss Reserves Risk Premiums: A combined prediction of loss
reserves and risk premiums.

Visualizations for these estimates were generated to provide insights into the predicted
reserves and premiums over time.

3.6. IFRS 17 Metrics Calculation

Under IFRS 17 regulations, several key metrics were calculated:

o Contract Service Margin (CSM): Computed as the difference between the Auto-
mated Actuarial Loss Reserves Risk Premiums and the Fulfillment Cash Flows
(FCF), where FCF is derived from discounted inflows and outflows.

e Loss Ratio: The ratio of Automated Actuarial Loss Reserves Risk Premiums to
earned premiums.

o Reserve Ratio: The ratio of Automated Actuarial Loss Reserves to base reserves.

e Premium Adequacy Ratio: The ratio of Automated Actuarial Risk Premiums to
base premiums.

Additional actuarial metrics such as Loss Ratio, Expense Ratio, Combined Ratio, Profit
Margin, and Cost of Capital were calculated and visualized to assess the performance and
adherence to IFRS 17 standards.

3.6.1. IFRS17 Metrics Visualization and Analysis: The analysis utilized various visualization
techniques to compare and evaluate the actuarial metrics:

e Time Series Analysis: Plots of Automated Actuarial Loss Reserves, Risk Premi-
ums, and Contract Service Margin were created to visualize trends and discrepan-
cies over the observation period.

e Bar Charts: Employed to display IFRS 17 metrics and their values, aiding in the
comparative analysis of different ratios.

e FEnhanced Plots: Included comparisons of Discounted AALRRPs versus Actual
Base Reserves and Contract Service Margin versus Actual Base Reserves to visu-
alize and assess the alignment of estimated values with actual data.

The methodologies utilized for visualizing and analyzing metrics help in assessing adher-
ence to IFRS 17 and understanding the impact of various actuarial estimates on financial
reporting.
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3.7. Development of the Automated Actuarial Underwriting Model

To perform actuarial underwriting analysis, we first prepared the data by combining pre-
dictions from Generalized Pareto Regression (GPR) models. Specifically, we calculated
the Automated Actuarial Loss Reserves and Risk Premiums (AALRRPs) by summing the
predicted loss reserves and risk premiums.

3.7.1. Clustering Analysis: To categorize the policyholders into distinct groups based
on their AALRRPs, we applied k-means clustering. The number of clusters was determined
to be five based on preliminary assessments and the clustering performance. The clustering
process involved the following steps:

(1) Initialization: A random seed was set to ensure reproducibility of results.

(2) Clustering Execution: The k-means function was used to partition the AALRRPs
into five clusters with multiple initializations (n = 25)to ensure robust results.

(3) Cluster Assignment: Each policyholder was assigned to a cluster based on the
clustering results. These assignments were then integrated into the dataset for
further analysis.
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3.7.2. Cluster Range Determination: We calculated the minimum and maximum
values of AALRRPs within each cluster to define the range of values that characterize
each cluster. This step provided insights into the distribution and boundaries of the
clusters.

3.7.3. Underwriting Cluster Visualization: To visualize the clustering results, we
employed several graphical techniques:

e Bozxplot: Displayed the distribution of AALRRPs across clusters to visualize the
spread and central tendency within each cluster.

e Density Plot: Showed the distribution of AALRRPs with cluster-wise density es-
timates, highlighting the differences in distribution shapes among clusters.

3.7.4. Policyholder Allocation in the Underwriting clusters: We summarized the policyholder
distribution across clusters and provided interactive data tables to facilitate
exploration. We used a bar plot to illustrate the number of policyholders in each cluster,
enhancing understanding of the cluster sizes.

3.75. Actuarial Feature Simulation: To enrich the dataset, we simulated additional
actuarial features including:

Claim Cost: Derived from claim frequency, severity, and inflation rates.
Claim Duration: Simulated as a random value between 1 and 30 days.
Customer Loyalty: Assigned a score from 1 to 10.

Total Premiums: Computed as the sum of claim costs and base premiums.

3.7.6. IFRS17 Metrics Calculation: We computed IFRS17 metrics to evaluate the
financial health of each cluster:

o Contractual Service Margin (CSM): Calculated as the difference between premiums
and reserves.

e Risk Adjustment (RA): Estimated as a percentage (5%) of the sum of premiums
and reserves.

e Loss Component (LC): Determined as the shortfall between reserves and premi-
ums.

These calculations were updated to include simulated expenses, affecting the CSM, RA,
and LC metrics.

3.7.7. Expense Simulation: Expenses were simulated for each cluster using a beta
distribution to ensure that the total expenses did not exceed the AALRRP. This simulation
was integrated into the IFRS17 metrics to provide a comprehensive financial evaluation.
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378 Updated IFRS17 Metrics: With the inclusion of simulated expenses, we recal-
culated the IFRS17 metrics. Updated metrics were visualized using bar plots and box
plots to illustrate the impact of expenses on financial evaluations across clusters.

3.8. Model evaluation

To evaluate the performance and robustness of the Gaussian Process Regression (GPR)
models for actuarial estimations, we simulated a dataset with 1000 observations. The
dataset comprises variables such as base reserves, base premiums, frequency, severity, and
inflation. Noisy outputs were generated for loss reserves and risk premiums to mimic
real-world data variability.

3.8.1. Robustness and Stress Testing: Robustness of the models was evaluated by
visualizing the distributions of AALR, AARP, and AALRRPSs and analyzing their correla-
tions. Performance metrics including Mean Absolute Error (MAE), Mean Squared Error
(MSE), and Root Mean Squared Error (RMSE) were computed to assess the accuracy of
the AALRRPs estimation.
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Stress testing involved simulating a scenario where inflation rates were increased by 10%.
The impact of this stress test was evaluated by comparing the original and stressed AAL-
RRPs values.

3.8.2. Scenario Analysis: To further understand the sensitivity of the actuarial esti-
mates to varying inflation rates, scenario analysis was performed. Different inflation rates
were applied to the models to predict how changes in inflation would affect the automated
actuarial estimates. The results were plotted to visualize the impact on loss reserves, risk
premiums, and total reserves.

3.9. Novelty in the methodology

This methodology introduces several innovative aspects to the actuarial modeling and
pricing of travel insurance under IFRS 17 regulations:

The use of Gaussian Process Regression (GPR) models for both claim frequency and
severity forecasting represents a significant advancement. GPR’s non-parametric nature
and ability to model complex, non-linear relationships allow for more accurate predictions
of insurance risk compared to traditional parametric models. This approach enhances the
precision of risk assessments and underwriting processes by capturing intricate patterns
in the data. The methodology incorporates a specialized Inflation Adjustment Model
within the GPR framework to account for inflation’s impact on claim frequencies, severi-
ties, and premiums. This integration provides a more dynamic and responsive model for
inflationary pressures, improving the accuracy of reserve and premium calculations. The
methodology includes a detailed calculation of IFRS 17 metrics, such as Contract Service
Margin (CSM), Loss Ratio, Reserve Ratio, and Premium Adequacy Ratio, in the context
of automated actuarial estimates. This approach not only adheres to regulatory stan-
dards but also enhances financial reporting by integrating simulated actuarial features
and expenses. The application of k-means clustering to categorize policyholders based
on Automated Actuarial Loss Reserves and Risk Premiums (AALRRPs) is novel. This
clustering approach, combined with advanced visualization techniques like boxplots and
density plots, provides deeper insights into the distribution and characteristics of poli-
cyholders, facilitating targeted underwriting strategies. The methodology includes the
simulation of additional actuarial features such as claim cost, claim duration, customer
loyalty, and total premiums. This simulation enriches the dataset and allows for a more
comprehensive evaluation of financial health and performance under IFRS 17 standards.
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The methodology includes a thorough robustness and stress testing framework, particu-
larly focusing on the impact of varying inflation rates on actuarial estimates. This aspect
provides a nuanced understanding of the model’s resilience and its performance under dif-
ferent economic conditions. By performing scenario analysis to evaluate the sensitivity of
actuarial estimates to changes in inflation rates, the methodology offers a forward-looking
perspective on how economic variables affect insurance pricing and risk assessments. This
analysis aids in strategic planning and decision-making by illustrating potential future
impacts.

In general, the novelty of this methodology lies in its comprehensive and integrated ap-
proach to actuarial modeling, incorporating advanced statistical techniques, detailed IFRS
17 compliance, and innovative data analysis and visualization methods. These contribu-
tions enhance the accuracy and reliability of travel insurance pricing and underwriting
processes.
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V. DATA

Simulated research data refers to artificially generated data that imitates real-world data.
Researchers create this data using mathematical models, computer algorithms, or statisti-
cal techniques to mimic the properties, patterns, and variability of actual data. Simulated
data is often used when real data is difficult, expensive, or impossible to obtain, or when
researchers want to test their methods or theories under controlled conditions [28],[29] and
[30].

In this study a sample of 100000 policyholders has been simulated and the associated
simulated data variables for travel insurance are discussed below.

4.1. Customer Information

e customer id: Unique identifier for each customer.

e age: Age of the customer, ranging from 18 to 80 years. Age can affect risk and
premiums since different age groups may have different risk profiles.

e gender: Gender of the customer, either "Male" or "Female". Gender can be used
to analyze different risk profiles and claims behavior.

e country: Country of residence, chosen from "USA", "Canada", "UK", "Australia",
"Germany", and "France". The country can influence travel patterns and risk
exposure.

4.2. Policy Information

policy id: Unique identifier for each insurance policy.

policy start date: Start date of the insurance policy, randomly chosen between
2020/01/01 and 2023/12/31. Helps in tracking policy duration and claim periods.
policy duration days: Duration of the policy in days, ranging from 1 to 365 days.
Helps in calculating the policy end date and understanding the coverage period.
policy end date: End date of the insurance policy, calculated as policy start date
+ policy duration days.

4.3. Trip Details

e Irip purpose: Purpose of the trip, chosen from "Leisure"', "Business", "Education",
"Medical", and "Other". Different trip purposes may have different risk levels and
claim frequencies.

e trip cost: Cost of the trip, ranging from $500 to $10,000. The cost can impact the
risk and the amount of potential claims.

4.4. Transport Information

e route type: Type of route, either "local" or "international". International trips may
have higher risks compared to local trips.

e transport type: Type of transport used, chosen from "aircraft", "bus", "car", "truck",
"train", and "ship". Different transport types have different risk profiles.

e transport mode: Mode of transport, chosen from "air", "road", "rail", and "water".
Similar to transport type, the mode can impact risk.

e transport usage: Usage of the transport, either "private" or "commercial". Com-
mercial usage may have different risk levels compared to private usage.

e transport value: Value of the transport used, normally distributed with a mean of
$75,000 and a standard deviation of $1,000. The value of the transport can affect
the severity of claims.
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4.5. Claims and Financial Information

e claim frequency: Number of claims made, following a Poisson distribution with
a lambda of 2. Claim frequency is crucial for understanding risk and setting
premiums.

e claim severity: Severity of the claims, normally distributed with a mean of $20,000
and a standard deviation of $2,000. Severity helps in estimating the cost of claims.

e case reserves: Incurred But Not Yet Reported reserves, normally distributed with
a mean of $50,000 and a standard deviation of $2,000. Important for financial
planning and setting aside reserves for future claims.

The GPR Regression Based Travel Insurance Actuarial Loss Reserve Risk Premium Pricing Model21

e base premiums: Base premium for the policy, normally distributed with a mean of
$150 and a standard deviation of $15. Base premiums are the starting point for
pricing the insurance.

e inflation rates: Inflation rates, uniformly distributed between 0 and 0.005. Infla-
tion rates affect the future value of claims and reserves.

V. RESULTS

The section presents the findings and outcome for this study.

5.1. Exploratory Data Analysis

Exploratory Data Analysis (EDA) is a crucial step in the data analysis process that in-
volves investigating and summarizing the main characteristics of a dataset, often using
visual methods. The primary goal of EDA is to understand the data’s structure, detect
patterns, spot anomalies, test hypotheses, and check assumptions through a combination
of statistical and graphical techniques [31],[32] and [33].

5.2. Explore relationships between numerical variables
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The age distribution of customers is visualized with a histogram in the Figure 1 that uses
a bin width of 5 years. The plot shows a relatively uniform distribution across different
age groups, with some slight variations. This uniform distribution suggests that the travel
insurance data covers a wide range of ages, which is important for modeling purposes.
Different age groups may have different risk profiles, so the model will need to account
for age-related variations in claim frequency and severity.The trip cost distribution shows
a histogram in the Figure 2 with bin widths of $500, revealing that most trip costs fall
between $500 and $10,000, with a concentration in the lower range. The skewed distribu-
tion indicates that most customers are opting for less expensive trips, which may influence
the frequency and severity of claims. Trips with lower costs may correlate with lower
claim frequencies and severities, but this needs to be validated through the modeling pro-
cess.The claim frequency distribution shows a histogram in the Figure 3 with a bin width
of 1, indicating that most customers have between 0 and 3 claims. The data suggests
that most customers make few claims, with a heavy concentration at the lower end of
the scale. This pattern is common in insurance data, where a small number of customers
generate a large proportion of claims. Understanding the drivers of high claim frequency
will be essential for accurate risk pricing.The claim severity distribution is visualized with
a histogram in the Figure 4 using a bin width of $2000. The distribution shows that
most claims are concentrated around $20,000. The normal distribution of claim severity
indicates that the data is relatively symmetric around the mean of $20,000. This infor-
mation will be useful for modeling claim severity, particularly when fitting a Gaussian
Process Regression (GPR) model that assumes normality in the underlying data. The
base reserves distribution shows a histogram in the Figure 5 with bin widths of $2000,
centered around $50,000.Similar to claim severity, the distribution of base reserves is nor-
mally distributed around a central value. This suggests that the reserves are set based on
a consistent methodology across policies, which is critical for ensuring that reserves are
adequate to cover future claims under IFRS17 standards.The inflation rate distribution is
visualized with a histogram in the Figure 6 using a bin width of 0.0005, indicating that
inflation rates are uniformly distributed between 0 and 0.005. Interpretation: The uniform
distribution of inflation rates suggests that there is no significant skew in the data, which
will help in modeling the impact of inflation on both claim frequency and severity. The
model will need to incorporate these varying inflation rates to adjust claims and reserves
appropriately.
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The gender distribution plot in the Figure 7 shows the count of male and female customers
in the dataset. The distribution is fairly even between the two genders, with a slight pre-
dominance of one over the other. A balanced gender distribution suggests that the model
will be equally applicable to both male and female customers. However, if the slight im-
balance has any impact on claim frequency or severity, the model will need to account for
this in the risk pricing. The country distribution plot in the Figure 8 indicates the number
of customers from each country in the dataset. The distribution shows varying customer
counts across countries, with some countries having more representation than others.The
variation in customer counts by country could reflect different travel insurance markets or
customer bases. For the model, this implies that country-specific factors (such as regu-
lations, risk levels, and healthcare systems) might need to be included in the analysis to
ensure accurate pricing and underwriting.The trip purpose distribution plot in the Figure
9 categorizes customers by the purpose of their trips, such as Leisure, Business, Educa-
tion, Medical, or Other. Leisure and Business purposes appear to be the most common.
Different trip purposes may carry different risk profiles, influencing both claim frequency
and severity. For instance, business trips might involve higher risks or costs compared to
leisure trips. Incorporating trip purpose into the model can help in differentiating between
these risk profiles for more accurate pricing. The route type distribution in the Figure 10
shows the count of customers who chose local versus international travel routes, with local
routes being more prevalent. Local and international routes likely present different risk
exposures, such as the distance traveled, healthcare accessibility, and geopolitical risks.
The model must account for these differences to provide accurate loss risk pricing and
underwriting. The transport type distribution in the Figure 11 shows the various modes
of transportation used by customers, such as aircraft, bus, car, truck, train, and ship.
Buses and cars are the most commonly used transport types. Different transport types
come with different levels of risk. For example, aircraft might be associated with lower
frequency but higher severity claims compared to cars or buses. This information is crucial
for adjusting the model to reflect transport-specific risks. The transport mode distribution
in the Figure 12 categorizes the mode of transport into air, road, rail, and water, with air
and road being the most common. Like transport type, the mode of transport is another
factor that influences the risk profile. Air travel, while generally safe, may involve higher
claim severity. Road travel might have higher frequency but lower severity claims. This
distinction needs to be captured in the model to ensure precise risk pricing.The transport
usage distribution in the Figure 13 differentiates between private and commercial trans-
port usage, with commercial usage being more common.Private versus commercial usage
could significantly impact claim frequency and severity. Commercial usage may involve
more frequent and higher-value trips, leading to different risk exposures compared to pri-
vate usage. The model will need to incorporate this distinction to accurately price and
underwrite policies.

London Journal of Research in Science: Natural & Formal
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5.2.1. Correlation Analysis: Correlation analysis is a statistical method used to eval-
uate the strength and direction of the relationship between two quantitative variables. It
quantifies the degree to which changes in one variable correspond to changes in another.
The most commonly used measure of correlation is Pearson’s correlation coefficient, de-
noted by r, which ranges from -1 to 1. A value of r = 1 indicates a perfect positive
correlation, where an increase in one variable is associated with a proportional increase in
another. Conversely, r = —1 indicates a perfect negative correlation, where an increase in
one variable corresponds to a proportional decrease in another. A value of r = 0 implies
no linear relationship between the variables [43] and [44].
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Figure 14 Travel Insurance data variables correlation analysis

The Figure 14 is a correlation matrix displaying the pairwise correlations between various
variables in the travel insurance dataset.The plot shows mostly weak correlations (close
to 0) between the variables, indicating that the variables in this dataset are largely inde-
pendent of each other, except for the policy id, which is perfectly correlated with itself (as
expected).Inflation Rates show weak correlations with other variables, indicating that they
do not have a strong linear relationship with claim frequency, severity, or other financial
metrics in this dataset. Base Premiums and Base Reserves also show weak correlations
with other variables. This suggests that the premiums and reserves might not be strongly
driven by the other factors considered in this analysis. Claim Severity and Frequency show
very low correlations with each other and with other variables, suggesting that they may
be driven by different factors. Similarly, trip cost shows weak correlations, indicating that
the cost of the trip is not strongly linked to the other variables in this dataset.
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The weak correlations seen in the plot suggest that the relationships between these vari-
ables are not linear, which supports the use of non-linear regression models like Gaussian
Process Regression (GPR) employed in this paper. GPR models can capture more com-
plex, non-linear dependencies that might exist between these variables, which linear models
might miss.Since the correlations are weak, it suggests that straightforward linear models
would not be adequate for understanding the relationships in this dataset. This justifies
the need for advanced modeling techniques like the GPR, which is well-suited to handle
such complexity, especially under IFRS17’s stringent requirements.The weak correlation
between inflation rates and other variables indicates that inflation may not directly drive
the other factors in a linear way. However, inflation adjustments are still crucial under

IFRS17. A GPR model can incorporate these adjustments more effectively by considering
the non-linear impact of inflation on the frequency and severity of claims.

The minimal linear relationship between base premiums, reserves, and other variables
suggests that the model must consider multiple factors in a more integrated way to arrive
at accurate pricing and underwriting decisions. The GPR model, by capturing the non-
linear interdependencies, can help in creating more customized and accurate pricing and
underwriting strategies.

For compliance with IFRS17, the model needs to accurately reflect the complexities in
the data, including inflation adjustments, claim frequency and severity patterns, and the
financial metrics involved in loss reserving. The low correlations seen here make a strong
case for the use of GPR, as it allows for a more nuanced and precise modeling approach
that aligns with the detailed reporting and risk assessment required under IFRS17.

5.3. clustering Analysis

Clustering is a type of unsupervised machine learning technique used to group similar
data points into clusters, where data points within the same cluster are more similar to
each other than to those in other clusters. The goal of clustering is to identify patterns or
structures in the data by partitioning it into meaningful subgroups, even when no prior
information about the group membership of the data is available [45] and [46]

Dendrogram of Hierarchical Clustering
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The dendrogram presented by the Figure 15 illustrates a hierarchical clustering of cus-
tomers based on their travel insurance data. The hierarchical structure indicates how
data points (customers) are grouped into clusters based on their similarity. The height
at which two clusters are joined together on the dendrogram indicates the distance or
dissimilarity between them. At higher heights, the clusters are broader and contain more
data points. As you move down the dendrogram, these clusters split into smaller, more
specific sub-clusters, which signifies that the customers within these clusters share more
similar attributes.The y-axis (Height) measures the dissimilarity or distance between the

clusters. Taller branches suggest greater dissimilarity between the combined clusters. The
range of heights indicates the extent of variability within the customer data.The cluster-
ing of customers can help in understanding different segments within the travel insurance
data, which may correspond to different types of travel behavior, risk profiles, or insurance
needs. These clusters can be used for targeted pricing, underwriting strategies, or further
analysis in developing intelligent models for loss risk pricing.

5.3.1. T-distributed Stochastic Neighbor Embedding: t-Distributed Stochastic Neigh-
bor Embedding (t-SNE) is a nonlinear dimensionality reduction technique primarily used
for visualizing high-dimensional data in lower dimensions. It is particularly effective at
preserving the local structure of the data, making it useful for exploratory data analysis
and clustering.

Given a high-dimensional dataset X = {x1,Xa,...,Xx}, where x; € R” represents a data
point in D-dimensional space, t-SNE seeks to map this dataset to a lower-dimensional
space while preserving the pairwise similarities between data points [47].

The similarity between two data points x; and x; in the high-dimensional space is modeled
using a Gaussian distribution:

_ew(—xi —x]%/202)
S exp(— [ — xi[?/207)

Dij (5.1)

where o; is the variance of the Gaussian centered at x;. This is known as the conditional
probability p;;, representing the probability that x; is a neighbor of x; given x;.

In the lower-dimensional space, the similarities are modeled using a Student’s t-distribution
with one degree of freedom (which is equivalent to a Cauchy distribution):
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where y; and y; are the corresponding low-dimensional representations of x; and x;,
respectively.

The objective of t-SNE is to minimize the Kullback-Leibler (KL) divergence between the
high-dimensional similarity distribution p;; and the low-dimensional similarity distribution

dij:
Dii
C=KL(P|Q) = Y3 pyjloa L. (5.3)
R qij
Minimizing this objective function ensures that the pairwise similarities in the lower-
dimensional space approximate those in the high-dimensional space as closely as possible.
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t-SNE is a powerful technique for dimensionality reduction and visualization of high-
dimensional data. By preserving local structure through probabilistic similarity measures
and minimizing the KL divergence, t-SNE effectively reveals patterns and clusters in the
data that may not be apparent in the original high-dimensional space [47].

t-SNE Clustering of Travel Insurance Data
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Figure 16 t-SNE Clustering Plot

The t-SNE plot color-codes presented in the Figure 16 customers based on their country,
allowing us to visualize whether customers from different countries tend to cluster to-
gether or mix with others. In this plot, we can observe a dispersed pattern without clear,
distinct clusters based on country alone, suggesting that the travel insurance behaviors
of customers from different countries may overlap significantly. The lack of well-defined
clusters might indicate that other factors, apart from country, contribute more to the
differentiation of customers’ travel insurance profiles. It also suggests that a more com-
plex, multi-dimensional approach (like GPR models) may be needed to accurately model
customer behaviors.

London Journal of Research in Science: Natural & Formal

Both the hierarchical clustering and t-SNE plots indicate a complex structure within the
data that requires sophisticated modeling techniques. Understanding customer segments
and their behavior is crucial for developing the IFRS17-compliant pricing and underwrit-
ing models. The insights from the clustering can inform the structure of the Gaussian
Process Regression (GPR) models by identifying key variables or combinations thereof
that differentiate customers. This could lead to more accurate predictions of frequency-
severity patterns and more tailored pricing strategies. The patterns observed in the data
suggest the need for non-linear regression approaches, such as GPR, to capture the in-
tricacies of the relationships within the data. GPR models, with their ability to model
complex, non-linear relationships, are well-suited for this task.
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The ultimate goal of clustering and dimensionality reduction in this context is to ensure
that the developed models not only provide accurate pricing and risk assessments but
also adhere to the stringent requirements of IFRS17. This includes accounting for risk
adjustments, contract service margins, and ensuring the robustness of the models under
various scenarios.

5.4. Principal Component Analysis

Principal Component Analysis (PCA) is a dimensionality reduction technique used to
identify and extract the most important features from a dataset while preserving as much
variance as possible. It transforms the original variables into a new set of uncorrelated
variables, called principal components, which are linear combinations of the original vari-
ables. The principal components are ordered by the amount of variance they capture from
the data [48] and [49].

PCA - Travel Insurance Data
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Figure 17: PCA of Travel Insurance Data

The figure 17 represents the results of a Principal Component Analysis (PCA) conducted
on the travel insurance data. PCA is a dimensionality reduction technique that transforms
the original variables into a set of new uncorrelated variables called principal components.
These components explain the maximum variance in the data.Diml (22.3%) and Dim?2
(11.8%) are the first two principal components, which together explain approximately
34.1% of the total variance in the data.Each point on the plot represents an observation (a
data point from the dataset), and the colors correspond to different countries (Australia,
Canada, France, Germany, UK, USA). The ellipses represent confidence intervals around
the points for each country group, indicating how closely the points are clustered.
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PCA helps in understanding the underlying structure of the data, including the relation-
ships between different variables and the variations between different country groups. By
identifying patterns or clusters within the data, PCA can highlight the presence of any
latent structures or correlations that might need to be accounted for in the modeling
process. The PCA can reduce the dimensionality of the data while preserving most of the
variance. This reduction can help in building more efficient and robust GPR models by
focusing on the most important components (Diml and Dim2). Dimensionality reduc-
tion is especially relevant when dealing with complex models like GPR, as it can lead to
faster convergence and improved model performance.The clusters observed in the PCA
plot can indicate potential differences in the behavior of insurance claims across different
countries. These differences should be captured in the GPR models to ensure that the
inflation-adjusted frequency-severity models are accurately predicting risks across various
regions.

The IFRS17 Regulated Travel Insurance Intelligent Non-Linear Regression based Inflation Adjusted Frequency-Severity Automated Loss Reserve Risk
Pricing and Underwriting Model with Applications of the Actuarial Specific Gaussian Process Regression (GPR) Model

Volume 24 | Issue 14 | Compilation 1.0 © 2024 Great Britain Journals Press



(© 2024 Great Britain Journals Press

5.5. Model building

The Table 2 represents the performance and validation results for the Automated Inflation
Adjusted Frequency Severity Risk Premium Pricing Model. The model utilizes the Gauss-
ian Process Regression (GPR) method via the kernlab R package, specifically employing

the gausspr class with an RBF kernel (rbfdot).

The general framework for Gaussian Process Regression (GPR) is grounded in the follow-
ing function:

f@) ~ GP(m(x), k(z,2')) (5.4)
Where:
m(x) = E[f(z)] =0 (5.5)
is the mean function, often assumed to be zero for simplicity.
|z — ='||?
k‘(:l;, x/) = exp —T (56)

is the covariance function, also known as the kernel function, which defines the similarity
between any two points z and z’.

For this model, the RBF (Radial Basis Function) Kernel is defined as:
12
k(z,2') = exp Nz =2 (5.7)
202

Where:
o2 is the kernel width parameter, controlling the smoothness of the function.

Table 2: Automated Actuarial Loss Reserving Risk Pricing Model

Automated Inflation Adjusted Frequency Severity Risk Premium Pricing Model
Frequency Severity Reserves Premiums Inflation

Processing time (seconds) 4.32 4.61 4.12 4.66 4.00
Hyper parameters
R package:kernlab Regression

no. of training instances 1600 1600 1600 1600 1600
kernel rbfdot rbfdot rbfdot rbfdot rbfdot
class gausspr gausspr gausspr gausspr gausspr
kpar automatic automatic automatic automatic  automatic
sigma 0.0489964 0.0483452 0.0487040 0.0496039 0.0487709

Train error 0.7648351 0.7746887 0.7668367 0.7588382 0.7632399
Model Validation Metrics:

MAE 1.1802790 1,645.6170000 1,637.3590000 11.7240800 0.0013627

MSE 2.2290740 4,267,010.0000000 4,036,250.0000000 227.7271000 0.0000025

RMSE 1.4930080 2,065.6740000 2,009.0420000 15.0906300  0.0015930

From the Table 2, the processing time for each model component (Frequency, Severity,
Reserves, Premiums, and Inflation) was consistent, all around 4.00-4.66 seconds. This con-
sistency in processing time indicates efficient computation, particularly with the selected
kernel (rbfdot) and hyperparameters.

Pricing and Underwriting Model with Applications of the Actuarial Specific Gaussian Process Regression (GPR) Model
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The key hyperparameters used in the GPR model are as follows:

e Number of Training Instances: 1600 across all components.

e Kernel: rbfdot, which is the Radial Basis Function kernel as defined in Equation
(5.7).

e Class: gausspr, indicating the use of Gaussian Process Regression.

e Kernel Parameter (sigma): The values range around 0.0487, indicating slight
variations in the smoothness of the regression functions across the different com-
ponents.

The Training Error values range between 0.7588 and 0.7747. This metric provides insight
into how well the model fits the training data, with lower values generally indicating a
better fit. The slight variations reflect different complexities in modeling the frequency,
severity, reserves, premiums, and inflation.

The validation metrics include Mean Absolute Error (MAE), Mean Squared Error (MSE),
and Root Mean Squared Error (RMSE), which are key indicators of model performance:

1., .
MAE = n Z 9i — il (5.8)
i=1
1< .
MSE = — > @i — i) (5.9)
i=1
1 n
MSE = | =S (4 — v;)2 = VMSE 1
RMISE = | -5~ 1) S (5.10)

MAE for the frequency model is 1.1803, which is relatively low, indicating a small
average error between the predicted and actual values.

MSE values, particularly for severity and reserves, are high, indicating that large errors
are somewhat more common for these components.

RMSE values, calculated from the MSE, provide an understanding of how these errors
would propagate and influence the pricing and reserving calculations. Higher values sug-
gest greater deviation from actual values.

London Journal of Research in Science: Natural & Formal

The Table2 summarizes the implementation of a sophisticated GPR-based model for es-
timating automated loss reserves and risk premiums. The selected RBF kernel and hy-
perparameters demonstrate good performance, particularly in the frequency and inflation
components, which are critical for IFRS17-compliant pricing and underwriting.This math-
ematical and computational exploration illustrates the strength and adaptability of GPR
in insurance risk modeling, ensuring that the developed model can align with the IFRS17
regulations for accurate loss reserving and risk pricing.

5.6. Visualizing the models

The Figures below generated from the Gaussian Process Regression (GPR) models are
crucial for interpreting the relationships between the input features and the respective
output variables (claim frequency, claim severity, base reserves, risk premiums, and infla-
tion rates) in the context of travel insurance. These relationships are key to understanding
and developing the IFRS17 Regulated Travel Insurance Intelligent Non-Linear Regression
Based Inflation Adjusted Frequency-Severity Automated Loss Risk Pricing and Under-
writing Model.
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The Figure 18 shows how well the GPR model predicts claim frequency compared to the
actual values. The blue points represent the training data, and the red points represent
the testing data. Accurate prediction of claim frequency is essential for calculating the
base reserves and understanding the expected frequency of claims under IFRS17. This
model contributes to estimating future liabilities and helps in risk adjustment.The Fig-
ure 19 compares the predicted claim severity with the actual values. Claim severity is a
critical component in calculating total losses and reserves. Accurate severity predictions
are necessary for determining the adequacy of reserves, pricing, and premium calculations
under IFRS17, ensuring that the reserves are sufficient to cover expected claim costs.The
Figure 20 shows the relationship between predicted and actual base reserves. Base re-
serves are directly linked to the insurer’s liability estimation under IFRS17. An accurate
reserve model ensures that the company maintains adequate reserves to meet future obli-
gations, aligning with the stringent requirements of IFRS17 regarding the measurement
of insurance contracts.The Figure 21 plot illustrates how well the GPR model predicts
risk premiums compared to the actual values.Risk premium accuracy is crucial for pricing
insurance products. Under IFRS17, insurers must ensure that premiums are sufficient to
cover expected losses while also being competitive. The model helps in determining appro-
priate premium levels that reflect the underlying risks, which is a key requirement under
IFRS17.The Figure 22 displays the accuracy of the inflation adjustment model. A strong
correlation between predicted and actual inflation rates suggests the model effectively
captures inflation trends. Inflation adjustments are vital for ensuring that reserves and
premiums remain adequate over time, especially in environments with varying inflation
rates. This model ensures that the reserves and pricing strategies reflect current economic
conditions, aligning with IFRS17’s requirement to consider inflation in loss reserving and
pricing.
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The Figures presented above provide a visual representation of the model’s ability to ac-
curately predict key metrics essential for IFRS17 compliance. By confirming the accuracy
and robustness of these models through visual inspection and performance metrics, the
insurer can confidently rely on the predictions for pricing, reserving, and underwriting
decisions.
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5.7. Estimation of Automated Actuarial Loss Reserves

The estimation of AALR involves predicting several components: claim frequency (f),
claim severity (s), base reserves (Ryp), and inflation rates (7). The AALR is then computed
as follows:

AALR = Ry + (f x s x 1) (5.11)

where:

Ry represents the base reserves,

f denotes the predicted claim frequency,
s denotes the predicted claim severity,

1 represents the predicted inflation rates.

Equation 5.15 captures the multiplicative interaction between the predicted frequency,
severity, and inflation rates, added to the base reserves. This formulation reflects the
actuarial principle that reserves should account for not only the current estimates but also
for future uncertainties in claim development and economic factors such as inflation.

Automated Actuarial Loss Reserves
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Figure 23: Automated Actuarial Loss Reserves

The Figure 23, illustrates the predicted Automated Actuarial Loss Reserves over time.
The plot provides valuable insights into the stability and variability of the AALR across
different observations.

e Trend Analysis: The solid blue line represents the AALR over time, indicating
the general trend in reserves. The presence of the LOESS curve (dashed violet
line) suggests a smooth, non-linear trend, capturing any potential shifts in the
reserve levels.

e Volatility: The orange points highlight individual observations, offering a visual
cue for any volatility in the reserves. Periods with closely clustered points indicate
stability, while wider gaps suggest higher variability.

e Financial Interpretation: The AALR values are presented in monetary terms,
which allow actuaries to interpret these reserves directly in the context of financial
planning and risk management.

The plot, augmented with the LOESS smoothing, serves as a powerful tool for visualizing
and interpreting the AALR. It enables actuaries to detect trends, assess the adequacy of
reserves, and identify periods of potential financial risk.
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5.8. Estimation of Automated Actuarial Risk Premiums

Automated Actuarial Risk Premium (AARP) is a crucial element in determining the ap-
propriate pricing of insurance policies. This section outlines the methodology used to
estimate AARP by leveraging Gaussian Process Regression (GPR) models to predict key
actuarial factors, including claim frequency, claim severity, base reserves, and inflation
rates. The AARP is calculated by adjusting the base premiums with the product of pre-
dicted values for claim frequency, claim severity, and inflation rates. The mathematical
formulation is given by:

AARP; = P, + (B x S x 1), (5.12)

e P;: Base premium for the i-th policy.

e [: Predicted claim frequency for the i-th policy.
e 5;: Predicted claim severity for the i-th policy.

e [;: Predicted inflation rate for the i-th policy.

The estimation of the Automated Actuarial Risk Premiums is carried out by employing
the following GPR models for each component:

e Claim Frequency: A GPR model F is trained on historical data to predict the
frequency of claims.

e Claim Severity: A separate GPR model S is used to estimate the severity of
claims.

e Inflation Adjustment: The inflation rate Iis predicted using a GPR model,
incorporating macroeconomic factors.

The GPR models are based on the Radial Basis Function (RBF) kernel, which is repre-
sented as:
[Ixi — ][
k(x,xj) = exp _TZJ , (5.13)

where o represents the kernel width, and ||x; — x;||* is the squared Euclidean distance
between data points x; and x;.

A~

The GPR model for claim frequency F' can be expressed as:

London Journal of Research in Science: Natural & Formal

A

F(x) = k(x,X) K1y, (5.14)
where:

e k(x,X): Vector of kernel evaluations between test point x and training data X.
e K: Covariance matrix for the training data.
e y: Vector of training labels (claim frequencies).

Similarly, the GPR models for claim severity S and inflation adjustment I are defined
using the same kernel, with different target variables.The actual implementation involves
the following steps:

(1) Train the GPR models for claim frequency F, claim severity S, and inflation
adjustment I using historical data.

(2) Use the trained models to predict the respective values on the test data.

(3) Substitute the predicted values into Equation 5.16 to estimate the Automated
Actuarial Risk Premiums.

The GPR-based estimation of AARP integrates complex interactions between claim fre-
quency, severity, and inflation rates, providing a robust and dynamic approach to actuarial
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risk premium pricing. This methodology adheres to the principles of IFRS17, ensuring
compliance and actuarial soundness.

Automated Actuarial Risk Premiums
Predicted Risk Premiums Over Time
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Figure 24:  Automated Actuarial Risk Premiums

The Figure 24 visualizes the Automated Actuarial Risk Premiums over time or across
observation indices. The fluctuations in the line suggest variability in the risk premiums,
possibly reflecting changes in the underlying risk factors or adjustments in the predictive
model. The purple LOESS line provides a smoothed view of the trend, making it easier
to see the overall direction of the Automated Actuarial Risk Premiums without being
distracted by short-term variations.

5.9. Estimation of Automated Actuarial Loss Reserve Risk Premiums

The estimation of Automated Actuarial Loss Reserves Risk Premiums (AALRRPs) is a
critical component in actuarial science, particularly in the context of IFRS17-compliant
travel insurance models. The AALRRPs are derived by combining the Automated Actu-
arial Loss Reserves (AALR) with the Automated Actuarial Risk Premiums (AARP). The
following sections provide a detailed mathematical formulation of the estimation process.

The Automated Actuarial Loss Reserves (AALR) are calculated using the predicted values

for claim frequency (f), claim severity (3), and inflation adjustment factor (z) applied to
the base reserves (Rpase). The relationship is given by:

AALR = Rpase + f X 8 %0 (5.15)

where:

N

f is the predicted claim frequency from the GPR model.

§ is the predicted claim severity from the GPR model.

7 is the predicted inflation adjustment factor from the GPR model.
Ryp.se is the base reserves.

Similarly, the Automated Actuarial Risk Premiums (AARP) are derived using the pre-
dicted values for claim frequency, claim severity, and inflation adjustment factor applied
to the base premiums (Ppase):

AARP = Ppee + f x § x 1 (5.16)

where:
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° Pbase is the base premiums.
e f, % and 7 are as defined in Equation (5.15).

The final estimation of the Automated Actuarial Loss Reserves Risk Premiums (AALR-
RPs) combines the AALR and AARP as follows:

AALRRPs = AALR + AARP (5.17)

Substituting Equations (5.15) and (5.16) into (5.17) gives:

AALRRPs = (Rpase + f X 8 X 2) + (Poase + f X § x 2) (5.18)
Simplifying, we get:

AALRRPS = (Rpase + Poase) +2 X f x 81 (5.19)

Equation (5.19) elegantly encapsulates the relationship between the base reserves, base
premiums, and the predicted values from the GPR models. The factor of 2 reflects the
dual application of the predicted values to both the reserves and premiums.The estimation
of AALRRPsS, as detailed above, leverages sophisticated regression techniques to combine
multiple actuarial components into a cohesive metric. The resultant formula, encapsulated
in Equation (5.19), provides a robust framework for evaluating actuarial loss reserves in
compliance with IFRS17 standards.

Automated Actuarial Loss Reserves Risk Premiums

Combined Prediction Over Time
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Figure 25: Automated Actuarial Loss Reserve Risk Premiums

The Figure 25 provides a visualization of the Automated Actuarial Loss Reserves Risk
Premiums (AALRRPs) over time or across observation indices.There is a trend of the
Automated Actuarial Loss Reserves Risk Premiums over the observation indices. The
line shows how the combined values of the Automated Actuarial Loss Reserves and the
Automated Actuarial Risk Premiums vary across time or indices. The LOESS (Locally
Estimated Scatter plot Smoothing) line provides a smoothed approximation of the AAL-
RRPs trend. The darkorange two dash line with a light yellow fill represents the smoothed
trend and the confidence interval around it. This line helps to identify the overall trend
without being influenced by short-term fluctuations, providing a clearer view of the un-
derlying pattern in the data.
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5.10. Comparison of Automated Actuarial Estimates with Test Data

The Figure 26 compares various actuarial metrics and test data related to Automated
Actuarial Loss Reserves, Risk Premiums, and Base Metrics.

Comparison of Automated Actuarial Metrics and Test Data
Automated Actuarial Loss Reserves, Risk Premiums, and Combined Metrics

variable

= Automated_Actuarial_Loss_Reserves
£40,000K - = Automated_Actuarial_Risk_Premiums
== Automated Actuarial_Loss Reserves_Risk_Pres
- Base_Premiums
- Base_Rasarves

Matric

-+ Automated_Actuanal_Loss_Reserves

-+ Automated_Actuaral_Risk_Premiums

-+ Automated_Actuarial_Less Resarves_Risk_Pres
-+ Base_Premiums

= Base Reserves

Amount ($K)

$20,000K

SOK

1] 50 100 150 200 250 300 350 400

Figure 26. Comparison of Automated Actuarial Estimates with Test Data

The x-axis represents different observations. The range of the index is from 0 to 400,
showing that there are 400 observations plotted.The y-axis shows the amount in thousands
of dollars, ranging from $0K to around $40K. This suggests that the values for the different
metrics are being compared in terms of monetary amounts. The Automated Actuarial Loss
Reserves metric is plotted in purple, shows the calculated loss reserves using automated
actuarial methods. The Automated Actuarial Risk Premiums metric is plotted in blue, this
metric represents the risk premiums calculated automatically. The Automated Actuarial
Loss Reserves Risk Premiums metric is plotted with an orange line combines the loss
reserves and risk premiums. Base Premiums plotted in green, are the base premiums
calculated from the test data.Base Reserves presented by a red line represents the base
reserves from the test data.

The Automated Actuarial Loss Reserves and Risk Premiums show some variance around
the $50K mark, with minor fluctuations that might reflect changes in the underlying risk
or reserve calculations across observations. The Automated Actuarial Metrics (especially
Automated Actuarial Loss Reserves and Automated Actuarial Risk Premiums) tend to
be higher than the base metrics, indicating that the automated methods might be in-
corporating additional factors or adjustments not accounted for in the base calculations.
There seems to be clustering around certain values, particularly in the range of $45K to
$55K, which could indicate a high level of confidence or a narrow range of variation in the
automated models.
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Comparison of Estimated and Test Data Values
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Figure 27: Comparison for Automated Actuarial Insurance metrics

The Figure 27 is a scatter plot comparing different estimated and test data values across
various categories. The z-axis represents the observation number or index, with each dot
corresponding to a specific observation in the dataset and on the same note, the y-axis
shows the value corresponding to each observation for different categories. The scale is
from 0 to over 40,000. The dots for each category are tightly clustered together, indicating
that the values within each category are similar across different observations. The Base
Reserves and Base Premiums have relatively lower values (around 0 to 40,000). Estimated
AALRRP, Estimated AALR, and Estimated AARP values are clustered around higher
ranges, with the highest density of values below 20,000.The values for Estimated AALR,
Estimated AARP, and Estimated AALRRP appear consistent, as indicated by the tight
clustering of data points for these categories. However, these estimates show distinct
ranges, with some overlap.The plot allows for a visual comparison between actual test
data values (reserves and premiums) and the estimated values for AALR, AARP, and
AALRRP.

London Journal of Research in Science: Natural & Formal

Table 3: Summary of Metrics

Metric Value

Mean Base Reserves 49776.9389
Mean Base Premiums 149.4249

Mean Estimated AALR  49876.1805
Mean Estimated AARP 248.6665

Mean Estimated AALRRP 50124.8470

The Table 5.10 presents the mean values for several key metrics related to Automated
Actuarial Loss Reserves (AALR), Automated Actuarial Risk Premiums (AARP), and Au-
tomated Actuarial Loss Reserves Risk Premiums (AALRRP). Each of these metrics is
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crucial in assessing the financial health and pricing adequacy under the IFRS 17 frame-
work.

The Mean Base Reserves (49,776.9389) represents the average amount set aside as base
reserves, which are the initial estimates of the reserves needed to cover future claims. The
value suggests a significant level of reserves, ensuring the insurer can meet expected lia-
bilities. The Mean Base Premiums (149.4249) is the average base premium collected from
policyholders. It represents the fundamental pricing before any adjustments for inflation
or other factors. The value indicates that the base premiums are relatively modest com-
pared to the reserves.The Mean Estimated AALR (49,876.1805) is the average estimated
Automated Actuarial Loss Reserves, which includes adjustments and refinements over the
base reserves. The AALR is slightly higher than the mean base reserves, indicating that
the insurer has adjusted its reserves to reflect a more accurate estimate of future liabil-
ities. The Mean Estimated AARP (248.6665)represents the average Automated Actuarial
Risk Premiums, which are the adjusted premiums after considering various factors such
as inflation, risk adjustments, and other actuarial considerations. The mean AARP is
significantly higher than the base premiums, indicating that the insurer has adjusted its
premium pricing to better reflect the underlying risks.The Mean Estimated AALRRP
(50,124.8470)is the average Automated Actuarial Loss Reserves Risk Premiums, which
reflect the final adjustment to both reserves and premiums to meet the regulatory and
actuarial standards under IFRS 17. The mean AALRRP is slightly higher than the esti-
mated AALR, indicating a cautious and prudent approach to reserving.

The Table 5.10 illustrates a well-calibrated actuarial process where reserves are adjusted
slightly above the base estimates to account for potential risks, ensuring financial stability.
The premiums have been significantly adjusted (as shown by the AARP), reflecting the
insurer’s understanding of the risk landscape, resulting in a more substantial buffer against
potential losses. The overall alignment of AALR and AALRRP with the base reserves
suggests that the insurer is taking a conservative approach to ensure that reserves are
more than adequate to meet future liabilities, adhering to IFRS 17 standards. This Table
5.10 highlights the insurer’s diligent approach to financial management, ensuring that
both reserves and premiums are sufficient to cover potential risks, thereby protecting the
financial health of the insurance portfolio.

5.11. Mathematical Development of IFRS 17 Metrics

The Loss Ratio is calculated as the ratio of the mean of the Automated Actuarial Loss
Reserves (AALR) to the mean of the Automated Actuarial Loss Reserves Risk Premiums
(AALRRP). Mathematically, this can be expressed as:

London Journal of Research in Science: Natural & Formal

Loss Ratio = EE[AALR]

[AALRRP] (5:20)

Where:

e E[AALR] is the expected value (mean) of the Automated Actuarial Loss Reserves.
e E[AALRRP] is the expected value (mean) of the Automated Actuarial Loss Re-
serves Risk Premiums.

The Reserve Ratio is defined as the ratio of the mean of the Automated Actuarial Loss Re-
serves (AALR) to the mean of the Base Reserves. This can be represented mathematically
as:

E[AALR]
E[Base Reserves]

Reserve Ratio = (5.21)

Where:

The IFRS17 Regulated Travel Insurance Intelligent Non-Linear Regression based Inflation Adjusted Frequency-Severity Automated Loss Reserve Risk
. Pricing and Underwriting Model with Applications of the Actuarial Specific Gaussian Process Regression (GPR) Model
7

58 Volume 24 | Issue 14 | Compilation 1.0 (© 2024 Great Britain Journals Press



e E[AALR] is the expected value (mean) of the Automated Actuarial Loss Reserves.
e E[Base Reserves]| is the expected value (mean) of the Base Reserves.

The Premium Adequacy Ratio is computed as the ratio of the mean of the Automated
Actuarial Risk Premiums (AARP) to the mean of the Base Premiums. The equation is:

E[AARP]
E[Base Premiums]

Premium Adequacy Ratio = (5.22)

Where:

e E[AARP] is the expected value (mean) of the Automated Actuarial Risk Premiums.
e E[Base Premiums]| is the expected value (mean) of the Base Premiums.

The metrics developed above are key indicators under IFRS 17 for assessing the adequacy
and sustainability of actuarial reserves and premiums. These ratios provide insight into
the financial health and risk management practices within the insurance portfolio.

Table 4: TFRS 17 Metrics

Metric Value
Loss Ratio 0.9950391
Reserve Ratio 1.0019937

Premium Adequacy Ratio 1.6641571

The Table 4 provides the exact values for each of these metrics:Loss Ratio (0.9950) which
is very close to 1, indicating that the reserves are almost exactly in line with the risk
premiums.The Reserve Ratio (1.0020) is slightly above 1, indicating that the Automated
Actuarial Loss Reserves are very slightly higher than the Base Reserves, which suggests
prudent reserving.Premium Adequacy Ratio (1.6642) is notably above 1, reinforcing the
figure’s suggestion that the premiums collected are more than adequate to cover the ex-
pected liabilities.

IFRS 17 Metrics
1.66
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Metfrics: Loss Ratio, Reserve Ratio, Premium Adequacy Ratio

Figure 28: TFRS17 Insurance metrics

From the Figure 28 the bar for the Loss Ratio is colored red and has a value of approxi-
mately 1. This ratio indicates that the Automated Actuarial Loss Reserves (AALR) closely
match the Automated Actuarial Loss Reserves Risk Premiums (AALRRP), implying that
the reserves are sufficient to cover expected losses. The green bar for the Reserve Ratio
also shows a value of approximately 1. This suggests that the Automated Actuarial Loss
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Reserves (AALR) are very close to the Base Reserves, indicating that the reserves set aside
are in line with what was initially estimated.The blue bar for the Premium Adequacy Ratio
is significantly higher, with a value of 1.66. This suggests that the Automated Actuarial
Risk Premiums (AARP) are significantly higher than the Base Premiums. It indicates
a strong premium adequacy, meaning the premiums collected are more than sufficient to
cover expected losses and expenses.

The TFRS 17 metrics presented in both the figure and table suggest a well-capitalized
and adequately priced insurance portfolio. The close-to-1 ratios for the Loss and Reserve
Ratios indicate that reserves are appropriate and align closely with expectations. The high
Premium Adequacy Ratio reflects a conservative pricing strategy, ensuring that premiums
are more than sufficient to cover potential liabilities, which is a positive sign of financial
health and robustness under the IFRS 17 framework.

5.12. Actuarial Science based IFRS1y7 Profitability Analysis

Let n denote the number of observations. The Discounted Cash Flows (DCF) for inflows
and outflows can be computed as follows:

Automated Actuarial Loss Reserves + Automated Actuarial Risk Premiums
(L+7)f (5.23)

Discounted Inflows; =

Automated Actuarial Loss Reserves
(IT+r)t

Discounted Outflows; = (5.24)

where r is the discount rate (in this case, 7 = 0.03) and ¢ denotes the time period.

The Fulfillment Cash Flows (FCF) can be calculated as the difference between Discounted
Inflows and Discounted Outflows:

FCF; = Discounted Inflows; — Discounted Outflows; (5.25)

The Contract Service Margin (CSM) represents the unearned profit of an insurance con-
tract and is calculated as:

London Journal of Research in Science: Natural & Formal

CSM = Automated Actuarial Loss Reserves+Automated Actuarial Risk Premiums—FCF
(5.26)
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The Figure 29 visualizes the reserves required to cover estimated losses. A steady or
increasing trend in reserves could indicate rising expected claims, possibly due to increased
risk or higher claim frequency /severity. The Figure 30 shows the premiums set aside to cover
future risk. Variations might reflect changes in risk assessments or adjustments in pricing
strategies. If premiums increase, it could suggest higher anticipated risk.The Figure 31
reveals the unearned profit of the insurance contracts over time. Positive values indicate
profit, while negative values may signal potential losses. An increasing CSM suggests that
the profitability of the contracts is improving.The Figure 32 displays the net cash flows
required to fulfill insurance contracts, taking into account discounted inflows and outflows.
Positive FCF indicates that the expected inflows surpass the outflows, which could be a
sign of financial health and contract profitability.

London Journal of Research in Science: Natural & Formal

5.13. IFRS17 Loss ratio analysis

Let n denote the number of observations.The Loss Ratio is calculated as the ratio of
Automated Actuarial Loss Reserves and Risk Premiums to Earned Premiums:

Automated Actuarial Loss Reserves + Automated Actuarial Risk Premiums

Loss Ratio; =
Earned Premiums;

(5.27)

The Expense Ratio is computed as the ratio of expenses to Earned Premiums:
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Expenses;

E Ratio, = 5.28
XPEHSE Ratioy Earned Premiums; ( )

The Combined Ratio is the sum of the Loss Ratio and the Expense Ratio:
Combined Ratio; = Loss Ratio; + Expense Ratio, (5.29)

The Profit Margin represents the proportion of the earned premiums remaining after ac-
counting for the Automated Actuarial Loss Reserves and Risk Premiums, minus expenses:

Automated Actuarial Loss Reserves + Automated Actuarial Risk Premiums — Expenses,

Profit Margin, =
ro argiy Earned Premiums; (5.30)

The Cost of Capital is calculated as the product of Automated Actuarial Loss Reserves
and Risk Premiums and the cost of capital rate:

Cost of Capital, = (Automated Actuarial Loss Reserves+Automated Actuarial Risk Premiums)x
Cost of Capital Rate (5.31)

where the Cost of Capital Rate is assumed to be 5% (0.05).
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The Figure 33 shows how much of the earned premiums is being used to cover the Au-
tomated Actuarial Loss Reserves and Risk Premiums. A high or increasing Loss Ratio
indicates that a significant portion of the premiums is being allocated to cover losses, which
may suggest potential issues in underwriting or risk assessment. Conversely, a decreasing
trend can indicate improved loss control and risk management.The Figure 34 depicts the
proportion of earned premiums that goes towards covering expenses. A high Expense
Ratio may suggest inefficiencies or increasing operational costs. A decreasing trend might
indicate better cost management or improved operational efficiency.The Combined Ratio
Plot denoted by the Figure 35 combines the Loss Ratio and Expense Ratio to provide
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an overall picture of underwriting performance. A ratio greater than 100% means the
insurance company is spending more on claims and expenses than it earns in premiums,
indicating an underwriting loss. A ratio below 100% indicates underwriting profitabil-
ity. The Figure 36 represents the profitability of the insurance contracts after accounting
for losses and expenses. Positive values reflect a profit, while negative values suggest a loss.
Observing trends in this plot helps gauge the overall financial performance and profitabil-
ity of the insurance operations.The Figure 37 shows the cost associated with maintaining
the reserves and risk premiums. It is an important metric for assessing whether the returns
on insurance contracts justify the cost of capital. Rising costs of capital might indicate
increasing financial burden or changes in capital costs, which could impact the profitability
of the insurance contracts.

5.14. Adherence of the GRP Regression model to IFRS17 Regulations
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From the Figure 38 the majority of points are ideally scattered around a line that reflects a
relationship between actual base reserves and discounted AALRRPs.The dashed blue line
from the linear model helps to visualize the general trend or relationship between the actual
base reserves and the discounted AALRRPs. Under IFRS 17, discounted reserves are
important for accurately reflecting the time value of money. If the discounted AALRRPs
closely follow the actual base reserves, it indicates that the GPR model is reasonably
estimating reserves and capturing the time value of money correctly.A good fit of the
line would suggest that the model’s estimates align well with actual values, reflecting
accurate reserve estimations in accordance with IFRS 17.The Figure 39 shows that there
is a consistent relationship between the base reserves and the CSM.The dotted green line
should show the general trend of the CSM relative to the actual base reserves. IFRS
17 requires that the CSM reflects the unearned profit in the insurance contract. If the
CSM calculated from your model aligns well with actual base reserves, it implies that your
model is effectively capturing the margin of unearned profit. A clear and consistent trend
or pattern in the CSM relative to base reserves suggest adherence to IFRS 17 principles,
as it reflects the profitability and expected margins in insurance contracts.The Figure 40
compares the trends of the Discounted AALRRPs and CSM. Ideally, both lines shows a
coherent pattern that matches with your expectations based on the actual base reserves.
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5.15. Automated Actuarial Underwriting Model
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Figure 41: Figure 42:

Each boxplot from the Figure 41 represents the distribution of AALRRPs within a specific
cluster. It shows the median (central line), interquartile range (box), and potential out-
liers (points beyond the whiskers).If the clusters have significantly different AALRRPs,
it indicates that there are distinct risk segments within the data. This can guide how
underwriting criteria might be adjusted based on the risk profile. Understanding the dis-
tribution within each cluster helps in tailoring underwriting policies to better match the
risk characteristics of each segment. For example, clusters with higher AALRRPs might
represent higher-risk profiles, which could require different underwriting approaches.The
Figure 42 shows the distribution of AALRRPs within each cluster. FEach shaded area
corresponds to a different cluster and indicates how concentrated or spread out the AAL-
RRPs are within that cluster. Different clusters may have different shapes in their density
plots. For example, some may have a single peak (unimodal), while others might be bi-
modal or have multiple peaks. Overlapping densities between clusters can indicate areas
where clusters share similar risk profiles, while distinct peaks suggest clear differentiation
between clusters.

Number of Policyholders in Each Underwriting Cluster
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Figure 43, Number of Policyholders in Each Underwriting Cluster
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Figure 43 observes how policyholders are distributed across different clusters. A higher
bar indicates a cluster with more policyholders, while a lower bar shows fewer policyhold-
ers.Clusters with a large number of policyholders might represent common risk profiles.
These clusters might require more attention to refine underwriting criteria to manage risks
effectively. Clusters with fewer policyholders might represent niche or less common risk
profiles. These may still need appropriate underwriting strategies but could be less of a
priority if they are small. The first two clusters have a large number of policyholders, it
might be necessary to allocate more resources towards managing these clusters, including
tailored underwriting policies and more detailed risk assessments. Understanding which
clusters are larger can help in developing underwriting policies that address the most
common risk profiles, ensuring that they are well-suited to the majority of policyholders.

5.15.1. Further IFRS17 Based Actuarial Underwriting evaluation: The Contractual
Service Margin (CSM) is given by:

CSM = max(Premium — Reserve, 0)

This metric reflects the unearned profit that will be recognized as insurance services are
provided.

The Risk Adjustment (RA) accounts for the uncertainty in the future cash flows:
RA = 0.05 x (Premium + Reserve)

Here, a 5% risk adjustment is applied to the sum of premiums and reserves.

The Loss Component (LC) measures the expected loss:
LC = max(Reserve — Premium, 0)

This metric indicates if the reserve exceeds the premium received, which is a key factor in
evaluating the financial health of insurance contracts.

Average Contractual Service Margin (CSM) by Undenwriting Cluster
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Figure 44 Average Contractual Service Margin (CSM) by Underwriting Cluster

The Figure 44 for Average CSM by Underwriting Cluster shows how the unearned profit
varies across different clusters. Higher CSM values indicate more profit retained in the
underwriting process, which could be attributed to lower reserves or higher premiums.
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Average Risk Adjustment (RA) by Underwriting Cluster
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Figure 45.  Average Risk Adjustment (RA) by Underwriting Cluster

The Figure 45 for Average Risk Adjustment by Underwriting Cluster provides insights
into the risk associated with each cluster. Variations in RA across clusters help in under-
standing the relative riskiness and profitability of the clusters.

Average Loss Component (LC) by Underwriting Cluster
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Figure 46: Average Loss Component (LC) by Underwriting Cluster

The Figure 46 for Average Loss Component highlights the loss component across clus-
ters. A higher LC suggests that the reserves are significantly exceeding the premiums,
indicating potential underwriting losses.
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Distribution of Claim Cost by Underwriting Cluster
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Figure 47: Distribution of Claim Cost by Underwriting Cluster

The box plot of claim costs across clusters in the Figure 47 shows the spread and central
tendency of claim costs. Clusters with higher median costs or greater spread may indicate
higher risk or claims complexity.

Distribution of Claim Duration by Underwriting Cluster
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Figure 48: Distribution of Claim Duration by Underwriting Cluster

The Figure 48 for Claim Duration shows the variability in the length of claims across
clusters. Longer durations may indicate more complex or severe claims, affecting the
overall financial stability of the insurance product.

5.15.2. IFRS17 Based Actuarial Underwriting evaluation with inclusion of expenses:
The Contractual Service Margin (CSM) is calculated as follows:
CSM = max (Ppremium - Rreserve - Eexpensey 0)
where:
Bpremium is the total premium.

[ J
® Rieserve 1S the reserve.
® Feypense is the expense.
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The Risk Adjustment (RA) is calculated using a percentage of the sum of premiums,
reserves, and expenses:

RA = 0.05 x (P premium + Rreserve + Eexpense)
where 0.05 (5%) is the assumed risk adjustment factor.

The Loss Component (LC) is calculated as:

LC = max (Rreserve + Eexpense - P, premium 0)
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Figure 48:  Average Con-
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Figure 50:  Average Risk
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Component (LC) by Under- Figure 52: Distribution of
writing Cluster Expenses by Underwriting
Cluster

The Figure 49 shows the average Contractual Service Margin (CSM) for each underwrit-
ing cluster. Clusters with high average CSM values are in a favorable position, as they
have a higher margin left after accounting for reserves and expenses. This suggests these
clusters are more profitable.Clusters with low or zero CSM indicate that the premiums
collected are barely enough to cover the reserves and expenses, potentially signaling less
favorable performance or higher risk.The Figure 50 presents the average Risk Adjustment
(RA) for each underwriting cluster. Clusters with higher RA values might be perceived
as riskier, as more adjustment is needed to cover the perceived risks. This is expected if
the clusters have higher premiums, reserves, and expenses.Clusters with lower RA values
are considered less risky or more stable. These clusters might have more predictable per-
formance, leading to lower required risk adjustments.The Figure 51 illustrates the average
Loss Component (LC) across different underwriting clusters. A high LC indicates that
the combination of reserves and expenses exceeds the premiums collected. This could be
a sign of potential financial distress or inefficiencies in these clusters.Lower LC values sug-
gest that the premiums collected are adequate to cover reserves and expenses, indicating a
healthier financial state for these clusters. The Figure 52 shows the distribution of expenses
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for each underwriting cluster.Clusters with wider boxes and higher ranges indicate greater
variability in expenses. This variability could be due to diverse risk profiles or differing
operational efficiencies within the cluster.Clusters with lower median expenses (the cen-
tral line in the box) are performing better in terms of expense management compared to
clusters with higher median expenses.

These visualizations provide insights into how each underwriting cluster performs in terms
of CSM, RA, and LC, as well as how expenses are distributed across clusters. This anal-
ysis helps in understanding the financial health and risk profiles associated with different
clusters.

5.16. Model Evaluation

Model evaluation in the context of robust testing, stress testing, and scenario testing in-
volves assessing a model’s performance and reliability under various conditions and chal-
lenges. These techniques are essential in ensuring that models not only perform well
under normal conditions but also remain accurate and stable when subjected to unusual
or extreme scenarios.Model evaluation through robust testing, stress testing, and scenario
testing is essential for ensuring the reliability and stability of models under various con-
ditions. These techniques help to identify weaknesses, validate performance, and provide
confidence that the model can handle real-world challenges [37],[40] and [41].

5.16.1. Robust Testing: Robust testing refers to the process of evaluating a model’s
performance under different conditions to ensure its reliability and stability. This type of
testing ensures that the model remains accurate and effective even when faced with small
changes or variations in the input data or assumptions [34],[35] and [36].

Distribution of Automated Actuarial Loss Reserves (AALR) Distribution of Automated Actuarial Risk Premiums (AARP)
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The Figure 53 displays the distribution of Automated Actuarial Loss Reserves (AALR)
estimated by the GPR model. The histogram shows a continuous distribution of AALR
values, which reflects the variability in the loss reserves predicted by the model. A well-
behaved distribution (e.g., near normal) with no extreme skewness or kurtosis suggests
that the model is effectively capturing the underlying patterns in the data.The distribution
appears reasonable and thus it indicates that the GPR model is robust and not overfitting.
The GPR model has learned the relationship between the predictors and the loss reserves
well, leading to a realistic and reliable estimation of AALR.The Figure 54 shows the dis-
tribution of Automated Actuarial Risk Premiums (AARP) estimated by the GPR model.
Similar to the AALR distribution, the histogram of AARP reveals how risk premiums
are distributed across the dataset. A smooth and centered distribution implies that the
model’s estimates are balanced and reflect the variability in the risk premiums accurately.
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A well-distributed AARP indicates that the GPR model has effectively estimated the risk
premiums without bias. If the distribution is consistent with expected results (e.g., no
extreme values or skewness), this supports the robustness of the GPR model in predicting
risk premiums.The Figure 55 displays the distribution of Automated Actuarial Loss Re-
serves Risk Premiums (AALRRPs), which combines AALR and AARP. This histogram
shows the combined distribution of loss reserves and risk premiums. A well-distributed
AALRRP indicates that the combination of these components reflects realistic overall fi-
nancial metrics. The shape of the distribution provides insight into the balance between
loss reserves and risk premiums.The AALRRPs distribution is smooth and free from ex-
treme skewness or anomalies, it suggests that the GPR model is robust. The combined
estimates of AALR and AARP are reasonable and consistent, demonstrating that the
model captures the joint behavior of these metrics accurately.

& R &
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Figure 56: Correlation matrix plot

The correlation matrix presented by the Figure 56 shows the pairwise correlation coeffi-
cients between the variables: Automated Actuarial Loss Reserves (AALR), Automated Ac-
tuarial Risk Premiums (AARP), and Automated Actuarial Loss Reserves Risk Premiums
(AALRRPs). The corrplot function visualizes these correlations with color coding.There
is a strong positive correlation between AALR vs. AALRRP since AALR is a component
of AALRRPs. A high correlation here confirms that the GPR model’s predictions for loss
reserves and their combination with risk premiums are consistent.There is also expected
to show a high positive correlation between AARP vs. AALRRP, as AARP is another
component of AALRRPs. A high correlation indicates that the GPR model is effectively
capturing the relationship between risk premiums and the overall combined metric. While
AALR and AARP are be related through the model’s estimation process, their correlation
is moderate compared to their relationships with AALRRPs. This indicates that the GPR
model differentiates between the loss reserves and risk premiums in a meaningful way.
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The high correlations between AALR and AALRRPs, and AARP and AALRRPs, support
the idea that the GPR model is robust. It suggests that the model effectively captures
how changes in loss reserves and risk premiums affect the combined metric (AALRRPs).
Moderate or low correlation between AALR and AARP suggests that the model cor-
rectly estimates these components separately without overemphasizing their relationship,
reflecting robustness in how it handles individual variables.
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Scatter Plot of AALR vs AALRRPs Scatter Plot of AARP vs AALRRPs
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Figure 57: Scatter Plot of Figure 58:  Scatter Plot of
AALR vs AALRRPs AARP vs AALRRPs

The Figure 57 visualizes the relationship between Automated Actuarial Loss Reserves
(AALR) and Automated Actuarial Loss Reserves Risk Premiums (AALRRPs).A positive
trend in this scatter plot would indicate that as AALR increases, AALRRPs also increase,
which is expected since AALR is part of the calculation for AALRRPs. The points gen-
erally align along a line or show a clear positive trend, it confirms that the GPR model’s
predictions for AALR are consistent with its predictions for AALRRPs. This linearity
suggests the model’s reliability in estimating AALRRPs based on AALR.There are no
extreme outliers or clusters of points that deviate significantly, it indicates that the GPR
model is stable and does not produce erratic or unrealistic predictions.

The Figure 58 visualizes the relationship between Automated Actuarial Risk Premiums
(AARP) and Automated Actuarial Loss Reserves Risk Premiums (AALRRPs). A positive
trend here indicates that as AARP increases, AALRRPs also increase. This is expected
since AARP is another component of AALRRPs.A clear positive trend would support that
the GPR model is robust, as it shows that changes in AARP are consistently reflected
in changes in AALRRPs. Similar to the previous scatter plot, the absence of significant
outliers suggests that the model produces stable and realistic predictions for risk premiums
and their combination with loss reserves.

5.16.2. Stress Testing: Stress testing involves evaluating a model by subjecting it to
extreme or adverse conditions to determine its breaking point or how it performs under
significant pressure. This method is particularly important in fields like finance and insur-
ance, where models must be resilient to extreme market conditions or catastrophic events
[37],[38] and [39].
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Stress Test: AALRRPs vs. Stressed AALRRPs
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Figure 59 Stress Testing Plot

The Figure 59 displays a scatter plot of Automated Actuarial Loss Reserves Risk Premiums
(AALRRPs) before and after applying a stress test where inflation is increased by 10%.
The plot includes a linear regression line to show the relationship between the original
and stressed AALRRPs.The scatter plot shows a strong positive trend (points generally
aligning with the diagonal line where Original AALRRPs equals Stressed AALRRPs), it
indicates that the GPR model’s estimates are consistent under the stress scenario. This
positive relationship suggests that while the absolute values of AALRRPs have increased,
the model’s behavior is predictable and aligns well with the expected effect of the inflation
increase.The red line represents the linear regression fit of the data points and a close
alignment of this line with the diagonal suggests that the GPR model is robust, as the
inflation stress test leads to a proportional increase in AALRRPs without introducing
significant distortions.
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In short, the stress test plot shows that the GPR model is robust because it provides
consistent and reliable predictions even under stress scenarios. The proportional increase
in AALRRPs with increased inflation and the absence of significant deviations or outliers
indicate that the model effectively captures the relationships between the variables and
responds predictably to changes

5.16.3. Scenario Testing: Scenario testing involves assessing a model’s performance by
simulating various hypothetical situations, each based on a different set of assumptions
or conditions. Unlike stress testing, which focuses on extreme events, scenario testing
considers a range of possible outcomes, including both positive and negative scenarios.
This approach is often used to explore the potential impact of different future events or
decisions on the model’s outputs [40],[41] and [42].
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Impact of Inflation Rates on Actuarial Estimates
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Figure 60: Scenario Testing plot

The Figure 60 produced from the scenario testing displays how changes in inflation
rates impact the Automated Actuarial Loss Reserves, Risk Premiums, and the combined
Loss Reserves Risk Premiums. The x-axis represents the inflation rate scenarios, ranging
from 0.01 to 0.05 in increments of 0.01 and the y-axis represents the values of the actuarial
estimates (Loss Reserves, Risk Premiums, and Total).The consistent horizontal trends in
the Loss Reserves, Risk Premiums, and Total with increasing inflation rates demonstrate
that the model responds logically and predictably to changes in inflation. This indicates
that the model captures the impact of inflation effectively and provides a robust response
to different inflation scenarios.

VI, DISCUSSION
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The methodology proposed in this study introduces several key advancements in actuarial
modeling for travel insurance. By leveraging Gaussian Process Regression (GPR), our
approach captures complex non-linear relationships in claim data, leading to more precise
predictions of claim frequency and severity compared to traditional parametric models.
This non-parametric approach is particularly beneficial in handling the inherent variability
and uncertainty in insurance data.The integration of an inflation adjustment model within
the GPR framework enhances the model’s ability to respond dynamically to economic
changes, providing more accurate estimates of reserves and premiums. This is crucial for
maintaining financial stability and regulatory compliance under IFRS 17.The application
of advanced data visualization techniques, including clustering and dimensionality reduc-
tion, allows for a more granular analysis of policyholder data. The k-means clustering
approach segments policyholders into distinct groups based on their actuarial profiles, fa-
cilitating targeted underwriting and risk management strategies. Visualization tools such
as boxplots and density plots further enhance the understanding of data distributions and
relationships, providing valuable insights for decision-making.Our robustness and stress
testing procedures demonstrate the model’s resilience to variations in inflation rates and
other economic factors. The scenario analysis highlights the sensitivity of actuarial esti-
mates to different inflation scenarios, offering a forward-looking perspective on potential
risks and impacts.The inclusion of simulated actuarial features and expenses enriches the
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dataset, providing a more comprehensive evaluation of financial health. The recalculated
IFRS 17 metrics, reflecting the impact of simulated expenses, offer a detailed assessment
of financial performance and adherence to regulatory standards.In short, the proposed
methodology represents a significant advancement in actuarial modeling for travel insur-
ance. It combines sophisticated statistical techniques with a thorough understanding of
regulatory requirements, offering a robust framework for pricing, underwriting, and finan-
cial reporting

VIl.  CONCLUSION

In conclusion, this study presents a comprehensive and innovative methodology for ac-
tuarial modeling and risk pricing in the travel insurance sector under IFRS 17. The
use of Gaussian Process Regression (GPR) for predicting claim frequencies and severi-
ties, coupled with an inflation adjustment model, significantly enhances the accuracy and
responsiveness of actuarial estimates. The integration of advanced clustering and visu-
alization techniques provides valuable insights into policyholder data and supports more
informed underwriting decisions.Our approach also includes rigorous testing and scenario
analysis, which demonstrates the model’s robustness and its ability to handle economic
uncertainties. The simulated actuarial features and updated IFRS 17 metrics offer a de-
tailed evaluation of financial health, contributing to improved regulatory compliance and
financial reporting. The methodology introduced in this paper not only advances the field
of actuarial science but also provides practical tools for better managing travel insurance
risks. Future work could explore the application of these techniques to other lines of in-
surance or further refine the models based on real-world data. The continued development
of such methodologies will be crucial for adapting to evolving regulatory standards and
economic conditions in the insurance industry
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