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Discrete Maximum Principle Honored by
Conventional Finite Volume Schemes for
Diffusion-Convection-Reaction Problems: Proof
with Geometrical Arguments

Abdou Njifenjou

ABSTRACT

From the Engineering point of view, the Maximum Principle is physically an important
property met by solutions of elliptic partial differential equations (PDE for short) of second
order governing di sion-convection- reaction phenomena. This property is also called
Positivity-Preserving Property in the literature. At the discrete level the
Positivity-Preserving Property is required for any numerical scheme designed for solving
such PDE. By means of algebraic arguments it is well-known that conventional nite volume
schemes for second order elliptic PDE meet the discrete maximum principle. In this
communication we expose a new technique based upon geometric arguments for proving
that conventional nite volume schemes for di usion-convection-reaction problems meet the
discrete version of Maximum Principle. Notice that the above mentioned geometrical
technique works for any space dimension.

Keywords. discrete maximum principle, geometric arguments, diffusion-adjection-reaction
problems, nite volume schemes.

. INTRODUCTION

Let © be a bounded connected open subset of R? whose boundary denoted by I’
is the union of polygonal lines I'y|rc g where K is a finite subset of N which denotes
the set of positive integers (see Figure 1 below). Note that if K is a singleton then
2 is a polygon (and so simply connected). Given the scalar functions D(-), u(-) and
f(+) together with a vector field (:), all being defined in 2, we consider the elliptic
problem that consists in finding a scalar function u(.) in an adequate function space
such that
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—div [D(x)gradu] + div[uy] + pu = f in  Q (1.1)
with the following homogeneous Dirichlet boundary conditions :

u=20 on r (1.2)

Under reasonable assumptions on the previous data i.e.

0<D™ < D(z) <DV, and p(x)>0 ae. in (1.3)
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f()eL? (Q) (1.4)

p() € CHQ,R? ) (1.5)
with
div[p] > 0 a.e. in (1.6)

it is easy to prove that (see [1] for instance): The second order elliptic problem
(1.1)-(1.2) gets a unique weak solution in the sense that

PV { There exists one and only one u € H{ () such that : (1.7)

B(u,v) = L(v) Vv € H}(Q)

where we have set:
B(u,v):/D(x)gradu.gradvdzl: + /Udiv [u]dx + /,uuvd:r (1.8)
Q Q Q

and

L(v)—/ﬂfvd:c. (1.9)

Following [2] one can prove that if the given function f is positive almost every-
where in  then the weak solution of the system (1.1)-(1.2) is also positive almost
everywhere in ). That is the weak form of the Maximum Principle. Several works
on construction of positivity-preserving numerical methods for diffusion, diffusion-
convection, diffusion-reaction and diffusion-convection-reaction problems are avail-
able in the literature (see for instance [5, 6, 11, 13]). Such numerical methods are
sometimes called monotone schemes.

The main objective of this work is to expose geometrical arguments for proving
the well-known discrete version of the Maximum Principle satisfied by the conven-
tional finite volume solution to the system (1.1)-(1.2).

ll.  PRELIMINARY TOOLS

Definition 2.1 (Partition of 2). Let € be the closure of § in the sense of the
standard topology of R? and let J be a finite subset of N which is the set of positive
integers. A family {Q;};e; made up of subsets of Q defines a partition of Q if the
following conditions are satisfied:

(1) Int(Q;) #0  VvjieJ
(i4) ﬁ:jg}ﬁj (2.1)
(@i) Vi ed,  §#" = Int(Qy) N Int(Q) = 0

where Int(o) denotes the interior of o in the sense of standard topology of R2.
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Let us consider a partition P over ) consisting in a finite family of closed con-
vex polygons (named also polygonal elements) generically denoted by 7. These
polygonal elements are the so-called control volumes in the language of Finite Vol-
ume theory. The control volumes from the partition P defines a conforming Finite
Volume mesh over € if (in addition to conditions (i)-(iii) from Definition2.1) the
following conditions are satisfied:

v1', 7" € P, T #T" implies that :
o either T'NT" =10
o or T'NT"= common vertex

o or T'NT” = common edge,

where () denotes the empty set. Let us denote by 9P the set of boundary edges
(viewed as degenerate control volumes) and we briefly define the conventional finite
volume mesh 7 as it follows: T = {P,0P} .

We should use intensively in what follows a notion of characteristic function
slightly different from the usual one and defined as follows.

Definition 2.2  Let T be a control volume either from P or from 9P. We call in

this work the characteristic function of T" denoted by 17 the function defined almost

everywhere either in Q (with respect to Lebesgue measure in 2-D) or on I' = kUKF k
€

(with respect to Lebesgue measure in 1-D) by :
1 if e Int(T
borc ) (2.3)
0 if ze€Ext(T)

where Ext(o) denotes the exterior of a subset o from R? (with respect to the natural
topology of R?). Recall that Int(¢) stands for the interior of ¢ from R?. [

Let us introduce the following discrete function spaces that play a key-role in the
sequel.

London Journal of Research in Science: Natural & Formal

Definition 2.3 We set :

s? = {’U’p :Q— R vp(z) = Z vrly(z), with vp € R VT € 73}, (2.4)
TeP

Sap = {’Uap I — R, ’Uap(S) = Z UL]-L(S)7 with vL € R VL € ap}’ (25>
LeoP

and

ST = 8P x s, ST = s x {Osap} (2.6)

where Ogop is the zero-function (denoted simply 0 if there is no risk of confusion)
from the discrete function space S7. [
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The Finite Volume method is based on the fundamental idea that the exact solution
u could be approximated inside any control-volume 71" with a constant Upr corre-
sponding to either the mean-value of u or its approximation at a given point located
inside T', with Cartesian coordinates zp. In the context of conventional Finite Vol-
umes the choice of that point is not arbitrary as we will be seeing in assumption
(As) below. Let us denote by I'z the boundary of any control-volume 7". We need to
specify the following assumptions that make the conventional Finite Volumes very
attractive and realistic for certain engineering problems as subsurface flow problems
(notice that [3, 4, 15] are among distinguished references on fluid flow in porous

media):
(A1) The diffusion coefficient D(-) is a piecewise constant function i.e.
35 C N, with S finite, such that: D(x) = ZDS]_QS(ZL'). (3.1)
seS

where {Q}scs defines a partition P of the domain Q in the sense of Definition 2.1.

Denote by T the Finite Volume mesh corresponding to the partition P. Let us
make the following assumption on 7.

(A2) T is compatible with the discontinuities of D(-) in the sense that the
discontinuity points of D(-) belong to the mesh interfaces I'7 = U I'z, where we
TeP

have set P = P U dP. In other words any discontinuity point of the function D(-)
is located in a control volume boundary.

(As3) For all ( T",T") € P x P such that T" and T"” are adjacent (that is
I N Tpr is a common edge for control volumes 7”7 and T"), the vector xp — xpn
is orthogonal to the common edge. This is the so-called orthogonality condition
required for conventional Finite Volume meshes (see [5, 6]).

An immediate consequence of the assumption (1.3) is that D(-) is a nonnegative
constant function in each control volume 7. We denote by D’ the constant value
of D(-) in the control volume 7.

Let us give a brief description of the different steps for getting a conventional
finite volume scheme. We start with introducing some useful notations: £ is the set
of all mesh edges, £ is the subset of £ made of interior mesh edges and £** is
the subset of £ made of exterior mesh edges i.e. mesh edges lying on the domain
boundary.

Step 1: Integrate the two sides of the balance equation (1.1) in each control
volume T from the family P. So we get what follows (thanks to Ostrogradski’s
theorem):

— DT gradu . vpds —l—/
FT 1—‘T

u . vpds —|—/T w(x)u(x)dx = /Tf(x)d:z VT eP.
(3.2)

where v stands for outward unit vector normal to the control-volume boundary I'r.
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Step 2 : Re-write the first two integral terms from the left-hand side of (3.2) as
follows for all T' € P:

Z —/DTgradu . Verds +
g

o€

Z /UUI/J-VU,TdS + /Tu(:v)u(x)dx = /Tf(x)dx
(3.3

o€ET
3)

where &7 is the set of mesh edges o lying in I'r and where v, r stands for outward
unit vector normal to the portion ¢ of the control-volume boundary I'r, called again
mesh edge associated with I'p. Integrals from the first summation are diffusion fluxes
while integrals from the second summation are convection fluxes (called sometimes
advection fluxes).

Step 3: Perform the approximation of the unknown function w in the control-
volume T with the unknown real constant u(xr). So one could set what follows
concerning approximation of the reaction term :

/Tu(x)u(x)da: ~ u(zy) IT(w) VI eP (3.4)

where Ip(¢) is the integral of a function ¢ defined in the control volume T'.

Step 4 : Look for reasonable approximations of flux integral terms from the left-
hand side of (3.3). What should one understand by reasonable approximations 7 We
mean that the flux approximations should take account of the following constraints :

e Perform the upwind approximation of the convection flux in view to ensure
the stability of the global finite volume scheme. For that purpose, let us start with
setting :

Definition 3.1

London Journal of Research in Science: Natural & Formal

de
1PU7T :f /¢.VU7TdS (3.5)

Definition 3.2 (Upwind approximation of the convection flux over o € £™)
Let o in Ep N &L, with T and L from the set P. We set:

¢ s
/ Wi Vg rds ~ {“(xT) Yol T =0 (3.6)

u(iL’L) Yo, T if o1 < 0.

In other words the upwind approximation of the convective flux across the interior
edge o in Er N &L, could be defined as follows :

/uw.ydes ~ u(rr) max{yor,0} — u(rr) max{—iyyr,0}. (3.7)

Since (according to the flux continuity principle over grid-block interfaces)
Yo, T + Yo, L = 0

the preceding approximation of the convective flux is equivalent to the following one
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/u@b.y(,,Tds ~ u(rr) max{yo,r,0} — u(rr) max{ysr,0}. (3.8)

e The flux continuity across interior edges o, i.e. ¢ € €™, is a fundamental
physical principle to be met. So we have necessarily for all o € £

[—DTgradu Ve + U .Ver] +

+ [—DLgradu.ug,L +u.vpr] =0 on o (3.9)

Integrating the right-hand and the left-hand sides of (3.9) over o € £™ leads to
the following ”weak formulation” of flux continuity :

[—/DTgmdu  Vgrds + /u¢.u07Tds] +

+[—/DLg7“adu.1/J7Lds + /uw.VU,Lds] =0 VEM 56 =T7NTy (3.10)

Since the weak solution u of the system (1.1)-(1.2) lies in H{(Q), the trace u,

exists (in H 2 (o) for instance) in a unique manner. In consequence we naturally get
what follows :

[/u¢.VJ7Tds] + [/u¢.VJ7Lds] =0 VEM s o =T7rNTy (3.11)

Thus, the previous "weak formulation” of flux continuity (3.10) is reduced to

[— / DT gradu . vy rds] + |- / Drgradu.v, rds] = 0 VEM 56 =TrNIyp
(3.12)

In the context of conventional Finite Volumes the family P satisfies the so-called
orthogonality condition (see assumption (A3) above at the beginning of the current
Section). So there exists a family of points {z7; T € P}, such that for any pair
(T,L) € P x P, with T and L adjacent, the orthogonal projections of z7 and z on
their common edge o coincides and let call it z,. We make the following convention:

If T is adjacent to the domain boundary we set : L def o, where o is the

boundary edge associated with T, and zj coincides with z,”.

This being said, from the following diffusion flux approximation (assuming the
exact solution restriction u, in C°(T) for any T € P; it is the case if u|,, € H*(T)):
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DT mes(o)

mww) —u(zor)]  VYoe&r (3.13)

—/[DTgradu  Vprlds &

where mes(.) stands for Lebesgue measure in one-space dimension, dist(.,.) repre-
sents the Euclidean distance and where z, 7 is in fact the point z, seen as from the
boundary of T' by an observer standing inside 7. The principle of continuity of u
on grid-block interfaces is expressed at the discrete level by the relation :

w(zor) = w(zer) Voe€&rnép  VT,LE (P X P

where (P X P)qq; is the subset of P x P made of (T, L) such that 7" and L are
adjacent. So it is reasonable to set:

u(xy) = w(zo,T) VT eP Voe&r.
With the above notation the diffusion flux approximation could read as follows

DT mes(o)

distar oy @r) —u@o)] - Voefr  (3.14)

—/[DTgradu Vg rlds &

Writing down the discrete analogue of the ”weak formulation” (3.12) of continuity
of the diffusion flux (across any interior edge o € Ep N EL) yields

DT mes(o)

dist(xp, xy)

D" mes(o)

m[u(w,;)—u(a:g)] =0 VO’GnggL.

(3.15)

[u(er) —u(z,)] +

This relation could be viewed as a linear equation with only discrete unknown u(z,).
This unknown can be obviously determined as a function of discrete unknowns u(xr)
and u(zr) as indicated hereafter. Indeed elementary operations on (3.15) leads to

London Journal of Research in Science: Natural & Formal

AT ALo
w(zy) = Lo ul@r) + Ao uz) Voe&rnéL (3.16)
)\T,a + )\L,O'
where we have set
e DK
Aeo X VKeP Voeég. (3.17)

dist(xg,xs)

Substituting the right-hand side of (3.16) to u(x,) in the diffusion flux approximation
given by (3.14) leads to what follows for any o € Er N &L :

DT DEmes(o)
DTdist(xr, xs) + DVdist(xr, z,)

/[DTgradu Vorlds & [w(zr) — u(zr)]. (3.18)
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Remark 3.3 (Important to notice)

First of all the diffusion flux approximation (3.18) has been established for interior
edges i.e. o € £7™. Let us explain why the convention consisting to consider
boundary edges o as also degenerate control-volumes L allows to recover (3.14)
from the relation (3.18). Indeed if o € & N E¥*! then x, = xp, and it follows that
dist(xp,xs) = 0in (3.18).

The following Conventional Finite Volume scheme is obtained from preceding
approximations of different terms of the left-hand side of the balance equation (3.3):
see relations (3.4), (3.8) and (3.18). One could learn more on this topic with [5, 6]
for instance.

Definition 3.4 (Conventional Finite Volume Scheme)

The conventional Finite Volume approximation of the system (1.1)-(1.2) consists in
what follows :

Find
Ur = (Z Ulg, Osap) S Sg
KePpP
such that:
DT DL I'rNT
) mes(ly 0 T) [Ur = U] +

£ DTdist(xr,T) + DVdist(zrp, L)
LEP,LAT

+ Z [Ur max{yy71,0} — Ur max{yo.1,0}] + UrIr(p) =Ir(f) VT €P
LEP,LAT
(3.19)

where o € Er N Ep. Recall that Ip(¢) is the integral of a function ¢ defined in the
control volume 7. [

The Finite Volume and Mimetic Finite Difference approximations of solutions
to isotropic or anisotropic diffusion problems on distorted grids have been inten-
sively developed in the literature and are today considered as classical topics (see
for instance [6, 7, 8, 9, 10, 14]. Some extensions of Finite Volume Methods have
been designed and known under the name of Gradient Discretization Methods (see
[12] for learning more) and many other extensions are underdevelopment (see [11]
for instance). Let us state the following well-known Discrete Maximum Principle
followed by a proof based upon a Geometrical Technique that seems new in this
context to the best of our knowledge.

Theorem 3.5 (Discrete Maximum Principle) Let us suppose that € is a bounded
open subset of R?, connected by polygonal arcs. Let its boundary I' be the union
of polygonal lines T'gx]rck, where K is a finite subset of N (see Figurel below).
The linear system (3.19) gets a unique solution that satisfies the following positivity

property:
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o If Ir(f) > 0 for all T € P then

Ur >0 VT eT. (3.20)
Moreover the following discrete maximum principle holds :

e If there exists a control volume T from P such that
Uz = 0 = min{Up; B € 9P}

then
Ur =0 VT eP. O (3.21)

The originality of this work relies up on the technique exposed hereafter to prove
that the solution to (3.19) meets the discrete Maximum Principle. This technique
has been successfully applied to a new finite volume method introduced recently
by A. Njifenjou, A. Toudna and S. Moussa in [11]. To the best of our knowledge
the technique widely exposed in the literature (for proving the discrete maximum
principle) is based up on algebraic arguments (see for instance [6,10]). We are going
to develop geometric arguments for proving the discrete Maximum Principle stated
above in Theorem 3.5.

V.  GEOMETRICAL TECHNIQUE FOR PROVING (3.20) AND (3.21)

& We have to first prove (3.20), that is:

If
Z DTDEmes(I'r NTy)
DTdist(xr,T) + DVdist(zr, L)

[Ur —Ur] +
LeP,L£T

+ ) [Ur max{yo1,0} — Uy max{y,1,0}] + UrIp(p) > 0 VT €P (4.1)

London Journal of Research in Science: Natural & Formal

LeP,LAT
with
Ur =0 VT € OP (4.2)
then
Ur >0 VT € P. (4.3)

Let us set for all (T, L) € P x P:

def DTDEmes(Tr NTy) (4.4)
arp, = .
T DTdist(xp,T) + DEdist(xr, L)
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. Then notice that if T and L are adjacent control volumes i.e. I'r and I';, get a

common edge, we have
arr, = 0. (4.5)

and otherwise we have
arr, = 0. (46)

In the sequel Vg denotes the set of control volumes from P adjacent to a given
control volume E from P.

Let us start the proof with assuming that we have (4.1) and (4.2). We should
deduce that (4.3) holds. Now let us set:

yP. min{Ur; T browsing the set P}

and (4.7)

—min def

P E TP U =1

min}'

First of all we should notice that UP  exists as {Ur; T browsing the set P} is a

min
finite subset of R. Therefore P is not an emptyset.
o It P"NOP # 0, it is clear that the discrete Maximum Principle is satisfied.
Indeed, denote by L a (degenerate) control-volume belonging to P NJP. So we
have

U, =0 (sinceLedP) and U,=Ur, (sinceLeP ™). (4.8

Hence

Ur >0 VT eP. (4.9)
e We are going to geometrically prove that P NOP =0 is impossible. Rea-
soning by the absurd let us suppose that:

P aP = 0. (4.10)

This assumption necessarily ensures that: P C P and P™" is not empty. Let us
arbitrarily consider a control volume T from P (notice that T is not the closure
of T). Since T necessarily belongs to P, the assumption (4.1) applies for T =T and,
thanks to definition (4.4) and relation (4.5), we get (with 0 € &N &y, if T and L

adjacent):
<0 <0
0 < E OLTL[UT - UL] + IT(M) UT +
, SN——
LeVE 25 >3
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+ Y [Upmax{y,7 0} — U max{ye,r,0}] (4.11)
LEP,L#T

Let us prove the following lemma stating that the last summation in the right-
hand side of the preceding inequality is in fact less than or equal to zero.

Lemma 4.1

> [Upmax{y, 7,0} — Up max{yr,0}] < 0 (4.12)
LeP,L#T

where 0 = I'tz N I'p.

Notice that if I'z N ', = () the expression [Uz max{y,, 7,0} — Ur max{ys,r,0}] is
Zero.

Proof. The following equality is obvious :

<0
Z [Uz max{y, 7,0} — Ur max{yp,r,0}] = Z Uz — Ur]max{ 5,0} +
LEP,LAT o€En ‘—{0—’
+ ) Upmax{y,7,0} — max{ypsr,0}] . (4.13)

O'Eg?

The proof is ended if we show that the second summation in the right-hand side of
the preceding equality is less than or equal to zero. That is

> Upmax{y, 70} — max{ysr,0}] < 0.

O'EET

London Journal of Research in Science: Natural & Formal

This assertion is true. Indeed we have (since for all 0 = I'+ NI, 7 + Yo = 0
holds in virtue of the convection flux continuity):

> Upmax{y, 7,0} — max{ypr,0}] =

UEST

= Z Us [max{lpaj, 0} — max{— Yo T 0} =

O'Ggf
- Z Uz [max{y, 7,0} + min{y, 7,0}]
G'GET

Therefore we get

Z UT [maX{sz’T,O} — maX{l,bo,L’O}] = Z UT 1/’0,?

O'GST O'EET
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i.e.

> Upmax{y, 7,0} — max{yer,0}] = Up > y,7

o€y ocEn

In virtue of definition (3.5) it is clear that

Z Uz [max{y, 7,0} — max{yo,r,0} = Uz Z Vv, pds

JGST JE“:T g

It follows from Ostrogradski’s theorem (called some times Divergence theorem) that

Z Uz [max{y, 7,0} — max{yo,r,0} = UT/div(lIJ) dz

O'G(E‘T T

Thanks to the assumption (1.6) and since Uz < 0, it becomes obvious that

> Upmax{y, 7,0} — max{ysr,0}] < 0.

UEST
This ends the proof of the Lemma. m

It obviously follows from inequalities (4.11) and the preceding Lemma as well
that :

U = UT VLEVT. (414)

For any pair of points from R?, with Cartesian coordinates z and v, define the
subset [z,y] of R? in the following way :

[z, y] = {z €R? /30 <0< 1such that z = 0z + (1 — e)y}. (4.15)

Let us set:

Fr = {xr el /Jage T such that [z, xr] C ﬁ}
and (4.16)
Sy = {[3:7, xr| /:L‘T €T and zr € ]:T}-

Remark that 7= is an infinite set and there is an obvious bijective mapping from
S7 onto T x F7. So S is also an infinite set. The set S7 contains a finite subset
A7 made up of segments that pass through a mesh vertex or a mesh edge. So
its complement A% in Sz is also infinite. Thus there exists (at least) a segment
A(Z7, zr) from A%, with extremities Z7= € T and Zr € I'. In the sequel A(z, Ir)
is simply denoted by A since there is no risk of confusion. Let us set:

mz{Teﬁ/TmA7e®}. (4.17)

o The first important remark is that P contains at least two control vol-
umes namely the control volume T' belonging to P and a degenerate control volume
Tr (belonging to P of course) such that zr € Tp.
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o The second important remark straightly coming from (4.14) is that :

U, =Us VLEPa. (4.18)

From these two remarks we see that

Ur. = Uz, with 1t € oP.
Therefore we have the following result:
Tr € fmm N oP

which is in contradiction with the assumption (4.10). The proof of the Positivity
Property (3.20) ends here.

¢ We have now to prove (3.21). For this purpose let us assume that there
exists a control volume 7" from P such that

Uz = 0 = min{Up; B € OP}.

‘We shall deduce that
Ur =0 VT e P. (4.19)

Let us recall that a subset A of R? is connected by polygonal arcs if and only if for
any pair of points from A there exists a polygonal line inside €2 joining these two
points.

Let T be an arbitrarily chosen non degenerate control volumes i.e. T' € P and
let C(T,T) be the set of polygonal lines inside Q joining T to T. It is clear that
C(T,T) is an infinite set. Likewise it is clear that the subset of C(T,T) denoted by
D(T,T) and made up of polygonal lines passing through a mesh vertex or involving
a mesh edge is a finite set. So the complement DY (T, T) of D(T,T) in C(T, T) is an
infinite set. Notice that any polygonal line from D (T, T') is associated with a finite
family of nondegenerate control volumes. Let us denote by II(T,T) a polygonal line
from DY (T, T). So there exists a finite sequence of nondegenerate control volumes
{T,,}}_, associated with II(T, T), where the numbering is such that for all T' € P:
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T, =T, Ty=T
and (4.20)
vV2<n<N-1, 1T, is adjacent to T),—1 and T}, 1.

We know from the previous development of this proof that (see (4.14) above):

Ur, = Ur,,, Vi<n<N-1

Thus, by transitivity of the equality relation we get what follows:

Up = Ur VT e P.
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Figure: 1 Illustration of gridding defined over an open bounded subset Q of R2,
connected by polygonal arcs, with borders I'y]xcx surrounding hollows represented
by yellow quadrilaterals.
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