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ABSTRACT 

From the Engineering point of view, the Maximum Principle is physically an important 

property met by solutions of elliptic partial differential equations (PDE for short) of second 

order governing di  sion-convection- reaction phenomena. This property is also called 

Positivity-Preserving Property in the literature. At the discrete level the 

Positivity-Preserving Property is required for any numerical scheme designed for solving 

such PDE. By means of algebraic arguments it is well-known that conventional nite volume 

schemes for second order elliptic PDE meet the discrete maximum principle. In this 

communication we expose a new technique based upon geometric arguments for proving 

that conventional nite volume schemes for di usion-convection-reaction problems meet the 

discrete version of Maximum Principle. Notice that the above mentioned geometrical 

technique works for any space dimension. 
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I.​ INTRODUCTION 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Let Ω be a bounded connected open subset of R2 whose boundary denoted by Γ
is the union of polygonal lines Γk]k∈K where K is a finite subset of N which denotes
the set of positive integers (see Figure 1 below). Note that if K is a singleton then
Ω is a polygon (and so simply connected). Given the scalar functions D(·), µ(·) and
f(·) together with a vector field (·), all being defined in Ω, we consider the elliptic
problem that consists in finding a scalar function u(.) in an adequate function space
such that

− div [D(x)grad u] + div [uψ] + µu = f in Ω (1.1)

with the following homogeneous Dirichlet boundary conditions :

u = 0 on Γ (1.2)

Under reasonable assumptions on the previous data i.e.

0 < D− ≤ D(x) ≤ D+, and µ(x) ≥ 0 a.e. in Ω (1.3)

L
on

d
on

 J
ou

rn
al

 o
f 

R
es

ea
rc

h
 in

 S
ci

en
ce

: N
at

u
ra

l &
 F

or
m

al

©2025 Great Britain Journals Press Volume 25 | Issue 9 | Compilation 1.0 43

______________________________________ 

Discrete Maximum Principle Honored by 
Conventional Finite Volume Schemes for 

Diffusion-Convection-Reaction Problems: Proof 
with Geometrical Arguments 



f(·) ∈ L2 (Ω) (1.4)

(.) ∈ C1(Ω,R2 ) (1.5)

with
div [ ] ≥ 0 a.e. in Ω (1.6)

it is easy to prove that (see [1] for instance): The second order elliptic problem
(1.1)-(1.2) gets a unique weak solution in the sense that

(PV )

{
There exists one and only one u ∈ H1

0 (Ω) such that :

B(u, v) = L(v) ∀v ∈ H1
0 (Ω)

(1.7)

where we have set:

B(u, v) =

∫
Ω
D(x)grad u.grad v dx +

∫
Ω
v div [uψ] dx +

∫
Ω
µu v dx (1.8)

and

L(v) =

∫
Ω
f v dx. (1.9)

Following [2] one can prove that if the given function f is positive almost every-
where in Ω then the weak solution of the system (1.1)-(1.2) is also positive almost
everywhere in Ω. That is the weak form of the Maximum Principle. Several works
on construction of positivity-preserving numerical methods for diffusion, diffusion-
convection, diffusion-reaction and diffusion-convection-reaction problems are avail-
able in the literature (see for instance [5, 6, 11, 13]). Such numerical methods are
sometimes called monotone schemes.

The main objective of this work is to expose geometrical arguments for proving
the well-known discrete version of the Maximum Principle satisfied by the conven-
tional finite volume solution to the system (1.1)-(1.2).

Definition 2.1 (Partition of Ω). Let Ω be the closure of Ω in the sense of the
standard topology of R2 and let J be a finite subset of N which is the set of positive
integers. A family {Ωj}j∈J made up of subsets of Ω defines a partition of Ω if the
following conditions are satisfied:


(i) Int(Ωj) 6= ∅ ∀j ∈ J
(ii) Ω = ∪

j∈J
Ωj

(iii) ∀j′, j′′ ∈ J, j′ 6= j′′ =⇒ Int(Ωj′) ∩ Int(Ωj′′) = ∅

(2.1)

where Int(�) denotes the interior of � in the sense of standard topology of R2.

II. PRELIMINARY TOOLS 

𝜓𝜓

𝜓𝜓
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Let us consider a partition P over Ω consisting in a finite family of closed con-
vex polygons (named also polygonal elements) generically denoted by T . These
polygonal elements are the so-called control volumes in the language of Finite Vol-
ume theory. The control volumes from the partition P defines a conforming Finite
Volume mesh over Ω if (in addition to conditions (i)-(iii) from Definition 2.1) the
following conditions are satisfied:

∀T ′, T ′′ ∈ P, T ′ 6= T ′′ implies that :

◦ either T ′ ∩ T ′′ = ∅
◦ or T ′ ∩ T ′′ = common vertex

◦ or T ′ ∩ T ′′ = common edge,

(2.2)

where ∅ denotes the empty set. Let us denote by ∂P the set of boundary edges
(viewed as degenerate control volumes) and we briefly define the conventional finite
volume mesh T as it follows: T = {P, ∂P} .

We should use intensively in what follows a notion of characteristic function
slightly different from the usual one and defined as follows.

Definition 2.2 Let T be a control volume either from P or from ∂P. We call in
this work the characteristic function of T denoted by 1T the function defined almost
everywhere either in Ω (with respect to Lebesgue measure in 2-D) or on Γ = ∪

k∈K
Γk

(with respect to Lebesgue measure in 1-D) by :

1T (x) =

{
1 if x ∈ Int(T )

0 if x ∈ Ext(T )
(2.3)

where Ext(�) denotes the exterior of a subset � from R2 (with respect to the natural
topology of R2). Recall that Int(�) stands for the interior of � from R2. �

Let us introduce the following discrete function spaces that play a key-role in the
sequel.

Definition 2.3 We set :

SP =
{
vP : Ω −→ R ; vP(x) =

∑
T∈P

vT1T (x), with vT ∈ R ∀T ∈ P
}
, (2.4)

S∂P =
{
v∂P : Γ −→ R ; v∂P(s) =

∑
L∈∂P

vL1L(s), with vL ∈ R ∀L ∈ ∂P
}
, (2.5)

and
ST = SP × S∂P , ST0 = SP ×

{
0S∂P

}
(2.6)

where 0S∂P is the zero-function (denoted simply 0 if there is no risk of confusion)
from the discrete function space S∂P . �
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The Finite Volume method is based on the fundamental idea that the exact solution
u could be approximated inside any control-volume T with a constant UT corre-
sponding to either the mean-value of u or its approximation at a given point located
inside T , with Cartesian coordinates xT . In the context of conventional Finite Vol-
umes the choice of that point is not arbitrary as we will be seeing in assumption
(A3) below. Let us denote by ΓT the boundary of any control-volume T . We need to
specify the following assumptions that make the conventional Finite Volumes very
attractive and realistic for certain engineering problems as subsurface flow problems
(notice that [3, 4, 15] are among distinguished references on fluid flow in porous
media):

(A1) The diffusion coefficient D(·) is a piecewise constant function i.e.

∃S ⊆ N, with S finite, such that: D(x) =
∑
s∈S

Ds1Ωs(x). (3.1)

where {Ωs}s∈S defines a partition P of the domain Ω in the sense of Definition 2.1.

Denote by T the Finite Volume mesh corresponding to the partition P. Let us
make the following assumption on T .

(A2) T is compatible with the discontinuities of D(·) in the sense that the
discontinuity points of D(·) belong to the mesh interfaces ΓT = ∪

T∈P
ΓT , where we

have set P = P ∪ ∂P. In other words any discontinuity point of the function D(·)
is located in a control volume boundary.

(A3) For all ( T ′, T ′′) ∈ P × P such that T ′ and T ′′ are adjacent (that is
ΓT ′ ∩ ΓT ′′ is a common edge for control volumes T ′ and T ′′), the vector xT ′ − xT ′′

is orthogonal to the common edge. This is the so-called orthogonality condition
required for conventional Finite Volume meshes (see [5, 6]).

An immediate consequence of the assumption (1.3) is that D(·) is a nonnegative
constant function in each control volume T . We denote by DT the constant value
of D(·) in the control volume T .

Let us give a brief description of the different steps for getting a conventional
finite volume scheme. We start with introducing some useful notations: E is the set
of all mesh edges, E int is the subset of E made of interior mesh edges and Eext is
the subset of E made of exterior mesh edges i.e. mesh edges lying on the domain
boundary.

Step 1: Integrate the two sides of the balance equation (1.1) in each control
volume T from the family P. So we get what follows (thanks to Ostrogradski’s
theorem):

−
∫

ΓT

DT grad u . νTds +

∫
ΓT

uψ . νTds +

∫
T
µ(x)u(x)dx =

∫
T
f(x)dx ∀T ∈ P.

(3.2)

where νT stands for outward unit vector normal to the control-volume boundary ΓT .
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Step 2 : Re-write the first two integral terms from the left-hand side of (3.2) as

follows for all T ∈ P:

∑
σ∈ET

−
∫
σ
DT grad u . νσ,Tds +

∑
σ∈ET

∫
σ
uψ . νσ,Tds +

∫
T
µ(x)u(x)dx =

∫
T
f(x)dx

(3.3)

where ET is the set of mesh edges σ lying in ΓT and where νσ,T stands for outward
unit vector normal to the portion σ of the control-volume boundary ΓT , called again
mesh edge associated with ΓT . Integrals from the first summation are diffusion fluxes
while integrals from the second summation are convection fluxes (called sometimes
advection fluxes).

Step 3: Perform the approximation of the unknown function u in the control-
volume T with the unknown real constant u(xT ). So one could set what follows
concerning approximation of the reaction term :

∫
T
µ(x)u(x)dx ≈ u(xT ) IT (µ) ∀T ∈ P (3.4)

where IT (�) is the integral of a function � defined in the control volume T .

Step 4 : Look for reasonable approximations of flux integral terms from the left-

hand side of (3.3). What should one understand by reasonable approximations ? We
mean that the flux approximations should take account of the following constraints :

• Perform the upwind approximation of the convection flux in view to ensure
the stability of the global finite volume scheme. For that purpose, let us start with
setting :

Definition 3.1

σ,T
def
=

∫
σ
ψ . νσ,Tds (3.5)

Definition 3.2 (Upwind approximation of the convection flux over σ ∈ E int)
Let σ in ET ∩ EL, with T and L from the set P. We set:

∫
σ
uψ . νσ,Tds ≈

{
u(xT ) σ,T if σ,T ≥ 0

u(xL) σ,T if σ,T < 0.
(3.6)

In other words the upwind approximation of the convective flux across the interior
edge σ in ET ∩ EL could be defined as follows :∫

σ
uψ . νσ,Tds ≈ u(xT ) max{ σ,T , 0} − u(xL) max{− σ,T , 0}. (3.7)

Since (according to the flux continuity principle over grid-block interfaces)

𝜓𝜓

𝜓𝜓
𝜓𝜓

𝜓𝜓 𝜓𝜓

σ,T + σ,L = 0

the preceding approximation of the convective flux is equivalent to the following one

𝜓𝜓 𝜓𝜓
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∫
σ
uψ . νσ,Tds ≈ u(xT ) max{ σ,T , 0} − u(xL) max{ σ,L, 0}. (3.8)

• The flux continuity across interior edges σ, i.e. σ ∈ E int, is a fundamental
physical principle to be met. So we have necessarily for all σ ∈ E int

[−DT grad u . νσ,T + uψ . νσ,T ] +

+ [−DLgrad u . νσ,L + uψ . νσ,L] = 0 on σ (3.9)

Integrating the right-hand and the left-hand sides of (3.9) over σ ∈ E int leads to
the following ”weak formulation” of flux continuity :

[−
∫
σ
DT grad u . νσ,Tds +

∫
σ
uψ . νσ,Tds] +

+ [−
∫
σ
DLgrad u . νσ,Lds +

∫
σ
uψ . νσ,Lds] = 0 ∀ E int 3 σ = ΓT ∩ ΓL (3.10)

Since the weak solution u of the system (1.1)-(1.2) lies in H1
0 (Ω), the trace u|σ

exists (in H
1
2 (σ) for instance) in a unique manner. In consequence we naturally get

what follows :

[

∫
σ
uψ . νσ,Tds] + [

∫
σ
uψ . νσ,Lds] = 0 ∀ E int 3 σ = ΓT ∩ ΓL (3.11)

Thus, the previous ”weak formulation” of flux continuity (3.10) is reduced to

[−
∫
σ
DT grad u . νσ,Tds] + [−

∫
σ
DLgrad u . νσ,Lds] = 0 ∀ E int 3 σ = ΓT ∩ ΓL

(3.12)

In the context of conventional Finite Volumes the family P satisfies the so-called
orthogonality condition (see assumption (A3) above at the beginning of the current
Section). So there exists a family of points {xT ; T ∈ P}, such that for any pair
(T, L) ∈ P ×P, with T and L adjacent, the orthogonal projections of xT and xL on
their common edge σ coincides and let call it xσ. We make the following convention:

”If T is adjacent to the domain boundary we set : L
def
= σ, where σ is the

boundary edge associated with T , and xL coincides with xσ”.

This being said, from the following diffusion flux approximation (assuming the
exact solution restriction u|T in C0(T ) for any T ∈ P; it is the case if u|T ∈ H

2(T )):

𝜓𝜓 𝜓𝜓

L
on

d
on

 J
ou

rn
al

 o
f 

R
es

ea
rc

h
 in

 S
ci

en
ce

: N
at

u
ra

l &
 F

or
m

al

©2025 Great Britain Journals PressVolume 25 | Issue 9 | Compilation 1.048

 

Discrete Maximum Principle Honored by Conventional Finite Volume Schemes for Diffusion-Convection-Reaction Problems: Proof with                  

Geometrical Arguments 

 

 

 

 

 



−
∫
σ
[DT grad u . νσ,T ]ds ≈ DT mes(σ)

dist(xT , xσ)
[u(xT )− u(xσ,T )] ∀σ ∈ ET (3.13)

where mes( . ) stands for Lebesgue measure in one-space dimension, dist(., .) repre-
sents the Euclidean distance and where xσ,T is in fact the point xσ seen as from the
boundary of T by an observer standing inside T . The principle of continuity of u
on grid-block interfaces is expressed at the discrete level by the relation :

u(xσ,T ) = u(xσ,L) ∀σ ∈ ET ∩ EL ∀T, L ∈ (P × P)adj

where (P × P)adj is the subset of P × P made of (T, L) such that T and L are
adjacent. So it is reasonable to set:

u(xσ)
def
= u(xσ,T ) ∀T ∈ P ∀σ ∈ ET .

With the above notation the diffusion flux approximation could read as follows

−
∫
σ
[DT grad u . νσ,T ]ds ≈ DT mes(σ)

dist(xT , xσ)
[u(xT )− u(xσ)] ∀σ ∈ ET (3.14)

Writing down the discrete analogue of the ”weak formulation” (3.12) of continuity
of the diffusion flux (across any interior edge σ ∈ ET ∩ EL) yields

DT mes(σ)

dist(xT , xσ)
[u(xT )− u(xσ)] +

DLmes(σ)

dist(xL, xσ)
[u(xL)− u(xσ)] = 0 ∀σ ∈ ET ∩ EL.

(3.15)

This relation could be viewed as a linear equation with only discrete unknown u(xσ).
This unknown can be obviously determined as a function of discrete unknowns u(xT )
and u(xL) as indicated hereafter. Indeed elementary operations on (3.15) leads to

u(xσ) =
λT,σ u(xT ) + λL,σ u(xL)

λT,σ + λL,σ
∀σ ∈ ET ∩ EL (3.16)

where we have set

λK,σ
def
=

DK

dist(xK , xσ)
∀K ∈ P ∀σ ∈ EK . (3.17)

Substituting the right-hand side of (3.16) to u(xσ) in the diffusion flux approximation
given by (3.14) leads to what follows for any σ ∈ ET ∩ EL :

−
∫
σ
[DT grad u . νσ,T ]ds ≈ DTDLmes(σ)

DTdist(xL, xσ) +DLdist(xT , xσ)
[u(xT )− u(xL)] . (3.18)
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Remark 3.3 (Important to notice)

First of all the diffusion flux approximation (3.18) has been established for interior
edges i.e. σ ∈ E int. Let us explain why the convention consisting to consider
boundary edges σ as also degenerate control-volumes L allows to recover (3.14)
from the relation (3.18). Indeed if σ ∈ ET ∩ Eext then xσ = xL, and it follows that
dist(xL, xσ) = 0 in (3.18).

The following Conventional Finite Volume scheme is obtained from preceding
approximations of different terms of the left-hand side of the balance equation (3.3):
see relations (3.4), (3.8) and (3.18). One could learn more on this topic with [5, 6]
for instance.

Definition 3.4 (Conventional Finite Volume Scheme)

The conventional Finite Volume approximation of the system (1.1)-(1.2) consists in
what follows :

Find

UT = (
∑
K∈P

UK1K , 0S∂P ) ∈ ST0

such that:

∑
L∈P,L6=T

DTDLmes(ΓT ∩ ΓL)

DTdist(xL, T ) +DLdist(xT , L)
[UT − UL] +

+
∑

L∈P,L6=T

[UT max{ σ,T , 0} − UL max{ σ,L, 0}] + UT IT (µ) = IT (f) ∀T ∈ P

(3.19)

where σ ∈ ET ∩ EL. Recall that IT (�) is the integral of a function � defined in the
control volume T . �

The Finite Volume and Mimetic Finite Difference approximations of solutions
to isotropic or anisotropic diffusion problems on distorted grids have been inten-
sively developed in the literature and are today considered as classical topics (see
for instance [6, 7, 8, 9, 10, 14]. Some extensions of Finite Volume Methods have
been designed and known under the name of Gradient Discretization Methods (see
[12] for learning more) and many other extensions are underdevelopment (see [11]
for instance). Let us state the following well-known Discrete Maximum Principle
followed by a proof based upon a Geometrical Technique that seems new in this
context to the best of our knowledge.

Theorem 3.5 (Discrete Maximum Principle) Let us suppose that Ω is a bounded
open subset of R2, connected by polygonal arcs. Let its boundary Γ be the union
of polygonal lines Γk]k∈K, where K is a finite subset of N (see Figure 1 below).
The linear system (3.19) gets a unique solution that satisfies the following positivity
property:

𝜓𝜓 𝜓𝜓
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• If IT (f) ≥ 0 for all T ∈ P then

UT ≥ 0 ∀T ∈ T . (3.20)

Moreover the following discrete maximum principle holds :

• If there exists a control volume T from P such that

UT = 0 ≡ min{UB; B ∈ ∂P}

then
UT = 0 ∀T ∈ P. � (3.21)

The originality of this work relies up on the technique exposed hereafter to prove
that the solution to (3.19) meets the discrete Maximum Principle. This technique
has been successfully applied to a new finite volume method introduced recently
by A. Njifenjou, A. Toudna and S. Moussa in [11]. To the best of our knowledge
the technique widely exposed in the literature (for proving the discrete maximum
principle) is based up on algebraic arguments (see for instance [6,10]). We are going
to develop geometric arguments for proving the discrete Maximum Principle stated
above in Theorem 3.5.

♦ We have to first prove (3.20), that is:

If ∑
L∈P,L6=T

DTDLmes(ΓT ∩ ΓL)

DTdist(xL, T ) +DLdist(xT , L)
[UT − UL] +

+
∑

L∈P,L6=T

[UT max{ σ,T , 0} − UL max{ σ,L, 0}] + UT IT (µ) ≥ 0 ∀T ∈ P (4.1)

with
UT = 0 ∀T ∈ ∂P (4.2)

then
UT ≥ 0 ∀T ∈ P. (4.3)

Let us set for all (T, L) ∈ P × P:

αTL
def
=

DTDLmes(ΓT ∩ ΓL)

DTdist(xL, T ) + DLdist(xT , L)
(4.4)

IV. GEOMETRICAL TECHNIQUE FOR PROVING (3.20) AND (3.21) 

𝜓𝜓 𝜓𝜓
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. Then notice that if T and L are adjacent control volumes i.e. ΓT and ΓL get a
common edge, we have

αTL � 0. (4.5)

and otherwise we have
αTL = 0. (4.6)

In the sequel VE denotes the set of control volumes from P adjacent to a given
control volume E from P.

Let us start the proof with assuming that we have (4.1) and (4.2). We should

deduce that (4.3) holds. Now let us set:
UPmin

def
= min{UT ; T browsing the set P}

and

Pmin def
= {T ∈ P / UT = UPmin}.

(4.7)

First of all we should notice that UPmin exists as {UT ; T browsing the set P} is a

finite subset of R. Therefore Pmin is not an emptyset.

• If Pmin∩∂P 6= ∅, it is clear that the discrete Maximum Principle is satisfied.

Indeed, denote by L a (degenerate) control-volume belonging to Pmin ∩ ∂P. So we
have

UL = 0 (since L ∈ ∂P) and UL = UPmin (since L ∈ Pmin). (4.8)

Hence

UT ≥ 0 ∀T ∈ P. (4.9)

• We are going to geometrically prove that Pmin ∩ ∂P = ∅ is impossible. Rea-
soning by the absurd let us suppose that:

Pmin ∩ ∂P = ∅. (4.10)

This assumption necessarily ensures that: Pmin ⊂ P and Pmin is not empty. Let us

arbitrarily consider a control volume T from Pmin (notice that T is not the closure
of T ). Since T necessarily belongs to P, the assumption (4.1) applies for T = T and,
thanks to definition (4.4) and relation (4.5), we get (with σ ∈ ET ∩ EL, if T and L
adjacent):

0 ≤
∑
L∈VT

αTL︸︷︷︸
� 0

≤ 0︷ ︸︸ ︷
[UT − UL] + IT (µ)︸ ︷︷ ︸

≥ 0

≤ 0︷︸︸︷
UT +
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+
∑

L∈P,L6=T

[UT max{ σ,T , 0} − UL max{ σ,L, 0}] (4.11)

Let us prove the following lemma stating that the last summation in the right-
hand side of the preceding inequality is in fact less than or equal to zero.

Lemma 4.1 ∑
L∈P,L6=T

[UT max{ σ,T , 0} − UL max{ σ,L, 0}] ≤ 0 (4.12)

where σ = ΓT ∩ ΓL.

Notice that if ΓT ∩ ΓL = ∅ the expression [UT max{ σ,T , 0} − UL max{ σ,L, 0}] is
zero.

Proof. The following equality is obvious :

∑
L∈P,L6=T

[UT max{ σ,T , 0} − UL max{ σ,L, 0}] =
∑
σ∈ET

≤ 0︷ ︸︸ ︷
[UT − UL] max{ σ,L, 0}︸ ︷︷ ︸

≥ 0

+

+
∑
σ∈ET

UT [max{ σ,T , 0} − max{ σ,L, 0}] . (4.13)

The proof is ended if we show that the second summation in the right-hand side of
the preceding equality is less than or equal to zero. That is

∑
σ∈ET

UT [max{ σ,T , 0} − max{ σ,L, 0}] ≤ 0 .

This assertion is true. Indeed we have (since for all σ = ΓT ∩ ΓL, σ,T + σ,L = 0
holds in virtue of the convection flux continuity):

∑
σ∈ET

UT [max{ σ,T , 0} − max{ σ,L, 0}] =

=
∑
σ∈ET

UT [max{ σ,T , 0} −max{− σ,T , 0}] =

=
∑
σ∈ET

UT [max{ σ,T , 0} + min{ σ,T , 0}]

Therefore we get∑
σ∈ET

UT [max{ σ,T , 0} − max{ σ,L, 0}] =
∑
σ∈ET

UT σ,T
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i.e. ∑
σ∈ET

UT [max{ σ,T , 0} − max{ σ,L, 0}] = UT

∑
σ∈ET

σ,T

In virtue of definition (3.5) it is clear that∑
σ∈ET

UT [max{ σ,T , 0} − max{ σ,L, 0}] = UT

∑
σ∈ET

∫
σ
· νσ,T ds

It follows from Ostrogradski’s theorem (called some times Divergence theorem) that∑
σ∈ET

UT [max{ σ,T , 0} − max{ σ,L, 0}] = UT

∫
T

div( ) dx

Thanks to the assumption (1.6) and since UT ≤ 0, it becomes obvious that∑
σ∈ET

UT [max{ σ,T , 0} − max{ σ,L, 0}] ≤ 0 .

This ends the proof of the Lemma.

It obviously follows from inequalities (4.11) and the preceding Lemma as well

that :

UL = UT ∀L ∈ VT . (4.14)

For any pair of points from R2, with Cartesian coordinates x and y, define the
subset [x, y] of R2 in the following way :

[x, y] =
{
z ∈ R2 / ∃0 ≤ θ ≤ 1 such that z = θx+ (1− θ)y

}
. (4.15)

Let us set: 
FT =

{
xΓ ∈ Γ / ∃xT ∈ T such that [xT , xΓ] ⊂ Ω

}
and

ST =
{

[xT , xΓ] / xT ∈ T and xΓ ∈ FT
}
.

(4.16)

Remark that FT is an infinite set and there is an obvious bijective mapping from
ST onto T × FT . So ST is also an infinite set. The set ST contains a finite subset
AT made up of segments that pass through a mesh vertex or a mesh edge. So
its complement AC

T
in ST is also infinite. Thus there exists (at least) a segment

∆(x̃T , x̃Γ) from AC
T

, with extremities x̃T ∈ T and x̃Γ ∈ Γ. In the sequel ∆(xT , x̃Γ)
is simply denoted by ∆ since there is no risk of confusion. Let us set:

P∆ =
{
T ∈ P / T ∩∆ 6= ∅

}
. (4.17)

◦ The first important remark is that P∆ contains at least two control vol-
umes namely the control volume T belonging to P and a degenerate control volume
TΓ (belonging to ∂P of course) such that x̃Γ ∈ TΓ.
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◦ The second important remark straightly coming from (4.14) is that :

UL = UT ∀L ∈ P∆. (4.18)

From these two remarks we see that

UTΓ
= UT , with TΓ ∈ ∂P.

Therefore we have the following result:

TΓ ∈ P
min ∩ ∂P

which is in contradiction with the assumption (4.10). The proof of the Positivity
Property (3.20) ends here.

♦ We have now to prove (3.21). For this purpose let us assume that there
exists a control volume T from P such that

UT = 0 ≡ min{UB; B ∈ ∂P}.

We shall deduce that
UT = 0 ∀T ∈ P. (4.19)

Let us recall that a subset A of R2 is connected by polygonal arcs if and only if for
any pair of points from A there exists a polygonal line inside Ω joining these two
points.

Let T be an arbitrarily chosen non degenerate control volumes i.e. T ∈ P and
let C(T , T ) be the set of polygonal lines inside Ω joining T to T . It is clear that
C(T , T ) is an infinite set. Likewise it is clear that the subset of C(T , T ) denoted by
D(T , T ) and made up of polygonal lines passing through a mesh vertex or involving
a mesh edge is a finite set. So the complement DC(T , T ) of D(T , T ) in C(T , T ) is an
infinite set. Notice that any polygonal line from DC(T , T ) is associated with a finite
family of nondegenerate control volumes. Let us denote by Π(T , T ) a polygonal line
from DC(T , T ). So there exists a finite sequence of nondegenerate control volumes
{Tn}Nn=1 associated with Π(T , T ), where the numbering is such that for all T ∈ P:

T1 = T , TN = T

and

∀ 2 ≤ n ≤ N − 1, Tn is adjacent to Tn−1 and Tn+1.

(4.20)

We know from the previous development of this proof that (see (4.14) above):

UTn = UTn+1 ∀ 1 ≤ n ≤ N − 1

Thus, by transitivity of the equality relation we get what follows:

UT = UT ∀T ∈ P.
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Illustration of gridding defined over an open bounded subset Ω of R2,
connected by polygonal arcs, with borders Γk]k∈K surrounding hollows represented
by yellow quadrilaterals.
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