

CrossRef DOI of original article:

1 Effect of Methanolic Extract of Mucuna Pruriens on Hormonal 2 Modulation and Sperm Parameters in Male Rat

3

4 Received: 1 January 1970 Accepted: 1 January 1970 Published: 1 January 1970

5

6 Abstract

7

8 Index terms—

9 1 I. INTRODUCTION

10 Infertility is an International problem that involves young couples having unprotected intercourse. According to
11 global evidence, infertility in male ranges from 20-70% (1). Declining male reproductive health is a major concern
12 among the population of reproductive age. Various environmental factors causing male infertility are described
13 in the scientific and medical literature (2). Numerous external and internal factors can increase the production
14 of reactive oxygen species (ROS) above and beyond the capacity of cellular antioxidants, leading to oxidative
15 stress. Exposure to Endocrine -Disrupting Chemicals (EDCs) is ubiquitous in our everyday lives and may result
16 in oxidative stress, which can have an impact on human reproduction and development (3). Pesticides such as
17 Pyrethroids, Organophosphates, Peroxyacetic acids, Carbamates and Organochlorines have been investigated in
18 the study of male fertility (4). Mankind that promoted a negative effect on the environment due to the increase
19 of its own requirements and technology producing unfavorable consequences on the surroundings.

20 London Journal of Research in Science: Natural and Formal 1, 2 Dibromo 3 chloropropene (DBCP), is one
21 such organochlorine pesticide that was used widely for the control of Agricultural and Domestic pests. Twenty
22 years after it was banned, it is still found in the environment, because it takes 140 years to degrade completely (5).
23 Pesticides' effects on sperm parameters have been related in numerous studies (6). Teitelbaum (1999) established
24 that DBCP causes a significant reduction in spermatogenesis among pesticide manufacturing workers. Also,
25 hormones play role in the fertility and infertility conditions. Thus, investigations on hormonal changes may be
26 useful tool in the assessment of both fertility and infertility conditions. Whorton et al., 1977, Kelce et al., 1995
27 ?? Bernard et al., 2007 (8-10) also verified that DBCP also have estrogenic effects in males by blocking androgen
28 receptors. It is well established that the acute stress that produces excess cortisol decreases the Testosterone
29 production and suppress male sex hormones such as Luteinizing hormone (LH), Follicular-Stimulating Hormone
30 (FSH) (11)(12)(13).

31 Mucuna pruriens (M. pruriens) belongs to the family Fabaceae, native to tropical countries from Africa and
32 Asia, including India, Bangladesh, Srilanka & China (14). The seeds have been considered as magic velvet bean
33 in several published reviews (15,16). It has a long history in Indian Ayurvedic medicine, where it is used to treat
34 for Diarrhea, Sexual Debility, Tuberculosis, Impotence, Rheumatic disorders (17,18). Suresh et al., (2009) (19)
35 reported that M. pruriens helps in increasing the semen quality and it acts as aphrodisiac. M. pruriens seed is
36 economically available all year and it contains phytochemicals such as alkaloids, glycosides, saponins (20). Due to
37 its richness in various biological activities, it has been characterized by in vitro antioxidant activity, anti-microbial
38 agents, and natural antioxidants (21). M. pruriens is not only a reproductive enhancer, but also an important
39 natural material for the treatment of male infertility (22). Thus, there is a great possibility that this plant may
40 act through the mechanism of free radical removal in the management of reproductive toxicity.

41 2 II. MATERIALS AND METHODS

42 3 Animals

43 Healthy adult male Sprague-Dawley rats (8 weeks old), weighing between 160-220g were used in the present study.
44 All rats were kept in plastic cages under the experiment room condition at Laboratory Animal Unit PGIBMS,

11 SPERM CONCENTRATION AND MOTILITY

45 University of Madras, India. The rats were housed under conditions of controlled temperature ($26\pm2^{\circ}\text{C}$) with 12
46 h light and 12 h dark exposure. The rats received a standard rat pellet diet and water ad libitum.

47 4 Animal Ethics

48 The 24 Sprague-Dawley Male Rats were obtained from the Central Animal House facility, Dr. ALM Post Graduate
49 Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai, Tamilnadu, India. Rats were used
50 as per the guidelines from the Institutional Animal Ethics Committee (07/021/08).

51 5 Experimental design

52 The rats were divided into four groups of six animals each in this experiment. Group I -Animals were treated as
53 control (0.9% saline

54 6 Collection of samples

55 At the end of the experiment, the animals were anesthetized by mild ether and euthanized by cervical dislocation.
56 Blood was collected and was centrifuged at 4°C , 13,000 rpm for 15 min to separate the serum from the blood
57 cells. After that, the testosterone and cortisol hormone levels were analyzed from the blood serum. The abdominal
58 region was wiped with normal saline and the scrotum was dissected out. The testes, epididymis plus vas deferens
59 were rapidly collected and their fat pads surrounding tissues were removed before weighed and recorded. Then
60 the right testis and right epididymis plus vas deferens were fixed in Bouin's fixative (85 ml of saturated picric acid
61 added to 10 ml of 40% formaldehyde and made up to 100 ml with glacial acetic acid) for histological examinations.

62 7 Preparation of Methanolic M. Pruriens Seed Extract

63 The seeds of Mucuna pruriens were purchased from a local country drug shop, Chennai Tamilnadu, India. The
64 seeds of M. pruriens were shade dried and then coarsely powdered. A known weight of the seed powder was
65 soaked in 100% methanol and kept at room temperature ($22\pm^{\circ}\text{C}$) for 96 h. Then it was filtered, and the process
66 was repeated three times. The extract was concentrated to obtain a semisolid viscous brown mass, which is
67 "crude extract" by using a water bath. This crude extract is then resuspended in water and injected to rats for
68 the experimental studies.

69 8 III. SPERM ANALYSIS

70 9 Sperm morphology

71 Sperm morphology was evaluated by determining the percentage of normal and abnormal forms by Diff-Quick
72 staining method (23). To assess the percentage of morphologically abnormal sperm, the cauda of epididymis
73 was rinsed with 0.5 mL of physiological saline (0.9% NaCl) to obtain a sperm suspension. Aliquots of sperm
74 suspension were stained with 2% eosin. Hundred spermatozoa per animal were analyzed microscopically at $400\times$
75 magnification and counted spermatozoa with abnormal traits as follows: twisted body, detached head, round
76 tails, and abnormal neck.

77 10 Epididymal Sperm Count

78 Epididymal sperm count of the control and treated animals was determined by the method as described by
79 Latchoumycandane and Mathur, (2002) (24). An incision was made through the cauda of epididymis, light
80 pressure was applied to this region, and sperm was extruded. 5 μl aliquot of epididymal sperm was diluted with
81 95 μl diluent (5% sodium bicarbonate, 10ml 0.35 % formalin and 0.25 g trypan blue) and approximately 10 μl of
82 this diluted sperm was allowed to stand for 5 min in a humit chamber to prevent drying. The sedimented sperms
83 were counted under the light microscope at 400x magnifications. The measured sperm number was multiplied
84 by the dilution factor to yield the total sperm count.

85 11 Sperm concentration and motility

86 Epididymal sperms were counted with a hemocytometer using a method described by Yokoi et al., (2003) (25). 5
87 μl of sperm suspension was diluted with 95 μl of phosphate-buffered saline (PBS, pH 7.4) solution. Approximately
88 10 μl of the diluted sperm suspension was transferred to each counting chamber of the hemocytometer and was
89 allowed to stand for 5 minutes. The settled sperms were counted with the help of a light microscope at 400x
90 magnifications. Under light microscope, the sperm were counted within two upper and lower counting chambers
91 in triplicate examinations and calculated to be sperm concentration (million cells/mL).

92 London Journal of Research in Science: Natural and Formal

93 The percentage of motile sperm was evaluated microscopically in each sample by viewing a drop of sperm
94 suspension obtained from left cauda epididymis diluted with Tris buffer solution (3.63 g of Trishydroxymethyl
95 aminomethane, 0.50 g of glucose, 1.99 g of citric acid and 100 ml of distilled water) on a prewarmed (37°C) slide
96 and cover slip and observed under light microscopy at 400x magnification. Motility estimations were performed

97 from four different fields in each sample. The mean of the four estimations were used as the final motility score
98 (Sonmez et al., 2005) (26).

99 **12 Dead and abnormal sperms**

100 20 μ l of sperm suspension was mixed with an equal volume of 0.05% eosin-Y (Sigma Chemicals). After 2 min
101 of incubation at room temperature, slides were viewed under microscope at 400x magnification. Dead sperms
102 appeared pink and live sperms were not stained. Two hundred sperms were counted for each sample and viability
103 percentage was calculated. For the analysis of morphological abnormalities, sperm smears were drawn on clean
104 slides, and allowed to dry in air overnight. The slides were stained with 1% eosin-Y and 15% nigrosin. This
105 was examined at 400x magnifications for morphological abnormalities such as amorphous, head less, bicephalic,
106 coiled or abnormal tails (Wyrobek et al., 1983) (27).

107 **13 Sperm Vitality tests 3.5.1 Hypo-osmotic swelling test (HOS)**

108 The Hypo Osmotic Swelling (HOS) test was performed as described by Jeyendran et al., (1984) (28). This is
109 based on the semi permeability of the intact cell membrane, which causes spermatozoa to swell under hypo-
110 osmotic conditions when an influx of water results in an expansion of cell volume. Through HOS test the ability
111 of the plasma membrane to transport water by subjecting the spermatozoa to hypo-osmotic conditions can be
112 measured.

113 **14 Dye exclusion tests (Eosin and Nigrosin stain) Sperm vitality 114 test**

115 Eosin-nigrosin staining was used to assess the vitality of sperms. This test was studied according to the method
116 of WHO (1999) (23). One drop of sperm suspension was mixed with two drops of 1 % eosin Y. After 30 seconds,
117 three drops of 10 % nigrosin were added and mixed well. Thin smears were then prepared and observed under
118 the light microscope at 400X magnification. Viable sperms remained colorless while non-viable sperms-stained
119 red.

120 **15 Hormonal Assays**

121 Blood samples were separated by centrifugation at 10000 rpm for 15 minutes to determine the testosterone (T),
122 follicular stimulating hormone (FSH), and luteinizing hormones (LH) levels (29).

123 Serum FSH was assayed by solid phase tube method by making use of a commercial kit obtained from
124 Diagnostic Products Corporation (DPC), USA. Serum LH was assayed by solid phase coated tube methodology by
125 making use of a commercial kit obtained from Diagnostic Products Corporation (DPC), USA. Serum testosterone
126 was assayed by solid phase coated tube methodology by making use of a commercial kit obtained from Diagnostic
127 Products Corporation (DPC), USA.

128 **16 Statistical analysis**

129 Data were presented as Mean \pm Standard Deviation (SD). One way analysis of variance (ANOVA) followed
130 by Tukey's multiple comparison method was used to compare the means of different groups by using SPSS.7.5
131 students version.

132 **17 London Journal of Research in Science: Natural and Formal**

133 In this present investigation, the administration of DBCP has caused significant reduction in the weight of testis
134 and accessory sex organs in group II with respect to its controls. On *M. pruriens* supplementation the weight of
135 testis and accessory sex organs recovered remarkably ($p < 0.05$), from the DBCP toxicity (Table 1). The body
136 weight of group III male rats shows significant improvement after treated with *M. pruriens* seeds.

137 **18 Sperm Count**

138 The results demonstrated the decrease in sperm count of rats under stress.

139 **19 IV. RESULTS**

140 **20 Bodyweight and Organ weight**

141 **21 Hormonal Parameters**

142 Each value represents mean \pm SD, a -Group II, III, IV compared with Group I, b -Group III compared with
143 Group II * $p < 0.001$; # $p < 0.01$; @ $p < 0.05$; NS -Not significant Testosterone, luteinizing hormone and follicle
144 stimulating hormone levels in the male experimental rats were observed (Fig. ??a,3b &3c). The level of these
145 hormones in the experimental rats followed similar trend. They were significantly less in group II rats which
146 received 50mg/kg of DBCP. Contrarily, upon administration of *M. pruriens* extract these hormone levels were

22 VI. CONCLUSION

147 significantly increased in group III comparable to that of group II toxicity bearing rats. There was however no
148 significant difference ($p > 0.05$) in the level of these hormones recorded in group 4 rats compared to control
149 group. In recent years, the major health concern is toxic effects of drug and environmental chemicals on Human
150 reproductive system. Reproductive toxicity can be defined as adverse effect of chemical substance on sexual
151 function and fertility effects on male and females or dysfunction of the reproductive system. The oxidative stress
152 that causes dysfunction of male reproductive hormone, which could eventually lead to male infertility. According
153 to global evidence, infertility is a common and severe health problem affecting 20-70% of male population (1).
154 Most of those patients were most likely exposed to toxicants, which may have contributed to their infertility (30).

155 In the present investigation, DBCP treated rats showed a significant decrease in body weight and testicular
156 weight when compared to the control. This may be due to the disturbance in the general metabolic functions of
157 the rats exposed to toxicant. It is reported that in toxicity conditions, the body weight of Experimental Animal is
158 significantly reduced (31). In addition to these, hormonal changes may also be one of the reasons for weight loss
159 (32). Also, the loss of testicular and epididymal weight may be due to reduced bioavailability of sex hormones
160 (33). Additionally, it is suggested that the decrease in body weight may be for increased degeneration of lipids
161 and proteins because of the direct effects of reproductive toxicant (34). Treatment with *M. pruriens* in Group
162 III animal shows significant increase in the body and testicular weight. This may be due to the cytoprotective
163 property of the seed extract (31).

164 The sperm count in the epididymis is one of the most sensitive tests for evaluating spermatogenesis (35). In
165 the current study, administration of DBCP to group II animals caused the epididymal epithelium to degenerate,
166 which resulted in a significant decrease in sperm count compared to group I control animals. Upon treatment with
167 *M. pruriens* increase the sperm count due to the huge amounts of phenolic constituents that are characterized
168 by free radical scavenging and high antioxidant activities which suppress the free radical mediated disturbances
169 in sperm. This is in well accordance with Suresh et al., (2009) and Chitra (2022) (19,22) revealed an increase in
170 sperm count and motility by the seed extracts of *M. pruriens*.

171 Sperm motility is often used as a marker of chemically induced testicular toxicity. Sperm movement is
172 important for sperm functional capacity and the assessment of sperm movement is useful for detection or
173 evaluation of male reproductive toxicity (36). It is reported that the increase in the Oxidative stress leads
174 to a decreased sperm motility, damage to the acrosome membranes and inability of the sperm to fertilize (37). In
175 the present study, DBCP leads to diverse cells and oxidative damage to sperms can lead to DNA damage, alter
176 membrane functions, impair motility.

177 Decrease in sperm motility and abnormal morphology of sperm was noticed in DBCP treated rats when
178 compared to control rats. On the contrary, treatment with seed extract of *M. pruriens*, significantly increased the
179 sperm motility and in contrast reduced the abnormal sperm morphology. This may be due to the protective and
180 restorative effect rendered by the methanolic seed extract of *M. pruriens*. In view of this, Shami et al., (2009)
181 (38) have also reported that antioxidants play a major role in improving sperm morphology and sperm count.

182 The hypo-osmotic swelling (HOS) test was used for evaluating the functional integrity of human spermatozoa
183 membranes, by evaluating its reaction under hypoosmotic conditions. In the present investigation exposure
184 to DBCP caused severe plasma membrane damage in the sperm due to the generation of free radicals. The
185 administration of *M. pruriens* stabilized and restored the normal membrane potential due to the presence
186 of glycoside, saponins and sterols present in the seed extract. (42)(43)(44). Testosterone is the main male
187 gonadal hormone produced by the interstitial cells of the Leydig cells in the testis. The role of testosterone and
188 gonadotrophin has been studied extensively in androgen-deficient rats using different models and in prevention of
189 degeneration of spermatogenic cells (45). A reduction in testosterone level could be the primary cause of induction
190 of infertility induced by the compound. Testosterone is one of the major indexes of androgenicity (46,35). In the
191 present study, there is a decline in testosterone levels in the DBCP treated group II rats. The reduced serum
192 testosterone levels support the possibility of reproductive tract alterations due to androgen deficiency.

193 The morphological changes of the seminiferous tubule including Leydig and Sertoli cells would indicate damage
194 to the reproductive system. In the present study the administration of DBCP decreases the FSH and LH levels,
195 due to the toxic action of DBCP. This is in consistence with the finding of Pease et al., (1991) (47) that chemical
196 toxicant causes persistent dysfunction of Leydig cells which disturb normal testosterone levels. In this connection,
197 ??iorini et al., 2004 (48) have also reported that LH concentration was rise and Testosterone levels were decreased
198 during the complete failure of Leydig cells. However, hormonal production may be reduced in rats due to the
199 seminiferous tubular damage (49). On the contrary , treatment with *M. pruriens* in group III significantly
200 decreases the toxic effects of DBCP and the level of FSH, LH and testosterone were increased. This might be due
201 to the presence of the active constituents such as flavonoids and saponins which directly or indirectly scavenge
202 the oxidative damage to different cells and organs while normalizing their function. In this regard, Doshi et al.,
203 (2003) (50) have reported that flavonoids and antioxidants remarkably reduce oxidative damages in the cells.
204 Based on the results of this study, future research could investigate male rat sterility using a fertility test. In
205 addition, sire litters can be examined after mating.

206 22 VI. CONCLUSION

207 In conclusion, the current study supports the methanolic extract of *M. pruriens* has a remarkable fertility effect
208 in male rats. These results conclude that the seed extract of *M. pruriens* significantly increase sperm quality by

209 elevating antioxidant enzyme activity and improve Hormone levels. Because of its efficacy, it can be considered
210 as potential seed extract for further pharmaceutical development in the treatment of infertility.

211 **23 This page is intentionally left blank**

London Journal of Research in Science: Natural and Formal¹

Figure 1:

212

Figure 3: Fig

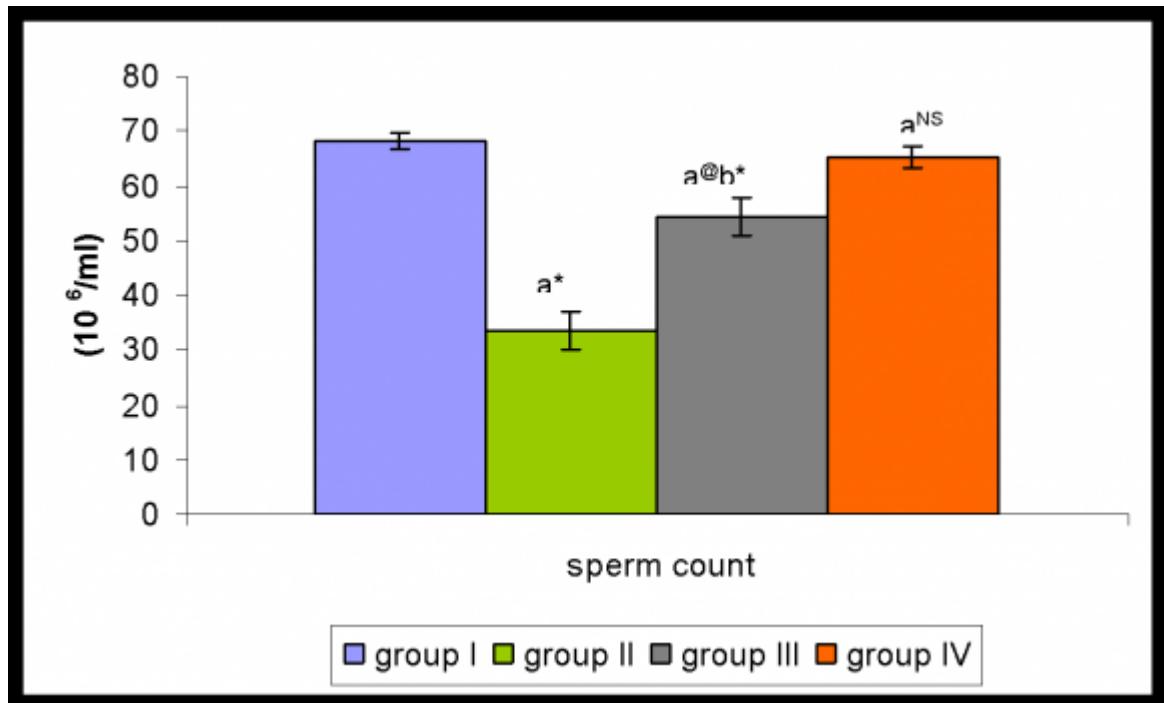


Figure 4:

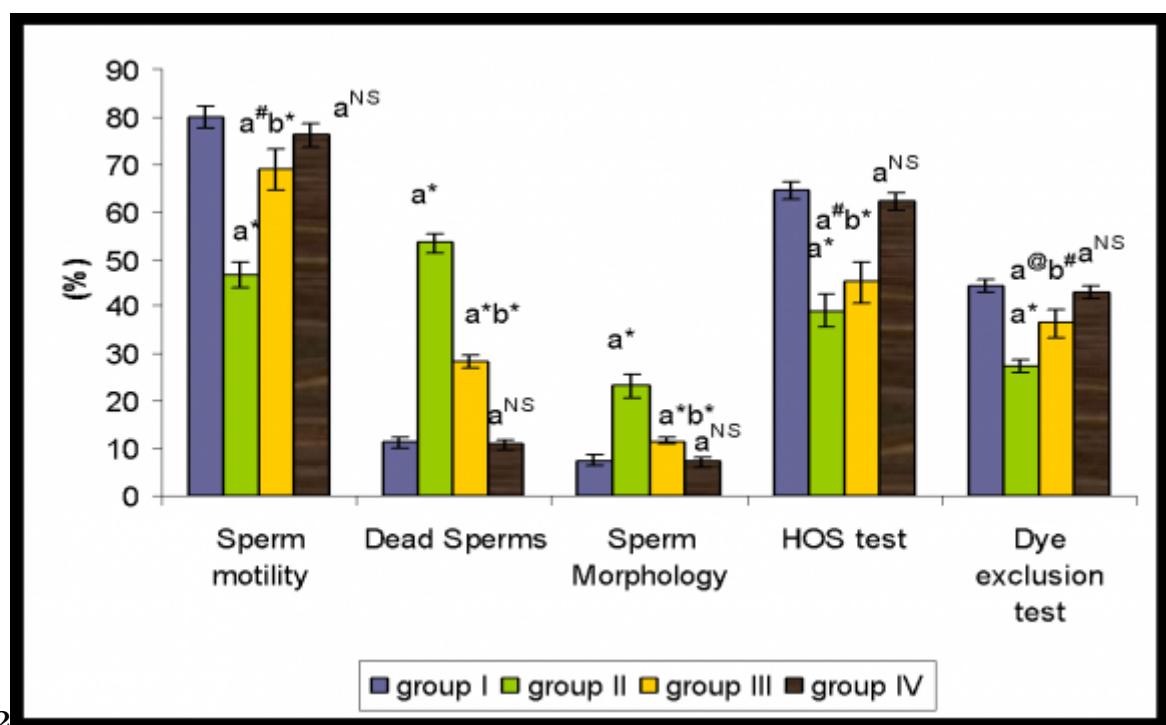


Figure 5: Fig 2 :

1

Parameters	Group I (Control)	Group II (DBCP)	Group III (DBCP + <i>M. pruriens</i>)	Group IV (<i>M. pruriens</i>)
Body weight(g)	160.33±4.33	132.30±4.43a*	146.06± 2.51a* b*	157.49±3.19a NS
Testicular weight (g)	2.67±0.16	1.61±0.09a*	2.38±0.16a* b*	2.69±0.10 a NS
Testis weight relative (g)	1.76± 0.04	1.14 ±0.09 a*	1.63± 0.11 a @	b* 1.79 ±0.05 a NS
Epididymis weight (g)	0.379± 0.01	0.28 ±0.02 a*	0.320±0.02 a #	b* 0.359±0.01 a

NSValues are expressed as mean + SD for six animals in each group, a -Group II, III, IV compared with Group I, b -Group III compared with Group II. The significance level of p<0.05.

Figure 6: Table 1 :

Figure 7:

213 ACKNOWLEDGEMENT I would like to express deep and Sincere gratitude to my Research Supervisor
214 Late Dr. M.P. Balasubramanian, Professor, Dr. ALM PGIBMS, Taramani, Chennai-113. for giving me the
215 opportunity to do research and invaluable guidance throughout my Research work. My Sincere Thanks goes to
216 Dr. K. Pushkala, SDNB Vaishnav college for women for the continuous support and encouragement throughout
217 the paperwork. London Journal of Research in Science: Natural and Formal

218 [London Journal of Research in Science: Natural and Formal] , *London Journal of Research in Science: Natural*
219 *and Formal*

220 [Virant-Klun et al. ()] , Irma Virant-Klun , Senka Imamovic-Kumalic , Bojana Pinter . *Endocrine-Disrupting*
221 *Chemicals (Bisphenols, Phthalates, and Parabens) with Human Semen Quality Antioxidants* 2022. 11 (8) p.
222 1617.

223 [Walton et al. (1995)] 'A Clinical, ultrasound and hormonal markers of androgenicity in acne vulgaris' S Walton
224 , W J Cunliffe , K Keczkes , A S Early , H McGarrigle , G Katz , M Reese , R . *BJD* August. 1995. 133 (2)
225 p. .

226 [Yousef et al. ()] 'Aluminium -induced deterioration in reproductive performance and seminal plasma biochem-
227 istry of male rabbits: protective role of ascorbic acid' M I Yousef , A M El-Morsy , M S Hassan . *Toxicology*
228 2005. 5 (1-2) p. .

229 [Kavitha ()] 'Amazing bean Mucuna pruriens: A comprehensive review' Thangamani C Kavitha . *Journal of*
230 *Medicinal Plants Research* 2014. 8 p. .

231 [Pathania et al. ()] 'An assessment of potential nutritive and medicinal properties of Mucuna pruriens: a natural
232 food legume' R Pathania , P Chawla , H Khan , R Kaushik , M A Khan . *London Journal of Research in*
233 *Science: Natural and Formal* 2020. 10 (3) p. 261. (Biotech)

234 [Wyrobek et al. ()] 'An evaluation of human sperm as indicators of chemically induced alterations of spermato-
235 genic function. A report of the U.S. Environmental Protection Agency Gene-Tox Program' A J Wyrobek ,
236 L A Gordon , J G Burkhart , M W Francis , R W Kapp , Jr , G Letz , H V Malling , J C Topham , M D
237 Whorton . *Mutat Res* 1983. 115 (1) p. .

238 [Rajeshwar et al. ()] 'Antitumor and in vivo antioxidant status of Mucuna pruriens (Fabaceae) seeds against
239 Ehrlich ascites carcinoma in Swiss albino mice' Y Rajeshwar , M Gupta , U K Mazumder . *Iranian J Pharm*
240 *Ther* 2005. 4 p. .

241 [Doshi et al. ()] 'Bilateral subthalamic nucleus stimulation for Parkinson's disease' P K Doshi , N A Chhaya ,
242 M A Bhatt . *London Journal of Research in Science: Natural and Formal* 2003. 51 (1) p. . (Neurol India.)

243 [Suryawanshi et al. ()] *Bioactive Components of Magical Velvet Beans, Legume Crops -Prospects, Production,*
244 *and Uses*, Prajakta P Suryawanshi , Kamble , A Vishwas , Jyoti P Bapat , Jadhav . 2020. (Intech Open.
245 92124/chapters/72106)

246 [Reed et al. ()] 'Circular dichroic investigations of secondary structure in synthetic peptide inhibitors of cAMP-
247 dependent protein kinase: a model for inhibitory potential' J Reed , V Kinzel , H C Cheng , D A Walsh .
248 *Biochemistry* 1987. 1 (24) p. .

249 [Pease et al. (1991)] 'Comparing alternative approaches to establishing regulatory levels for reproductive toxic-
250 ants: as a case study' W Pease , J Vandenberg , K Hooper . *Environ Health Perspect* Feb. 1991. 91 p.
251 .

252 [Jeyendran et al. ()] 'Development of an assay to assess the functional integrity of the human sperm membrane
253 and its relationship to other semen characteristics' R S Jeyendran , H H Van Der Ven , M Perez-Pelaez , B
254 G Crabo , L Zaneveld . *J Reprod Fertil* 1984. 70 (1) p. .

255 [Bernard et al. ()] 'Dichlorodiphenyltrichloroethane impairs follicle stimulating hormone receptor-mediated sig-
256 naling in rat Sertoli cells' L Bernard , N Martinat , C Lécureuil . *Reprod Toxicol* 2007. 23 p. .

257 [Yoshida et al. ()] 'Effect of dibromochloropropane(DBCP) on the hormone receptors of the male rat reproductive
258 system' S Yoshida , H Yamada , I Sugawara , K Takeda . *Biosci Biotechnol Biochem* 1998. 62 p. .

259 [Suresh et al. ()] *Effect of Mucuna pruriens on oxidative stress mediated damage in aged rat sperm*, S Suresh ,
260 Elumalai Prithiviraj , Seppan Prakash . 2009. 33 p. .

261 [Warren and Jr ()] 'Effects of 1,2-dibromo-3-chloropropane on male reproductive function in the rat' D W
262 Warren , Wisner Jr , JR , AhmadN . *Biol Reprod* 1984. 31 p. .

263 [Perry ()] 'Effects of environmental and occupational pesticide exposure on human sperm: a systematic review'.
264 M J Perry . *Hum Reprod* 2008. 14 p. .

265 [Yamamoto et al. ()] 'Effects of glycyrrhizin and cortisone on cholesterol metabolism in the rat' M Yamamoto ,
266 N Takeuchi , S Kotani , A Kumagai . *Endocrinol Jpn* 1970. 17 (5) p. .

267 [Latchoumycandane and Mathur ()] 'Effects of vitamin E on reactive oxygen species-mediated 2,3,7,8-
268 tetrachlorodi-benzo-p-dioxin toxicity in rat testis' C Latchoumycandane , P P Mathur . *J Appl Toxicol*
269 2002. 22 (5) p. .

270 [Zhai et al. ()] 'Estrogen receptor messenger ribonucleic acid changes during Leydig cell development'. J Zhai ,
271 K D Lanclos , T O Abney . *Biol Reprod* 1996. 55 (4) p. .

272 [Whorton et al. ()] 'Function in DBCP exposed pesticide workers'. D Whorton , R M Krauss , S Marshall , T H
273 Milby , Stubbs . *Lancet*, ii 1977. p. .

274 [Aitkin et al. ()] 'Generation of reactive oxygen species, lipid peroxidation and human sperm function'. R J Aitkin
275 , J S Clarkson , S Fishel . *Biol. Reprod* 1989. 41 p. .

276 [Mantovani ()] 'Hazard identification and risk assessment of endocrine disrupting chemicals with regard to
277 developmental effects'. A Mantovani . *Toxicology* 2002. p. .

278 [Meistrich et al. ()] 'Hormonal treatment after cytotoxic therapy stimulates recovery of spermatogenesis'. M L
279 Meistrich , G Wilson , I Huhtaniemi . *J. Am. Coll. Toxicol* 1989. 8 p. .

280 [Nykolaichuk et al. ()] *Impact of Environmental Factors on Male Reproductive Health* Wiad Lek, P Nykolaichuk
281 , Roksolana , S Oleksandr , Fedoruk , V Volodymyr , Vizniuk . 2020. 73 p. .

282 [Sarah et al. ()] 'Impact of environmental toxin exposure on male fertility potential'. Krzastek Sarah , C , Jack
283 Farhi , Marisa Gray , Ryan P Smith . *Transl Androl Urol* 2020. 9 (6) p. .

284 [Kalyanaraman ()] 'Infertility Treatment in male rats by methanol extract of Mucuna pruriens'. Chitra Kalya-
285 naraman . *Journal of Cell and Tissue Research* 2022. 22 (2) p. .

286 [Shami et al. ()] 'JS-K, an arylating nitric oxide (NO) donor, has synergistic anti-leukemic activity with
287 cytarabine (ARA-C)'. P J Shami , A E Maciag , J K Eddington , V Udupi , K M Kosak , J E Saavedra , L
288 K Keefer . *Leuk Res* 2009. 33 (11) p. .

289 [Laboratory manual for the examination of human semen and sperm cervical mucus interaction 4th ()]
290 *Laboratory manual for the examination of human semen and sperm cervical mucus interaction 4th*,
291 1999. New York: Cambridge University Press.

292 [Agarwal et al. ()] 'Male Oxidative Stress Infertility (MOSI): Proposed Terminology and Clinical Practice
293 Guidelines for Management of Idiopathic Male Infertility'. A Agarwal , N Parekh , Panner Selvam , MK
294 . *World J Mens Health* 2019. 37 (3) p. .

295 [Schrade ()] *Man and the workplace; Assessing his reproductive health. Chemical Health and Safety*, S Schrade .
296 2013. 2003. p. .

297 [Yokoi et al. ()] 'Mild persistent hypercalcitoninemia after total thyroidectomy in patients with papillary thyroid
298 carcinoma'. K Yokoi , T Imai , A Shibata , Y Hibi , T Kikumori , H Funahashi , A Nakao . *J. Ethnopharmacol*
299 2003. 62 p. .

300 [Ahmad et al. ()] 'Morphological and biochemical changes in the adult male rat reproductive system following
301 long-term treatment with 1,2-dibromo-3-chloropropane'. N Ahmad , J R Wisner , D W Warren . *Anat Rec*
302 1988. 222 p. .

303 [Fung et al. ()] 'Mucuna pruriens Linn. seed extract pretreatment protects against cardiorespiratory and neuro-
304 muscular depressant effects of Naja sputatrix (Javan spitting cobra) venom in rats'. S Y Fung , N H Tan , S
305 M Sim , E Marinello , R Guerranti , J C Aguiyi . *Indian Journal of Experimental Biology* 2011. 49 (4) p. .

306 [Herman ()] 'Neural control of chronic stress adaptation'. J P Herman . *Front Behav Neurosci* 2013. 7 p. 61.

307 [Kumar ()] 'Oxidative stress response of rat testis to model prooxidants in vitro and its modulation'. Rajesh
308 Kumar , T , Muralidhara . *Toxicology in Vitro* 2002. 16 (6) p. .

309 [Kelce et al. ()] 'Persistent DDT metabolite p,p'-DDE is a potent androgen receptor antagonist'. W R Kelce , C
310 R Stone , S C Laws . *Nature* 1995. 375 p. .

311 [Lafuente et al. ()] 'Possible estrogenic and or antiandrogenic effects of methoxychlor on prolactin release in male
312 rats'. A Lafuente , N Marquez , Y Pousada , Paz Dm Esquifino , AL . *Arch Toxicol* 2000. 74 (4-5) p. .

313 [Mohamadpour et al. ()] 'Protective effects of curcumin co-treatment in rats with establishing chronic variable
314 stress on testis and reproductive hormones'. M Mohamadpour , A Noorafshan , S Karbalay , T Talaei , E
315 Aliabadi . *Int J Reprod Biomed* 2017. 15 (7) p. .

316 [Natarajan et al. ()] 'Review on "Mucuna"-The wonder plant'. K Natarajan , N Narayanan , N Ravichandran .
317 *International Journal of Pharmaceutical Science Rev Res* 2012. 17 (1) p. .

318 [Fiorini et al. ()] 'Sertoli cell junctional proteins as early targets for different classes of reproductive toxicants'.
319 C Fiorini , A Tilloy-Ellul , S Chevalier , C Charuel , G Pointis . *Reprod Toxicol* 2004. 18 p. .

320 [Amin et al. ()] 'Sexual function improving effect of Mucuna pruriens in sexually normal male rats'. Kmy Amin
321 , M N Khan , S Z Rahman , N A Khan . *Fitoterapia* 1996. 67 p. .

322 [Filho et al. ()] 'Spermatic cord torsion, reactive oxygen and nitrogen species and ischemia-reperfusion injury'.
323 D W Filho , M A Torres , Al B Bordin . *Mol Aspects Med* 2004. 25 (1-2) p. .

324 [Pectasides et al. ()] 'Testicular Function in Patients with Testicular Cancer Treated with Blieomycin-Etoposide
325 -Carboplatin (BEC 90) combination chemotherapy'. D Pectasides , M Pectasides , D Farmakis , M Nikolaou
326 , M Koumpou , V Kostopoulou , N Mylonakis . *European Urology* 2004. 45 (2) p. .

327 [Takahashi ()] 'Testicular toxicity of dietary 2,2-bis(4-hydroxyphenyl) propane (bisphenol A) in F344 rats'. Oishi
328 Takahashi . *Archives of Toxicology* 2001. 75 p. .

329 [Sonmez et al. ()] 'The effect of bee propolis on oral pathogens and human gingival fibroblasts'. S Sonmez , L
330 Kirilmaz , M Yucesoy , B Yücel , B Yilmaz . *J Ethnopharmacol*. Dec 2005. 1 (3) p. .

331 [Lampariello et al. ()] 'The magic velvet bean of Mucuna pruriens'. L R Lampariello , A Cortelazzo , R Guerranti
332 , C Sticozzi , G Valacchi . *Journal of traditional and complementary medicine* 2012. 2 (4) p. .

333 [Perreault ()] 'The mature spermatozoa as a target for reproductive toxicants'. S D Perreault . *Reproductive and
334 Endocrine Toxicology*, K Boekelheide , R E Chapin , P B Hoyer , C Harris (eds.) 1997. 10 p. .

335 [Teitelbaum ()] 'The toxicology of 1,2-dibromo-3-chloropropane (DBCP): a brief review'. D T Teitelbaum . *Int
336 J Occup Environ Health* 1999. 5 p. .

337 [Linh et al. ()] 'Time-course changes of steroidogenic gene expression and steroidogenesis of rat Leydig cells after
338 acute immobilization stress'. Yuank Linh , Zhouh-Y , But , Suh , Lius , Zhuq , Wangy , Huy , Shany . *Int J
339 Mol Sci* 2014. 15 (11) p. .