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s Abstract

Index terms— . . . . .
There are two universal methods for local study of nonlinear equations and systems of different kinds (algebraic,

ordinary and partial differential): (a) normal form and (b) truncated equations.

10 (a) Equations with linear parts can be reduced to their normal forms by local changes of coordinates. For
11 algebraic equation, it is Implicit Function Theorem. For systems of ordinary differential equations (ODE), 1
12 completed the theory of normal forms, began by ?Zoincaré (1879) [Poincaré, 1928] and ??ulac (1912) ??Dulac,
13 1912] for general systems ??Bruno, 1964; ??971] and began by ??irkhoff (1929) [Birkhoff, 1966] for Hamiltonian
14 systems ??Bruno, 1972;1994].

15 (b) Equations without linear part: I proposed to study properties of solutions to equations (algebraic, ordinary
16 differential and partial differential) by studying sets of vector power exponents of terms of these equations.
17 Namely, to select more simple (”truncated”) equations ?7?Bruno, 1962;1989;2000] by means of generalization to
18 polyhedrons the ??ewton (1678) [Newton, 1964] and the ??adamard (1893) ??Hadamard, 1893] polygons.

19 By means of power transformations ??Bruno, 1962;1989; ?7022b] the normal forms and the truncated equations
20 can be strongly simplified and often solved. Solutions to the truncated equations are asymptotically the first
21 approximations of the solutions to the full equations. Continuing that process, we can obtain then 772.1)

» 1 II. SINGLE ALGEBRAIC EQUATION

» 2 The implicit function theorem:

24 London Journal of Research in Science: Natural and Formal Theorem 2.1. Let { (X, 7, T ) =7a Qr (T )X Q ?
25 r,where0? Q?Zmn,07r? Z, the sum is finite and a Q,r (T ) are some functionsof T=(t1,...,tm),
26 besides a 00 (T ) 7 0,a 01 (T ) ? ? 0. Then the solution to the equation f (X, ?, T ) = 0 has the form? = ?b R
27 (T )X R def = b(T, X),

28 where 0 7 R 7 Z n, 0 < ?R?, the coefficients b R (T ) are functions on T that are polynomials from a Q,r (T
20 ) with ?Q? + r ? ?R? divided by a

30 27R7-1 01

31 . The expansion b(T, X) is unique. Let g(X, ?, T ) = (X, ? + b(T, X), T ), 272.2) then g(X, 0, T ) 7 0.

32 This is a generalization of Theorem 1.1 of ??Bruno, 2000, Ch. II] on the implicit function and simultaneously
33 a theorem on reducing the algebraic equation ?772.1) to its normal form ?72.2) when the linear part a 01 (T ) ?
34 7 0 is nondegenerate. In it, we must exclude the values of T near the zeros of the function a 01 (T ).

35 Let the point X 0 = 0 be singular. Write the polynomial in the formf (X) = 7a Q X Q , where a Q = const 7
3 R,or C.Let S(f) ={Q:aQ?=0}

© o~

37 The set S is called the support of the polynomial f (X). Let it consist of points Q 1, . . . , Q k. The convex
38 hull of the support S(f ) is the set ??2.3) which is called Newton’s polyhedron.
39 Its boundary ?1?”(f ) consists of generalized faces 1?” (d) j , where d is its dimension of 0 ? d ? n -1 and j is

a0 the number. Each (generalized) face I1?” ('d ) j corresponds to its:

41 ? boundary subset S (d)j =S ? 1?” (d) j, ? truncated polynomial f (d) j (X) =?a Q X Qover Q ? S (d) j ,
42 ? and normal coneU (d) j=P:?P, Q7?7 =7P, Q7?7 7 >7?P, Q777 72, Q7?,Q7?? 7S (d)j,Q7??? 7 S\S
a3 (d)j

44 , 7724) where P=(p1l,. . . ,pn)? RnLet X=(x1,. .. ,xn)? RnorCn, and f (X) be
45 a polynomial. A point X =X 0, f (X 0) = 0 is called simple if the vector (?f /?7x1,. . . ,?f /?xn ) in it
46 is non-zero. Otherwise, the point X = X 0 is called singular or critical. By shifting X = X 0 + Y we move the
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5 PARAMETRIC EXPANSION OF SOLUTIONS:

point X 0 to the origin Y = 0. If at this point the derivative ?f /?7x n ? = 0, then near X 0 all solutions to the
equation f (X) = 0 have the foormyn=7?bql,..qn-lyql1? ? ? yqn-1n-1, thatis, lie in (n -1)-dimensional
space. 17°(f) = Q =k j=1ujQj,nj? 0, kj=lnj=1,

Nonlinear Analysis as a Calculus

At X 7 0 solutions to the full equation f (X) = 0 tend to non-trivial solutions of those truncated equations f
(d) j (X) = 0 whose normal cone U (d) j intersects with the negative orthant P 2 0 in R n * .

Remark 1. If in the sum ?72.1) all Q belong to a forward cone C:?7Q, Ki? >ci,i=1,..., m,

then in the solution (2.2) of Theorem 2.1 all R belong to the same cone C: ??Bruno, 1989, Part I, Chapter 1,
§3.7Q Ki? >ci,i=1,...,m,

Let In X def =(Inx1,...,Inxn). The linear transformation of the logarithms of the coordinates(In y 1 ,
...,nyn)def=InY = (In X)?,

(2.5) ??Bruno, 1962;2000: where ? is a nondegenerate square n-matrix, is called power transformation.

3 Power transformations

By the power transformation (2.5), the monomial X Q tranforms into the monomial Y R, where R = Q (? *)
-1 and the asterisk indicates a transposition.

A matrix ? is called unimodular if all its elements are integers and det ? = £1. For an unimodular matrix 7,
its inverse ? -1 and transpose ? * are also unimodular.

Theorem 2.2. For the face 1?” (d) j there exists a power transformation (2.5) with the unimodular matrix ?
which reduces the truncated sumf (d) j (X) to the sum from d coordinates, that is, f (d) j (X) =Y S ?(d) j (Y
), where 2(d) j(Y ) =?2(d)j(y1,...,yd

) is a polynomial. Here S ? Z n . The additional coordinates y d+1 ,. . .,y n are local (small).

The article ??Bruno, Azimov, 2023] specifies an algorithm for computing the unimodular matrix ? of Theorem
2.2.

4 Let 1?77 (d) j
be a face of the Newton polyhedron 1?”(f ). Let the full equation f (X) = 0 is changed into the equation g(Y ) =
0 after the power transformation of Theorem 2.2. Thus ?(d) j(y1,...,yd) =gy 1,...,yd,0,...,0).

5 Parametric expansion of solutions:

London Journal of Research in Science: Natural and Formal

Let the polynomial ?j be the product of several irreducible polynomials?(d) j=mk=1hlkk (y1,...,y
d),(2.6)

where 0 < 1 k ? Z. Let the polynomial h k be one of them. Three cases are possible:

Case 1. The equation h k = 0 has a polynomial solution yd = ?(y 1, . . . , y d-1 ). Then in the full
polynomial g(Y ) let us substitute the coordinatesy d =7 + zd ,

for the resulting polynomial h(y 1 ,. . . ;yd-1l,zd,yd+1. . . ,yn) again construct the Newton

polyhedron, separate the truncated polynomials, etc. Such calculations were made in [Bruno, Batkhin, 2012] and
were shown in ??Bruno, 2000, Introduction].

Case 2. The equation h k = 0 has no polynomial solution, but has a parametrization of solutionsy j = ? j (T
),j=1,...,4, T=(t1,...,td1).

Then in the full polynomial g ('Y ) we substitute the coordinatesy j=71i (T )+ ?j?,j=1,...,d,(2.7)

where ? j = const, ? |7 j| ? = 0, and from the full polynomial g(Y ) we get the polynomialh = 7a Q ?? r (T
)Y 7?7 Q77 7 r ,(2.8)

whereY 7?7 = (yd+1,...,yn),0?2Q?? =(qd+1,...,qn)?Znd,0?r?Z Thusa 00 (T )70,
a0l (T)=dj=17j?7(d)j/?j(T).

If in the expansion (5.7) 1 k = 1, then a 01 ? ? 0. By Theorem 2.1, all solutions to the equation h = 0 have
the form i.e., according to (2.7) the solutions to the equation g = 0 have the form? =?b Q 7?7 (T )Y 7?7 Q 7?7,
London Journalofy j =7 j(T)+?2jQ?? (T)Y??7Q7?? ,j=1,...,d.

Such calculations were proposed in [Bruno, 2018a].

If in (5.7) 1k > 1, then in (2.8) a 01 (T ) ? 0 and for the polynomial (2.8) from Y ?? , 7 we construct a
Newton polyhedron by support S(h) = {Q ?? ,r: aQ?? x (T ) ?? 0}, separate the truncations and so on.

Case 3. The equation h k = 0 has neither a polynomial solution nor a parametric one. Then, using Hadamard’s
polyhedron [Bruno, 2018a; ?7019a], one can compute a piece-wise approximate parametric solution to the
equation h k = 0 and look for an approximate parametric expansion.

Similarly, one can study the position of an algebraic manifold in infinity.

Here we consider an ordinary differential equation of the formf x, y,y ? ,. ..,y (n) = 0,(3.1)

where x is independent variable, y is the dependent variable, y 7 = dy/dx and f is a polynomial of its
arguments. Near x 0 = 0 or 7 we look for solutions of equation ?7?3.1) in the form of asymptotic seriesy = ? k=1
bkxsk,(3.2)

III. SINGLE ODE [BRUNO, 2004] 3.1. Setting of the problem:
where b k are functions of log x and ?s k > ?s k41 with? =-1,ifx0=0,1,if x 0 = 7. (3.3)
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We set X = (x, y). By a differential monomial a(x, y) we mean the product of an ordinary monomial To every
differential monomial a (X) one assigns its (vector) exponent Q(a) = (q 1, q 2 ) ? R 2 by the following rules.
For a monomial of the form ?73.4) let 2?7 1, ?? 2 ); for a derivative of the form (3.5) let Q d 1 y/dx 1= (-1, 1).cx
rlyr2def=cXR,3.4QcX R =R, thatis, Q (cxrlyr2)=(

When differential monomials are multiplied, their exponents are summed as vectors:Q (ala2)=Q (al) +
Qa2).

The set S(f ) of exponents Q (a i) of all the differential monomials a 2 (X) in a differential sum of the form
?73.6) is called the support of the sum f (X). Obviously, S(f ) ? R 2. The closure I?”(f ) of the convex hull of
the support S(f ) is referred to as the polygon of the sum f (X). The boundary ?1?”(f ) of the polygon 1?”(f )
consists of vertices 1?7 f (d) j (X) =ai (X)over Q (ai)? S(d)j. (3.7)

Let R 2 * be the plane conjugate to the plane R 2 so that the inner (scalar) product?P, Q? def=p1lql+p
2q2

is defined for anyP = (p1,p2)? R2*and Q= (q1,q2) ? R 2. Corresponding to any face 17” (d) j are
its normal cone, U (d) j=P: 7P, Q?=7P, Q77 ,Q, Q77 S(d)j?P,Q?>7?P, Q7?7 ,Q7?? 7 S({)\S(d)]

and the truncated sum (3.7). All these constructions are applicable to equation ?73.1), where f is a differential
sum.

Let x 7 O or x 7 7 and suppose that a solution of the equation (3.1) has the formy =crxr + o |x| 147 ,(3.8)

where c r is a coefficient, c r = const ? C, ¢ r 7 = 0, the exponents r and ? are in R, and ?7? < 0. Then we
say that the expressiony =crxr,cr? =0 (3.9)

gives the power-law asymptotic form of the solution (3.8).

Thus, corresponding to any facel?” ( d ) j are the normal cone U (d ) jin R 2

* and the truncated equation f (d) j (X) = 0. (3= 0. We set g(X) def = X -Q f (0) j (X).

Then the solution (3.7), (3.10) satisfies the equation

6 Solution of the truncated equation:

London Journal of Research in Science: Natural and Formal g(X) = 0

Substituting y = cx r into g(X), we see that g (x, cx r ) does not depend on x, ¢ and is a polynomial in r, that
is,g (x, cxr ) ? ?(r),

where ?(r) is the characteristic polynomial of the differential sum f (0) j (X). Hence, in a solution (3.9) of the
equation (3.10) the exponent r is a root of the characteristic equation ??73.11) and the coefficient c r is arbitrary.
Among the roots r i of the equation ?773.11), one must single out only those for which one of the vectors ? 771,
r), where ? = £1, belongs to the normal cone U (0)?(r) def = g (x, x r ) = 0,j of the vertex 1?” (0) j .

In this case the value of ? uniquely determined. The corresponding expressions of the sum with an arbitrary
constant ¢ r are candidates for the role of truncated solutions of the equation ?73.1). Moreover, by 773.3), if ?
=-1,thenx? 0, and if 7 = 1, then x 7 7.

Complex roots r to characteristic equation ?7?73.11) may bring to exotic expansions of solutions 773.2), where
coefficients b k are power series in x ?7i with real 7 7 R and i 2 = -1.

7 Corresponding to an edge 17”
(1)j is a truncated equation (3.10) with d = 1 whose normal cone U (1) jisaray {*Nj,? >0} If?(1,r)? U

(1)

j , this condition uniquely determines the exponent r of the truncated solution (3.9) and the value 7 = £1 in
??3.3). To find the coefficient ¢ r , one must substitute the expression (3.9) into the truncated equation (3.10).
After cancelling a factor which is a power of x, we obtain an algebraic defining equation for the coefficient ¢ r ,f
(cr)def =x-sf(1)j(x,crxr) =0 Corresponding to every root c r = c (i)

r ? = 0 of this equation is an expression of the form (3.9) which is a candidate for the role of a truncated
solution of the equation 7?73.1). Moreover, by ?7?73.3), if in the normal cone U

(1) jone has p 1 < 0, then x ? 0, and if p 1 > 0, then x ? ?. From the polygon 1?” of the initial equation (3.1)
we take a vertex or an edge 1?” (d) j . Then we found a power solution y = b 1 x P 1 of the truncated equation
f(d)j (X) =0, as it was described above, puty = b 1 x P 1 4+ z and obtain new equation g(x, z) = 0.

We construct the polygon 1 I?” for the new equation, take a vertex or an edge 1 1?” (e) k , solve the truncated
equation?(e) k (x, z) = 0,

and obtain the second term b 2 x P 2 of expansion (3.2) and so on.

8 Computation of solution to equation (3.1) as expansion (3.2)

London Journal of Research in Science: Natural and Formal

We construct the polygon 1 I?” for the new equation, take a vertex or an edge 1 1?” (e)

k , solve the truncated equation?(e) k (x, z) = 0,

and obtain the second term b 2 x P 2 of expansion (3.2) and so on.

In [Bruno, 2004] there are some properties, that simplify computation. Thus, we can obtain the 4 types of
expansions (3. ??Bruno, 2006; ??018b]; 4. Exotic, when all b k are power series in x i? [Bruno, 2007].
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10 SO HERE THE EIGENVALUE ?

Except expansions (3.2) of solutions y(x) of equation ?73.1), there are exponential expansionsy = ? k=1 b k
(x) exp [K?(x)] ,

where b k (x) and ?(x) are power series in x ??Bruno, 2012a,b].

Also there are solutions in the form of transseries [Bruno, 2019b]. These results were applied to 6 Painleve
equations [Bruno, 2015; ?7018b,c; ??runo, Goruchkina, 2010]. Written as differential sums they are: Equation
P 5 :Equation P 1: f (x,y) def =-y ?? + 3y 2 + x = 0. Equation P 2: f (x,f (z, w) def = -z 2 w(w -1)w ?? 4+ z
232w-12(w?)2-zww-1)w? + 4+ (w-1)3 (w2 +7) + 72w 2 (w-1) + 722 w 2 (w + 1) = 0. Equation
P6:f(x,y)def =2y 7?7 x2 (x-1)2y(y-D)(y-x)-(y?)2[x2(x-1)2(y-)(y x)++x2(x-1) 2y(y-x) +
x2(x-1)2y(y-1) [+ +2y ? [x(x-1) 2y(y -1)(y x) + x2 (x-Dy(y -1)(y %)+ + x 2 (x-1) 2y(y -1) | -[ 27y 2
(y-1)2(y=x)2+2%(y-1)2(yx)2++27(x-1)y2(y-x)2+2?x(x-1)y2 (y-1) 2] =0.

Herea, b, c,dand 7, ?, 7, 7 are complex parameters. If all they are nonzero, then polygons for these equations
are shown in Figures 1,2,3.

9 Supports and polygons for equations

q2ql1011P1q2ql011P2
Nonlinear Analysis as a Calculus

Then there exists such power series 7(x) with integral increasing exponents, that after substitutiony = z +
?(x) (3.13) the transformed differential sum g(x, z) = f (x, z + ?(x)) (3.14) forz =27 =77 ? =z (n) =0
(3.15)

has only resonant terms b m x m , wherem = v + 7 k 7 Z (3.16)

and m ? 7.

So here the eigenvalue? k is resonant if 7 -v 7 7 k 7 Z.

3) truncated differential sum f (0) 1 (X) have eigenvalues ? 1, ... ,? 1,07 17 n; 4) the most left point of
the support S(f ) in the axis q 2 = 0 be (7, 0). Evidently ? ? Z.

Supports and polygons for equations P 3 (left), P 4 (right). -101q1q2P3q2q1011P 42

Nonlinear Analysis as a Calculus

Theorem 3.3. Let 1) fx,y,y 7 ,. ..,y (n) beapolynomial inx,y,y? ,. ..,y (n);2)its Newton polygon
1?7”(f ) have a vertex 1?” (0) 1 = (v, 1) at the right side of its boundary ?1?”;

3) truncated differential sum f (0) j (X) have eigenvalues ? 1,. .. ,7 1,07 1?7 n;4) the most right point of

the support S(f ) in the axis q 2 = 0 be (?, 0). Evidently ? ? Z.

Then there exists such power series 7(x) with integral decreasing exponents, that after substitution (3.13), the
differential sum (3.14) for identities ?73.15) has only resonant terms b m x m , where equality ?773.16) is true,
and m 7 7. f(0) j (X) has no integral eigenvalue ? k ? ?-v (for Theorem 3.2) or ? k ? ? -v (for Theorem 3.3),
then the initial equation f (X) = 0 has formal solution y = 7(x). If the truncated sum f (0) j (X) contains the
derivation y (n) , then the series 7(x) converges according to Theorem 3.4 in [Bruno, 2004].

10 So here the eigenvalue 7

k is resonant if 7 -v ? ? k ? Z. Equations g(x, z) = 0 for (3.

Remark 2. If the truncated sum f (0) j (X) has integral eigenvalue ? k ? ?v (for Theorem 3.2) or ? k ? ? -v
(for Theorem 3.3), then the initial equation f (X) = 0 Supports and polygons for equations P 5 (left), P 6 (right).
42q1011P5q2ql011P6

Nonlinear Analysis as a Calculus

We will consider such a generalization of the power function cx r which preserves their main properties. The
real numberp ? (?(x)) =7 lim x ? 77 log |?7(x)| 7 log |x]| ,

where arg x = const ? [0, 27), is called the order of the function ?(x) on the ray when x ? 0 or x 7 ?. The order
p ? (?) is not defined on the ray arg x = const, where the limit point x = 0 or x = ? is a point of accumulation
of poles of the function 7(x).

In Subsections 3.2-3.4 it was shown that asx ? 0 (? =-1) orasx ? ? (? = 1) solutions y = ?(x) to the ODE
f (x, y) =0, where f (x, y) is a differential sum, can be found by means of algorithms of Plane PG, ifp ? (?(x))

Al=p?7dl?/dx1,1=1,..., n,

where n is the maximal order of derivatives in f (x, y). Here we introduce algorithms, which allow calculate
solutions y = ?(x) with the propertyp ? (?(x)) +1? ? =p?7d1?/dx1,1=1,. .. n,where? ? 7 R, ? = £1.
Lemma 3.3.1. If p? (?(x)) =-77+p? (? 7 (x))=-2274+p? (? 7?7 (x)), then 7 + 77 7 ? 0.

Note, that in Plane PG we had 7 7 = -1,1i. e. 7 +77 7 = 0. So, new interesting possibilities correspond to 7
+ 77?7 >0.

We consider the ODESf (x,y) =iai(x,y) =0,

where f (x, y) is a differential sum. To each differential monomial a i (x, y), we assign its (vector) power
exponent Q(ai)=(q1l,q2,q3)? R 3 by the following rules: power exponent of the product of differential
monomials is the sum of power exponents of factors:Q(ala2)=Q(al) + Q(a2).

The set S(f ) of power exponents Q(a i ) of all differential monomials a i (x, y) presented in the differential
sum f (x, y) is called the space support of the sum f (x, y). Obviously, S(f) ? R 3 . The convex hull I?”(f ) of
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the support S(f ) is called the polyhedron of the sum f (x, y). The boundary ?1?”(f ) of the polyhedron 1?”(f )
consists of the vertices 1?7 (0) j , the edges 1?7 £ (d) j (x, y) = a i (x, y) over Q(ai) ? 1?7 (d) j ? S(f).

Support and polyhedron for equation P 1 . The approach allows to obtain solutions with expansions 773.2),
where coefficients b k (x) are all periodic or all elliptic functions ??Bruno, 2012¢,d; ??runo, Parusnikova, 2012].

Expansions of solutions to more complicated equations such as hierarchies Painlevé see in 77 Anoshin, Beketova,
(et al.), 2023; Bruno, For P 1 -P 5 with all parameters nonzero, their polyhedrons are shown in ??igures 4, 77,
77, 7?7, 7?7 correspondingly.

Here we consider the system 7i = fi (X),i=1,...,n, ?74.1) where?’=d/dt, X =(x1,...,xn)? Cn
or Rn,all fi(X) are polynomials from X. A point X = X 0 = const is called singular if all fi (X 0) =0, 1 =
1,...,n

Let the point X 0 = 0 be a singular point. Then the system (4.1) has the linear part? = XA,

where A is a square n-matrix. Let ? = (? 1,. .., 7 n ) be a vector of its eigenvalues.

Theorem ?7?.1 ([Bruno, 1964; 7?7971 7?7 1972]). There exists an invertible formal change of coordinatesx i = ?
i(Y),i=1,...,n,

where 7 i (Y ) are power series from Y = (y 1, . . . , y n ) without free terms, which reduces the system
(4.1) tonormal form?i=yigi(Y)=yiYQ,i=1,...,n,(4.2)

IV. AUTONOMOUS ODE SYSTEM

11 Normal form:

Support and polyhedron for equation P 2. Here y i g i (Y ) are power series on Y without free terms.Let N i =
{Q?Zn:qj?0,j?=i,qi?-1},i=1,...,n,

Then the number k of linearly independent Q ? N satisfying the equation ( 4.3) is called multiplicity of
resonance.

Theorem 4.2. Let k be the multiplicity of resonance of the system (4.1). Then there exists a power
transformationln Z = (InY ) ?

with unimodular matrix ? which reduces the normal form (4.2), ( 4.3) to the system(lnzi)=hi(y1,. ..
,vyk),i=1,...,n,

in which the first k coordinates form a closed subsystem without a linear part, and the remaining nk coordinates
are expressed via them by means of integrals.

Thus, if ? 7 = 0, then the original system (4.1) of order n can be reduced to a system of order k, but without
the linear part. Support and polyhedron for equation P 3 .

12 Figure 6:
Let’s write the system (4.1) as ??74.4) and put AQ=(a1Q,...,anQ).(lnxi)=aiQXQ,i=1,...,n,
The setS = {Q : A Q ? =0}
is called the support of the system ??4.4). Its convex hull 1?” (2.3) is its Newton’s polyhedron. Tts boundary
?1?” consists of generalized faces 1?” 7 boundary subset S (d) j = 1?7 (d) j ? S, ? truncated system (In X) =
A jiX)=AQXQoverQ?S(d)j, (45) ? normal cone U (d)j? Rn * (2.4) and ? tangent cone T (d) j .
According to ??Bruno, 2000, Chapt. 1, §2] let d > 0 and Q be the interior point of a face 1?” (d) j , that
is, Q does not lie in a face of smaller dimension. If d = 0, then 4.2: Newton’s polyhedron ??Bruno, 1962;2000].
Support and polyhedron for equation P 4 . Q = 1?” (0) j . The conic hull of theset S-Q T (d) j=Q=11Q 1
Q+?7?7?2+pkQk-Q,pnl,...,1k?0,Q1,...,Qk? Sis called the tangent cone of the face I?” (d)
j;0?2d?7n-1,T(d)j?Rn.d? =XRdt,
R ? Z n , which reduce the system (4.4) to the formd (InY ) /d ? = B(Y ),(4.6)

where the systemd (InY ) /d? =B(d)j(Y)?Bd)j(y1,...,yd)=BFy1l,...,yd,0,...,
0),(4.7)

corresponds to the truncated system (4.5). be singular for the truncated system (4.7). Near the point (4.8),
the local coordinates arezi=yi-y0i,i=1,...,d,zj=yj,j=d+1,...,n.

Let at the point Z=(z1,...,zn ) = 0 the eigenvalues of the matrix of the linear part of the system (4.7)
are? =71 ,...,7n,where 71 ,. .., 7d are the eigenvalues of the subsystem of the first d equations.

Theorem 4.4. There exists an invertible formal change of coordinates ??Bruno, 2022b]: where W = (w 1, . .
., wn ) which reduces the system (4.6) to the generalized normal formzi=7? i (W ),i=1,...,n,

13 Generalized normal form

fi=wici(W)=wiciQWQ,i=1,...,n,(4.9)
whereQ, ? =0and Q7T (d)j? Zn.
(4.10)Here ? i=wi?iQWQ,i=1,...,n whereQ?T (d)j? Zn.

The system (4.9), (4.10) is reduced to a system of lower order by the power transformation of Theorem 4.2 .

Let X = X 0 be a singular point of the sys tem ??74.1). Two cases are possible: Case 1. ? 7 = 0, then
by Theorem 4.1 we reduce the system to a normal form, then by Theorem 4.2 we reduce the normal form to a
subsystem of order k < n without linear part and obtain the problem of studying its singular points.



282
283
284

286
287
288
289

291
292
293
294
295

296

297
298

300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326

327

328
329
330
331
332
333
334
335
336
337
338
339
340
341

15 NORMAL FORM:

Case 2. 7 = 0, then we compute the Newton polyhedron and separate truncated systems in which the normal
cone U (d) j intersects the negative orthant of P ? 0. Each of them is reduced to the form (4.6), (4.7) by the
transformation of Theorem 4.3. For each singular point (4.8), we apply Theorem 4.4 and obtain a subsystem of
smaller order.

Continuing this branching process, after a finite number of resolution of singularities we come to an explicitly
solvable system from which we can understand the nature of solutions of the original system. But Theorem 4.3
can be applied to the original system (4.1), i.e. to each of the generalized faces 1?” (d) j of its Newton polyhedron
1?7, Then to each singular point (4.8) we apply Theorems 4.4, 4.2 and reduce the order of the system. Here
also through a finite number of steps of the singularity resolution we come to an explicitly solvable system. This
allows us to study the singularities of the original system in infinity. This is the basis of the integrability criterion
in [Bruno, Enderal, 2009;Bruno, Enderal, Romanovski, 2017].

The normal form can be computed in the neighborhood of a periodic solution or invariant torus ?7?Bruno,
1972, 11, §11], ??Bruno, 2022a].

See ??Bruno, Batkhin, 2023] for similar computations for a system of partial differential equations.

14 Analysis of singularities: tem

and is defined by one Hamiltonian function H(x, y), wherex = (x1,. .. ,xn),y=(y1l,. ..,y m ). Here
the normal form of the system (4.11) corresponds to the normal form of one Hamiltonian function. See details
in [Bruno, Batkhin, 2021].

Let X=(x1,...,xn)? CnorR nindependent variables and y ? C or R be a dependent one. Consider
Z=(z1,...,zn,zn+l)=(x1,...,xn,y).

Differential monomial a(Z) is called a product of an ordinary monomialcZ R =czr117 ? ? zr n+1 n+1,

where ¢ = const, and a finite number of derivatives of the following form? 1y ?7x1117 7 ? 7 Inxndef =7
ly?XL,07?1j?Z,nj=11j=LL=(11,...,1n).

Vector power exponent Q(a) ? R n+1 corresponds to the differential monomial a(Z), it is constructed according
to the following rules:Q(c) = 0,ifc? =0,QZR=R,Q?1yj /?X L = (-L, 1).

The product of monomials corresponds to the sum of their vector power exponents:Q(ab) = Q(a) + Q(b).

Differential sum is the sum of differential monomials V. ONE PARTIAL DIFFERENTIAL EQUATION 5.1.
Support [Bruno, 2000 Ch. be 6-8]:f (Z) = a k (Z). (5

Let the support S(f ) of the differential sum (5.1) consists of one point E n+1 = (0, . . . , 0, 1). Then the
substitutiony = cXP,P=(pl,...,pn)? Rn

(5.2) in the differential sum f (Z) gives the monomial ¢? P (P )X P

where ? P (P ) is a polynomial of P which coefficients depend on P .

Monomial (5.2) will be called resonant for f (Z) if for it 7 P (P ) = 0.

Let p k be the maximal order of the derivative over xkin f (Z), k=1,. .. ,nlfinP=(pl,...,pn)p
k?pk,k=1,...,n,(53) thenf(Z) =c?(P )XP,

where ?(P ) is the characteristic polynomial of the sum of f (Z) and its coefficients do not depend on P . But
if the inequalities (5.3) are not satisfied, then ? P (P ) ? = ?(P ).Example. Let n =2, f (Z) =x 1?7y 7x 1 + x 2
272y7x22.IfP=(1,1),thenf(x1,x2,cx1x2)=cx1x2.IfP=(1,2),thenf(x1,x2,cx1x22
)=cx1x22+4+x17x2272=¢73x1x22. Generally hereforp1? 1,p2? 2wehavef (x1,x2,cx
1x2)=cpl+p2(p2-1)xpllxp22and?(P)=pl+p2(p2-1).

For a differential sum f (Z) we denote by f k (Z) the sum of all differential monomials of f (Z) which have n +
1 coordinate q n+1 of vector power exponents Q = (q1,...,qn, qn+1) equal to k:q n+1 = k. Denote Z n
+={P:0?P?Zn}.

Consider the PDE f (Z) = 0.

(5.4)

15 Normal form:

5.2. Resonant monomials:

1. £0 (Z2) = ?7(X) is a power series from X without a free term, 2. f 1 (Z) = a(Z)+b(Z), where S(a) = E n+1
=(0,...,0,1),S(Mb)? Zn+1 +\0 x {qn+1 =1}.

Then there exists a substitution y = ? + (X), where (X) is a power series from X without a free term, which
transforms the equation (5.4) to the normal form g(X, ?) = 0,

(5.5)

where g 0 (X) = ¢ P X P is a power series without a free term, P ? Z n 4 containing only resonant monomials
¢ P X P for sum a(Z). is the formal solution to the equation (5.4).

If in equation (5.4) differential sum does not contain derivatives, thena(Z) = const ? z n+1 = const 7 y.

Closure of a convex hull where the space R n+1 * is conjugate to the space R n+1 , 77, ?? is the scalar
product, and truncated sumi?”(f ) = Q=7 jQj,Qj? S,?j? 0,? j =1 of the support S(f ) is called the
polyhedron of sum f (Z). The boundary ?1?” of the polyhedron 1?”(f ) consists of generalized faces 1?” (d) j ,
where d = dim 1?” (d) j . Each face 1?” (d) j corresponds to normal cone U (d) j =P ? Rn+1*: 7P, Q? ? =
P, Q??>7P, Q7?7 where Q, Q?? 1?7 (d)j,Q??I2\I?7”f(d)j (Z) =ak (Z)by Qak ) ? 1?7 (d) j S.
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Consider the equationf (Z) = 0, (5.6)

where f is the differential sum. In the solution of equation (5.6)y = ?(X), (5.7)

where 7 is a series on the powers of x k and their logarithms, the series ? corresponds to its support,
polyhedron, normal cones u i and truncations. The logarithm In x i has a zero power exponent on x i . The
truncated solution y = ? corresponds to the normal coneu ? R n+1 * .

Theorem 5.2. If the normal cone u intersects with the normal cone (5.2), then the truncation y = ?(X) of the
solution (5.3) satisfies the truncated equationf (d) j (Z) = 0.

(5.8)

To simplify the truncated equation (5.8), it is convenient to use a power transformation. Let ? be a square
real nondegenerate block matrix of dimension n + 1 of the form? =7 117 120 7? 22,

where ? 11 and ? 22 are square matrices of dimensions n and 1, respectively. We denote In Z = (lnz 1, . . .
,In z n+1 ), and by the asterisk * we denote transposition.

Variable change. In W = (In Z) ? (5.9) is called the power transformation.

Theorem 5. ?? ([Bruno, 2000]). The power transformation (5.5) reduces a differential monomial a(Z) with a
power exponent Q(a) into a differential sum b(W ) with a power exponent Q(b):R = Q(b) = Q(a)? -1 * .

16 Power transformations:

London Journal of Research in Science: Natural and Formal
Corollary 5.3.1. The power transformation (5.9) reduces the differential sum (2.1) with support S(f ) to the
differential sum g(W ) with support S(g) = S(f)? -1 * | i.e.

17 S(f) = S(g)? *

Theorem 5.4. For the truncated equationf (d) j (Z) =0

there is a power transformation (5.9) and monomial Z T that translates the equation above into the
equationg(W ) = Z T {j (Z) = 0,

where g(W ) is a differential sum whose support has n + 1d zero coordinates.

Let z j be one of the coordinates x k or y. Transformation ? j = In z j is called logarithmic.

Theorem 5.5. Let f (Z) be a differential sum such that all its monomials have a jth component q j of the vector
exponent of degree Q = (q1,. .., qm+n ) equal to zero, then the logarithmic transformation (5.1) reduces
the differential sum f (Z) into a differential sum fromz1,...,7j,...,zn.

18 Logarithmic transformation:

A truncated equation 5.7. Calculating asymptotic forms of solutions: f (n) j (Z) = 0 is taken. If it cannot be
solved, then a power transformation of the Theorem 5.4 and then a logarithmic transformation of the Theorem 5.5
should be performed. Then a simpler equation is obtained. In case it is not solvable again, the above procedure
is repeated until we get a solvable equation. Having its solutions, we can return to the original coordinates by
doing inverse coordinate transformations. So the solutions written in original coordinates are the asymptotic
forms of solutions to the original equation (5.2).

In ??Bruno, Batkhin, 2023] method of selecting truncated equations was applied to systems of PDE.

Traditional approach to PDE see in [Oleinik, Samokhin, 1999;Polyanin, Zhurov, 2021].

Here we provide a list of some applications in complicated problems of (¢) Mathematics, (d) Mechanics, (e)
Celestial Mechanics and (f) Hydromechanics.

(c) In Mathematics: together with my students I found all asymptotic expansions of five types of solutions
to the six Painlevé equations ?7?71906) ??Bruno, 2018c; ??runo, Goruchkina, 2010] and also gave very effective
method of determination of integrability of ODE system [Bruno, Enderal, 2009;Bruno, Enderal, Romanovski,
2017].

(d) In Mechanics: I computed with high precision influence of small mutation oscillations on velocity of
precession of a gyroscope [Bruno, 1989] and also studied values of parameters of a centrifuge, ensuring stability
of its rotation [Batkhin, Bruno, (et al.), 2012].

(e) In Celestial Mechanics: together with my students I studied periodic solutions of the Beletsky equation (
??956) [Bruno, 2002;Bruno, Varin, 2004], describing motion of satellite around its mass center, moving along an
elliptic orbit. I found new families of periodic solutions, which are important for passive orientation of the satellite
[Bruno, 1989], including cases with big values of the eccentricity of the orbit, inducing a singularity. Besides,
simultaneously with [Hénon, 1997], I found all regular and singular generating families of periodic solutions of
the restricted three-body problem and studied bifurcations of generated families. It allowed to explain some
singularities of motions of small bodies of the Solar System [Bruno, Varin, 2007]. In particular, I found orbits of
periodic flies round planets with close approach to the Earth ??Bruno, 1981].

(f) In Hydromechanics: I studied small surface waves on a water ??Bruno, 2000, Chapter 5], a boundary layer
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Figure 1: ) 6 ©

397 on a needle ??Bruno, Shadrina, 2007], where equations of a ﬂgw have a singularity, and an one-dimensional model
398 of turbulence bursts ??Bruno, Batkhin, 2023]. U B
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