

CrossRef DOI of original article:

1

Nonlinear Analysis as a Calculus

2

3

Received: 1 January 1970 Accepted: 1 January 1970 Published: 1 January 1970

4

5 **Abstract**

6

7 **Index terms—**

8 There are two universal methods for local study of nonlinear equations and systems of different kinds (algebraic, ordinary and partial differential): (a) normal form and (b) truncated equations.

10 (a) Equations with linear parts can be reduced to their normal forms by local changes of coordinates. For 11 algebraic equation, it is Implicit Function Theorem. For systems of ordinary differential equations (ODE), I 12 completed the theory of normal forms, began by ??oincaré (1879) [Poincaré, 1928] and ??ulac (1912) ??Dulac, 13 1912] for general systems ??Bruno, 1964; ??971] and began by ??irkhoff (1929) [Birkhoff, 1966] for Hamiltonian 14 systems ??Bruno, 1972;1994].

15 (b) Equations without linear part: I proposed to study properties of solutions to equations (algebraic, ordinary 16 differential and partial differential) by studying sets of vector power exponents of terms of these equations. 17 Namely, to select more simple ("truncated") equations ??Bruno, 1962;1989;2000] by means of generalization to 18 polyhedrons the ??ewton (1678) [Newton, 1964] and the ??adama (1893) ??Hadamard, 1893] polygons.

19 By means of power transformations ??Bruno, 1962;1989; ??022b] the normal forms and the truncated equations 20 can be strongly simplified and often solved. Solutions to the truncated equations are asymptotically the first 21 approximations of the solutions to the full equations. Continuing that process, we can obtain then ??2.1)

22 **1 II. SINGLE ALGEBRAIC EQUATION**23 **2 The implicit function theorem:**24 London Journal of Research in Science: Natural and Formal Theorem 2.1. Let $f(X, \dots, T) = a Q, r(T) X Q \dots r$, where $0 \le Q \le n, 0 \le r \le Z$, the sum is finite and $a Q, r(T)$ are some functions of $T = (t_1, \dots, t_m)$, besides a $a 00(T) \neq 0, a 01(T) \neq 0$. Then the solution to the equation $f(X, \dots, T) = 0$ has the form $= b R(T) X R$ def $= b(T, X)$,28 where $0 \le R \le Z, 0 < R \le R$, the coefficients $b R(T)$ are functions on T that are polynomials from a $Q, r(T)$ with $Q + r \le R$ divided by a30 $2R-1$ 0131 . The expansion $b(T, X)$ is unique. Let $g(X, \dots, T) = f(X, \dots + b(T, X), T)$, ??2.2) then $g(X, 0, T) \neq 0$.32 This is a generalization of Theorem 1.1 of ??Bruno, 2000, Ch. II] on the implicit function and simultaneously 33 a theorem on reducing the algebraic equation ??2.1) to its normal form ??2.2) when the linear part $a 01(T) \neq 0$ is nondegenerate. In it, we must exclude the values of T near the zeros of the function $a 01(T)$.35 Let the point $X = 0$ be singular. Write the polynomial in the form $f(X) = a Q X Q$, where $a Q = \text{const} \neq 0$, or C . Let $S(f) = \{Q : a Q \neq 0\}$.37 The set S is called the support of the polynomial $f(X)$. Let it consist of points Q_1, \dots, Q_k . The convex 38 hull of the support $S(f)$ is the set ??2.3) which is called Newton's polyhedron.39 Its boundary ??(f) consists of generalized faces ??(d) j, where d is its dimension of $0 \le d \le n-1$ and j is 40 the number. Each (generalized) face ??(d) j corresponds to its:41 ? boundary subset $S(d)j = S \cap ??(d) j$, ? truncated polynomial $f(d) j(X) = a Q X Q$ over $Q \in S(d) j$, 42 ? and normal cone $U(d) j = P : P, Q \in S(d) j \neq P, Q \neq 0, P, Q \in S(d) j, Q \in S(d) j, Q \in S(d) j$ 44 , ??2.4) where $P = (p_1, \dots, p_n) \in R^n$. Let $X = (x_1, \dots, x_n) \in R^n$ or C^n , and $f(X)$ be 45 a polynomial. A point $X = X_0, f(X_0) = 0$ is called simple if the vector $(f'_1/x_1, \dots, f'_n/x_n)$ in it 46 is non-zero. Otherwise, the point $X = X_0$ is called singular or critical. By shifting $X = X_0 + Y$ we move the

5 PARAMETRIC EXPANSION OF SOLUTIONS:

47 point $X = 0$ to the origin $Y = 0$. If at this point the derivative $\frac{\partial f}{\partial x} \Big|_{X=0} = 0$, then near $X = 0$ all solutions to the
48 equation $f(X) = 0$ have the form $y = ?b q_1 \dots q_{n-1} y q_1 \dots q_{n-1}$, that is, lie in $(n-1)$ -dimensional
49 space. $\hat{I}''(f) = Q = \sum_{j=1}^n p_j Q_j$, $p_j \geq 0$, $\sum_{j=1}^n p_j = 1$,

50 Nonlinear Analysis as a Calculus

51 At $X \neq 0$ solutions to the full equation $f(X) = 0$ tend to non-trivial solutions of those truncated equations f
52 $(d_j f)(X) = 0$ whose normal cone $U(d_j)$ intersects with the negative orthant $P \subset \mathbb{R}^{n-1}$.

53 Remark 1. If in the sum ??2.1) all Q belong to a forward cone $C: Q, K_i \geq c_i$, $i = 1, \dots, m$,
54 then in the solution (2.2) of Theorem 2.1 all R belong to the same cone C : ??Bruno, 1989, Part I, Chapter 1,
55 § 3]. $Q, K_i \geq c_i$, $i = 1, \dots, m$,

56 Let $\ln X \text{ def} = (\ln x_1, \dots, \ln x_n)$. The linear transformation of the logarithms of the coordinates $(\ln y_1, \dots, \ln y_n)$ def = $\ln Y = (\ln X)$,

58 (2.5) ??Bruno, 1962;2000: where $?$ is a nondegenerate square n -matrix, is called power transformation.

59 3 Power transformations

60 By the power transformation (2.5), the monomial X^Q transforms into the monomial Y^R , where $R = Q$ ($?$ *)
61 -1 and the asterisk indicates a transposition.

62 A matrix $?$ is called unimodular if all its elements are integers and $\det ? = \pm 1$. For an unimodular matrix $?$,
63 its inverse $?^{-1}$ and transpose $?^*$ are also unimodular.

64 Theorem 2.2. For the face $\hat{I}''(d_j)$ there exists a power transformation (2.5) with the unimodular matrix $?$
65 which reduces the truncated sum $(d_j f)(X)$ to the sum from d coordinates, that is, $f(d_j)(X) = Y S ?(d_j)(Y)$
66), where $?d_j(Y) = ?(d_j)(y_1, \dots, y_d)$

67) is a polynomial. Here $S \in \mathbb{Z}^n$. The additional coordinates y_{d+1}, \dots, y_n are local (small).

68 The article ??Bruno, Azimov, 2023] specifies an algorithm for computing the unimodular matrix $?$ of Theorem
69 2.2.

70 4 Let $\hat{I}''(d_j)$

71 be a face of the Newton polyhedron $\hat{I}''(f)$. Let the full equation $f(X) = 0$ is changed into the equation $g(Y) =$
72 0 after the power transformation of Theorem 2.2. Thus $?d_j(y_1, \dots, y_d) = g(y_1, \dots, y_d, 0, \dots, 0)$.

73 5 Parametric expansion of solutions:

74 London Journal of Research in Science: Natural and Formal

75 Let the polynomial $?j$ be the product of several irreducible polynomials $?d_j = \prod_{k=1}^m h_k^{l_k}$ (y_1, \dots, y_d), (2.6)

76 where $0 < l_k \in \mathbb{Z}$. Let the polynomial h_k be one of them. Three cases are possible:

77 Case 1. The equation $h_k = 0$ has a polynomial solution $y_d = ?(y_1, \dots, y_{d-1})$. Then in the full
78 polynomial $g(Y)$ let us substitute the coordinates $y_d = ? + z_d$,

79 for the resulting polynomial $h(y_1, \dots, y_{d-1}, z_d, y_{d+1}, \dots, y_n)$ again construct the Newton
80 polyhedron, separate the truncated polynomials, etc. Such calculations were made in [Bruno, Batkin, 2012] and
81 were shown in ??Bruno, 2000, Introduction].

82 Case 2. The equation $h_k = 0$ has no polynomial solution, but has a parametrization of solutions $y_j = ? j$ (T
83), $j = 1, \dots, d$, $T = (t_1, \dots, t_{d-1})$.

84 Then in the full polynomial $g(Y)$ we substitute the coordinates $y_j = ? j$ (T) + $? j$?, $j = 1, \dots, d$, (2.7)

85 where $? j = \text{const}$, $? | j | ? = 0$, and from the full polynomial $g(Y)$ we get the polynomial $h = ? a Q ??, r(T)$
86 $)Y ?? Q ?? ? r$, (2.8)

87 where $Y ?? = (y_{d+1}, \dots, y_n)$, $0 ? Q ?? = (q_{d+1}, \dots, q_n) ? Z^{n-d}$, $0 ? r ? Z$. Thus $a_{00}(T) ? 0$,
88 $a_{01}(T) = d \sum_{j=1}^d ? j ? ?(d_j) / ? y_j(T)$.

89 If in the expansion (5.7) $l_k = 1$, then $a_{01} ? 0$. By Theorem 2.1, all solutions to the equation $h = 0$ have
90 the form i.e., according to (2.7) the solutions to the equation $g = 0$ have the form $? = ? b Q ?? (T) Y ?? Q ??$,
91 London Journal ofy $j = ? j$ (T) + $? j ? b Q ?? (T) Y ?? Q ??$, $j = 1, \dots, d$.

92 Such calculations were proposed in [Bruno, 2018a].

93 If in (5.7) $l_k > 1$, then in (2.8) $a_{01}(T) ? 0$ and for the polynomial (2.8) from $Y ??$, ? we construct a
94 Newton polyhedron by support $S(h) = \{Q ??, r : a Q ??, r(T) ? ? 0\}$, separate the truncations and so on.

95 Case 3. The equation $h_k = 0$ has neither a polynomial solution nor a parametric one. Then, using Hadamard's
96 polyhedron [Bruno, 2018a; ??2019a], one can compute a piece-wise approximate parametric solution to the
97 equation $h_k = 0$ and look for an approximate parametric expansion.

98 Similarly, one can study the position of an algebraic manifold in infinity.

99 Here we consider an ordinary differential equation of the form $x, y, y', \dots, y(n) = 0$, (3.1)

100 where x is independent variable, y is the dependent variable, $y' = dy/dx$ and f is a polynomial of its
101 arguments. Near $x = 0$ or ? we look for solutions of equation ??3.1) in the form of asymptotic series $y = ? k=1$
102 $b_k x^k$, (3.2)

103 III. SINGLE ODE [BRUNO, 2004] 3.1. Setting of the problem:

104 where b_k are functions of $\log x$ and $? s_k > ? s_{k+1}$ with $? = -1$, if $x = 0$, 1 , if $x = ?$. (3.3)

106 We set $X = (x, y)$. By a differential monomial $a(x, y)$ we mean the product of an ordinary monomial To every
107 differential monomial $a(X)$ one assigns its (vector) exponent $Q(a) = (q_1, q_2)$? R 2 by the following rules.
108 For a monomial of the form ??3.4) let ??1, ??2); for a derivative of the form (3.5) let $Q d 1 y/dx 1 = (-1, 1).cx$
109 $r 1 y r 2$ def = $cX R$, (3.4Q $cX R = R$, that is, $Q(cx r 1 y r 2) = ($

110 When differential monomials are multiplied, their exponents are summed as vectors: $Q(a_1 a_2) = Q(a_1) +$
111 $Q(a_2)$.

112 The set $S(f)$ of exponents $Q(a_i)$ of all the differential monomials $a_2(X)$ in a differential sum of the form
113 ??3.6) is called the support of the sum $f(X)$. Obviously, $S(f) \subset R^2$. The closure $\hat{I}^{\infty}(f)$ of the convex hull of
114 the support $S(f)$ is referred to as the polygon of the sum $f(X)$. The boundary $\partial\hat{I}^{\infty}(f)$ of the polygon $\hat{I}^{\infty}(f)$
115 consists of vertices $\hat{I}^{\infty}(f(d))$ $j(X) = a_i(X)$ over $Q(a_i) \in S(d)$ j . (3.7)

116 Let R^2* be the plane conjugate to the plane R^2 so that the inner (scalar) product P, Q def = $p_1 q_1 + p_2 q_2$

117 is defined for any $P = (p_1, p_2) \in R^2*$ and $Q = (q_1, q_2) \in R^2$. Corresponding to any face $\hat{I}^{\infty}(d)$ j are
118 its normal cone, $U(d)$ $j = P : ?P, Q : ?P, Q : ?Q, Q : ?S(d)$ $j ?P, Q ? > ?P, Q ? ? ?Q, Q ? ? ?S(d)$ j
119 and the truncated sum (3.7). All these constructions are applicable to equation ??3.1), where f is a differential
120 sum.

121 Let $x \geq 0$ or $x \leq 0$ and suppose that a solution of the equation (3.1) has the form $y = c r x r + o(|x| r + ?)$, (3.8)
122 where $c r$ is a coefficient, $c r = \text{const}$, $c r ? = 0$, the exponents r and $? ? < 0$. Then we
123 say that the expression $y = c r x r, c r ? = 0$ (3.9)

124 gives the power-law asymptotic form of the solution (3.8).

125 Thus, corresponding to any face $\hat{I}^{\infty}(d)$ j are the normal cone $U(d)$ j in R^2

126 * and the truncated equation $f(d) j(X) = 0$. (3=0. We set $g(X)$ def = $X - Q f(0) j(X)$.

127 Then the solution (3.7), (3.10) satisfies the equation

129 6 Solution of the truncated equation:

130 London Journal of Research in Science: Natural and Formal $g(X) = 0$

131 Substituting $y = c r x r$ into $g(X)$, we see that $g(x, c r x r)$ does not depend on x , c and is a polynomial in r , that
132 is, $g(x, c r x r) = g(r)$,

133 where $g(r)$ is the characteristic polynomial of the differential sum $f(0) j(X)$. Hence, in a solution (3.9) of the
134 equation (3.10) the exponent r is a root of the characteristic equation ??3.11) and the coefficient $c r$ is arbitrary.
135 Among the roots r_i of the equation ??3.11), one must single out only those for which one of the vectors $? ? ? 1,$
136 r , where $? = \pm 1$, belongs to the normal cone $U(0) ?(r)$ def = $g(x, x r) = 0$, j of the vertex $\hat{I}^{\infty}(0) j$.

137 In this case the value of $? ?$ uniquely determined. The corresponding expressions of the sum with an arbitrary
138 constant $c r$ are candidates for the role of truncated solutions of the equation ??3.1). Moreover, by ??3.3), if $? ? = -1$,
139 then $x \geq 0$, and if $? ? = 1$, then $x \leq 0$.

140 Complex roots r to characteristic equation ??3.11) may bring to exotic expansions of solutions ??3.2), where
141 coefficients b_k are power series in $x ? i$ with real $? ? R$ and $i^2 = -1$.

142 7 Corresponding to an edge \hat{I}^{∞}

143 (1) j is a truncated equation (3.10) with $d = 1$ whose normal cone $U(1) j$ is a ray $\{N j, ? > 0\}$. If $? ?(1, r) \in U$
144 (1)

145 j , this condition uniquely determines the exponent r of the truncated solution (3.9) and the value $? ? = \pm 1$ in
146 ??3.3). To find the coefficient $c r$, one must substitute the expression (3.9) into the truncated equation (3.10).
147 After cancelling a factor which is a power of x , we obtain an algebraic defining equation for the coefficient $c r$,
148 $(c r) \text{ def} = x - s f(1) j(x, c r x r) = 0$ Corresponding to every root $c r = c(i)$

149 $r ? = 0$ of this equation is an expression of the form (3.9) which is a candidate for the role of a truncated
150 solution of the equation ??3.1). Moreover, by ??3.3), if in the normal cone U

151 $(1) j$ one has $p_1 < 0$, then $x \geq 0$, and if $p_1 > 0$, then $x \leq 0$. From the polygon \hat{I}^{∞} of the initial equation (3.1)
152 we take a vertex or an edge $\hat{I}^{\infty}(d) j$. Then we found a power solution $y = b_1 x P_1$ of the truncated equation
153 $f(d) j(X) = 0$, as it was described above, put $y = b_1 x P_1 + z$ and obtain new equation $g(x, z) = 0$.

154 We construct the polygon \hat{I}^{∞} for the new equation, take a vertex or an edge $\hat{I}^{\infty}(e) k$, solve the truncated
155 equation $? ?(e) k(x, z) = 0$,

156 and obtain the second term $b_2 x P_2$ of expansion (3.2) and so on.

157 8 Computation of solution to equation (3.1) as expansion (3.2)

158 London Journal of Research in Science: Natural and Formal

159 We construct the polygon \hat{I}^{∞} for the new equation, take a vertex or an edge $\hat{I}^{\infty}(e)$

160 k , solve the truncated equation $? ?(e) k(x, z) = 0$,

161 and obtain the second term $b_2 x P_2$ of expansion (3.2) and so on.

162 In [Bruno, 2004] there are some properties, that simplify computation. Thus, we can obtain the 4 types of
163 expansions (3. ??Bruno, 2006; ??018b); 4. Exotic, when all b_k are power series in $x ? i$ [Bruno, 2007].

10 SO HERE THE EIGENVALUE ?

164 Except expansions (3.2) of solutions $y(x)$ of equation ??3.1), there are exponential expansions $y = \sum_{k=1}^{\infty} b_k x^k$
165 $(x) \exp[k?(x)]$,
166 where b_k (x) and $?(x)$ are power series in x ??Bruno, 2012a,b].

167 Also there are solutions in the form of transseries [Bruno, 2019b]. These results were applied to 6 Painlevé
168 equations [Bruno, 2015; ??2018b,c; ??runo, Goruchkina, 2010]. Written as differential sums they are: Equation
169 P 5 :Equation P 1 : $f(x, y) \text{ def} = -y^2 + 3y^2 + x = 0$. Equation P 2 : $f(x, f(z, w)) \text{ def} = -z^2 w(w-1)w^2 + z$
170 $2^2 3^2 w^2 - 1^2 (w^2)^2 - zw(w-1)w^2 + (w-1)^3 (w^2)^2 + zw^2 (w-1)^2 + z^2 w^2 (w+1)^2 = 0$. Equation
171 P 6 : $f(x, y) \text{ def} = 2y^2 + x^2 (x-1)^2 y(y-1)(y-x) - (y^2)^2 [x^2 (x-1)^2 (y-1)(y-x) + x^2 (x-1)^2 y(y-1) +$
172 $x^2 (x-1)^2 y(y-1)] + 2y^2 [x^2 (x-1)^2 y(y-1)(y-x) + x^2 (x-1)^2 y(y-1)(y-x) + x^2 (x-1)^2 y(y-1)] - [2y^2$
173 $(y-1)^2 (y-x)^2 + 2x^2 (y-1)^2 (y-x)^2 + 2(x-1)^2 y^2 (y-1)^2 + 2x^2 (x-1)^2 y^2 (y-1)^2] = 0$.

174 Here a, b, c, d and $?, ?, ?, ?$ are complex parameters. If all they are nonzero, then polygons for these equations
175 are shown in Figures 1,2,3.

176 9 Supports and polygons for equations

177 q 2 q 1 0 1 1 P 1 q 2 q 1 0 1 1 P 2

178 Nonlinear Analysis as a Calculus

179 Then there exists such power series $?(x)$ with integral increasing exponents, that after substitution $y = z +$
180 $?(x)$ (3.13) the transformed differential sum $g(x, z) = f(x, z + ?(x))$ (3.14) for $z = z ? = ? ? ? = z(n) = 0$
181 (3.15)

182 has only resonant terms $b_m x^m$, where $m = v + ? k ? Z$ (3.16)
183 and $m ? ?$.

184 So here the eigenvalue k is resonant if $-v ? ? k ? Z$.

185 3) truncated differential sum $f(0) 1(X)$ have eigenvalues $1, \dots, ? 1, 0 ? 1 ? n; 4)$ the most left point of
186 the support $S(f)$ in the axis $q 2 = 0$ be $(?, 0)$. Evidently $? ? Z$.

187 Supports and polygons for equations P 3 (left), P 4 (right). -1 0 1 q 1 q 2 P 3 q 2 q 1 0 1 1 P 42

188 Nonlinear Analysis as a Calculus

189 Theorem 3.3. Let 1) $f(x, y, y', \dots, y(n))$ be a polynomial in $x, y, y', \dots, y(n); 2)$ its Newton polygon
190 $\hat{I}''(f)$ have a vertex $\hat{I}''(0) = (v, 1)$ at the right side of its boundary \hat{I}'' ;

191 3) truncated differential sum $f(0) j(X)$ have eigenvalues $1, \dots, ? 1, 0 ? 1 ? n; 4)$ the most right point of
192 the support $S(f)$ in the axis $q 2 = 0$ be $(?, 0)$. Evidently $? ? Z$.

193 Then there exists such power series $?(x)$ with integral decreasing exponents, that after substitution (3.13), the
194 differential sum (3.14) for identities ??3.15) has only resonant terms $b_m x^m$, where equality ??3.16) is true,
195 and $m ? ?$. $f(0) j(X)$ has no integral eigenvalue $k ? ? -v$ (for Theorem 3.2) or $k ? ? -v$ (for Theorem 3.3),
196 then the initial equation $f(X) = 0$ has formal solution $y = ?(x)$. If the truncated sum $f(0) j(X)$ contains the
197 derivation $y(n)$, then the series $?(x)$ converges according to Theorem 3.4 in [Bruno, 2004].

198 10 So here the eigenvalue ?

199 k is resonant if $-v ? ? k ? Z$. Equations $g(x, z) = 0$ for (3).

200 Remark 2. If the truncated sum $f(0) j(X)$ has integral eigenvalue $k ? ? v$ (for Theorem 3.2) or $k ? ? -v$
201 (for Theorem 3.3), then the initial equation $f(X) = 0$ Supports and polygons for equations P 5 (left), P 6 (right).
202 q 2 q 1 0 1 1 P 5 q 2 q 1 0 1 1 P 6

203 Nonlinear Analysis as a Calculus

204 We will consider such a generalization of the power function cx^r which preserves their main properties. The
205 real number $p ? (?(x)) = ? \lim x ? ?? \log |?(x)| ? \log |x|$,

206 where $\arg x = \text{const} [0, 2\pi]$, is called the order of the function $?(x)$ on the ray when $x ? 0$ or $x ? ?$. The order
207 $p ? (?)$ is not defined on the ray $\arg x = \text{const}$, where the limit point $x = 0$ or $x = ?$ is a point of accumulation
208 of poles of the function $?(x)$.

209 In Subsections 3.2-3.4 it was shown that as $x ? 0$ ($? = -1$) or as $x ? ?$ ($? = 1$) solutions $y = ?(x)$ to the ODE
210 $f(x, y) = 0$, where $f(x, y)$ is a differential sum, can be found by means of algorithms of Plane PG, ifp $? (?(x))$
211 $-1 = p ? d 1 / dx 1, l = 1, \dots, n$,

212 where n is the maximal order of derivatives in $f(x, y)$. Here we introduce algorithms, which allow calculate
213 solutions $y = ?(x)$ with the property $? (?(x)) + l! ? = p ? d 1 / dx 1, l = 1, \dots, n$, where $? ? ? R, ? = \pm 1$.
214 Lemma 3.3.1. If $p ? (?(x)) = -? ? + p ? (?(?) (x)) = -2? ? + p ? (?(?) (x))$, then $? ? + ?? ? ? 0$.

215 Note, that in Plane PG we had $? ? = -1$, i. e. $? + ?? ? = 0$. So, new interesting possibilities correspond to ?
216 $+ ?? ? > 0$.

217 We consider the ODE $f(x, y) = i a_i(x, y) = 0$,

218 where $f(x, y)$ is a differential sum. To each differential monomial $a_i(x, y)$, we assign its (vector) power
219 exponent $Q(a_i) = (q_1, q_2, q_3) ? R^3$ by the following rules: power exponent of the product of differential
220 monomials is the sum of power exponents of factors: $Q(a_1 a_2) = Q(a_1) + Q(a_2)$.

221 The set $S(f)$ of power exponents $Q(a_i)$ of all differential monomials $a_i(x, y)$ presented in the differential
222 sum $f(x, y)$ is called the space support of the sum $f(x, y)$. Obviously, $S(f) ? R^3$. The convex hull $\hat{I}''(f)$ of

223 the support $S(f)$ is called the polyhedron of the sum $f(x, y)$. The boundary $\hat{I}^*(f)$ of the polyhedron $\hat{I}^*(f)$
 224 consists of the vertices $\hat{I}^*(0)$, the edges $\hat{I}^*(f(d))$ over $Q(a_i) \cap \hat{I}^*(d)$, $S(f)$.

225 Support and polyhedron for equation P 1. The approach allows to obtain solutions with expansions ??3.2),
 226 where coefficients $b_k(x)$ are all periodic or all elliptic functions ??Bruno, 2012c,d; ??runo, Parusnikova, 2012].

227 Expansions of solutions to more complicated equations such as hierarchies Painlevé see in ??Anoshin, Beketova,
 228 (et al.), 2023; Bruno, For P 1 -P 5 with all parameters nonzero, their polyhedrons are shown in ??figures 4, ??,
 229 ??, ??, ?? correspondingly.

230 Here we consider the system $?i = f_i(X)$, $i = 1, \dots, n$, ??4.1) where $? = d/d t$, $X = (x_1, \dots, x_n) \in C^n$
 231 or R^n , all $f_i(X)$ are polynomials from X . A point $X = X_0 = \text{const}$ is called singular if all $f_i(X_0) = 0$, $i = 1, \dots, n$.

232 Let the point $X_0 = 0$ be a singular point. Then the system (4.1) has the linear part $? = XA$,
 233 where A is a square n -matrix. Let $? = (?_1, \dots, ?_n)$ be a vector of its eigenvalues.

234 Theorem ??1 ([Bruno, 1964; ??971 ?? 1972]). There exists an invertible formal change of coordinates $x_i = ?$

235 $i(Y)$, $i = 1, \dots, n$,

236 where $?_i(Y)$ are power series from $Y = (y_1, \dots, y_n)$ without free terms, which reduces the system
 237 (4.1) to normal form $?_i = y_i g_i(Y) = y_i Y Q$, $i = 1, \dots, n$, (4.2)

238 IV. AUTONOMOUS ODE SYSTEM

240 11 Normal form:

241 Support and polyhedron for equation P 2. Here $y_i g_i(Y)$ are power series on Y without free terms. Let $N_i =$
 242 $\{Q : Z_n : q_j \geq 0, j = i, q_i = -1\}$, $i = 1, \dots, n$,
 243 and $N = N_1 \cup N_2 \cup \dots \cup N_n$.

244 Then the number k of linearly independent $Q \in N$ satisfying the equation (4.3) is called multiplicity of
 245 resonance.

246 Theorem 4.2. Let k be the multiplicity of resonance of the system (4.1). Then there exists a power
 247 transformation $ln Z = (ln Y)$?

248 with unimodular matrix $?_i$ which reduces the normal form (4.2), (4.3) to the system $(ln z_i) = h_i(y_1, \dots,$
 249 $y_k)$, $i = 1, \dots, n$,

250 in which the first k coordinates form a closed subsystem without a linear part, and the remaining $n-k$ coordinates
 251 are expressed via them by means of integrals.

252 Thus, if $?_i = 0$, then the original system (4.1) of order n can be reduced to a system of order k , but without
 253 the linear part. Support and polyhedron for equation P 3.

254 12 Figure 6:

255 Let's write the system (4.1) as ??4.4) and put $A(Q) = (a_1 Q, \dots, a_n Q) \cdot (ln x_i) = a_i Q X Q$, $i = 1, \dots, n$,
 256 The set $S = \{Q : A(Q) = 0\}$

257 is called the support of the system ??4.4). Its convex hull $\hat{I}^*(2.3)$ is its Newton's polyhedron. Its boundary
 258 \hat{I}^* consists of generalized faces \hat{I}^* boundary subset $S(d) \cap \hat{I}^*(d)$, $S(d)$ truncated system $(ln X) =$
 259 $\hat{A}(d) \cap (X) = A(Q) X Q$ over $Q \in S(d)$, (4.5) normal cone $U(d) \cap R^n$??(2.4) and tangent cone $T(d)$.

260 According to ??Bruno, 2000, Chapt. 1, ??2] let $d > 0$ and Q be the interior point of a face $\hat{I}^*(d)$, that
 261 is, Q does not lie in a face of smaller dimension. If $d = 0$, then 4.2: Newton's polyhedron ??Bruno, 1962;2000].
 262 Support and polyhedron for equation P 4. $Q = \hat{I}^*(0)$. The conic hull of the set $S - Q T(d) = Q = \mu_1 Q_1$
 263 $-Q + \dots + \mu_k Q_k - Q$, $\mu_1, \dots, \mu_k \geq 0$, $Q_1, \dots, Q_k \in S$ is called the tangent cone of the face $\hat{I}^*(d)$
 264 j , $0 \leq d \leq n-1$, $T(d) \cap R^n \cdot d = X R d t$,

265 $R \in Z_n$, which reduce the system (4.4) to the form $(ln Y) / d = B(Y)$, (4.6)

266 where the system $(ln Y) / d = B(d) \cap (Y) \cap B(d) \cap (y_1, \dots, y_d) = B(y_1, \dots, y_d, 0, \dots, 0)$, (4.7)

267 corresponds to the truncated system (4.5). be singular for the truncated system (4.7). Near the point (4.8),
 268 the local coordinates are $z_i = y_i - y_0$, $i = 1, \dots, d$, $z_j = y_j$, $j = d+1, \dots, n$.

269 Let at the point $Z = (z_1, \dots, z_n) = 0$ the eigenvalues of the matrix of the linear part of the system (4.7)
 270 are $?_1, \dots, ?_n$, where $?_1, \dots, ?_d$ are the eigenvalues of the subsystem of the first d equations.

271 Theorem 4.4. There exists an invertible formal change of coordinates ??Bruno, 2022b]: where $W = (w_1, \dots,$
 272 $w_n)$ which reduces the system (4.6) to the generalized normal form $z_i = ?_i W$, $i = 1, \dots, n$,

274 13 Generalized normal form

275 $?_i = w_i c_i(W) = w_i c_i Q W Q$, $i = 1, \dots, n$, (4.9)

276 where $Q \in S$ and $Q \cap T(d) \cap Z_n$.

277 (4.10) Here $?_i = w_i ?_i Q W Q$, $i = 1, \dots, n$, where $Q \cap T(d) \cap Z_n$.

278 The system (4.9), (4.10) is reduced to a system of lower order by the power transformation of Theorem 4.2.

279 Let $X = X_0$ be a singular point of the system ??4.1). Two cases are possible: Case 1. $?_i = 0$, then
 280 by Theorem 4.1 we reduce the system to a normal form, then by Theorem 4.2 we reduce the normal form to a
 281 subsystem of order $k < n$ without linear part and obtain the problem of studying its singular points.

15 NORMAL FORM:

282 Case 2. $\mathbf{?} = 0$, then we compute the Newton polyhedron and separate truncated systems in which the normal
283 cone $U(d)$ intersects the negative orthant of $P \geq 0$. Each of them is reduced to the form (4.6), (4.7) by the
284 transformation of Theorem 4.3. For each singular point (4.8), we apply Theorem 4.4 and obtain a subsystem of
285 smaller order.

286 Continuing this branching process, after a finite number of resolution of singularities we come to an explicitly
287 solvable system from which we can understand the nature of solutions of the original system. But Theorem 4.3
288 can be applied to the original system (4.1), i.e. to each of the generalized faces $\hat{I}^?_d$ of its Newton polyhedron
289 $\hat{I}^?_d$. Then to each singular point (4.8) we apply Theorems 4.4, 4.2 and reduce the order of the system. Here
290 also through a finite number of steps of the singularity resolution we come to an explicitly solvable system. This
291 allows us to study the singularities of the original system in infinity. This is the basis of the integrability criterion
292 in [Bruno, Enderal, 2009; Bruno, Enderal, Romanovski, 2017].

293 The normal form can be computed in the neighborhood of a periodic solution or invariant torus ??Bruno,
294 1972, II, §11], ??Bruno, 2022a].

295 See ??Bruno, Batkhin, 2023] for similar computations for a system of partial differential equations.

296 14 Analysis of singularities: tem

297 and is defined by one Hamiltonian function $H(x, y)$, where $x = (x_1, \dots, x_n)$, $y = (y_1, \dots, y_m)$. Here
298 the normal form of the system (4.11) corresponds to the normal form of one Hamiltonian function. See details
299 in [Bruno, Batkhin, 2021].

300 Let $X = (x_1, \dots, x_n)$ be n independent variables and y be a dependent one. Consider
301 $Z = (z_1, \dots, z_n, z_{n+1}) = (x_1, \dots, x_n, y)$.

302 Differential monomial $a(Z)$ is called a product of an ordinary monomial $cZ = cz_1^{r_1} \dots z_n^{r_n} z_{n+1}^{r_{n+1}}$,
303 where $c = \text{const}$, and a finite number of derivatives of the following form $\partial_y^l y^{r_1} x_1^{r_2} \dots x_n^{r_n} \partial_x^m$.
304 $l \leq 0$, $1 \leq j \leq n$, $1 \leq j \leq n+1$, $l \leq 1$, $1 \leq n \leq n+1$.

305 Vector power exponent $Q(a)$ of $a(Z)$ corresponds to the differential monomial $a(Z)$, it is constructed according
306 to the following rules: $Q(c) = 0$, if $c = 0$, $Q(Z) = R$, $Q(\partial_y^l y^r x_1^{r_1} \dots x_n^{r_n}) = (-l, 1)$.

307 The product of monomials corresponds to the sum of their vector power exponents: $Q(ab) = Q(a) + Q(b)$.

308 Differential sum is the sum of differential monomials V . ONE PARTIAL DIFFERENTIAL EQUATION 5.1.
309 Support [Bruno, 2000 Ch. 6-8]: $f(Z) = a_k(Z)$. (5)

310 Let the support $S(f)$ of the differential sum (5.1) consists of one point $E_{n+1} = (0, \dots, 0, 1)$. Then the
311 substitution $y = cX P$, $P = (p_1, \dots, p_n)$ in $f(Z) = a_k(Z)$.

312 (5.2) in the differential sum $f(Z)$ gives the monomial $c(P)X P$
313 where $c(P)$ is a polynomial of P which coefficients depend on P .

314 Monomial (5.2) will be called resonant for $f(Z)$ if for it $c(P) = 0$.

315 Let μ_k be the maximal order of the derivative over x_k in $f(Z)$, $k = 1, \dots, n$. If in $P = (p_1, \dots, p_n)$ $p_k \geq \mu_k$, $k = 1, \dots, n$, (5.3) then $f(Z) = c?(P)X P$,

316 where $?(P)$ is the characteristic polynomial of the sum of $f(Z)$ and its coefficients do not depend on P . But
317 if the inequalities (5.3) are not satisfied, then $c(P) = 0$. Example. Let $n = 2$, $f(Z) = x_1 \partial_y x_1 + x_2 \partial_y x_2$
318 $+ 2 \partial_y^2 x_2$. If $P = (1, 1)$, then $f(x_1, x_2, cx_1 x_2) = cx_1 x_2$. If $P = (1, 2)$, then $f(x_1, x_2, cx_1 x_2) =$
319 $c x_1 x_2 + x_1 \partial_y x_2 = c x_1 x_2$. Generally here for $p_1 \geq 1$, $p_2 \geq 2$ we have $f(x_1, x_2, cx_1 x_2) =$
320 $c[p_1 + p_2(p_2 - 1)]x_1 x_2$ and $?(P) = p_1 + p_2(p_2 - 1)$.

321 For a differential sum $f(Z)$ we denote by $f_k(Z)$ the sum of all differential monomials of $f(Z)$ which have $n+1$
322 coordinate q_{n+1} of vector power exponents $Q = (q_1, \dots, q_n, q_{n+1})$ equal to k : $q_{n+1} = k$. Denote Z_n
323 $+ = \{P : 0 \leq P \leq Z_n\}$.

324 Consider the PDE $f(Z) = 0$.

325 (5.4)

327 15 Normal form:

328 5.2. Resonant monomials:

329 1. $f_0(Z) = ?(X)$ is a power series from X without a free term, 2. $f_1(Z) = a(Z) + b(Z)$, where $S(a) = E_{n+1}$
330 $= (0, \dots, 0, 1)$, $S(b) \subset Z_{n+1} + \{0\}$.

331 Then there exists a substitution $y = ? + (X)$, where (X) is a power series from X without a free term, which
332 transforms the equation (5.4) to the normal form $g(X, ?) = 0$,

333 (5.5)

334 where $g_0(X) = cPXP$ is a power series without a free term, $P \leq Z_n$ containing only resonant monomials
335 $cPXP$ for sum $a(Z)$. is the formal solution to the equation (5.4).

336 If in equation (5.4) differential sum does not contain derivatives, then $a(Z) = \text{const}$, $?z_{n+1} = \text{const}$, $?y$.

337 Closure of a convex hull where the space R_{n+1}^* is conjugate to the space R_{n+1} , ??, ?? is the scalar
338 product, and truncated sum $\hat{I}^?_d(f) = Q = ?_j Q_j$, $Q_j \leq S$, $?_j \leq 0$, $?_j = 1$ of the support $S(f)$ is called the
339 polyhedron of sum $f(Z)$. The boundary $\hat{I}^?_d(f)$ of the polyhedron $\hat{I}^?_d(f)$ consists of generalized faces $\hat{I}^?_d$,
340 where $d = \dim \hat{I}^?_d$. Each face $\hat{I}^?_d$ corresponds to normal cone $U(d) = P \leq R_{n+1}^*$, $?P, Q \leq ?$
341 $?P, Q \leq ?P, Q \leq ?$, where $Q, Q \leq \hat{I}^?_d$, $\hat{I}^?_d(f) = a_k(Z)$ by $Q(a_k) \leq \hat{I}^?_d$.

342 Consider the equation $f(Z) = 0$, (5.6)
 343 where f is the differential sum. In the solution of equation (5.6) $y = ?(X)$, (5.7)
 344 where $?$ is a series on the powers of x k and their logarithms, the series $?$ corresponds to its support,
 345 polyhedron, normal cones u_i and truncations. The logarithm $\ln x_i$ has a zero power exponent on x_i . The
 346 truncated solution $y = ?$ corresponds to the normal cone $u_i R_{n+1}^*$.
 347 Theorem 5.2. If the normal cone u intersects with the normal cone (5.2), then the truncation $y = ?(X)$ of the
 348 solution (5.3) satisfies the truncated equation $f(d) j(Z) = 0$.
 349 (5.8)
 350 To simplify the truncated equation (5.8), it is convenient to use a power transformation. Let $?$ be a square
 351 real nondegenerate block matrix of dimension $n+1$ of the form $? = ?_{11} ?_{12} 0 ?_{22}$,
 352 where $?_{11}$ and $?_{22}$ are square matrices of dimensions n and 1, respectively. We denote $\ln Z = (\ln z_1, \dots,$
 353 $, \ln z_{n+1})$, and by the asterisk $*$ we denote transposition.
 354 Variable change. $\ln W = (\ln Z) ?$ (5.9) is called the power transformation.
 355 Theorem 5. ?? ([Bruno, 2000]). The power transformation (5.5) reduces a differential monomial $a(Z)$ with a
 356 power exponent $Q(a)$ into a differential sum $b(W)$ with a power exponent $Q(b): R = Q(b) = Q(a) ?_{-1}^*$.

357 16 Power transformations:

358 London Journal of Research in Science: Natural and Formal
 359 Corollary 5.3.1. The power transformation (5.9) reduces the differential sum (2.1) with support $S(f)$ to the
 360 differential sum $g(W)$ with support $S(g) = S(f) ?_{-1}^*$, i.e.

361 17 $S(f) = S(g) ?^*$

362 Theorem 5.4. For the truncated equation $f(d) j(Z) = 0$
 363 there is a power transformation (5.9) and monomial $Z T$ that translates the equation above into the
 364 equation $g(W) = Z T f_j(Z) = 0$,
 365 where $g(W)$ is a differential sum whose support has $n+1$ zero coordinates.
 366 Let z_j be one of the coordinates x_k or y . Transformation $? j = \ln z_j$ is called logarithmic.
 367 Theorem 5.5. Let $f(Z)$ be a differential sum such that all its monomials have a j th component q_j of the vector
 368 exponent of degree $Q = (q_1, \dots, q_{m+n})$ equal to zero, then the logarithmic transformation (5.1) reduces
 369 the differential sum $f(Z)$ into a differential sum from $z_1, \dots, ?_j, \dots, z_n$.

370 18 Logarithmic transformation:

371 A truncated equation 5.7. Calculating asymptotic forms of solutions: $f(n) j(Z) = 0$ is taken. If it cannot be
 372 solved, then a power transformation of the Theorem 5.4 and then a logarithmic transformation of the Theorem 5.5
 373 should be performed. Then a simpler equation is obtained. In case it is not solvable again, the above procedure
 374 is repeated until we get a solvable equation. Having its solutions, we can return to the original coordinates by
 375 doing inverse coordinate transformations. So the solutions written in original coordinates are the asymptotic
 376 forms of solutions to the original equation (5.2).

377 In ??Bruno, Batkhin, 2023] method of selecting truncated equations was applied to systems of PDE.

378 Traditional approach to PDE see in [Oleinik, Samokhin, 1999; Polyanin, Zhurov, 2021].

379 Here we provide a list of some applications in complicated problems of (c) Mathematics, (d) Mechanics, (e)
 380 Celestial Mechanics and (f) Hydromechanics.

381 (c) In Mathematics: together with my students I found all asymptotic expansions of five types of solutions
 382 to the six Painlevé equations ??1906) ??Bruno, 2018c; ??runo, Goruchkina, 2010] and also gave very effective
 383 method of determination of integrability of ODE system [Bruno, Enderal, 2009; Bruno, Enderal, Romanovski,
 384 2017].

385 (d) In Mechanics: I computed with high precision influence of small mutation oscillations on velocity of
 386 precession of a gyroscope [Bruno, 1989] and also studied values of parameters of a centrifuge, ensuring stability
 387 of its rotation [Batkhin, Bruno, (et al.), 2012].

388 (e) In Celestial Mechanics: together with my students I studied periodic solutions of the Beletsky equation (??1956) [Bruno, 2002; Bruno, Varin, 2004], describing motion of satellite around its mass center, moving along an
 389 elliptic orbit. I found new families of periodic solutions, which are important for passive orientation of the satellite
 390 [Bruno, 1989], including cases with big values of the eccentricity of the orbit, inducing a singularity. Besides,
 391 simultaneously with [Hénon, 1997], I found all regular and singular generating families of periodic solutions of
 392 the restricted three-body problem and studied bifurcations of generated families. It allowed to explain some
 393 singularities of motions of small bodies of the Solar System [Bruno, Varin, 2007]. In particular, I found orbits of
 394 periodic flies round planets with close approach to the Earth ??Bruno, 1981].

395 (f) In Hydromechanics: I studied small surface waves on a water ??Bruno, 2000, Chapter 5], a boundary layer

6

Figure 1:) 6 ©

397 on a needle ??Bruno, Shadrina, 2007], where equations of a flow have a singularity, and an one-dimensional model
398 of turbulence bursts ??Bruno, Batkin, 2023].¹ ²

¹ © 2023 London Journals Press

² © 2023 London Journals Press Volume 23 | Issue 5 | Compilation 1.0

Figure 2: j

Figure 3:

Figure 4:

Figure 5:

Figure 6:

Figure 9:

Figure 11:

Figure 12:

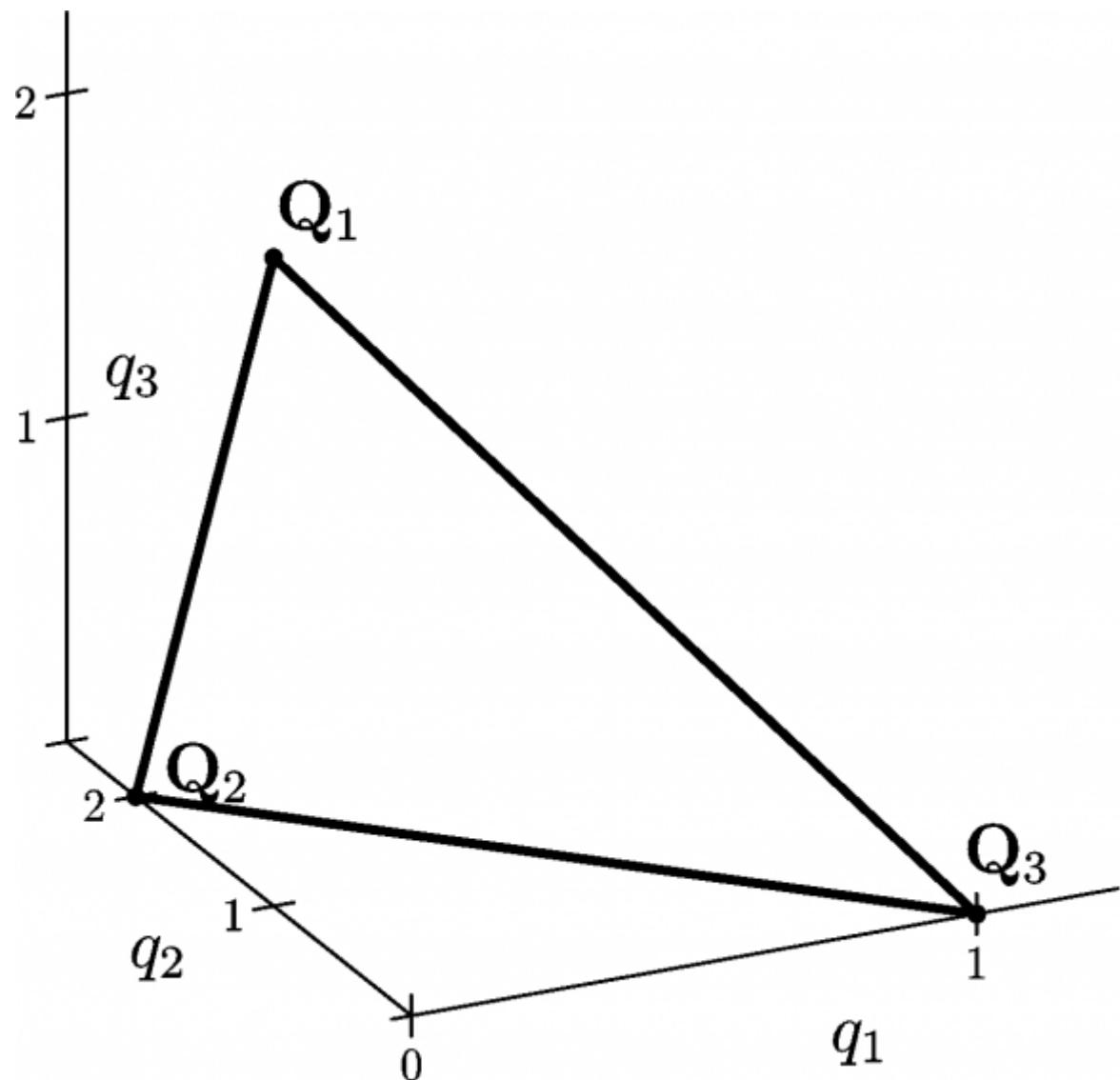


Figure 15: j

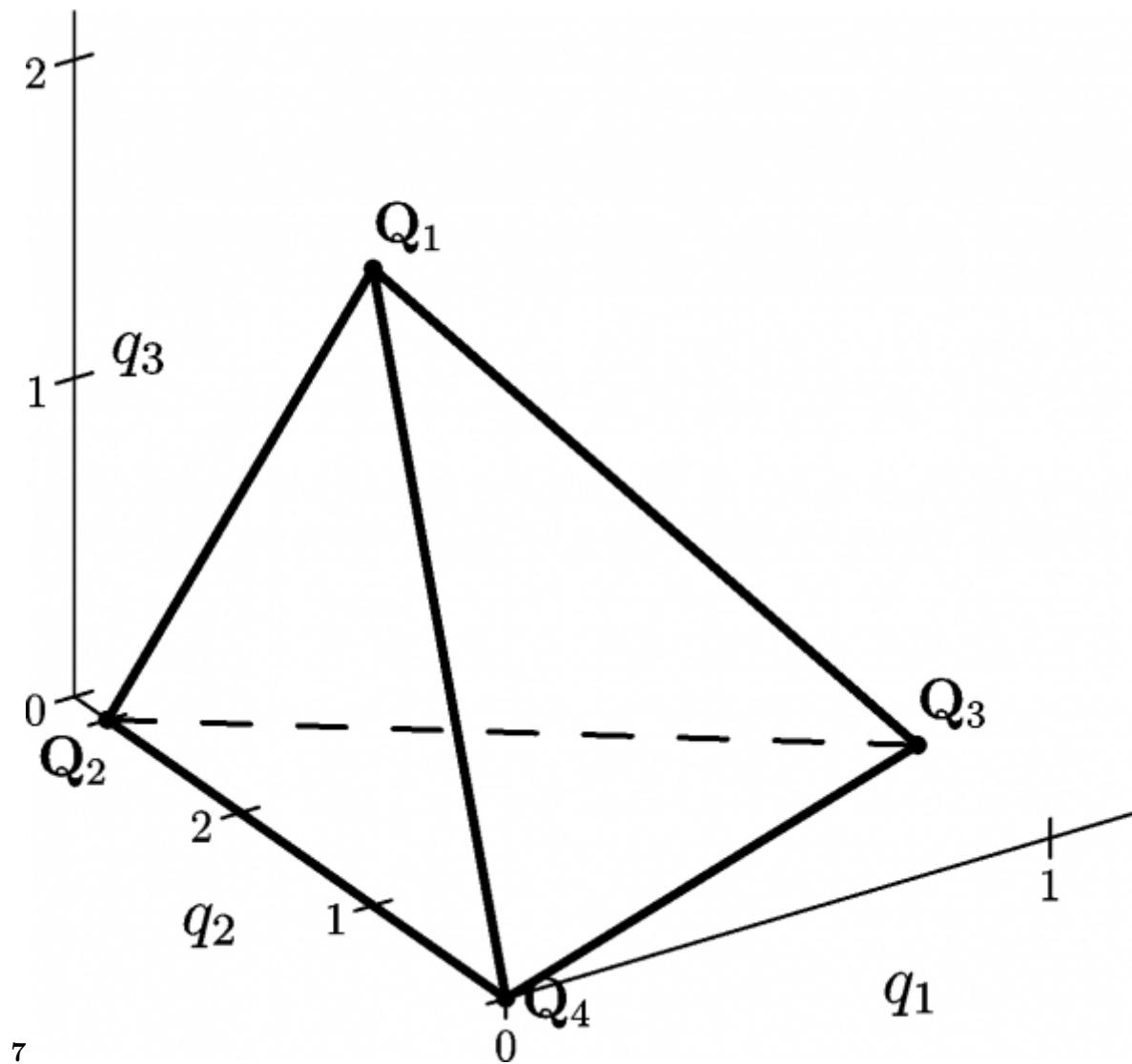


Figure 17: Figure 7 :

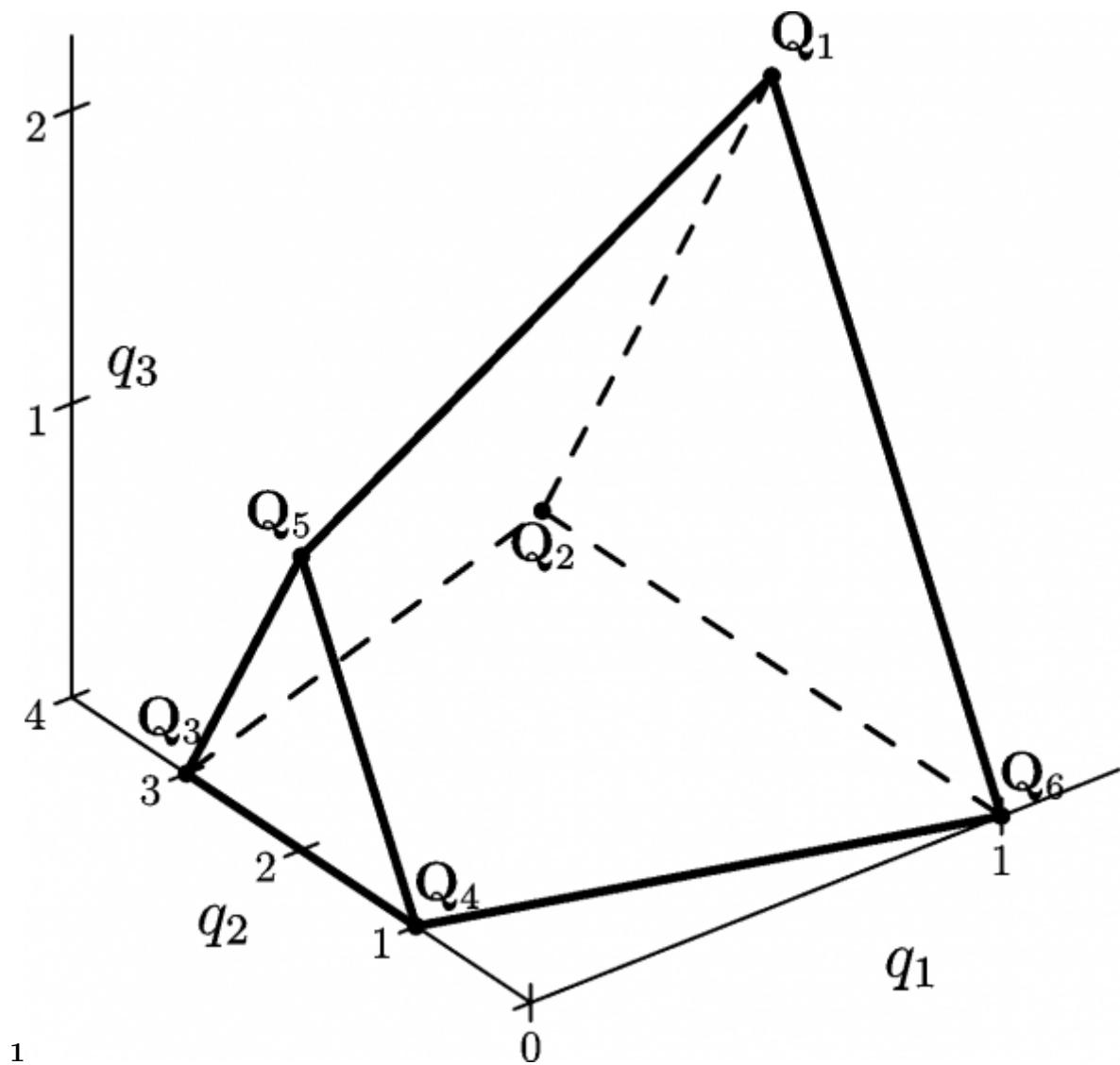


Figure 19: . 1)

Figure 20:

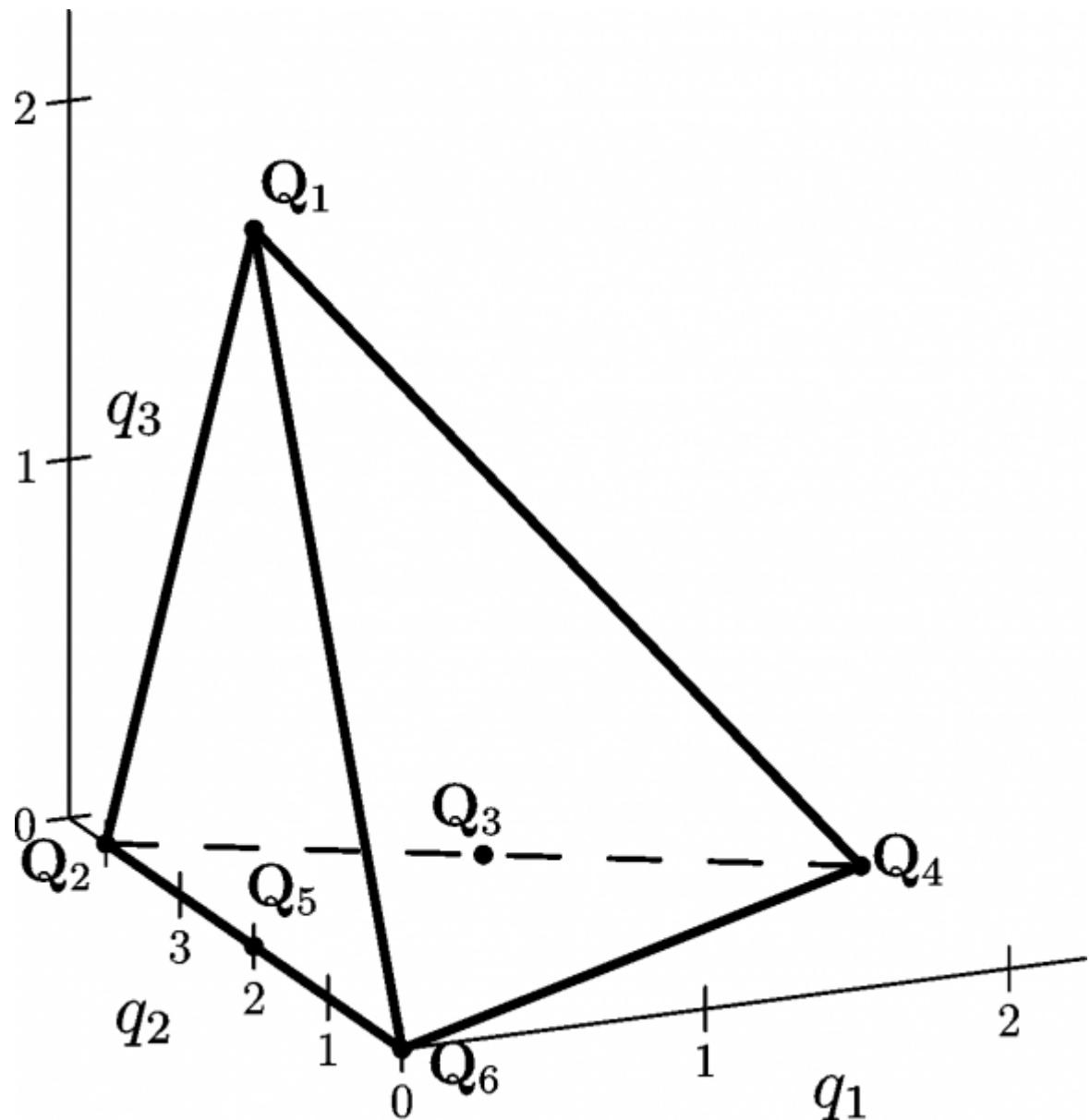


Figure 22: London

399 [], 10.1023/A:1015981105366. p. .

400 [], 10.1134/S1064562406010327. 117.

401 [], 10.1134/S1064562407050237. p. .

402 [], 10.1134/S1064562412020287. p. .

403 [], 10.1134/S0361768819100013. p. .

404 [], 10.1134/S0361768823010036. p. .

405 [], 10.1134/S036176881202003X. p. .

406 [], 10.3390/axioms10040293. 10.

407 [], 10.3390/universe9010035. 35.

408 [], 10.1134/S1064562409010141. 79 p. .

409 [Bruno and Shadrina] , A D Bruno , T V Shadrina . 10.1090/S0077-1554-07-00165-3. Moscow Math. Soc. -2007. 68 p. .

410 [], 10.1023/B:CELE.0000023390.25801.f9. p. .

411 [Birkhoff ()] , G D Birkhoff . *Dynamical Systems* 1966. Providence, Rhode Island: Colloquim Publications. 9.

412 [Newton ()] 'A treatise of the method of fluxions and infinite series, with its application to the geometry of curve lines'. I Newton . The Mathematical Works of Isaac Newton H Woolf (ed.) 1964. New York -London: Johnson Reprint Corp. 1 p. .

413 [Bruno and Enderal ()] *Algorithmic analysis of local integrability*, A D Bruno , V F Enderal . 2009.

414 [Bruno ()] *Algorithms for solving an algebraic equation* // *Programming and Computer Software*, A D Bruno . 2018a.

415 [Bruno] 'Analytical form of differential equations (I)'. A D Bruno . Trans. Moscow Math. Soc. -1971.

416 [Bruno] 'Analytical form of differential equations (II)'. A D Bruno . Trans. Moscow Math. Soc. -1972.

417 [Bruno and Goruchkina] 'Asymptotic expansions of solutions of the sixth Painlevé equation' // *Transactions of*. A D Bruno , I V Goruchkina . 10.1090/S0077-1554-2010-00186-0. Moscow Math. Soc.-2010. 71 p. .

418 [Bruno and Batkhin] *Asymptotic forms of solutions to system of nonlinear partial differential equations* // *Universe*. -2023, A D Bruno , A B Batkhin .

419 [Bruno] 'Asymptotics and expansions of solutions to an ordinary differential equation'. A D Bruno . 10.1070/RM2004v059n03ABEH. Russian Mathem. Surveys. -2004. 59 (3) p. .

420 [Bruno et al. (eds.) ()] A D Bruno , Chapter . 10.1515/9783110275667.41. *Proceedings of the International Conference*, A D Bruno , A B Batkhin , Berlin (eds.) (the International ConferenceSaint Petersburg, Russia; Boston) June 17-23, 2011. 2012. De Gruyter. (Space Power Geometry for one ODE and P1-P4)

421 [Bruno and Varin ()] *Classes of families of generalized periodic solutions to the Beletsky equation* // *Celestial Mechanics and Dynamical Astronomy*, A D Bruno , V P Varin . 2004. 88.

422 [Bruno et al. ()] *Complicated and exotic expansions of solutions to the Painlevé equations* // *Formal and Analytic Solutions of Diff*, A D Bruno , G Filipuk , A Lastra , S Michalik , Cham . 10.1007/978-3-319-99148-1_7. 2017. 2018. Springer. 256 p. .

423 [Bruno] 'Complicated expansions of solutions to an ordinary differential equation'. A D Bruno . Doklady Mathematics. -2006. 73.

424 [Bruno and Azimov] *Computation of unimodular matrices of power transformations* // *Programming and Computer Software*.-2023, A D Bruno , A A Azimov . 49.

425 [Bruno et al. ()] 'Computer Algebra in Scientific Computing'. A D Bruno , V F Enderal , V G Romanovski . 10.1007/978-3-642-32973-9. *On new integrals of the Algeba-Gamero-Garcia system*, Lecture Notes in Computer Science V P Gerdt (ed.) (Berlin Heidelberg) 2017. 2017. Springer. 10490. (Proceedings CASC)

426 [Gontsov and Goryuchkina] 'Convergence of formal Dulac series satisfying an algebraic ordinary differential equation'. R R Gontsov , I V Goryuchkina . 10.1070/SM9064. Sb. Math.-2019. 210 (9) p. .

427 [Bruno et al. ()] 'Elliptic and Periodic Asymptotic Forms of Solutions to P5'. A D Bruno , A V Parusnikova , Chapter . 10.1515/9783110275667.53. *Proceedings of the International Conference*, A D Bruno , A B Batkhin , Berlin (eds.) (the International ConferenceSaint Petersburg, Russia; Boston) June 17-23, 2011. De Gruyter.

428 [Hadamard] 'Etude sur les propriétés des fonctions entières et en particulier d'une fonction considérée par Riemann'. J Hadamard . *Journal de mathématiques pures et appliquées 4e série*. -1893. -T. 9, p. .

429 [Bruno] 'Exotic expansions of solutions to an ordinary differential equation'. A D Bruno . Doklady Mathematics.-2007. 76.

451 [Bruno and Kudryashov] 'Expansions of solutions to the equation P12 by algorithms of power geometry' A D
 452 Bruno , N A Kudryashov . Ukrainian Mathematical Bulletin. -2009. 6 (3) p. .

453 [Bruno] *Exponential expansions of solutions to an ordinary differential equation* // *Doklady Mathematics*, A D
 454 Bruno . 85.

455 [Bruno (ed.)] *Families of periodic solutions and invariant tori of Hamiltonian systems* // *Formal and Analytic
 456 Solutions of Differential Equations*, A D Bruno . 10.1142/q0335. G. Filipuk, A. Lastra, S. Michalik. -WORLD
 457 SCIENTIFIC (ed.)

458 [Bruno ()] *Families of periodic solutions to the Beletsky equation*, A D Bruno . 2002. 40.

459 [Hénon ()] 'Generating Families in the Restricted Three-Body Problem'. M Hénon . Lecture Note in
 460 Physics.Monographs 1997. Berlin, Heidelberg, New York: Springer. 52.

461 [Bruno ()] *Local Methods in Nonlinear Differential Equations*. -Berlin, Heidelberg, A D Bruno . 1989. New York,
 462 London, Paris, Tokyo: Springer-Verlag.

463 [Oleinik and Samokhin ()] *Mathematical Models in Boundary Layer Theory*, O A Oleinik , V N Samokhin .
 464 10.1201/9780203749364. 1999. New York: Chapman & Hall/CRC.

465 [Nonlinear Analysis as a Calculus] 10.1134/S0001434619110233. *Nonlinear Analysis as a Calculus*, p. .

466 [Bruno] 'Normal form of differential equations'. A D Bruno . Soviet Math. Dokl. -1964. 5 p. .

467 [Bruno] *On periodic flybys of the Moon* // *Celestial Mechanics*. -1981, A D Bruno . 10.1007/BF01229557. 24 p.
 468 .

469 [Bruno] 'On the generalized normal form of ODE systems // Qual'. A D Bruno . 10.1007/s12346-021-00531-4.
 470 *Theory Dyn. Syst.* -2022b 21 (1) .

471 [Bruno] 'On the parametrization of an algebraic curve'. A D Bruno . Mathematical Notes.-2019a. 106.

472 [Bruno and Varin ()] 'Periodic solutions of the restricted three-body problem for small mass ratio'. A D Bruno ,
 473 V P Varin . 10.1016/j.jappmathmech.2007.12.012. *J. Appl. Math. Mech* 2007. 71 (6) p. .

474 [Bruno ()] 'Power geometry and elliptic expansions of solutions to the Painlevé equations'. A D Bruno .
 475 10.1155/2015/340715. *International Journal of Differential Equations* 2015. 2015. 340715.

476 [Bruno] 'Power geometry and expansions of solutions to the Painlevé equations'. A D Bruno . Transnational
 477 Journal of Pure and Applied Mathematics. -2018c. 1 (1) p. .

478 [Bruno ()] *Power Geometry in Algebraic and Differential Equations*, A D Bruno . 2000. Elsevier Science. (-Ams-
 479 terdam)

480 [Bruno] *Power-exponential expansions of solutions to an ordinary differential equation* // *Doklady Mathematics*.-
 481 2012b, A D Bruno . 3. -P. 336-340. -DOI: 10.1134/S106456241102009.

482 [Bruno ()] 'Power-exponential transseries as solutions to ODE'. A D Bruno . 10.18642/jmsaa_7100122093.
 483 *Journal of Mathematical Sciences: Advances and Applications* 2019b.. 59 p. .

484 [Bruno and Chapter ()] 'Regular Asymptotic Expansions of Solutions to One ODE'. A D Bruno , Chapter .
 485 10.1515/9783110275667.67. Compilation 1.0. *Proceedings of the International Conference*, A D Bruno , A
 486 B Batkhin , Berlin (eds.) (the International ConferenceSaint Petersburg, Russia; Boston) June 17-23, 2011.
 487 2012. London Journals Press. 15 p. 31.

488 [Bruno and Batkhin ()] *Resolution of an algebraic singularity by power geometry algorithms* // *Programming
 489 and computer software*, A D Bruno , A B Batkhin . 2012. 38.

490 [Polyanin and Zhurov ()] *Separation of Variables and Exact Solutions to Nonlinear PDEs*, A D Polyanin , A I
 491 Zhurov . 2021. New York: Chapman & Hall/CRC. (401 p. Nonlinear Analysis as a Calculus)

492 [Dulac] 'Solutions d'un système d'équations différentielles dans le voisinage des valeurs singulières'. H Dulac .
 493 1912. -T. 40. -P. 324-383. *Bull. Soc. Math. France*

494 [Poincaré ()] 'Sur les propriétés des fonctions définies par les équations aux diffé-rence partielles // Oeuvres de
 495 Henri Poincaré'. H Poincaré . T. I 1928. Paris: XLIX-CXXIX.

496 [Bruno and Batkhin ()] *Survey of Eight Modern Methods of Hamiltonian Mechanics* // *Axioms*, A D Bruno , A
 497 B Batkhin . 2021.

498 [Bruno] 'The asymptotic behavior of solutions of nonlinear systems of differential equations'. A D Bruno . Soviet
 499 Math. Dokl. -1962.

500 [Bruno ()] *The Restricted 3-body Problem: Plane Periodic Orbits*, A D Bruno . 1994. Berlin: Walter de Gruyter.