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Abstract5

6

Index terms—7
There are two universal methods for local study of nonlinear equations and systems of different kinds (algebraic,8

ordinary and partial differential): (a) normal form and (b) truncated equations.9
(a) Equations with linear parts can be reduced to their normal forms by local changes of coordinates. For10

algebraic equation, it is Implicit Function Theorem. For systems of ordinary differential equations (ODE), I11
completed the theory of normal forms, began by ??oincaré (1879) [Poincaré, 1928] and ??ulac (1912) ??Dulac,12
1912] for general systems ??Bruno, 1964; ??971] and began by ??irkhoff (1929) [Birkhoff, 1966] for Hamiltonian13
systems ??Bruno, 1972;1994].14

(b) Equations without linear part: I proposed to study properties of solutions to equations (algebraic, ordinary15
differential and partial differential) by studying sets of vector power exponents of terms of these equations.16
Namely, to select more simple (”truncated”) equations ??Bruno, 1962;1989;2000] by means of generalization to17
polyhedrons the ??ewton (1678) [Newton, 1964] and the ??adamard (1893) ??Hadamard, 1893] polygons.18

By means of power transformations ??Bruno, 1962;1989; ??022b] the normal forms and the truncated equations19
can be strongly simplified and often solved. Solutions to the truncated equations are asymptotically the first20
approximations of the solutions to the full equations. Continuing that process, we can obtain then ??2.1)21

1 II. SINGLE ALGEBRAIC EQUATION22

2 The implicit function theorem:23

London Journal of Research in Science: Natural and Formal Theorem 2.1. Let f (X, ?, T ) = ?a Q,r (T )X Q ?24
r , where 0 ? Q ? Z n , 0 ? r ? Z, the sum is finite and a Q,r (T ) are some functions of T = (t 1 , . . . , t m ),25
besides a 00 (T ) ? 0, a 01 (T ) ? ? 0. Then the solution to the equation f (X, ?, T ) = 0 has the form? = ?b R26
(T )X R def = b(T, X),27

where 0 ? R ? Z n , 0 < ?R?, the coefficients b R (T ) are functions on T that are polynomials from a Q,r (T28
) with ?Q? + r ? ?R? divided by a29

2?R?-1 0130
. The expansion b(T, X) is unique. Let g(X, ?, T ) = f (X, ? + b(T, X), T ), ??2.2) then g(X, 0, T ) ? 0.31
This is a generalization of Theorem 1.1 of ??Bruno, 2000, Ch. II] on the implicit function and simultaneously32

a theorem on reducing the algebraic equation ??2.1) to its normal form ??2.2) when the linear part a 01 (T ) ?33
? 0 is nondegenerate. In it, we must exclude the values of T near the zeros of the function a 01 (T ).34

Let the point X 0 = 0 be singular. Write the polynomial in the formf (X) = ?a Q X Q , where a Q = const ?35
R, or C. Let S(f ) = {Q : a Q ? = 0}.36

The set S is called the support of the polynomial f (X). Let it consist of points Q 1 , . . . , Q k . The convex37
hull of the support S(f ) is the set ??2.3) which is called Newton’s polyhedron.38

Its boundary ?Î?”(f ) consists of generalized faces Î?” (d) j , where d is its dimension of 0 ? d ? n -1 and j is39
the number. Each (generalized) face Î?” ( d ) j corresponds to its:40

? boundary subset S (d)j = S ? Î?” (d) j , ? truncated polynomial f (d) j (X) = ?a Q X Q over Q ? S (d) j ,41
? and normal coneU (d) j = P : ?P, Q ? ? = ?P, Q ?? ? > ?P, Q ??? ?, Q ? , Q ?? ? S (d) j , Q ??? ? S\S42

(d) j43
, ??2.4) where P = (p 1 , . . . , p n ) ? R n Let X = (x 1 , . . . , x n ) ? R n or C n , and f (X) be44

a polynomial. A point X = X 0 , f (X 0 ) = 0 is called simple if the vector (?f /?x 1 , . . . , ?f /?x n ) in it45
is non-zero. Otherwise, the point X = X 0 is called singular or critical. By shifting X = X 0 + Y we move the46
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5 PARAMETRIC EXPANSION OF SOLUTIONS:

point X 0 to the origin Y = 0. If at this point the derivative ?f /?x n ? = 0, then near X 0 all solutions to the47
equation f (X) = 0 have the form y n = ?b q 1 ,...q n-1 y q1 1 ? ? ? y q n-1 n-1 , that is, lie in (n -1)-dimensional48
space. Î?”(f ) = Q = k j=1 µ j Q j , µ j ? 0, k j=1 µ j = 1 ,49

Nonlinear Analysis as a Calculus50
At X ? 0 solutions to the full equation f (X) = 0 tend to non-trivial solutions of those truncated equations f51

(d) j (X) = 0 whose normal cone U (d) j intersects with the negative orthant P ? 0 in R n * .52
Remark 1. If in the sum ??2.1) all Q belong to a forward cone C:?Q, K i ? > c i , i = 1, . . . , m,53
then in the solution (2.2) of Theorem 2.1 all R belong to the same cone C: ??Bruno, 1989, Part I, Chapter 1,54

§ 3].?Q, K i ? > c i , i = 1, . . . , m,55
Let ln X def =(ln x 1 , . . . , ln x n ). The linear transformation of the logarithms of the coordinates(ln y 1 ,56

. . . , ln y n ) def = ln Y = (ln X)?,57
(2.5) ??Bruno, 1962;2000: where ? is a nondegenerate square n-matrix, is called power transformation.58

3 Power transformations59

By the power transformation (2.5), the monomial X Q tranforms into the monomial Y R , where R = Q (? * )60
-1 and the asterisk indicates a transposition.61

A matrix ? is called unimodular if all its elements are integers and det ? = ±1. For an unimodular matrix ?,62
its inverse ? -1 and transpose ? * are also unimodular.63

Theorem 2.2. For the face Î?” (d) j there exists a power transformation (2.5) with the unimodular matrix ?64
which reduces the truncated sumf (d) j (X) to the sum from d coordinates, that is, f (d) j (X) = Y S ?(d) j (Y65
), where ?(d) j (Y ) = ?(d) j (y 1 , . . . , y d66

) is a polynomial. Here S ? Z n . The additional coordinates y d+1 , . . . , y n are local (small).67
The article ??Bruno, Azimov, 2023] specifies an algorithm for computing the unimodular matrix ? of Theorem68

2.2.69

4 Let Î?” (d) j70

be a face of the Newton polyhedron Î?”(f ). Let the full equation f (X) = 0 is changed into the equation g(Y ) =71
0 after the power transformation of Theorem 2.2. Thus ?(d) j (y 1 , . . . , y d ) = g(y 1 , . . . , y d , 0, . . . , 0).72

5 Parametric expansion of solutions:73

London Journal of Research in Science: Natural and Formal74
Let the polynomial ?j be the product of several irreducible polynomials?(d) j = m k=1 h l k k (y 1 , . . . , y75

d ),(2.6)76
where 0 < l k ? Z. Let the polynomial h k be one of them. Three cases are possible:77
Case 1. The equation h k = 0 has a polynomial solution y d = ?(y 1 , . . . , y d-1 ). Then in the full78

polynomial g(Y ) let us substitute the coordinatesy d = ? + z d ,79
for the resulting polynomial h(y 1 , . . . , y d-1 , z d , y d+1 . . . , y n ) again construct the Newton80

polyhedron, separate the truncated polynomials, etc. Such calculations were made in [Bruno, Batkhin, 2012] and81
were shown in ??Bruno, 2000, Introduction].82

Case 2. The equation h k = 0 has no polynomial solution, but has a parametrization of solutionsy j = ? j (T83
), j = 1, . . . , d, T = (t 1 , . . . , t d-1 ).84

Then in the full polynomial g ( Y ) we substitute the coordinatesy j = ? i (T ) + ? j ?, j = 1, . . . , d,(2.7)85
where ? j = const, ? |? j | ? = 0, and from the full polynomial g(Y ) we get the polynomialh = ?a Q ?? ,r (T86

)Y ?? Q ?? ? r ,(2.8)87
whereY ?? = (y d+1 , . . . , y n ), 0 ? Q ?? = (q d+1 , . . . , q n ) ? Z n-d , 0 ? r ? Z. Thus a 00 (T ) ? 0,88

a 01 (T ) = d j=1 ? j ?? (d) j /?y j (T ).89
If in the expansion (5.7) l k = 1, then a 01 ? ? 0. By Theorem 2.1, all solutions to the equation h = 0 have90

the form i.e., according to (2.7) the solutions to the equation g = 0 have the form? = ?b Q ?? (T )Y ?? Q ?? ,91
London Journal ofy j = ? j (T ) + ? j ?b Q ?? (T )Y ?? Q ?? , j = 1, . . . , d.92

Such calculations were proposed in [Bruno, 2018a].93
If in (5.7) l k > 1, then in (2.8) a 01 (T ) ? 0 and for the polynomial (2.8) from Y ?? , ? we construct a94

Newton polyhedron by support S(h) = {Q ?? , r : a Q ?? ,r (T ) ? ? 0}, separate the truncations and so on.95
Case 3. The equation h k = 0 has neither a polynomial solution nor a parametric one. Then, using Hadamard’s96

polyhedron [Bruno, 2018a; ??019a], one can compute a piece-wise approximate parametric solution to the97
equation h k = 0 and look for an approximate parametric expansion.98

Similarly, one can study the position of an algebraic manifold in infinity.99
Here we consider an ordinary differential equation of the formf x, y, y ? , . . . , y (n) = 0,(3.1)100
where x is independent variable, y is the dependent variable, y ? = dy/dx and f is a polynomial of its101

arguments. Near x 0 = 0 or ? we look for solutions of equation ??3.1) in the form of asymptotic seriesy = ? k=1102
b k x s k ,(3.2)103

III. SINGLE ODE [BRUNO, 2004] 3.1. Setting of the problem:104
where b k are functions of log x and ?s k > ?s k+1 with? = -1, if x 0 = 0, 1, if x 0 = ?. (3.3)105
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We set X = (x, y). By a differential monomial a(x, y) we mean the product of an ordinary monomial To every106
differential monomial a (X) one assigns its (vector) exponent Q(a) = (q 1 , q 2 ) ? R 2 by the following rules.107
For a monomial of the form ??3.4) let ?? 1 , ?? 2 ); for a derivative of the form (3.5) let Q d l y/dx l = (-l, 1).cx108
r 1 y r 2 def = cX R ,(3.4Q cX R = R, that is, Q (cx r 1 y r 2 ) = (109

When differential monomials are multiplied, their exponents are summed as vectors:Q (a 1 a 2 ) = Q (a 1 ) +110
Q (a 2 ) .111

The set S(f ) of exponents Q (a i ) of all the differential monomials a 2 (X) in a differential sum of the form112
??3.6) is called the support of the sum f (X). Obviously, S(f ) ? R 2 . The closure Î?”(f ) of the convex hull of113
the support S(f ) is referred to as the polygon of the sum f (X). The boundary ?Î?”(f ) of the polygon Î?”(f )114
consists of vertices Î?” f (d) j (X) = a i (X) over Q (a i ) ? S (d) j . (3.7)115

Let R 2 * be the plane conjugate to the plane R 2 so that the inner (scalar) product?P, Q? def = p 1 q 1 + p116
2 q 2117

is defined for anyP = (p 1 , p 2 ) ? R 2 * and Q = (q 1 , q 2 ) ? R 2 . Corresponding to any face Î?” (d) j are118
its normal cone, U (d) j = P : ?P, Q? = ?P, Q ? ? , Q, Q ? ? S (d) j ?P, Q? > ?P, Q ?? ? , Q ?? ? S(f )\S (d) j119

and the truncated sum (3.7). All these constructions are applicable to equation ??3.1), where f is a differential120
sum.121

Let x ? 0 or x ? ? and suppose that a solution of the equation (3.1) has the formy = c r x r + o |x| r+? ,(3.8)122
where c r is a coefficient, c r = const ? C, c r ? = 0, the exponents r and ? are in R, and ?? < 0. Then we123

say that the expressiony = c r x r , c r ? = 0 (3.9)124
gives the power-law asymptotic form of the solution (3.8).125
Thus, corresponding to any faceÎ?” ( d ) j are the normal cone U ( d ) j in R 2126
* and the truncated equation f (d) j (X) = 0. (3= 0. We set g(X) def = X -Q f (0) j (X).127
Then the solution (3.7), (3.10) satisfies the equation128

6 Solution of the truncated equation:129

London Journal of Research in Science: Natural and Formal g(X) = 0130
Substituting y = cx r into g(X), we see that g (x, cx r ) does not depend on x, c and is a polynomial in r, that131

is,g (x, cx r ) ? ?(r),132
where ?(r) is the characteristic polynomial of the differential sum f (0) j (X). Hence, in a solution (3.9) of the133

equation (3.10) the exponent r is a root of the characteristic equation ??3.11) and the coefficient c r is arbitrary.134
Among the roots r i of the equation ??3.11), one must single out only those for which one of the vectors ? ??1,135
r), where ? = ±1, belongs to the normal cone U (0)?(r) def = g (x, x r ) = 0,j of the vertex Î?” (0) j .136

In this case the value of ? uniquely determined. The corresponding expressions of the sum with an arbitrary137
constant c r are candidates for the role of truncated solutions of the equation ??3.1). Moreover, by ??3.3), if ?138
= -1, then x ? 0, and if ? = 1, then x ? ?.139

Complex roots r to characteristic equation ??3.11) may bring to exotic expansions of solutions ??3.2), where140
coefficients b k are power series in x ?i with real ? ? R and i 2 = -1.141

7 Corresponding to an edge Î?”142

(1)j is a truncated equation (3.10) with d = 1 whose normal cone U (1) j is a ray {?N j , ? > 0}. If ?(1, r) ? U143
(1)144

j , this condition uniquely determines the exponent r of the truncated solution (3.9) and the value ? = ±1 in145
??3.3). To find the coefficient c r , one must substitute the expression (3.9) into the truncated equation (3.10).146
After cancelling a factor which is a power of x, we obtain an algebraic defining equation for the coefficient c r ,f147
(c r ) def = x -s f (1) j (x, c r x r ) = 0 Corresponding to every root c r = c (i)148

r ? = 0 of this equation is an expression of the form (3.9) which is a candidate for the role of a truncated149
solution of the equation ??3.1). Moreover, by ??3.3), if in the normal cone U150

(1) j one has p 1 < 0, then x ? 0, and if p 1 > 0, then x ? ?. From the polygon Î?” of the initial equation (3.1)151
we take a vertex or an edge Î?” (d) j . Then we found a power solution y = b 1 x P 1 of the truncated equation152
f (d) j (X) = 0, as it was described above, puty = b 1 x P 1 + z and obtain new equation g(x, z) = 0.153

We construct the polygon 1 Î?” for the new equation, take a vertex or an edge 1 Î?” (e) k , solve the truncated154
equation?(e) k (x, z) = 0,155

and obtain the second term b 2 x P 2 of expansion (3.2) and so on.156

8 Computation of solution to equation (3.1) as expansion (3.2)157

London Journal of Research in Science: Natural and Formal158
We construct the polygon 1 Î?” for the new equation, take a vertex or an edge 1 Î?” (e)159
k , solve the truncated equation?(e) k (x, z) = 0,160
and obtain the second term b 2 x P 2 of expansion (3.2) and so on.161
In [Bruno, 2004] there are some properties, that simplify computation. Thus, we can obtain the 4 types of162

expansions (3. ??Bruno, 2006; ??018b]; 4. Exotic, when all b k are power series in x i? [Bruno, 2007].163
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10 SO HERE THE EIGENVALUE ?

Except expansions (3.2) of solutions y(x) of equation ??3.1), there are exponential expansionsy = ? k=1 b k164
(x) exp [k?(x)] ,165

where b k (x) and ?(x) are power series in x ??Bruno, 2012a,b].166
Also there are solutions in the form of transseries [Bruno, 2019b]. These results were applied to 6 Painlevè167

equations [Bruno, 2015; ??018b,c; ??runo, Goruchkina, 2010]. Written as differential sums they are: Equation168
P 5 :Equation P 1 : f (x, y) def = -y ?? + 3y 2 + x = 0. Equation P 2 : f (x,f (z, w) def = -z 2 w(w -1)w ?? + z169
2 3 2 w - 1 2 (w ? ) 2 -zw(w -1)w ? + + (w -1) 3 (?w 2 + ?) + ?zw 2 (w -1) + ?z 2 w 2 (w + 1) = 0. Equation170
P 6 : f (x, y) def = 2y ?? x 2 (x -1) 2 y(y -1)(y -x) -(y ? ) 2 [ x 2 (x -1) 2 (y -1)(y -x)+ + x 2 (x -1) 2 y(y -x) +171
x 2 (x -1) 2 y(y -1) ]+ + 2y ? [ x(x -1) 2 y(y -1)(y -x) + x 2 (x -1)y(y -1)(y -x)+ + x 2 (x -1) 2 y(y -1) ] -[ 2?y 2172
(y -1) 2 (y -x) 2 + 2?x(y -1) 2 (y -x) 2 + + 2?(x -1)y 2 (y -x) 2 + 2?x(x -1)y 2 (y -1) 2 ] = 0.173

Here a, b, c, d and ?, ?, ?, ? are complex parameters. If all they are nonzero, then polygons for these equations174
are shown in Figures 1,2,3.175

9 Supports and polygons for equations176

q 2 q 1 0 1 1 P 1 q 2 q 1 0 1 1 P 2177
Nonlinear Analysis as a Calculus178
Then there exists such power series ?(x) with integral increasing exponents, that after substitutiony = z +179

?(x) (3.13) the transformed differential sum g(x, z) = f (x, z + ?(x)) (3.14) for z = z ? = ? ? ? = z (n) = 0180
(3.15)181

has only resonant terms b m x m , wherem = v + ? k ? Z (3.16)182
and m ? ?.183
So here the eigenvalue? k is resonant if ? -v ? ? k ? Z.184
3) truncated differential sum f (0) 1 (X) have eigenvalues ? 1 , . . . , ? l , 0 ? l ? n; 4) the most left point of185

the support S(f ) in the axis q 2 = 0 be (?, 0). Evidently ? ? Z.186
Supports and polygons for equations P 3 (left), P 4 (right). -1 0 1 q 1 q 2 P 3 q 2 q 1 0 1 1 P 42187
Nonlinear Analysis as a Calculus188
Theorem 3.3. Let 1) f x, y, y ? , . . . , y (n) be a polynomial in x, y, y ? , . . . , y (n) ; 2) its Newton polygon189

Î?”(f ) have a vertex Î?” (0) 1 = (v, 1) at the right side of its boundary ?Î?”;190
3) truncated differential sum f (0) j (X) have eigenvalues ? 1 , . . . , ? l , 0 ? l ? n; 4) the most right point of191

the support S(f ) in the axis q 2 = 0 be (?, 0). Evidently ? ? Z.192
Then there exists such power series ?(x) with integral decreasing exponents, that after substitution (3.13), the193

differential sum (3.14) for identities ??3.15) has only resonant terms b m x m , where equality ??3.16) is true,194
and m ? ?. f (0) j (X) has no integral eigenvalue ? k ? ?-v (for Theorem 3.2) or ? k ? ? -v (for Theorem 3.3),195
then the initial equation f (X) = 0 has formal solution y = ?(x). If the truncated sum f (0) j (X) contains the196
derivation y (n) , then the series ?(x) converges according to Theorem 3.4 in [Bruno, 2004].197

10 So here the eigenvalue ?198

k is resonant if ? -v ? ? k ? Z. Equations g(x, z) = 0 for (3.199
Remark 2. If the truncated sum f (0) j (X) has integral eigenvalue ? k ? ?v (for Theorem 3.2) or ? k ? ? -v200

(for Theorem 3.3), then the initial equation f (X) = 0 Supports and polygons for equations P 5 (left), P 6 (right).201
q 2 q 1 0 1 1 P 5 q 2 q 1 0 1 1 P 6202

Nonlinear Analysis as a Calculus203
We will consider such a generalization of the power function cx r which preserves their main properties. The204

real numberp ? (?(x)) = ? lim x ? ?? log |?(x)| ? log |x| ,205
where arg x = const ? [0, 2?), is called the order of the function ?(x) on the ray when x ? 0 or x ? ?. The order206

p ? (?) is not defined on the ray arg x = const, where the limit point x = 0 or x = ? is a point of accumulation207
of poles of the function ?(x).208

In Subsections 3.2-3.4 it was shown that as x ? 0 (? = -1) or as x ? ? (? = 1) solutions y = ?(x) to the ODE209
f (x, y) = 0, where f (x, y) is a differential sum, can be found by means of algorithms of Plane PG, ifp ? (?(x))210
-l = p ? d l ?/dx l , l = 1, . . . , n,211

where n is the maximal order of derivatives in f (x, y). Here we introduce algorithms, which allow calculate212
solutions y = ?(x) with the propertyp ? (?(x)) + l? ? = p ? d l ?/dx l , l = 1, . . . , n, where ? ? ? R, ? = ±1.213
Lemma 3.3.1. If p ? (?(x)) = -? ? + p ? (? ? (x)) = -2? ? + p ? (? ?? (x)), then ? + ?? ? ? 0.214

Note, that in Plane PG we had ? ? = -1, i. e. ? +?? ? = 0. So, new interesting possibilities correspond to ?215
+ ?? ? > 0.216

We consider the ODEf (x, y) = i a i (x, y) = 0,217
where f (x, y) is a differential sum. To each differential monomial a i (x, y), we assign its (vector) power218

exponent Q(a i ) = (q 1 , q 2 , q 3 ) ? R 3 by the following rules: power exponent of the product of differential219
monomials is the sum of power exponents of factors:Q(a 1 a 2 ) = Q(a 1 ) + Q(a 2 ).220

The set S(f ) of power exponents Q(a i ) of all differential monomials a i (x, y) presented in the differential221
sum f (x, y) is called the space support of the sum f (x, y). Obviously, S(f ) ? R 3 . The convex hull Î?”(f ) of222
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the support S(f ) is called the polyhedron of the sum f (x, y). The boundary ?Î?”(f ) of the polyhedron Î?”(f )223
consists of the vertices Î?” (0) j , the edges Î?” f (d) j (x, y) = a i (x, y) over Q(a i ) ? Î?” (d) j ? S(f ).224

Support and polyhedron for equation P 1 . The approach allows to obtain solutions with expansions ??3.2),225
where coefficients b k (x) are all periodic or all elliptic functions ??Bruno, 2012c,d; ??runo, Parusnikova, 2012].226

Expansions of solutions to more complicated equations such as hierarchies Painlevé see in ??Anoshin, Beketova,227
(et al.), 2023; Bruno, For P 1 -P 5 with all parameters nonzero, their polyhedrons are shown in ??igures 4, ??,228
??, ??, ?? correspondingly.229

Here we consider the system ?i = f i (X), i = 1, . . . , n, ??4.1) where?= d/d t, X = (x 1 , . . . , x n ) ? C n230
or R n , all f i (X) are polynomials from X. A point X = X 0 = const is called singular if all f i (X 0 ) = 0, i =231
1, . . . , n.232

Let the point X 0 = 0 be a singular point. Then the system (4.1) has the linear part? = XA,233
where A is a square n-matrix. Let ? = (? 1 , . . . , ? n ) be a vector of its eigenvalues.234
Theorem ??.1 ([Bruno, 1964; ??971 ?? 1972]). There exists an invertible formal change of coordinatesx i = ?235

i (Y ), i = 1, . . . , n,236
where ? i (Y ) are power series from Y = (y 1 , . . . , y n ) without free terms, which reduces the system237

(4.1) to normal form?i = y i g i (Y ) = y i Y Q , i = 1, . . . , n,(4.2)238
IV. AUTONOMOUS ODE SYSTEM239

11 Normal form:240

Support and polyhedron for equation P 2 . Here y i g i (Y ) are power series on Y without free terms.Let N i =241
{Q ? Z n : q j ? 0, j ? = i, q i ? -1} , i = 1, . . . , n,242

andN = N 1 ? N 2 ? ? ? ? ? N n .243
Then the number k of linearly independent Q ? N satisfying the equation ( 4.3) is called multiplicity of244

resonance.245
Theorem 4.2. Let k be the multiplicity of resonance of the system (4.1). Then there exists a power246

transformationln Z = (ln Y ) ?247
with unimodular matrix ? which reduces the normal form (4.2), ( 4.3) to the system(ln z i ) = h i (y 1 , . . .248

, y k ), i = 1, . . . , n,249
in which the first k coordinates form a closed subsystem without a linear part, and the remaining nk coordinates250

are expressed via them by means of integrals.251
Thus, if ? ? = 0, then the original system (4.1) of order n can be reduced to a system of order k, but without252

the linear part. Support and polyhedron for equation P 3 .253

12 Figure 6:254

Let’s write the system (4.1) as ??4.4) and put A Q = (a 1Q , . . . , a nQ ).(ln x i ) = a iQ X Q , i = 1, . . . , n,255
The setS = {Q : A Q ? = 0}256
is called the support of the system ??4.4). Its convex hull Î?” (2.3) is its Newton’s polyhedron. Its boundary257

?Î?” consists of generalized faces Î?” ? boundary subset S (d) j = Î?” (d) j ? S, ? truncated system (ln X) =258
Â(d) j (X) = A Q X Q over Q ? S (d) j , (4.5) ? normal cone U ( d ) j ? R n * (2.4) and ? tangent cone T (d) j .259

According to ??Bruno, 2000, Chapt. 1, §2] let d > 0 and Q be the interior point of a face Î?” (d) j , that260
is, Q does not lie in a face of smaller dimension. If d = 0, then 4.2: Newton’s polyhedron ??Bruno, 1962;2000].261
Support and polyhedron for equation P 4 . Q = Î?” (0) j . The conic hull of the set S -Q T (d) j = Q = µ 1 Q 1262
-Q + ? ? ? + µ k Q k -Q , µ 1 , . . . , µ k ? 0, Q 1 , . . . , Q k ? S is called the tangent cone of the face Î?” (d)263
j , 0 ? d ? n -1, T (d) j ? R n .d ? = X R d t,264

R ? Z n , which reduce the system (4.4) to the formd (ln Y ) /d ? = B(Y ),(4.6)265
where the systemd (ln Y ) /d ? = B(d) j (Y ) ? B(d) j (y 1 , . . . , y d ) = B(y 1 , . . . , y d , 0, . . . ,266

0),(4.7)267
corresponds to the truncated system (4.5). be singular for the truncated system (4.7). Near the point (4.8),268

the local coordinates arez i =y i -y 0 i , i = 1, . . . , d, z j =y j , j = d + 1, . . . , n.269
Let at the point Z = (z 1 , . . . , z n ) = 0 the eigenvalues of the matrix of the linear part of the system (4.7)270

are ? = ?1 , . . . , ?n , where ?1 , . . . , ?d are the eigenvalues of the subsystem of the first d equations.271
Theorem 4.4. There exists an invertible formal change of coordinates ??Bruno, 2022b]: where W = (w 1 , . .272

. , w n ) which reduces the system (4.6) to the generalized normal formz i = ? i (W ), i = 1, . . . , n,273

13 Generalized normal form274

?i = w i c i (W ) = w i c iQ W Q , i = 1, . . . , n,(4.9)275
whereQ, ? = 0 and Q ? T (d) j ? Z n .276
(4.10)Here ? i = w i ? iQ W Q , i = 1, . . . , n, where Q ? T (d) j ? Z n .277
The system (4.9), (4.10) is reduced to a system of lower order by the power transformation of Theorem 4.2 .278
Let X = X 0 be a singular point of the sys tem ??4.1). Two cases are possible: Case 1. ? ? = 0, then279

by Theorem 4.1 we reduce the system to a normal form, then by Theorem 4.2 we reduce the normal form to a280
subsystem of order k < n without linear part and obtain the problem of studying its singular points.281
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15 NORMAL FORM:

Case 2. ? = 0, then we compute the Newton polyhedron and separate truncated systems in which the normal282
cone U (d) j intersects the negative orthant of P ? 0. Each of them is reduced to the form (4.6), (4.7) by the283
transformation of Theorem 4.3. For each singular point (4.8), we apply Theorem 4.4 and obtain a subsystem of284
smaller order.285

Continuing this branching process, after a finite number of resolution of singularities we come to an explicitly286
solvable system from which we can understand the nature of solutions of the original system. But Theorem 4.3287
can be applied to the original system (4.1), i.e. to each of the generalized faces Î?” (d) j of its Newton polyhedron288
Î?”. Then to each singular point (4.8) we apply Theorems 4.4, 4.2 and reduce the order of the system. Here289
also through a finite number of steps of the singularity resolution we come to an explicitly solvable system. This290
allows us to study the singularities of the original system in infinity. This is the basis of the integrability criterion291
in [Bruno, Enderal, 2009;Bruno, Enderal, Romanovski, 2017].292

The normal form can be computed in the neighborhood of a periodic solution or invariant torus ??Bruno,293
1972, II, §11], ??Bruno, 2022a].294

See ??Bruno, Batkhin, 2023] for similar computations for a system of partial differential equations.295

14 Analysis of singularities: tem296

and is defined by one Hamiltonian function H(x, y), where x = (x 1 , . . . , x n ), y = (y 1 , . . . , y m ). Here297
the normal form of the system (4.11) corresponds to the normal form of one Hamiltonian function. See details298
in [Bruno, Batkhin, 2021].299

Let X = ( x 1 , . . . , x n ) ? C n or R n independent variables and y ? C or R be a dependent one. Consider300
Z = (z 1 , . . . , z n , z n+1 ) = (x 1 , . . . , x n , y).301

Differential monomial a(Z) is called a product of an ordinary monomialcZ R = cz r 1 1 ? ? ? z r n+1 n+1 ,302
where c = const, and a finite number of derivatives of the following form? l y ?x l 1 1 ? ? ? ? l n x n def = ?303

l y ?X L , 0 ? l j ? Z, n j=1 l j = l, L = (l 1 , . . . , l n ) .304
Vector power exponent Q(a) ? R n+1 corresponds to the differential monomial a(Z), it is constructed according305

to the following rules:Q(c) = 0, if c ? = 0, Q Z R = R, Q ? l y j /?X L = (-L, 1).306
The product of monomials corresponds to the sum of their vector power exponents:Q(ab) = Q(a) + Q(b).307
Differential sum is the sum of differential monomials V. ONE PARTIAL DIFFERENTIAL EQUATION 5.1.308

Support [Bruno, 2000 Ch. be 6-8]:f (Z) = a k (Z). (5309
Let the support S(f ) of the differential sum (5.1) consists of one point E n+1 = (0, . . . , 0, 1). Then the310

substitution y = cX P , P = (p 1 , . . . , p n ) ? R n311
(5.2) in the differential sum f (Z) gives the monomial c? P (P )X P312
where ? P (P ) is a polynomial of P which coefficients depend on P .313
Monomial (5.2) will be called resonant for f (Z) if for it ? P (P ) = 0.314
Let µ k be the maximal order of the derivative over x k in f (Z), k = 1, . . . , n.If in P = (p 1 , . . . , p n ) p315

k ? µ k , k = 1, . . . , n, (5.3) then f (Z) = c?(P )X P ,316
where ?(P ) is the characteristic polynomial of the sum of f (Z) and its coefficients do not depend on P . But317

if the inequalities (5.3) are not satisfied, then ? P (P ) ? = ?(P ).Example. Let n = 2, f (Z) = x 1 ?y ?x 1 + x 2318
2 ? 2 y ?x 2 2 . If P = (1, 1), then f (x 1 , x 2 , cx 1 x 2 ) = cx 1 x 2 . If P = (1, 2), then f (x 1 , x 2 , cx 1 x 2 2319
) = c x 1 x 2 2 + x 1 ? x 2 2 ? 2 = c ? 3x 1 x 2 2 . Generally here for p 1 ? 1, p 2 ? 2 we have f (x 1 , x 2 , cx320
1 x 2 ) = c[p 1 + p 2 (p 2 - 1)]x p 1 1 x p 2 2 and ?(P ) = p 1 + p 2 (p 2 -1).321

For a differential sum f (Z) we denote by f k (Z) the sum of all differential monomials of f (Z) which have n +322
1 coordinate q n+1 of vector power exponents Q = (q 1 , . . . , q n , q n+1 ) equal to k:q n+1 = k. Denote Z n323
+ = {P : 0 ? P ? Z n }.324

Consider the PDE f (Z) = 0.325
(5.4)326

15 Normal form:327

5.2. Resonant monomials:328
1. f 0 (Z) = ?(X) is a power series from X without a free term, 2. f 1 (Z) = a(Z)+b(Z), where S(a) = E n+1329

= (0, . . . , 0, 1), S(b) ? Z n+1 + \0 × {q n+1 = 1}.330
Then there exists a substitution y = ? + (X), where (X) is a power series from X without a free term, which331

transforms the equation (5.4) to the normal form g(X, ?) = 0,332
(5.5)333
where g 0 (X) = c P X P is a power series without a free term, P ? Z n + containing only resonant monomials334

c P X P for sum a(Z). is the formal solution to the equation (5.4).335
If in equation (5.4) differential sum does not contain derivatives, thena(Z) = const ? z n+1 = const ? y.336
Closure of a convex hull where the space R n+1 * is conjugate to the space R n+1 , ??, ?? is the scalar337

product, and truncated sumÎ?”(f ) = Q = ? j Q j , Q j ? S, ? j ? 0, ? j = 1 of the support S(f ) is called the338
polyhedron of sum f (Z). The boundary ?Î?” of the polyhedron Î?”(f ) consists of generalized faces Î?” (d) j ,339
where d = dim Î?” (d) j . Each face Î?” (d) j corresponds to normal cone U (d) j = P ? R n+1 * : ?P, Q ? ? =340
?P, Q ? ? > ?P, Q ? ?, where Q, Q ? ? Î?” (d) j , Q ? ? Î?”\Î?”f (d) j (Z) = a k (Z)by Q(a k ) ? Î?” (d) j S.341
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Consider the equationf (Z) = 0, (5.6)342
where f is the differential sum. In the solution of equation (5.6)y = ?(X), (5.7)343
where ? is a series on the powers of x k and their logarithms, the series ? corresponds to its support,344

polyhedron, normal cones u i and truncations. The logarithm ln x i has a zero power exponent on x i . The345
truncated solution y = ? corresponds to the normal coneu ? R n+1 * .346

Theorem 5.2. If the normal cone u intersects with the normal cone (5.2), then the truncation y = ?(X) of the347
solution (5.3) satisfies the truncated equationf (d) j (Z) = 0.348

(5.8)349
To simplify the truncated equation (5.8), it is convenient to use a power transformation. Let ? be a square350

real nondegenerate block matrix of dimension n + 1 of the form? = ? 11 ? 12 0 ? 22 ,351
where ? 11 and ? 22 are square matrices of dimensions n and 1, respectively. We denote ln Z = (ln z 1 , . . .352

, ln z n+1 ), and by the asterisk * we denote transposition.353
Variable change. ln W = (ln Z) ? (5.9) is called the power transformation.354
Theorem 5. ?? ([Bruno, 2000]). The power transformation (5.5) reduces a differential monomial a(Z) with a355

power exponent Q(a) into a differential sum b(W ) with a power exponent Q(b):R = Q(b) = Q(a)? -1 * .356

16 Power transformations:357

London Journal of Research in Science: Natural and Formal358
Corollary 5.3.1. The power transformation (5.9) reduces the differential sum (2.1) with support S(f ) to the359

differential sum g(W ) with support S(g) = S(f )? -1 * , i.e.360

17 S(f ) = S(g)? *361

Theorem 5.4. For the truncated equationf (d) j (Z) = 0362
there is a power transformation (5.9) and monomial Z T that translates the equation above into the363

equationg(W ) = Z T fj (Z) = 0,364
where g(W ) is a differential sum whose support has n + 1d zero coordinates.365
Let z j be one of the coordinates x k or y. Transformation ? j = ln z j is called logarithmic.366
Theorem 5.5. Let f (Z) be a differential sum such that all its monomials have a jth component q j of the vector367

exponent of degree Q = (q 1 , . . . , q m+n ) equal to zero, then the logarithmic transformation (5.1) reduces368
the differential sum f (Z) into a differential sum from z 1 , . . . , ? j , . . . , z n .369

18 Logarithmic transformation:370

A truncated equation 5.7. Calculating asymptotic forms of solutions: f (n) j (Z) = 0 is taken. If it cannot be371
solved, then a power transformation of the Theorem 5.4 and then a logarithmic transformation of the Theorem 5.5372
should be performed. Then a simpler equation is obtained. In case it is not solvable again, the above procedure373
is repeated until we get a solvable equation. Having its solutions, we can return to the original coordinates by374
doing inverse coordinate transformations. So the solutions written in original coordinates are the asymptotic375
forms of solutions to the original equation (5.2).376

In ??Bruno, Batkhin, 2023] method of selecting truncated equations was applied to systems of PDE.377
Traditional approach to PDE see in [Oleinik, Samokhin, 1999;Polyanin, Zhurov, 2021].378
Here we provide a list of some applications in complicated problems of (c) Mathematics, (d) Mechanics, (e)379

Celestial Mechanics and (f) Hydromechanics.380
(c) In Mathematics: together with my students I found all asymptotic expansions of five types of solutions381

to the six Painlevé equations ??1906) ??Bruno, 2018c; ??runo, Goruchkina, 2010] and also gave very effective382
method of determination of integrability of ODE system [Bruno, Enderal, 2009;Bruno, Enderal, Romanovski,383
2017].384

(d) In Mechanics: I computed with high precision influence of small mutation oscillations on velocity of385
precession of a gyroscope [Bruno, 1989] and also studied values of parameters of a centrifuge, ensuring stability386
of its rotation [Batkhin, Bruno, (et al.), 2012].387

(e) In Celestial Mechanics: together with my students I studied periodic solutions of the Beletsky equation (388
??956) [Bruno, 2002;Bruno, Varin, 2004], describing motion of satellite around its mass center, moving along an389
elliptic orbit. I found new families of periodic solutions, which are important for passive orientation of the satellite390
[Bruno, 1989], including cases with big values of the eccentricity of the orbit, inducing a singularity. Besides,391
simultaneously with [Hénon, 1997], I found all regular and singular generating families of periodic solutions of392
the restricted three-body problem and studied bifurcations of generated families. It allowed to explain some393
singularities of motions of small bodies of the Solar System [Bruno, Varin, 2007]. In particular, I found orbits of394
periodic flies round planets with close approach to the Earth ??Bruno, 1981].395

(f) In Hydromechanics: I studied small surface waves on a water ??Bruno, 2000, Chapter 5], a boundary layer396
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6

Figure 1: ) 6 ©

on a needle ??Bruno, Shadrina, 2007], where equations of a flow have a singularity, and an one-dimensional model397
of turbulence bursts ??Bruno, Batkhin, 2023]. 1 2398
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