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. 1 I.INTRODUCTION

10 The generalization of the principal component analysis (PCA) is an important research theme in the symbolic
1 data analysis [1][2][3][4]. The main purpose of the traditional PCA is to transform a number of possibly correlated
12 variables into a small number of uncorrelated variables called principal components. Chouakria [5] proposed the
13 extension of the PCA to interval data as vertices principal component analysis (V-PCA). Chouakria et al. [6]
14 proposed also the centers method of PCA (C-PCA) for interval data, and they presented a comparative example
15 for the V-PCA and the C-PCA. Lauro and Palumbo [7] proposed symbolic object principal component analysis
16 (SO-PCA) as an extended PCA to any numerical data structure. Lauro et al. [8] summarize various methods
17 of SO-PCA for interval data. The author also proposed a general "Symbolic PCA” (S-PCA) based on the
18 quantification method by using the generalized Minkowski metrics [9,10]. In this approach, we first transform
19 the given symbolic data table to a usual numerical data table, and then we execute the traditional PCA on the
20 transformed data table.

21 In this article, another quantification method for symbolic data tables based on the monotone structures of
22 objects is presented. In Section 2, first we describe the case of point sequences in a d-dimensional Euclidean
23 space. The monotone structures are characterized by the nesting of the Cartesian join regions associated with
24 pairs of objects. If the given point sequence is monotone in the Euclidean d space, the property is also satisfied in
25 any feature axis. In other words, a nesting structure of the given point sequence in the d space confines the orders
26 of points in each feature axis to be similar. Therefore, we can evaluate the degree of similarity between features
27 based on the Kendall or the Spearman’s rank correlation coefficients. Then, we can execute a traditional PCA
28 based on the correlation matrix by the selected rank correlation coefficient. Secondly, we describe the “object
20 splitting method” for SO-PCA for interval-valued data [11]. This method splits each of N symbolic objects
30 described by d interval-valued features into the two d-dimensional vertices called the "minimum sub-object”
31 and the "maximum sub object”. We should point out the fact that any interval object can be reproduced from
32 the minimum and the maximum sub-objects. Moreover, the nesting structure of interval objects in the d space
33 confines the orders of the minimum and the maximum sub-objects in each feature axis to be similar. Therefore,
34 we can evaluate again the degree of similarity between features based on the Kendall or the Spearman’s rank
35 correlation coefficients on the (2 x N) X d standard numerical data table. We can execute a traditional PCA
36 based on the correlation matrix by the selected rank correlation coefficient. As a further extension to manipulate
37 histogram data, nominal multi-valued data, and others, we describe the ”quantile method” for S-PCA [12] in
38 Section 4.

39 The problem is how to obtain a common numerical rep resentation of objects described by mixed types of
a0 features. For example, in histogram data, the numbers of subinter vals (bins) of the given histograms are mutually
41 different in general. Therefore, we first define the cumulative dis tribution function for each histogram. Then,
42 we select a common integer number m to generate the ”"quantiles” for all histograms. As the result, for each
43 histogram, we have an (m + 1)-tuple composed of (m -1) quantiles and the minimum and the maximum values
a4 of the whole interval of the histogram. Then, we split each object into (m + 1) sub-objects: the minimum
45 sub-object, (m -1) quantile sub objects and the maximum sub-object. By virtue of the monotonic property of the
a6 distribution function, (m + 1) sub-objects of an object satisfy automatically a nesting structure. Therefore, the
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3 MONOTONE STRUCTURES FOR POINT SEQUENCE

nesting of N objects described by the minimum and the maximum sub-objects in the d space confines the orders
of N x (m + 1) sub-objects in each feature axis to be similar. Again, we can evaluate the degree of similarity
between features by the Kendall or the Spearman’s rank correlation coefficient, and then execute a traditional
PCA.

Interval-valued data may be regarded as a special histogram-valued data, where only one bin organizes the
histogram. Furthermore, we can also split nominal multi-valued data into (m + 1) sub-objects based on the
distribution function associated with rank values attached to categorical values of an object. Therefore, by the
quantile method we can transform a given general N x d symbolic data table to an {N x (m + 1)} x d standard
numerical data table, and then we can execute a traditional PCA on the transformed data table. In Section 5,
we describe several experimental results in order to show the effectiveness of the quantile method. Section 6 is a
summary.

2 II. MONOTONE STRUCTURES AND OBJECT SPLIT-
TING METHOD

In this section, we describe some properties of monotone structures for point sequence and for interval objects.
Then, we describe the object splitting method for S-PCA.

3 Monotone Structures for Point Sequence

Let a set of N objects U be represented by U ={? 1,7 2, ..., 7 N }. Let each object ? i be described by d
numerical features, i.e. a vectorxi = (x il , xi2, ... , x id ) in a d-dimensional Euclidean space R d .

DEFINITION 1: Rectangular region spanned by x i and x j .

Let J (? i, 7 j) be a rectangular region in R d spanned by the vectors x i and x j , and be defined by the
following Cartesian product of d closed intervals.J (? i, ? j) = [min(xil,xj 1), max(x il ,xj 1 )] x [min(x
i2,xj2), max(xi2,xj2)] x???x [min(x id , x jd ), max(x id , x jd )],(1)

where min(a, b) and max(a, b) are the operators to take the minimum value and the maximum value from a
and b, respectively. London Journal of Research in Science: Natural and Formal

In the following, we call J (? i, ? j ) as the Cartesian join (region) of objects ? i and ? j [9,10, 7?3].

DEFINITION 2: Nesting structure If a series of objects ? 1,7 2, ... , 7 N satisifies the nesting propertyJ (?
1,7k)?2J(1,7k+1),k=1,2,...,N-1, (2)

the series is called a ”nesting structure with the starting point ? 1 and the ending point 7 N ”.

In Fig. 77, (a) is a monotone increasing series, and (b) is a monotone decreasing series of objects. It should be
noted that the two series of objects show the same nesting structures with starting point ? 1 and ending point 7
5.

PROPOSITION 1: If a series of objects 7 1,7 2, ... , ? N is a nesting structure with the starting point ? 1
and the ending point ? N in the space R d , the series satisfies the same structure in each feature (axis) of the
space R d .

Proof: From the definition of rectangular region as in Eq. ( 1), we have 15J (? 1,7 k ) = [min(x 11 , x k1),
max(x 11 , x k1 )] x [min(x 12 , x k2 ), max(x 12 , x k2 )] x???x [min(x 1d , x kd ), max(x 1d , x kd )],(3)

Therefore, the relations of the Cartesian join regions J (? 1,7 k) ? J(? 1,7 k+1 ), k=1,2,... ,N-1,in
Definition 2, require the following relations for each feature, i.e. for each j (= 1, 2,... , d),

[min(x 1j , x kj ), max(x 1j , x kj )] ? [min(x 1j , x k+1,j ), max(x 1j , x k+1,j ], k =1, 2,...,.N -1.

(5)

Although, there exist several ways to define the mono tone sequences of objects, i.e. monotone structures, we
use the following definition.

DEFINITION 3: Monotone structure of a series of points.

A series of objects 7 1,7 2, ... , 7 N is called a monotone structure, if the series satisfies the nesting structure
of Definition 2.

Since, for a pair of features, we can evaluate the degree of similarity between two sets of orders of objects for
the same object set U by using the Kendall or the Spearman’s rank correlation coefficient, we have Proposition
2.

PROPOSITION 2: Correlation matrix S .

If a series of objects 7 1,7 2, ... , 7 N is a monotone structure in the space R d , the absolute value of each
off diagonal element of the d x d correlation matrix S takes the maximum value one in the sense of the Kendall
or the Spearman’s rank correlation coefficient.

Proof: From Definition 3, any monotone structure must satisfy the nesting property of Definition 2. Then,
from Proposition 1, the given series of objects has the identical nesting structure for each feature. This property
exactly restricts the order of objects for each feature to be the same way or the reverse way according to the
series of objects is monotone increasing or monotone decreasing. Therefore, if a series of objects is a monotone
structure in R d , the absolute value of the correlation coefficient for each pair of features takes the maximum
value one in the sense of the Kendall or the Spearman’s rank correlation coefficient.

From Proposition 2, if many off-diagonal elements of S take highly correlated values, we can expect the
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existence of a large eigenvalue of S , and that the corresponding eigenvector reproduces well the original nesting
property of the set of objects in the space R d .

EXAMPLE 1: As an intuitive example, suppose that the given set of objects in R d organizes an approximate
monotone structure which is monotone increasing along each of d features, and the degrees of similarity between
two features are the same for all possible pairs. Therefore, all off-diagonal elements of S take an identical value
?,0 <?< 1. Then, it is known [14] that d eigenvalues of S become? 1 =1+ (d-1)? and ? 2 =7 3 =?77=7 d
= 0,(6)

and the eigenvector for 7 1isal=(1/7d,1/? d,... , 1/ 7 d). (7)

Therefore, the given monotone structure of objects in R d is approximately reproduced around the eigenvector
a 1. As a particular case, when ? = 1, the given set of objects organizes a complete monotone structure in the
space R d . Then, the eigenvalue ? 1 becomes d, i.e. its contribution ratio is 100%, and the order of the given
object sequence in the space R d is exactly reproduced on the eigenvector a 1 .

4 London Journal of Research in Science: Natural and Formal

In the above, we characterized monotone structures by the nesting property, and obtain the correlation matrix
S . The monotone structures include any linear structure as a special case. On the other hand, a monotone
structure may be approximated well by an appropriately selected linear structure. This suggests that we can use
also the Pearson correlation coefficient to evaluate the degree of similarity between two features instead of the
Kendall and the Spearman’s rank correlation coefficients.

5 Monotone Structures for Interval Objects

Let each object be described by d interval-valued features. Then, an object 7 k 7 U becomes a hyper rectangle
in R d, i.e. the Cartesian product of d closed intervals:I k = T k1 x T k2 x??77x I kd , (8)

where each interval I kp is given byl kp = [x kp(min) , x kp(max) |, p = 1, 2,...,d.(9)

Then, we can define the minimum vertex x k(min) and the maximum vertex x k(max) by

x k(min) = (x k1(min) , x k2(min) ,...,x kd(min) ) and x k(max) = (x kl(max) , x k2(max) ,...,x kd(max) ).

010

DEFINITION 4: The minimum sub-object and the max imum sub-object Let the minimum vertex x k(min)
and the maximum vertex x k(max) for each object ? k 7 U be called the minimum sub object and the maximum
sub-object, and be denoted by ? k(min) and ? k(max) , respectively.

6 EXAMPLE 2:

In Table 7?7, the minimum and the maxi mum sub-objects of Linseed oil under the first four inter val features
are represented by the vertices x Linseed(min) = (0.930, -27, 170, 118) and x Linseed(max) = (0.935, -18, 204,
196), respectively.

PROPOSITION 3: From Definition 1, any interval object 7 k ? U is represented in the space R d by the
Cartesian join region J (? k(min) , ? k(max) ).

Proof: From Eq. ( 1) in Definition 1 and (8-10), we see thatJ (? k(min) , ? k(max) ) = [x k1(min) , x k1(max)
] X [x k2(min) , x k2(max) ] X ... X [x kd(min) , x kd(max) ] =Tkl x T k2 x???x T kd =1k.

From Eq. ( 8), d respective intervals for ? i and ? j arel ip = [x ip(min) , x ip(max) |, p =1, 2,...

7 .d, and

Ijp = [x jp(min) , x jp(max) |, p = 1, 2,...,d.(11)

Thus the closed interval 1 ijp generated from two intervals I ip and I jp becomesl ijp = [min(x ip(min) , x
jp(min) ), max(x ip(max) , x jp(max) )], p =1, 2,... ,d. (12)

DEFINITION 5: We define the Cartesian join region J (? i, ? j ) based on Eq. (12) byJ (71,7 j) =1ij1
x 1ij 2 x?7?7?x Iijd = [min(x il(min) , x j 1(min) ), max(x il(max) , x j 1(max) )] X [min(x i2(min) , x j 2(min)
), max(x i2(max) , x j 2(max) )] X ... X [min(x id(min) , x jd(min) ), max(x id(max) , x jd(max) )]. (13)

In this definition, we should note that, for each k,J (? k , ? k) is equivalent to J (? k(min) , ? k(max) ).
Furthermore,

Table ?7: Fats’ and oils’ data [10].

8 J (? k(min)
, 7 k(min) ) and J (? k(max) , ? k(max) ) are reduced to the minimum vertex x k(min) and the maximum vertex
x k(max) in Eq. ( 10), respectively.

DEFINITION 6: Nesting structure for interval objects If a series of interval objects 7 1,7 2, .. ;7?7 N
satisifies the nesting propertyJ (? 1,7 k)?J (? 1,? k+1), k=1, 2,....N -1, (14)

the series is called a "nesting structure with the starting object ? 1 and the ending object 7 N ”.

Fig. 77 shows a series of five interval objects. It should be noted that the nesting order of objects in each
feature axis is the same as that in the two-dimensional space.
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10 THE OBJECT SPLITTING METHOD FOR SO-PCA

Object Specific gravity (g/cm 3 ), F 1 Freezing point ( x???x [min(x 1d(min) , x k+1,d(min) ), max(x 1d(max)
, X k+1,d(max) )].(16)

Therefore, the relations of the Cartesian join regionsJ (? 1,? k)? J(? 1,7 k+1 ), k=1,2,... , N-1, in
Definition 5

, require the following relations for each feature, i.e. for each j (=1, 2, ... , d),[min(x 1j(min) , x kj(min) ),
max(x 1j(max) , x kj(max) )] ? [min(x 1j(min) , x k+1,j(min) ), max(x 1j(max) , x k+1,j(max) )], k = 1, 2,...,.N
-1. (17)

We define the monotone structure of interval objects by the same way in Definition 3. A series of interval
objects 7 1,7 2, ... , 7 N is called a monotone structure, if the series satisfies a nesting structure in Definition
6.

According to Definition 7, we assume a series of interval objects 7 1,7 2, ... , 7 N is a monotone structure
in the space R d . Then, from Proposition 4, the series of objects satisfies the same nesting in each feature
axis. However, the nesting in ( 17) is based on the closed intervals generated from two objects. Therefore, we
cannot evaluate the degree of similarity between two features by direct use of the Kendall or the Spearman’s
rank correlation coefficient. To remove this difficulty, we split each interval object into the minimum sub-object
and the maximum sub-object.

PROPOSITION 5: Monotone conditions by sub-objects. Let a series of interval objects 7 1,7 2, ... , 7 N
be monotone in the space R d . Then, at least one condition of the following must be satisfied.

(1) The series of the minimum sub-objects, ? 1(min) , ? 2(min) , ... , ? N(min) , is monotone in R d .

(2) The series of the maximum sub-objects, ? 1(max) , ? 2(max) , ... , 7 N(max) , is monotone in R d .

Proof: Assume that the conditions ( 1) and ( 2) are negated simultaneously. Then, there exists a nesting
order k in which the object ? k satisfies the nesting property in R d but the corresponding minimum sub-object
? k(min) and the maximum sub-object ? k(max) breaks the nesting property in R d , simultaneously. This
contradicts the fact given in Proposition 3. . On the other hand, if the series of objects satisfies only one
condition, we call the series of objects as weakly monotone in R d . Fig. 7?7 shows a case of a strongly monotone
struc ture, whereas Fig. 3 illustrates a case of a weakly mono tone structure.

If a series of interval objects 7 1,7 2, ... , 7 N in the space R d is given, we can obtain the d x d correlation
matrix S by splitting each object into the minimum and the maximum sub-objects and by using the Kendall or
the Spearman’s rank correlation coefficient. PROPOSITION 6: Property of correlation matrix S by the object
splitting.

(1) If the given series of objects is strongly monotone in a pair of features, the corresponding correlation
coefficient shows a strictly high score for 2N sub objects by the object splitting.

(2) If the given series of interval objects is weakly monotone, the correlation coefficient shows a degraded score
compared to the case (1).

9 Rd

and/or the series of the maximum sub-objects in R d also become monotone. Therefore, we have the properties
(1) and ( 2) whether the given series of objects is strongly monotone or weakly monotone.

In the above, we characterized monotone structures of N interval objects in the space R d by the nesting
property of 2N sub-objects in R d , i.e. the minimum sub object and the maximum sub-object, and obtained
the correlation matrix S based on the Kendall or Spearman’s rank correlation coefficient. As noted in the
preceding, the monotone structures include any linear structure as a special case. On the other hand, a monotone
structure may be approximated well by an appropriately selected linear structure. Therefore, we can use also the
Pearson correlation coefficient to evaluate the degree of similarity between two features instead of the Kendall
and Spearman’s rank correlation coefficients.

10 The Object Splitting Method for SO-PCA

PROCEDURE 1: Object splitting method for SO-PCA. For a set of N objects 7 1,7 2, ... ,? N under d
interval valued features, the object splitting method is executed by the following steps.

1. We split each object ? k into the minimum sub object ? k(min) and the maximum sub-object ? k(max) .

As the result, we have a (2N ) x d numerical data table. 2. We calculate the d X d correlation matrix S
for the (2N ) x d data table obtained in (1) based on the selected correlation coefficient, where we can use the
Kendall or Spearman’s rank correlation coefficient or the Pearson correlation coefficient. 3. We find the principal
components based on the correlation matrix in (2). 4. We represent each symbolic object ? k in the factor planes
as the arrow line connecting from ? k(min) to ? k(max) , or as the Cartesian join of ? k(min) and ? k(max) ,
i.e. a rectangular region spanned by ? k(min) and ? k(max) .

EXAMPLE 3: Fats’ and oils’ data (interval-valued data).

We applied the object splitting method to the Fats’ and oils’ data of Table ??. We used only four interval
features. The contribution ratios of the first two principal components understanding for the descriptions of
symbolic objects in the factor planes compared to the rectangular representation. London Journal of Research in
Science: Natural and Formal Chouakria et al. [6] presented a comparative study of the vertices method (V-PCA)
and the centers method (C-PCA). The V-PCA is implemented on the numerical data table of the size (N x 77
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d ) x d, while the C-PCA is implemented on the size N x d. Therefore, the C-PCA is stronger than the V-PCA
in the computational complexity, when the number of descriptive features is large. The contribution ratios of
the first two principal components for the fats’ and oils’ data of Table ?7? are 68.29% and 20.23% by the V-PCA,
and 75.23% and 15.09% by the C-PCA, respectively. The rectangular representations of objects for these two
methods are similar, although their contribution ratios are different. Moreover, their results are also close to the
arrow line representations in Figs 7?7 and 77.

Lauro et al. [8] presented a comparative study of the V-PCA, the method called spaghetti PCA, and the
method based on interval algebra and optimization theory. For the Fats’ and oils’ data of Table ?7?, their
results of rectangular representations in the first factor planes are mutually similar. Among them, the spaghetti
PCA is especially close to the result in Figs ?? and ??. The spaghetti PCA uses the main diagonals of the
hyper-rectangles to represent multidimensional interval data. The contribution ratios of the first two principal
components are 71.33% and 18.09%. In the representation of interval objects in the first factor plane, the lengths
and the directions of the main diagonals of the rectangular regions are very similar to those of the arrow lines in
Figs ?? and ?7. The spaghetti PCA is a very different method from the object splitting method. However, we
should point out the fact that the main diagonal of an object may be described by two end points: the minimum
vertex and the maximum vertex.

In this section, we presented the object splitting method of PCA for interval objects. This method transforms
the given N x d interval-valued data table into a 2N x d standard numerical data table, then executes the PCA
on the transformed data table. We should note that 1. The object splitting method is simple and works as well
as other methods for interval objects.

Especially, this method is easily applicable to large data tables. 2. The arrow line representation of objects in
the factor planes is useful to provide insights about the mutual relationships of the given interval objects.

In the next section, we present the quantile method, which is an extension of the object splitting method and
can manipulate not only interval-valued features but also other type features including histogram features and
nominal multi-valued features.

11 III. COMMON REPRESENTATION BY QUANTILES

In the aggregation process of large data sets, the use of histograms is very natural and common to describe the
reduced data sets. Billard and Diday [2,4] summarize empirical distribution functions and descriptive statistics
for various feature types. Based on knowledge of distribution functions, the quantile method [12] provides a
common framework to represent symbolic data described by features of different types. The basic idea is to
express the observed feature values by some predefined quantiles of the underlying distribution. In the interval
feature case, a distribution is assumed within each interval, e.g., uniform distribution (Bertrand and Goupil
[15]). For a histogram feature, quantiles of any histogram may be obtained simply by interpolation, assuming
the uniformity in each bin of the histogram [2,4,15]. Although the numbers of bins of the given histograms
are mutually different in general, we can obtain the same number of quantiles for each histogram. For nominal
multi-valued features, quantiles are determined from ranking defined on the categorical values based on their
frequencies. Therefore, when we choose quartiles, for example, we can represent each feature value for different
feature types in the same form of a 5-tuple (min,Q 1, Q 2, Q 3, max)

. This common representation then allows for a unified approach to S-PCA. In the following subsections, we
describe detail procedures to have quantile values for various feature types.

12 Quantiles for Interval-valued Feature

Let a feature F j be an interval-valued feature and let each object 7 k 7 U be represented by an interval:I kj =
[x kj(min) , x kj(max) ], k = 1, 2,...,N.(18)

We assume that each interval has a uniform distribu tion [2,4,15]. Then, in the case of m quantiles, the
resultant (m -1) quantile values becomeQ kji = x kj(min) + (x kj(max) -x kj(min) ) x i/m,i=1, 2,...,.m-1. (19)

Therefore, each object ? k 7 U for the feature F j is described by an (m + 1)-tuple:(x kj(min) , Q kj1 , Q kj
2,..,Q kj(m-1) , x kj(max) ), k = 1, 2,...,N. (20)

Fig. 6: A histogram-valued data.

13 Quantiles for Histogram-valued Feature

Let a feature F be a histogram feature and let an object 7 ? U be represented by a histogram in Fig. 6. Let the
histogram be composed of n bins, and let p i be the probability of the ith bin, where it is assumed thatp 1 + p
24777+ pn=1

Then, under the assumption that n bins (subintervals) have uniform distributions, we define the cumulative
distribution function F (x) of the histogram [2,4] as: The Quantile Method for Symbolic Principal Component
Analysis Then, in the case of m quantiles, we can find (m + 1) values including (m -1) quantile values from the
equations:F (x) =0forx? x1F (x)=pl(xx1)/(x2x1)forx1?x<x2F(x)=F x2)+p2(x-x2

1 for x n+1 ? x. London Journal ofF (min) =0, (ie. min=x1)F(Q2)=1/m F(Q3)=2/m...,F(Q

m )
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15 PROPOSITION 8: PROPERTY OF CORRELATION MATRIX S BY THE
QUANTILE METHOD

= (m -1)/m, andF (max) = 1, (i.e. max = x n+1 ).

Therefore, the object ? k ? U is described by an (m + 1)-tuple(x min , Q 1, Q 2 ,...,Q m-1 , x max ). (21)

In general, we can describe each object ? k ? U under a histogram-valued feature F j by an (m + 1)-tuple:(x
kj(min) , Q kj1 , Q kj 2 ,...,Q kj(m-1) , x kj(max) ), k = 1, 2,...,N.(22)

It should be noted that the numbers of bins of the given histograms are mutually different in general. However,
we can select an integer number m, and obtain (m + 1)-tuples as the common representation for all histograms.

14 Quantiles for Nominal (categorical) Multi-valued Feature

Let F j be a multi-valued feature which takes n possible categorical values ci, i =1, 2, ... . , n. For each i,
let p i be the relative frequency of categorical value c i in terms of N objects [2,4,15]. Then, we sort the relative

According to this order, we suppose rank values 1, 2, ... , n for the categorical valuesc1,c¢c2, .. ,cn,
respectively. We define the cumulative distribution function for each object 7 k ? U based on the rank values.

Let n k be the number of possible categorical values taken by object 7 k ? U under F j . Let q ki be the
frequency value associated with the category ¢ i and given byq ki = 1/n k if ¢ i is a possible value for 7 k ? U
under F j , = 0 otherwise.

Therefore, we define a piecewise linear cumulative distribution function for each object ? k ? U based on
uniform densities attached to rank values (see Example 4). Then we find (m + 1) values including quantile values
for the selected integer number m. Therefore, we can obtain again the common (m + 1)-tuple representation:(x
kj(min) , Q kj 1, Q kj2 ,...,Q kj(m-1) , x kj(max) ), k = 1, 2,...,N.(24)

EXAMPLE 4: The fifth feature (Major acids) of Table 7?7 is an example of nominal multi-valued feature.
We suppose the quartile case, i.e. m = 4. For this purpose, we use basically the procedure given in the above.
However, in order to prevent ties of rank values, we use the sums of frequency values attached to the category
values of each object. where we should note that the interval [9,10] is attached to the maximum rank value nine.
The corresponding cumulative distribution function is a piecewise linear function F (x) characterized by:F (x) =
0,1?7x<4F(x)=02x%x(x-4),4?7x<5F (x)=02+02x(x-5),5?7x<6;F(x)=04,67x<T;F
(x) =044+02x (x-7),7?7x<8F(x) =06+02x (x-8),8?7x<9%F(x)=08+02x(x-9),97x?
10. (26)

By solving the equations F (x) = 0.25, F (x) = 0.5, and F (x) = 0.75, we obtain the quartile values Let each
object 7 k 7 U be described with the given d features by (m + 1)-tuples: London Journal of Research in Science:
Natural and FormalQ 1 = 5.25,30 Volume 23 | Issue 12 | Compilation 1.0 © 2023 Great Britain Journal Press

The Quantile Method for Symbolic Principal Component Analysis (x kj(min) , Q kjl1 , Q kj 2 ,...,Q kj(m-1) ,
x kj(max) ),j=1,2,...,d; k=1, 2,...,N.

Then, we define the quantile sub-object 7 kQi as:x kQi = (Q kli, Q k2i,...,,Q kdi ), i =1.2,..m-1; k = 1,

2,..,N.(29)

PROPOSITION 7: For each object ? k ? U, the min imum sub-object ? k(min) , (m -1) quantile sub-objects
(7 kQ1,7? kQ2,... , ? kQ(m-1) ), and the maximum sub-object ? k(max) organize a monotone structure in the
space R d .

Proof: From the definition of (m + 1) sub-objects, we can obtain the following nesting relations of the Cartesian

k(max) ). (30)
Thus, Definition 7 leads the conclusion.

15 PROPOSITION 8: Property of correlation matrix S by the
quantile method

Let a series of objects 7 k7 U, k =1, 2,... , N, is mono tone in the space R d and let the d x d correlation
matrix S be obtained by applying the Kendall or Spearman’s rank correlation coefficients to the N x (m + 1)
sub-objects of Definition 9. Then, the absolute value of each off-diagonal element of S is large.

Proof: From Proposition 7, (m + 1) sub-objects for each of N objects organize always a monotone structure
in any subspace of R d . Therefore, if the given series of objects is monotone, their nesting property restrict the
order of N x (m + 1) sub-objects to be similar in any subspace of R d . This leads to the conclusion. Now, the
quantile method for general S-PCA is summa rized as follows.

PROCEDURE 2: The quantile method for S-PCA Let the set of N objects 7 1,7 2, ... , 7 N be described
by d features, which are a mixture of interval features, histogram features, nominal multi-valued features, and
other types. Then, we execute the quantile method by the following steps.

1. We select an integer value m (1 7 m < N). 2. For each feature F j , we find the common represen tation of
N objects by the (m + 1)-tuples:(x kj(min) , Qkj 1, Qkj2,...,Q kj(m-1) ,

x kj(max) ), k =1, 2,...,N.
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16 3.

For each object ? k , we find (m + 1) d-dimensional sub-objects: the minimum sub-object ? k(min) , (m -1)
quantile sub-objects, 7 kQ1 , 7 kQ2, ... , ? kQ(m-1) , and the maximum sub-object ? k(max) . Then we split
each object into (m + 1) sub-objects. As the result, we have an {N x (m + 1)} x d numerical data table. 4.
We calculate the d x d correlation matrix S for the {N x (m + 1)} x d data table obtained in 3) based on the
selected correlation coefficient, where we can use the Kendall or Spearman’s rank correlation coefficient, or the
Pearson correlation coefficient. 5. We find the principal components based on the correlation matrix in 4).

In the factor planes, we can reproduce each object ? k , k = 1, 2,... , N, as a series of m arrow lines:? k(min)
?77kQ1 7?7 kQ277777 7 kQ(m-1) 7 7 k(max)
(31)

As a different representation, we can use also a series of m rectangles.

In this procedure, if we select as m = 1, the quantile method is reduced to the original "object splitting
method”.

V. EXAMPLES OF THE QUANTILE METHOD FOR S-PCA EXAMPLE 5: Fats’ and oils’ data

We illustrate the quartile case, i.e. m = 4. In this case, the common representation of each object under a
feature is 5-tuple, i.e. (min, Q 1, Q 2, Q 3, max). For the fifth feature Major acids, we used the quantification in
Example 4. For the data in Table 77, we obtain the necessary 5-tuples for each of the eight objects with respect
to five features. Then, we split each object into five sub-objects, i.e. the minimum sub-object, three quantile
sub-objects, and the maximum sub-object. Therefore, we have 40 sub-objects for the given eight objects. Table
3 shows a part of our data, where five sub-objects are presented only for Linseed and Perilla. C, and so on. We
selected the following eight features to describe objects (hardwoods). The data formats for other features F 2 -F 8
are the same with Table 5, viz., In this example, deciles and quartiles describe each object, where the preselected
number m is 6, and the 7-tuple is used as a common representation for the given Ichino: The Quantile Method
for Symbolic PCA 195 6 shows a part of the transformed data table.

Table 7 shows the 8 x 8 correlation matrices, where the upper triangular matrix shows the elements of the Pear
son correlation matrix, and the lower triangular matrix shows the elements of the Spearman’s rank correlation
matrix. The Pearson and the Spearman correlation matrices are similar in many elements. However, some
differences should be pointed out. Features F 1 (ANNT), F 2 (JANT), F 3 (JULT), and F 7 (GDC5) are highly
correlated mutually for the Spearman coefficient. Feature F 4 (ANNP) is strongly correlated with features F 5
(JANP) and F 8 (MITH) for the Spearman coefficient, while F 4 (ANNP) is largely cor related with features F 5
(JANP) and F 6 (JULP) for the Pearson coefficient. We see also a difference between the Pearson and Spearman
correlation coefficients concerning feature F 7 (GDC5).

The contribution ratios of the first two principal compo nents are 77.01% and 11.64% for the Pearson correlation
matrix, and are 87.41% and 8.38% for the Spear man correlation matrix. 15 line representations of sixteen
hardwoods in the factor planes by the Pearson and Spearman correlation matrices, respectively. In the two
factor planes, the first principal component plays the role of the size factor, and the given eight features take
similar positive weights. In the second principal component, four features concerning precipita tion and moisture,
i.e. ANNP, JANP, JULP, and MITH, take positive weights, while other features for temperature and growing
degree, i.e. ANNT, JANT, JULT, and GDCS5, took negative weights. For the Spearman correlation matrix,
moisture (MITH) takes an especially large positive weight for the second principal component. However, for the
Pear son correlation matrix, the corresponding weight is very small.

In Fig. 9, many series of arrow lines tend to be slightly right down. Almost all kinds of hardwood in the
eastern area of the US organize a large stream of arrow lines. This tendency of the main stream depends on
temperature and precipitation. On the other hand, largely fluctuating and mutually separate streams are mainly
composed of the hardwoods in the western area. For example, Acer West, Alnus West, Betula, and Fraxinus
West most drastically change toward the upper right with the last decile. This change is heavily dependent on
precipitation and moisture. In Fig. 10, the main stream of arrow lines has two branches. Each branch initially
grows toward the upper right, and then changes direction toward right down. This property is not clear in Fig.
9. Generally, mutual arrow lines are clearly represented in Fig. 10. Therefore, in this example, the Spearman
correlation matrix may be better than the Pearson correlation matrix. Since the quantile method is based on the
monotonic property of the given set of objects, the use of the Spearman correlation matrix may be natural.

17 VI. CONCLUDING REMARKS

We presented the quantile method for the S-PCA. The quantile method can treat not only histogram-valued
data, but also nominal and ordinal multi-valued type data, and is simply based on the property of monotone
structure of the given objects. By selecting a common integer number m, the quantile method transforms a given
N X d complex symbolic data table to a simple (Nx (m + 1)) x d numerical data table. An important aspect
is that we can select the integer m as a sufficiently small number compared to the number N of objects, and we
can apply the traditional PCA simply to the (Nx (m + 1)) x d data table. We presented several experimental
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16



Fel ¥ Pel
Penrson
ALNUS WEET

BETULA

-

% ) ERNTDIY WEST QUERCLUS WEST

E 4 Il!'i'l"‘l'.L'\c'.'.:':H:\il'H

& ; 4 B
JUGLAMNE WEST
10 3 Pel = 77.01 %
Figure 16: Fig. 10 :
[1,4[:0;]4,5[:0.2;]5,6[:0.2;]6,7[:0.2;]7,8[:0.2; [8,9]:0.2;[9,10]:0.2, (25)
Figure 17:
2
Object Lu A C Ln M S P L
Linseed 0 0 0 0.2 0.2 0 0.2 0.2
Perilla 0 0 0 0.2 0 0.2 0.2 0.2
Cotton 0 0 0 0 0.2 0.2 0.2 0.2
Sesame 0 0.2 0 0 0 0.2 0.2 0.2
Camellia 0 0 0 0 0 0 0 0.5
Olive 0 0 0 0 0 0.25 0.25 0.25
Beef 0 0 0.2 0 0.2 0.2 0.2 0
Hog 0.167 0 0 0 0.167 0.167 0.167  0.167
qij 0.167 0.2 0 0.4 0 1.217 1417  1.717
2 167

Rank 1 2 2 4 5 6 7 8

Q 2 =7.5,and Q 3 = 8.75, respectively. Finally, we have the desired 5-tuple:
(4, 5.25, 7.5, 8.75, 10).
IV. THE QUANTILE METHOD FOR S-PCA

DEFINITION 9: Quantile sub-objects.

Figure 18: Table 2 :
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Perilla

1
2
3
4
5

F1 F2
0.93000 -27
0.93125 -24.75
0.93250 -22.5
0.93375 -20.25
0.93500 -18
0.93000 -5
0.93175 -4.75
0.93350 -4.5
0.93525 -4.25
0.93700 -4
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S

Spec.
Freez.
Todine
Saponi.
M. acids

Spec.

1.0000 -0.8923
-0.6309

0.9582 -0.6142
-0.2044

0.2558

F3

170
178.5
187
195.5
204

192
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200
204
208

Figure 19: Table 3 :

Freez.

1.0000 -0.6368

0.6437 -0.1980
0.0398

Todine
0.7682 -0.3187

1.0000 -0.3834

0.1805

F 4 Fb
118 4
137.5 5 .25
157 7.5
176.5 8 .75
196 10
188 4
190.25 6.25
192.5 7.5
194.75 8.75
197 10

© 2023 Great
Britain Jour-

nal Press
Sapon. M. acids
0.2432
0.4968 -0.1138
0.1107
1.0000 0.3634
0.6428 1.0000

Fig. 7: The result of the S-PCA for Fats’ and oils’ data (Pearson). 16 hardwoods.
According to the Procedure 2 for S-PCA in Section 4, we transform the given (16
objects) x (8 features) symbolic data table to a (16 x 7 sub-objects) x (8 features)
standard numerical data table.

Figure 20: Table 4 :

Figure 21: Table
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Taxon name
Acer East
Acer West
Alnus East
Alnus  West

Betula Carya

N 6 865
1954 10
144 4
761 16
815 4
638

0% -2.3 -3.9 -10.2 -12.2 -
13.4 3.6 Histogram 10% 0
.60 .2-4.4-4.6 -8.4 data
(annual 25% 3 .8 1.9 -2.3
-3.0-5.1

50% 9 .2 % 1 90% 17 100% 2
4206 447 9103 3820
0.3-10 H6.1 15.07 620.9
tempera- 3 .23 612.6 18.720
ture). 9 3
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Figure 22: Table 5 :

Figure 23: Table 6 :
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Figure 24: Table 7 :
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