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1 I. INTRODUCTION9

The generalization of the principal component analysis (PCA) is an important research theme in the symbolic10
data analysis [1][2][3][4]. The main purpose of the traditional PCA is to transform a number of possibly correlated11
variables into a small number of uncorrelated variables called principal components. Chouakria [5] proposed the12
extension of the PCA to interval data as vertices principal component analysis (V-PCA). Chouakria et al. [6]13
proposed also the centers method of PCA (C-PCA) for interval data, and they presented a comparative example14
for the V-PCA and the C-PCA. Lauro and Palumbo [7] proposed symbolic object principal component analysis15
(SO-PCA) as an extended PCA to any numerical data structure. Lauro et al. [8] summarize various methods16
of SO-PCA for interval data. The author also proposed a general ”Symbolic PCA” (S-PCA) based on the17
quantification method by using the generalized Minkowski metrics [9,10]. In this approach, we first transform18
the given symbolic data table to a usual numerical data table, and then we execute the traditional PCA on the19
transformed data table.20

In this article, another quantification method for symbolic data tables based on the monotone structures of21
objects is presented. In Section 2, first we describe the case of point sequences in a d-dimensional Euclidean22
space. The monotone structures are characterized by the nesting of the Cartesian join regions associated with23
pairs of objects. If the given point sequence is monotone in the Euclidean d space, the property is also satisfied in24
any feature axis. In other words, a nesting structure of the given point sequence in the d space confines the orders25
of points in each feature axis to be similar. Therefore, we can evaluate the degree of similarity between features26
based on the Kendall or the Spearman’s rank correlation coefficients. Then, we can execute a traditional PCA27
based on the correlation matrix by the selected rank correlation coefficient. Secondly, we describe the ”object28
splitting method” for SO-PCA for interval-valued data [11]. This method splits each of N symbolic objects29
described by d interval-valued features into the two d-dimensional vertices called the ”minimum sub-object”30
and the ”maximum sub object”. We should point out the fact that any interval object can be reproduced from31
the minimum and the maximum sub-objects. Moreover, the nesting structure of interval objects in the d space32
confines the orders of the minimum and the maximum sub-objects in each feature axis to be similar. Therefore,33
we can evaluate again the degree of similarity between features based on the Kendall or the Spearman’s rank34
correlation coefficients on the (2 × N) × d standard numerical data table. We can execute a traditional PCA35
based on the correlation matrix by the selected rank correlation coefficient. As a further extension to manipulate36
histogram data, nominal multi-valued data, and others, we describe the ”quantile method” for S-PCA [12] in37
Section 4.38

The problem is how to obtain a common numerical rep resentation of objects described by mixed types of39
features. For example, in histogram data, the numbers of subinter vals (bins) of the given histograms are mutually40
different in general. Therefore, we first define the cumulative dis tribution function for each histogram. Then,41
we select a common integer number m to generate the ”quantiles” for all histograms. As the result, for each42
histogram, we have an (m + 1)-tuple composed of (m -1) quantiles and the minimum and the maximum values43
of the whole interval of the histogram. Then, we split each object into (m + 1) sub-objects: the minimum44
sub-object, (m -1) quantile sub objects and the maximum sub-object. By virtue of the monotonic property of the45
distribution function, (m + 1) sub-objects of an object satisfy automatically a nesting structure. Therefore, the46
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3 MONOTONE STRUCTURES FOR POINT SEQUENCE

nesting of N objects described by the minimum and the maximum sub-objects in the d space confines the orders47
of N × (m + 1) sub-objects in each feature axis to be similar. Again, we can evaluate the degree of similarity48
between features by the Kendall or the Spearman’s rank correlation coefficient, and then execute a traditional49
PCA.50

Interval-valued data may be regarded as a special histogram-valued data, where only one bin organizes the51
histogram. Furthermore, we can also split nominal multi-valued data into (m + 1) sub-objects based on the52
distribution function associated with rank values attached to categorical values of an object. Therefore, by the53
quantile method we can transform a given general N × d symbolic data table to an {N × (m + 1)} × d standard54
numerical data table, and then we can execute a traditional PCA on the transformed data table. In Section 5,55
we describe several experimental results in order to show the effectiveness of the quantile method. Section 6 is a56
summary.57

2 II. MONOTONE STRUCTURES AND OBJECT SPLIT-58

TING METHOD59

In this section, we describe some properties of monotone structures for point sequence and for interval objects.60
Then, we describe the object splitting method for S-PCA.61

3 Monotone Structures for Point Sequence62

Let a set of N objects U be represented by U = {? 1 , ? 2 , ... , ? N }. Let each object ? i be described by d63
numerical features, i.e. a vectorx i = (x i1 , x i2 , ... , x id ) in a d-dimensional Euclidean space R d .64

DEFINITION 1: Rectangular region spanned by x i and x j .65
Let J (? i , ? j ) be a rectangular region in R d spanned by the vectors x i and x j , and be defined by the66

following Cartesian product of d closed intervals.J (? i , ? j ) = [min(x i1 , x j 1 ), max(x i1 , x j 1 )] × [min(x67
i2 , x j 2 ), max(x i2 , x j 2 )] ×???× [min(x id , x jd ), max(x id , x jd )],(1)68

where min(a, b) and max(a, b) are the operators to take the minimum value and the maximum value from a69
and b, respectively. London Journal of Research in Science: Natural and Formal70

In the following, we call J (? i , ? j ) as the Cartesian join (region) of objects ? i and ? j [9,10, ??3].71
DEFINITION 2: Nesting structure If a series of objects ? 1 , ? 2 , ... , ? N satisifies the nesting propertyJ (?72

1 , ? k ) ? J (? 1 , ? k+1 ), k = 1, 2,...,N -1, (2)73
the series is called a ”nesting structure with the starting point ? 1 and the ending point ? N ”.74
In Fig. ??, (a) is a monotone increasing series, and (b) is a monotone decreasing series of objects. It should be75

noted that the two series of objects show the same nesting structures with starting point ? 1 and ending point ?76
5 .77

PROPOSITION 1: If a series of objects ? 1 , ? 2 , ... , ? N is a nesting structure with the starting point ? 178
and the ending point ? N in the space R d , the series satisfies the same structure in each feature (axis) of the79
space R d .80

Proof: From the definition of rectangular region as in Eq. ( 1), we have 15J (? 1 , ? k ) = [min(x 11 , x k1 ),81
max(x 11 , x k1 )] × [min(x 12 , x k2 ), max(x 12 , x k2 )] ×???× [min(x 1d , x kd ), max(x 1d , x kd )],(3)82

Therefore, the relations of the Cartesian join regions J (? 1 , ? k ) ? J (? 1 , ? k+1 ), k = 1, 2,... , N -1, in83
Definition 2, require the following relations for each feature, i.e. for each j (= 1, 2,... , d),84

[min(x 1j , x kj ), max(x 1j , x kj )] ? [min(x 1j , x k+1,j ), max(x 1j , x k+1,j ], k = 1, 2,...,N -1.85
(5)86
Although, there exist several ways to define the mono tone sequences of objects, i.e. monotone structures, we87

use the following definition.88
DEFINITION 3: Monotone structure of a series of points.89
A series of objects ? 1 , ? 2 , ... , ? N is called a monotone structure, if the series satisfies the nesting structure90

of Definition 2.91
Since, for a pair of features, we can evaluate the degree of similarity between two sets of orders of objects for92

the same object set U by using the Kendall or the Spearman’s rank correlation coefficient, we have Proposition93
2.94

PROPOSITION 2: Correlation matrix S .95
If a series of objects ? 1 , ? 2 , ... , ? N is a monotone structure in the space R d , the absolute value of each96

off diagonal element of the d × d correlation matrix S takes the maximum value one in the sense of the Kendall97
or the Spearman’s rank correlation coefficient.98

Proof: From Definition 3, any monotone structure must satisfy the nesting property of Definition 2. Then,99
from Proposition 1, the given series of objects has the identical nesting structure for each feature. This property100
exactly restricts the order of objects for each feature to be the same way or the reverse way according to the101
series of objects is monotone increasing or monotone decreasing. Therefore, if a series of objects is a monotone102
structure in R d , the absolute value of the correlation coefficient for each pair of features takes the maximum103
value one in the sense of the Kendall or the Spearman’s rank correlation coefficient.104

From Proposition 2, if many off-diagonal elements of S take highly correlated values, we can expect the105
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existence of a large eigenvalue of S , and that the corresponding eigenvector reproduces well the original nesting106
property of the set of objects in the space R d .107

EXAMPLE 1: As an intuitive example, suppose that the given set of objects in R d organizes an approximate108
monotone structure which is monotone increasing along each of d features, and the degrees of similarity between109
two features are the same for all possible pairs. Therefore, all off-diagonal elements of S take an identical value110
?, 0 <?< 1. Then, it is known [14] that d eigenvalues of S become? 1 = 1 + (d -1)? and ? 2 = ? 3 =???= ? d111
= 0,(6)112

and the eigenvector for ? 1 isa 1 = (1/ ? d, 1/ ? d,... , 1/ ? d). (7)113
Therefore, the given monotone structure of objects in R d is approximately reproduced around the eigenvector114

a 1 . As a particular case, when ? = 1, the given set of objects organizes a complete monotone structure in the115
space R d . Then, the eigenvalue ? 1 becomes d, i.e. its contribution ratio is 100%, and the order of the given116
object sequence in the space R d is exactly reproduced on the eigenvector a 1 .117

4 London Journal of Research in Science: Natural and Formal118

In the above, we characterized monotone structures by the nesting property, and obtain the correlation matrix119
S . The monotone structures include any linear structure as a special case. On the other hand, a monotone120
structure may be approximated well by an appropriately selected linear structure. This suggests that we can use121
also the Pearson correlation coefficient to evaluate the degree of similarity between two features instead of the122
Kendall and the Spearman’s rank correlation coefficients.123

5 Monotone Structures for Interval Objects124

Let each object be described by d interval-valued features. Then, an object ? k ? U becomes a hyper rectangle125
in R d , i.e. the Cartesian product of d closed intervals:I k = I k1 × I k2 ×???× I kd , (8)126

where each interval I kp is given byI kp = [x kp(min) , x kp(max) ], p = 1, 2,...,d.(9)127
Then, we can define the minimum vertex x k(min) and the maximum vertex x k(max) by128
x k(min) = (x k1(min) , x k2(min) ,...,x kd(min) ) and x k(max) = (x k1(max) , x k2(max) ,...,x kd(max) ).129
()10130
DEFINITION 4: The minimum sub-object and the max imum sub-object Let the minimum vertex x k(min)131

and the maximum vertex x k(max) for each object ? k ? U be called the minimum sub object and the maximum132
sub-object, and be denoted by ? k(min) and ? k(max) , respectively.133

6 EXAMPLE 2:134

In Table ??, the minimum and the maxi mum sub-objects of Linseed oil under the first four inter val features135
are represented by the vertices x Linseed(min) = (0.930, -27, 170, 118) and x Linseed(max) = (0.935, -18, 204,136
196), respectively.137

PROPOSITION 3: From Definition 1, any interval object ? k ? U is represented in the space R d by the138
Cartesian join region J (? k(min) , ? k(max) ).139

Proof: From Eq. ( 1) in Definition 1 and (8-10), we see thatJ (? k(min) , ? k(max) ) = [x k1(min) , x k1(max)140
] × [x k2(min) , x k2(max) ] × ... × [x kd(min) , x kd(max) ] = I k1 × I k2 ×???× I kd = I k .141

From Eq. ( 8), d respective intervals for ? i and ? j areI ip = [x ip(min) , x ip(max) ], p = 1, 2,...142

7 ,d, and143

I jp = [x jp(min) , x jp(max) ], p = 1, 2,...,d.(11)144
Thus the closed interval I ijp generated from two intervals I ip and I jp becomesI ijp = [min(x ip(min) , x145

jp(min) ), max(x ip(max) , x jp(max) )], p = 1, 2,... ,d. (12)146
DEFINITION 5: We define the Cartesian join region J (? i , ? j ) based on Eq. ( 12) byJ (? i , ? j ) = I ij 1147

× I ij 2 ×???× I ijd = [min(x i1(min) , x j 1(min) ), max(x i1(max) , x j 1(max) )] × [min(x i2(min) , x j 2(min)148
), max(x i2(max) , x j 2(max) )] × ... × [min(x id(min) , x jd(min) ), max(x id(max) , x jd(max) )]. (13)149

In this definition, we should note that, for each k,J (? k , ? k ) is equivalent to J (? k(min) , ? k(max) ).150
Furthermore,151

Table ??: Fats’ and oils’ data [10].152

8 J (? k(min)153

, ? k(min) ) and J (? k(max) , ? k(max) ) are reduced to the minimum vertex x k(min) and the maximum vertex154
x k(max) in Eq. ( 10), respectively.155

DEFINITION 6: Nesting structure for interval objects If a series of interval objects ? 1 , ? 2 , ... , ? N156
satisifies the nesting propertyJ (? 1 , ? k ) ? J (? 1 , ? k+1 ), k = 1, 2,...,N -1, (14)157

the series is called a ”nesting structure with the starting object ? 1 and the ending object ? N ”.158
Fig. ?? shows a series of five interval objects. It should be noted that the nesting order of objects in each159

feature axis is the same as that in the two-dimensional space.160
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10 THE OBJECT SPLITTING METHOD FOR SO-PCA

Object Specific gravity (g/cm 3 ), F 1 Freezing point ( ×???× [min(x 1d(min) , x k+1,d(min) ), max(x 1d(max)161
, x k+1,d(max) )].(16)162

Therefore, the relations of the Cartesian join regionsJ (? 1 , ? k ) ? J (? 1 , ? k+1 ), k = 1, 2,... , N-1, in163
Definition 5164

, require the following relations for each feature, i.e. for each j (= 1, 2, ... , d),[min(x 1j(min) , x kj(min) ),165
max(x 1j(max) , x kj(max) )] ? [min(x 1j(min) , x k+1,j(min) ), max(x 1j(max) , x k+1,j(max) )], k = 1, 2,...,N166
-1. (17)167

We define the monotone structure of interval objects by the same way in Definition 3. A series of interval168
objects ? 1 , ? 2 , ... , ? N is called a monotone structure, if the series satisfies a nesting structure in Definition169
6.170

According to Definition 7, we assume a series of interval objects ? 1 , ? 2 , ... , ? N is a monotone structure171
in the space R d . Then, from Proposition 4, the series of objects satisfies the same nesting in each feature172
axis. However, the nesting in ( 17) is based on the closed intervals generated from two objects. Therefore, we173
cannot evaluate the degree of similarity between two features by direct use of the Kendall or the Spearman’s174
rank correlation coefficient. To remove this difficulty, we split each interval object into the minimum sub-object175
and the maximum sub-object.176

PROPOSITION 5: Monotone conditions by sub-objects. Let a series of interval objects ? 1 , ? 2 , ... , ? N177
be monotone in the space R d . Then, at least one condition of the following must be satisfied.178

(1) The series of the minimum sub-objects, ? 1(min) , ? 2(min) , ... , ? N(min) , is monotone in R d .179
(2) The series of the maximum sub-objects, ? 1(max) , ? 2(max) , ... , ? N(max) , is monotone in R d .180
Proof: Assume that the conditions ( 1) and ( 2) are negated simultaneously. Then, there exists a nesting181

order k in which the object ? k satisfies the nesting property in R d but the corresponding minimum sub-object182
? k(min) and the maximum sub-object ? k(max) breaks the nesting property in R d , simultaneously. This183
contradicts the fact given in Proposition 3. . On the other hand, if the series of objects satisfies only one184
condition, we call the series of objects as weakly monotone in R d . Fig. ?? shows a case of a strongly monotone185
struc ture, whereas Fig. 3 illustrates a case of a weakly mono tone structure.186

If a series of interval objects ? 1 , ? 2 , ... , ? N in the space R d is given, we can obtain the d × d correlation187
matrix S by splitting each object into the minimum and the maximum sub-objects and by using the Kendall or188
the Spearman’s rank correlation coefficient. PROPOSITION 6: Property of correlation matrix S by the object189
splitting.190

(1) If the given series of objects is strongly monotone in a pair of features, the corresponding correlation191
coefficient shows a strictly high score for 2N sub objects by the object splitting.192

(2) If the given series of interval objects is weakly monotone, the correlation coefficient shows a degraded score193
compared to the case (1).194

9 R d195

and/or the series of the maximum sub-objects in R d also become monotone. Therefore, we have the properties196
( 1) and ( 2) whether the given series of objects is strongly monotone or weakly monotone.197

In the above, we characterized monotone structures of N interval objects in the space R d by the nesting198
property of 2N sub-objects in R d , i.e. the minimum sub object and the maximum sub-object, and obtained199
the correlation matrix S based on the Kendall or Spearman’s rank correlation coefficient. As noted in the200
preceding, the monotone structures include any linear structure as a special case. On the other hand, a monotone201
structure may be approximated well by an appropriately selected linear structure. Therefore, we can use also the202
Pearson correlation coefficient to evaluate the degree of similarity between two features instead of the Kendall203
and Spearman’s rank correlation coefficients.204

10 The Object Splitting Method for SO-PCA205

PROCEDURE 1: Object splitting method for SO-PCA. For a set of N objects ? 1 , ? 2 , ... , ? N under d206
interval valued features, the object splitting method is executed by the following steps.207

1. We split each object ? k into the minimum sub object ? k(min) and the maximum sub-object ? k(max) .208
As the result, we have a (2N ) × d numerical data table. 2. We calculate the d × d correlation matrix S209

for the (2N ) × d data table obtained in (1) based on the selected correlation coefficient, where we can use the210
Kendall or Spearman’s rank correlation coefficient or the Pearson correlation coefficient. 3. We find the principal211
components based on the correlation matrix in (2). 4. We represent each symbolic object ? k in the factor planes212
as the arrow line connecting from ? k(min) to ? k(max) , or as the Cartesian join of ? k(min) and ? k(max) ,213
i.e. a rectangular region spanned by ? k(min) and ? k(max) .214

EXAMPLE 3: Fats’ and oils’ data (interval-valued data).215
We applied the object splitting method to the Fats’ and oils’ data of Table ??. We used only four interval216

features. The contribution ratios of the first two principal components understanding for the descriptions of217
symbolic objects in the factor planes compared to the rectangular representation. London Journal of Research in218
Science: Natural and Formal Chouakria et al. [6] presented a comparative study of the vertices method (V-PCA)219
and the centers method (C-PCA). The V-PCA is implemented on the numerical data table of the size (N × ??220
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d ) × d, while the C-PCA is implemented on the size N × d. Therefore, the C-PCA is stronger than the V-PCA221
in the computational complexity, when the number of descriptive features is large. The contribution ratios of222
the first two principal components for the fats’ and oils’ data of Table ?? are 68.29% and 20.23% by the V-PCA,223
and 75.23% and 15.09% by the C-PCA, respectively. The rectangular representations of objects for these two224
methods are similar, although their contribution ratios are different. Moreover, their results are also close to the225
arrow line representations in Figs ?? and ??.226

Lauro et al. [8] presented a comparative study of the V-PCA, the method called spaghetti PCA, and the227
method based on interval algebra and optimization theory. For the Fats’ and oils’ data of Table ??, their228
results of rectangular representations in the first factor planes are mutually similar. Among them, the spaghetti229
PCA is especially close to the result in Figs ?? and ??. The spaghetti PCA uses the main diagonals of the230
hyper-rectangles to represent multidimensional interval data. The contribution ratios of the first two principal231
components are 71.33% and 18.09%. In the representation of interval objects in the first factor plane, the lengths232
and the directions of the main diagonals of the rectangular regions are very similar to those of the arrow lines in233
Figs ?? and ??. The spaghetti PCA is a very different method from the object splitting method. However, we234
should point out the fact that the main diagonal of an object may be described by two end points: the minimum235
vertex and the maximum vertex.236

In this section, we presented the object splitting method of PCA for interval objects. This method transforms237
the given N × d interval-valued data table into a 2N × d standard numerical data table, then executes the PCA238
on the transformed data table. We should note that 1. The object splitting method is simple and works as well239
as other methods for interval objects.240

Especially, this method is easily applicable to large data tables. 2. The arrow line representation of objects in241
the factor planes is useful to provide insights about the mutual relationships of the given interval objects.242

In the next section, we present the quantile method, which is an extension of the object splitting method and243
can manipulate not only interval-valued features but also other type features including histogram features and244
nominal multi-valued features.245

11 III. COMMON REPRESENTATION BY QUANTILES246

In the aggregation process of large data sets, the use of histograms is very natural and common to describe the247
reduced data sets. Billard and Diday [2,4] summarize empirical distribution functions and descriptive statistics248
for various feature types. Based on knowledge of distribution functions, the quantile method [12] provides a249
common framework to represent symbolic data described by features of different types. The basic idea is to250
express the observed feature values by some predefined quantiles of the underlying distribution. In the interval251
feature case, a distribution is assumed within each interval, e.g., uniform distribution (Bertrand and Goupil252
[15]). For a histogram feature, quantiles of any histogram may be obtained simply by interpolation, assuming253
the uniformity in each bin of the histogram [2,4,15]. Although the numbers of bins of the given histograms254
are mutually different in general, we can obtain the same number of quantiles for each histogram. For nominal255
multi-valued features, quantiles are determined from ranking defined on the categorical values based on their256
frequencies. Therefore, when we choose quartiles, for example, we can represent each feature value for different257
feature types in the same form of a 5-tuple (min,Q 1 , Q 2 , Q 3 , max)258

. This common representation then allows for a unified approach to S-PCA. In the following subsections, we259
describe detail procedures to have quantile values for various feature types.260

12 Quantiles for Interval-valued Feature261

Let a feature F j be an interval-valued feature and let each object ? k ? U be represented by an interval:I kj =262
[x kj(min) , x kj(max) ], k = 1, 2,...,N.(18)263

We assume that each interval has a uniform distribu tion [2,4,15]. Then, in the case of m quantiles, the264
resultant (m -1) quantile values becomeQ kji = x kj(min) + (x kj(max) -x kj(min) ) × i/m, i = 1, 2,...,m -1. (19)265

Therefore, each object ? k ? U for the feature F j is described by an (m + 1)-tuple:(x kj(min) , Q kj1 , Q kj266
2 ,...,Q kj(m-1) , x kj(max) ), k = 1, 2,...,N. (20)267

Fig. 6: A histogram-valued data.268

13 Quantiles for Histogram-valued Feature269

Let a feature F be a histogram feature and let an object ? ? U be represented by a histogram in Fig. 6. Let the270
histogram be composed of n bins, and let p i be the probability of the ith bin, where it is assumed thatp 1 + p271
2 +???+ p n = 1.272

Then, under the assumption that n bins (subintervals) have uniform distributions, we define the cumulative273
distribution function F (x) of the histogram [2,4] as: The Quantile Method for Symbolic Principal Component274
Analysis Then, in the case of m quantiles, we can find (m + 1) values including (m -1) quantile values from the275
equations:F (x) = 0 for x ? x 1 F (x) = p 1 (x -x 1 )/(x 2 -x 1 ) for x 1 ? x<x 2 F (x) = F (x 2 ) + p 2 (x -x 2276
)/(x 3 -x 2 ) for x 2 ? x<x 3 ?????? F (x) = F (x n ) + p n (x -x n )/(x n+1 -x n ) for x n ? x<x n+1 F (x) =277
1 for x n+1 ? x. London Journal ofF (min) = 0, (i.e. min = x 1 ) F (Q 2 ) = 1/m, F (Q 3 ) = 2/m . . . , F (Q278
m )279
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15 PROPOSITION 8: PROPERTY OF CORRELATION MATRIX S BY THE
QUANTILE METHOD

= (m -1)/m, andF (max) = 1, (i.e. max = x n+1 ).280
Therefore, the object ? k ? U is described by an (m + 1)-tuple(x min , Q 1 , Q 2 ,...,Q m-1 , x max ). (21)281
In general, we can describe each object ? k ? U under a histogram-valued feature F j by an (m + 1)-tuple:(x282

kj(min) , Q kj1 , Q kj 2 ,...,Q kj(m-1) , x kj(max) ), k = 1, 2,...,N.(22)283
It should be noted that the numbers of bins of the given histograms are mutually different in general. However,284

we can select an integer number m, and obtain (m + 1)-tuples as the common representation for all histograms.285

14 Quantiles for Nominal (categorical) Multi-valued Feature286

Let F j be a multi-valued feature which takes n possible categorical values c i , i = 1, 2, ... . , n. For each i,287
let p i be the relative frequency of categorical value c i in terms of N objects [2,4,15]. Then, we sort the relative288
frequency values. For simplicity, we assume that:p 1 ? p 2 ????? p n . (23)289

According to this order, we suppose rank values 1, 2, ... , n for the categorical values c 1 , c 2 , ... , c n ,290
respectively. We define the cumulative distribution function for each object ? k ? U based on the rank values.291

Let n k be the number of possible categorical values taken by object ? k ? U under F j . Let q ki be the292
frequency value associated with the category c i and given byq ki = 1/n k if c i is a possible value for ? k ? U293
under F j , = 0 otherwise.294

Therefore, we define a piecewise linear cumulative distribution function for each object ? k ? U based on295
uniform densities attached to rank values (see Example 4). Then we find (m + 1) values including quantile values296
for the selected integer number m. Therefore, we can obtain again the common (m + 1)-tuple representation:(x297
kj(min) , Q kj 1 , Q kj2 ,...,Q kj(m-1) , x kj(max) ), k = 1, 2,...,N.(24)298

EXAMPLE 4: The fifth feature (Major acids) of Table ?? is an example of nominal multi-valued feature.299
We suppose the quartile case, i.e. m = 4. For this purpose, we use basically the procedure given in the above.300
However, in order to prevent ties of rank values, we use the sums of frequency values attached to the category301
values of each object. where we should note that the interval [9,10] is attached to the maximum rank value nine.302
The corresponding cumulative distribution function is a piecewise linear function F (x) characterized by:F (x) =303
0, 1 ? x < 4; F (x) = 0.2 × (x -4), 4 ? x < 5; F (x) = 0.2 + 0.2 × (x -5), 5 ? x < 6; F (x) = 0.4, 6 ? x < 7; F304
(x) = 0.4 + 0.2 × (x -7), 7 ? x < 8; F (x) = 0.6 + 0.2 × (x -8), 8 ? x < 9; F (x) = 0.8 + 0.2 × (x -9), 9 ? x ?305
10. (26)306

By solving the equations F (x) = 0.25, F (x) = 0.5, and F (x) = 0.75, we obtain the quartile values Let each307
object ? k ? U be described with the given d features by (m + 1)-tuples: London Journal of Research in Science:308
Natural and FormalQ 1 = 5.25,30 Volume 23 | Issue 12 | Compilation 1.0 © 2023 Great Britain Journal Press309

The Quantile Method for Symbolic Principal Component Analysis (x kj(min) , Q kj1 , Q kj 2 ,...,Q kj(m-1) ,310
x kj(max) ), j = 1, 2,...,d; k = 1, 2,...,N.311

(312
Then, we define the quantile sub-object ? kQi as:x kQi = (Q k1i , Q k2i ,...,Q kdi ), i = 1.2,...,m -1; k = 1,313

2,...,N.(29)314
PROPOSITION 7: For each object ? k ? U , the min imum sub-object ? k(min) , (m -1) quantile sub-objects315

(? kQ1 , ? kQ2 ,... , ? kQ(m-1) ), and the maximum sub-object ? k(max) organize a monotone structure in the316
space R d .317

Proof: From the definition of (m + 1) sub-objects, we can obtain the following nesting relations of the Cartesian318
join regions:J (? k(min) , ? kQ1 ) ? J (? k(min) , ? kQ2 ) ????? J (? k(min) , ? kQ(m-1) ) ? J (? k(min) , ?319
k(max) ). (30)320

Thus, Definition 7 leads the conclusion.321

15 PROPOSITION 8: Property of correlation matrix S by the322

quantile method323

Let a series of objects ? k ? U , k = 1, 2,... , N, is mono tone in the space R d and let the d × d correlation324
matrix S be obtained by applying the Kendall or Spearman’s rank correlation coefficients to the N × (m + 1)325
sub-objects of Definition 9. Then, the absolute value of each off-diagonal element of S is large.326

Proof: From Proposition 7, (m + 1) sub-objects for each of N objects organize always a monotone structure327
in any subspace of R d . Therefore, if the given series of objects is monotone, their nesting property restrict the328
order of N × (m + 1) sub-objects to be similar in any subspace of R d . This leads to the conclusion. Now, the329
quantile method for general S-PCA is summa rized as follows.330

PROCEDURE 2: The quantile method for S-PCA Let the set of N objects ? 1 , ? 2 , ... , ? N be described331
by d features, which are a mixture of interval features, histogram features, nominal multi-valued features, and332
other types. Then, we execute the quantile method by the following steps.333

1. We select an integer value m (1 ? m < N). 2. For each feature F j , we find the common represen tation of334
N objects by the (m + 1)-tuples:(x kj(min) , Q kj 1 , Q kj 2 ,...,Q kj(m-1) ,335

x kj(max) ), k = 1, 2,...,N.336
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16 3.337

For each object ? k , we find (m + 1) d-dimensional sub-objects: the minimum sub-object ? k(min) , (m -1)338
quantile sub-objects, ? kQ1 , ? kQ2 , ... , ? kQ(m-1) , and the maximum sub-object ? k(max) . Then we split339
each object into (m + 1) sub-objects. As the result, we have an {N × (m + 1)} × d numerical data table. 4.340
We calculate the d × d correlation matrix S for the {N × (m + 1)} × d data table obtained in 3) based on the341
selected correlation coefficient, where we can use the Kendall or Spearman’s rank correlation coefficient, or the342
Pearson correlation coefficient. 5. We find the principal components based on the correlation matrix in 4).343

In the factor planes, we can reproduce each object ? k , k = 1, 2,... , N, as a series of m arrow lines:? k(min)344
? ? kQ1 ? ? kQ2 ????? ? kQ(m-1) ? ? k(max) .345

(31)346
As a different representation, we can use also a series of m rectangles.347
In this procedure, if we select as m = 1, the quantile method is reduced to the original ”object splitting348

method”.349
V. EXAMPLES OF THE QUANTILE METHOD FOR S-PCA EXAMPLE 5: Fats’ and oils’ data350
We illustrate the quartile case, i.e. m = 4. In this case, the common representation of each object under a351

feature is 5-tuple, i.e. (min, Q 1 , Q 2 , Q 3 , max). For the fifth feature Major acids, we used the quantification in352
Example 4. For the data in Table ??, we obtain the necessary 5-tuples for each of the eight objects with respect353
to five features. Then, we split each object into five sub-objects, i.e. the minimum sub-object, three quantile354
sub-objects, and the maximum sub-object. Therefore, we have 40 sub-objects for the given eight objects. Table355
3 shows a part of our data, where five sub-objects are presented only for Linseed and Perilla. C, and so on. We356
selected the following eight features to describe objects (hardwoods). The data formats for other features F 2 -F 8357
are the same with Table 5, viz., In this example, deciles and quartiles describe each object, where the preselected358
number m is 6, and the 7-tuple is used as a common representation for the given Ichino: The Quantile Method359
for Symbolic PCA 195 6 shows a part of the transformed data table.360

Table 7 shows the 8 × 8 correlation matrices, where the upper triangular matrix shows the elements of the Pear361
son correlation matrix, and the lower triangular matrix shows the elements of the Spearman’s rank correlation362
matrix. The Pearson and the Spearman correlation matrices are similar in many elements. However, some363
differences should be pointed out. Features F 1 (ANNT), F 2 (JANT), F 3 (JULT), and F 7 (GDC5) are highly364
correlated mutually for the Spearman coefficient. Feature F 4 (ANNP) is strongly correlated with features F 5365
(JANP) and F 8 (MITH) for the Spearman coefficient, while F 4 (ANNP) is largely cor related with features F 5366
(JANP) and F 6 (JULP) for the Pearson coefficient. We see also a difference between the Pearson and Spearman367
correlation coefficients concerning feature F 7 (GDC5).368

The contribution ratios of the first two principal compo nents are 77.01% and 11.64% for the Pearson correlation369
matrix, and are 87.41% and 8.38% for the Spear man correlation matrix. 15 line representations of sixteen370
hardwoods in the factor planes by the Pearson and Spearman correlation matrices, respectively. In the two371
factor planes, the first principal component plays the role of the size factor, and the given eight features take372
similar positive weights. In the second principal component, four features concerning precipita tion and moisture,373
i.e. ANNP, JANP, JULP, and MITH, take positive weights, while other features for temperature and growing374
degree, i.e. ANNT, JANT, JULT, and GDC5, took negative weights. For the Spearman correlation matrix,375
moisture (MITH) takes an especially large positive weight for the second principal component. However, for the376
Pear son correlation matrix, the corresponding weight is very small.377

In Fig. 9, many series of arrow lines tend to be slightly right down. Almost all kinds of hardwood in the378
eastern area of the US organize a large stream of arrow lines. This tendency of the main stream depends on379
temperature and precipitation. On the other hand, largely fluctuating and mutually separate streams are mainly380
composed of the hardwoods in the western area. For example, Acer West, Alnus West, Betula, and Fraxinus381
West most drastically change toward the upper right with the last decile. This change is heavily dependent on382
precipitation and moisture. In Fig. 10, the main stream of arrow lines has two branches. Each branch initially383
grows toward the upper right, and then changes direction toward right down. This property is not clear in Fig.384
9. Generally, mutual arrow lines are clearly represented in Fig. 10. Therefore, in this example, the Spearman385
correlation matrix may be better than the Pearson correlation matrix. Since the quantile method is based on the386
monotonic property of the given set of objects, the use of the Spearman correlation matrix may be natural.387

17 VI. CONCLUDING REMARKS388

We presented the quantile method for the S-PCA. The quantile method can treat not only histogram-valued389
data, but also nominal and ordinal multi-valued type data, and is simply based on the property of monotone390
structure of the given objects. By selecting a common integer number m, the quantile method transforms a given391
N × d complex symbolic data table to a simple (N× (m + 1)) × d numerical data table. An important aspect392
is that we can select the integer m as a sufficiently small number compared to the number N of objects, and we393
can apply the traditional PCA simply to the (N× (m + 1)) × d data table. We presented several experimental394
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Figure 1: and J (? 1 Fig. 1 :

Figure 2: L

42

Figure 3: PROPOSITION 4 :Fig. 2 :

8



Figure 4:

results in order to show the effectiveness of the quantile method. An arrow line representation of objects in the395
factor plane may be a useful tool to analyze complex symbolic data tables. 1 2 3 4 5 6 7 8 9 10396
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Figure 7: Fig. 3 :
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Figure 8: Fig. 4 :Fig. 5 :

Figure 9:

12



12345

Figure 10: F 1 :F 2 :F 3 :F 4 :F 5 :
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Figure 11: F 6 :
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Figure 12: F 7 :F 8 :

Figure 13:
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Figure 14: Fig. 8 :
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Figure 15: Fig. 9 :
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Figure 16: Fig. 10 :

[1,4[:0;[4,5[:0.2;[5,6[:0.2;[6,7[:0.2;[7,8[:0.2; [8,9[:0.2;[9,10]:0.2, (25)

Figure 17:

2

Object Lu A C Ln M S P L O
Linseed 0 0 0 0.2 0 .2 0 0 .2 0 .2 0 .2
Perilla 0 0 0 0.2 0 0 .2 0 .2 0 .2 0 .2
Cotton 0 0 0 0 0.2 0 .2 0 .2 0 .2 0 .2
Sesame 0 0.2 0 0 0 0 .2 0 .2 0 .2 0 .2
Camellia 0 0 0 0 0 0 0 0.5 0 .5
Olive 0 0 0 0 0 0.25 0.25 0.25 0.25
Beef 0 0 0.2 0 0 .2 0 .2 0 .2 0 0 .2
Hog 0.167 0 0 0 0.167 0.167 0.167 0.167 0.167
q ij 0.167 0.2 0

.2
0 .4 0

.767
1.217 1.417 1.717 1.917

R a n k 1 2 2 4 5 6 7 8 9
Q 2 = 7.5, and Q 3 = 8.75, respectively. Finally, we have the desired 5-tuple:

(4, 5.25, 7.5, 8.75, 10). (27)
IV. THE QUANTILE METHOD FOR S-PCA

DEFINITION 9: Quantile sub-objects.

Figure 18: Table 2 :
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F 1 F 2 F 3 F 4 F 5
Linseed
1 0.93000 -27 170 118 4
2 0.93125 -24.75 178.5 137.5 5 .25
3 0.93250 -22.5 187 157 7.5
4 0.93375 -20.25 195.5 176.5 8 .75
5 0.93500 -18 204 196 10
Perilla
1 0.93000 -5 192 188 4
2 0.93175 -4.75 196 190.25 6.25
3 0.93350 -4.5 200 192.5 7 .5
4 0.93525 -4.25 204 194.75 8.75
5 0.93700 -4 208 197 10
32 Volume 23 | Issue 12 | Compilation 1.0 © 2023 Great

Britain Jour-
nal Press

Figure 19: Table 3 :

4

S Spec. Freez. Iodine Sapon. M. acids
Spec. 1.0000 -0.8923 0.7682 -0.3187 0.2432
Freez. -0.6309 1.0000 -0.6368 0.4968 -0.1138
Iodine 0.9582 -0.6142 1.0000 -0.3834 0.1107
Saponi. -0.2044 0.6437 -0.1980 1.0000 0.3634
M. acids 0.2558 0.0398 0.1805 0.6428 1.0000

Fig. 7: The result of the S-PCA for Fats’ and oils’ data (Pearson). 16 hardwoods.
According to the Procedure 2 for S-PCA in Section 4, we transform the given (16
objects) × (8 features) symbolic data table to a (16 × 7 sub-objects) × (8 features)
standard numerical data table.

Figure 20: Table 4 :

Figure 21: Table
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Taxon name
Acer East
Acer West
Alnus East
Alnus West
Betula Carya

N 6 865
1 954 10
144 4
761 16
815 4
638

0% -2.3 -3.9 -10.2 -12.2 -
13.4 3.6 Histogram 10% 0
.6 0 .2 -4.4 -4.6 -8.4 data
(annual 25% 3 .8 1 .9 -2.3
-3.0 -5.1

50% 9 .2
4 .2 0 .6
0 .3 -1.0
tempera-
ture).

75% 1
4 .4 7
.5 6 .1
3 .2 3
.9

90% 1 7
.9 1 0 .3
1 5 .0 7
.6 1 2 .6

100% 2
3 .8 2 0
.6 2 0 .9
1 8 .7 2 0
.3

London Journal of Research in Science: Natural and FormalThe Quantile Method
for Symbolic Principal Component Analysis

Figure 22: Table 5 :

6

Figure 23: Table 6 :

7

London Journal of Research in Science: Natural and Formal 36 Volume 23 | Issue
12 | Compilation 1.0 © 2023 Great Britain Journal PressThe Quantile Method for
Symbolic Principal Component Analysis

Figure 24: Table 7 :
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