

CrossRef DOI of original article:

1 The Quantile Method for Symbolic Principal Component 2 Analysis

3

4 *Received: 1 January 1970 Accepted: 1 January 1970 Published: 1 January 1970*

5

6 **Abstract**

7

8 **Index terms—**

9 **1 I. INTRODUCTION**

10 The generalization of the principal component analysis (PCA) is an important research theme in the symbolic
11 data analysis [1][2][3][4]. The main purpose of the traditional PCA is to transform a number of possibly correlated
12 variables into a small number of uncorrelated variables called principal components. Chouakria [5] proposed the
13 extension of the PCA to interval data as vertices principal component analysis (V-PCA). Chouakria et al. [6]
14 proposed also the centers method of PCA (C-PCA) for interval data, and they presented a comparative example
15 for the V-PCA and the C-PCA. Lauro and Palumbo [7] proposed symbolic object principal component analysis
16 (SO-PCA) as an extended PCA to any numerical data structure. Lauro et al. [8] summarize various methods
17 of SO-PCA for interval data. The author also proposed a general "Symbolic PCA" (S-PCA) based on the
18 quantification method by using the generalized Minkowski metrics [9,10]. In this approach, we first transform
19 the given symbolic data table to a usual numerical data table, and then we execute the traditional PCA on the
20 transformed data table.

21 In this article, another quantification method for symbolic data tables based on the monotone structures of
22 objects is presented. In Section 2, first we describe the case of point sequences in a d-dimensional Euclidean
23 space. The monotone structures are characterized by the nesting of the Cartesian join regions associated with
24 pairs of objects. If the given point sequence is monotone in the Euclidean d space, the property is also satisfied in
25 any feature axis. In other words, a nesting structure of the given point sequence in the d space confines the orders
26 of points in each feature axis to be similar. Therefore, we can evaluate the degree of similarity between features
27 based on the Kendall or the Spearman's rank correlation coefficients. Then, we can execute a traditional PCA
28 based on the correlation matrix by the selected rank correlation coefficient. Secondly, we describe the "object
29 splitting method" for SO-PCA for interval-valued data [11]. This method splits each of N symbolic objects
30 described by d interval-valued features into the two d-dimensional vertices called the "minimum sub-object"
31 and the "maximum sub object". We should point out the fact that any interval object can be reproduced from
32 the minimum and the maximum sub-objects. Moreover, the nesting structure of interval objects in the d space
33 confines the orders of the minimum and the maximum sub-objects in each feature axis to be similar. Therefore,
34 we can evaluate again the degree of similarity between features based on the Kendall or the Spearman's rank
35 correlation coefficients on the $(2 \times N) \times d$ standard numerical data table. We can execute a traditional PCA
36 based on the correlation matrix by the selected rank correlation coefficient. As a further extension to manipulate
37 histogram data, nominal multi-valued data, and others, we describe the "quantile method" for S-PCA [12] in
38 Section 4.

39 The problem is how to obtain a common numerical representation of objects described by mixed types of
40 features. For example, in histogram data, the numbers of subintervals (bins) of the given histograms are mutually
41 different in general. Therefore, we first define the cumulative distribution function for each histogram. Then,
42 we select a common integer number m to generate the "quantiles" for all histograms. As the result, for each
43 histogram, we have an $(m + 1)$ -tuple composed of $(m - 1)$ quantiles and the minimum and the maximum values
44 of the whole interval of the histogram. Then, we split each object into $(m + 1)$ sub-objects: the minimum
45 sub-object, $(m - 1)$ quantile sub objects and the maximum sub-object. By virtue of the monotonic property of the
46 distribution function, $(m + 1)$ sub-objects of an object satisfy automatically a nesting structure. Therefore, the

3 MONOTONE STRUCTURES FOR POINT SEQUENCE

47 nesting of N objects described by the minimum and the maximum sub-objects in the d space confines the orders
48 of $N \times (m + 1)$ sub-objects in each feature axis to be similar. Again, we can evaluate the degree of similarity
49 between features by the Kendall or the Spearman's rank correlation coefficient, and then execute a traditional
50 PCA.

51 Interval-valued data may be regarded as a special histogram-valued data, where only one bin organizes the
52 histogram. Furthermore, we can also split nominal multi-valued data into $(m + 1)$ sub-objects based on the
53 distribution function associated with rank values attached to categorical values of an object. Therefore, by the
54 quantile method we can transform a given general $N \times d$ symbolic data table to an $\{N \times (m + 1)\} \times d$ standard
55 numerical data table, and then we can execute a traditional PCA on the transformed data table. In Section 5,
56 we describe several experimental results in order to show the effectiveness of the quantile method. Section 6 is a
57 summary.

58 2 II. MONOTONE STRUCTURES AND OBJECT SPLIT- 59 TING METHOD

60 In this section, we describe some properties of monotone structures for point sequence and for interval objects.
61 Then, we describe the object splitting method for S-PCA.

62 3 Monotone Structures for Point Sequence

63 Let a set of N objects U be represented by $U = \{\cdot 1, \cdot 2, \dots, \cdot N\}$. Let each object $\cdot i$ be described by d
64 numerical features, i.e. a vector $x_i = (x_{i1}, x_{i2}, \dots, x_{id})$ in a d -dimensional Euclidean space R^d .

65 DEFINITION 1: Rectangular region spanned by x_i and x_j .

66 Let $J(\cdot i, \cdot j)$ be a rectangular region in R^d spanned by the vectors x_i and x_j , and be defined by the
67 following Cartesian product of d closed intervals. $J(\cdot i, \cdot j) = [\min(x_{i1}, x_{j1}), \max(x_{i1}, x_{j1})] \times [\min(x_{i2}, x_{j2}), \max(x_{i2}, x_{j2})] \times \dots \times [\min(x_{id}, x_{jd}), \max(x_{id}, x_{jd})]$, (1)

68 where $\min(a, b)$ and $\max(a, b)$ are the operators to take the minimum value and the maximum value from a
69 and b , respectively. London Journal of Research in Science: Natural and Formal

70 In the following, we call $J(\cdot i, \cdot j)$ as the Cartesian join (region) of objects $\cdot i$ and $\cdot j$ [9,10, ??3].

71 DEFINITION 2: Nesting structure If a series of objects $\cdot 1, \cdot 2, \dots, \cdot N$ satisfies the nesting property $J(\cdot 1, \cdot k) \supseteq J(\cdot 1, \cdot k+1)$, $k = 1, 2, \dots, N-1$, (2)

72 the series is called a "nesting structure with the starting point $\cdot 1$ and the ending point $\cdot N$ ".

73 In Fig. ??, (a) is a monotone increasing series, and (b) is a monotone decreasing series of objects. It should be
74 noted that the two series of objects show the same nesting structures with starting point $\cdot 1$ and ending point \cdot
75 5.

76 PROPOSITION 1: If a series of objects $\cdot 1, \cdot 2, \dots, \cdot N$ is a nesting structure with the starting point $\cdot 1$
77 and the ending point $\cdot N$ in the space R^d , the series satisfies the same structure in each feature (axis) of the
78 space R^d .

79 Proof: From the definition of rectangular region as in Eq. (1), we have $J(\cdot 1, \cdot k) = [\min(x_{11}, x_{k1}),$
80 $\max(x_{11}, x_{k1})] \times [\min(x_{12}, x_{k2}), \max(x_{12}, x_{k2})] \times \dots \times [\min(x_{1d}, x_{kd}), \max(x_{1d}, x_{kd})]$, (3)

81 Therefore, the relations of the Cartesian join regions $J(\cdot 1, \cdot k) \supseteq J(\cdot 1, \cdot k+1)$, $k = 1, 2, \dots, N-1$, in
82 Definition 2, require the following relations for each feature, i.e. for each j ($= 1, 2, \dots, d$),

83 $[\min(x_{1j}, x_{kj}), \max(x_{1j}, x_{kj})] \supseteq [\min(x_{1j}, x_{k+1,j}), \max(x_{1j}, x_{k+1,j})]$, $k = 1, 2, \dots, N-1$.

84 (5)

85 Although, there exist several ways to define the mono tone sequences of objects, i.e. monotone structures, we
86 use the following definition.

87 DEFINITION 3: Monotone structure of a series of points.

88 A series of objects $\cdot 1, \cdot 2, \dots, \cdot N$ is called a monotone structure, if the series satisfies the nesting structure
89 of Definition 2.

90 Since, for a pair of features, we can evaluate the degree of similarity between two sets of orders of objects for
91 the same object set U by using the Kendall or the Spearman's rank correlation coefficient, we have Proposition
92 2.

93 PROPOSITION 2: Correlation matrix S .

94 If a series of objects $\cdot 1, \cdot 2, \dots, \cdot N$ is a monotone structure in the space R^d , the absolute value of each
95 off diagonal element of the $d \times d$ correlation matrix S takes the maximum value one in the sense of the Kendall
96 or the Spearman's rank correlation coefficient.

97 Proof: From Definition 3, any monotone structure must satisfy the nesting property of Definition 2. Then,
98 from Proposition 1, the given series of objects has the identical nesting structure for each feature. This property
99 exactly restricts the order of objects for each feature to be the same way or the reverse way according to the
100 series of objects is monotone increasing or monotone decreasing. Therefore, if a series of objects is a monotone
101 structure in R^d , the absolute value of the correlation coefficient for each pair of features takes the maximum
102 value one in the sense of the Kendall or the Spearman's rank correlation coefficient.

103 From Proposition 2, if many off-diagonal elements of S take highly correlated values, we can expect the

106 existence of a large eigenvalue of S , and that the corresponding eigenvector reproduces well the original nesting
107 property of the set of objects in the space R^d .

108 EXAMPLE 1: As an intuitive example, suppose that the given set of objects in R^d organizes an approximate
109 monotone structure which is monotone increasing along each of d features, and the degrees of similarity between
110 two features are the same for all possible pairs. Therefore, all off-diagonal elements of S take an identical value
111 $?_1, 0 < ?_1 < 1$. Then, it is known [14] that d eigenvalues of S become $?_1 = 1 + (d - 1)?_1$ and $?_2 = ?_3 = \dots = ?_d = 0$, (6)

112 and the eigenvector for $?_1$ is $a_1 = (1/\sqrt{d}, 1/\sqrt{d}, \dots, 1/\sqrt{d})$. (7)

113 Therefore, the given monotone structure of objects in R^d is approximately reproduced around the eigenvector
114 a_1 . As a particular case, when $?_1 = 1$, the given set of objects organizes a complete monotone structure in the
115 space R^d . Then, the eigenvalue $?_1$ becomes d , i.e. its contribution ratio is 100%, and the order of the given
116 object sequence in the space R^d is exactly reproduced on the eigenvector a_1 .

118 4 London Journal of Research in Science: Natural and Formal

119 In the above, we characterized monotone structures by the nesting property, and obtain the correlation matrix
120 S . The monotone structures include any linear structure as a special case. On the other hand, a monotone
121 structure may be approximated well by an appropriately selected linear structure. This suggests that we can use
122 also the Pearson correlation coefficient to evaluate the degree of similarity between two features instead of the
123 Kendall and the Spearman's rank correlation coefficients.

124 5 Monotone Structures for Interval Objects

125 Let each object be described by d interval-valued features. Then, an object $?_k$ in U becomes a hyper rectangle
126 in R^d , i.e. the Cartesian product of d closed intervals: $I_k = I_{k1} \times I_{k2} \times \dots \times I_{kd}$, (8)

127 where each interval I_{kp} is given by $I_{kp} = [x_{kp(\min)}, x_{kp(\max)}]$, $p = 1, 2, \dots, d$. (9)

128 Then, we can define the minimum vertex $x_{k(\min)}$ and the maximum vertex $x_{k(\max)}$ by

129 $x_{k(\min)} = (x_{k1(\min)}, x_{k2(\min)}, \dots, x_{kd(\min)})$ and $x_{k(\max)} = (x_{k1(\max)}, x_{k2(\max)}, \dots, x_{kd(\max)})$.
130 (10)

131 DEFINITION 4: The minimum sub-object and the maximum sub-object Let the minimum vertex $x_{k(\min)}$
132 and the maximum vertex $x_{k(\max)}$ for each object $?_k$ in U be called the minimum sub-object and the maximum
133 sub-object, and be denoted by $?_k(\min)$ and $?_k(\max)$, respectively.

134 6 EXAMPLE 2:

135 In Table ??, the minimum and the maximum sub-objects of Linseed oil under the first four interval features
136 are represented by the vertices $x_{\text{Linseed}(\min)} = (0.930, -27, 170, 118)$ and $x_{\text{Linseed}(\max)} = (0.935, -18, 204,
137 196)$, respectively.

138 PROPOSITION 3: From Definition 1, any interval object $?_k$ in U is represented in the space R^d by the
139 Cartesian join region $J(?_k(\min), ?_k(\max))$.

140 Proof: From Eq. (1) in Definition 1 and (8-10), we see that $J(?_k(\min), ?_k(\max)) = [x_{k1(\min)}, x_{k1(\max)}]$
141 $\times [x_{k2(\min)}, x_{k2(\max)}] \times \dots \times [x_{kd(\min)}, x_{kd(\max)}] = I_{k1} \times I_{k2} \times \dots \times I_{kd} = I_k$.

142 From Eq. (8), d respective intervals for $?_i$ and $?_j$ are $I_{ip} = [x_{ip(\min)}, x_{ip(\max)}]$, $p = 1, 2, \dots$

143 7 ,d, and

144 $I_{jp} = [x_{jp(\min)}, x_{jp(\max)}]$, $p = 1, 2, \dots, d$. (11)

145 Thus the closed interval I_{ijp} generated from two intervals I_{ip} and I_{jp} becomes $I_{ijp} = [\min(x_{ip(\min)}, x_{jp(\min)}), \max(x_{ip(\max)}, x_{jp(\max)})]$, $p = 1, 2, \dots, d$. (12)

146 DEFINITION 5: We define the Cartesian join region $J(?_i, ?_j)$ based on Eq. (12) by $J(?_i, ?_j) = I_{ij1} \times I_{ij2} \times \dots \times I_{ijd} = [\min(x_{i1(\min)}, x_{j1(\min)}), \max(x_{i1(\max)}, x_{j1(\max)})] \times [\min(x_{i2(\min)}, x_{j2(\min)}), \max(x_{i2(\max)}, x_{j2(\max)})] \times \dots \times [\min(x_{id(\min)}, x_{jd(\min)}), \max(x_{id(\max)}, x_{jd(\max)})]$. (13)

147 In this definition, we should note that, for each k , $J(?_k, ?_k)$ is equivalent to $J(?_k(\min), ?_k(\max))$.
148 Furthermore,

149 Table ??: Fats' and oils' data [10].

153 8 J (? k(min))

154 $J(?_k(\min))$ and $J(?_k(\max))$ are reduced to the minimum vertex $x_{k(\min)}$ and the maximum vertex
155 $x_{k(\max)}$ in Eq. (10), respectively.

156 DEFINITION 6: Nesting structure for interval objects If a series of interval objects $?_1, ?_2, \dots, ?_N$
157 satisfies the nesting property $J(?_1, ?_k) \subset J(?_1, ?_{k+1})$, $k = 1, 2, \dots, N-1$, (14)

158 the series is called a "nesting structure with the starting object $?_1$ and the ending object $?_N$ ".

159 Fig. ?? shows a series of five interval objects. It should be noted that the nesting order of objects in each
160 feature axis is the same as that in the two-dimensional space.

161 Object Specific gravity (g/cm³), F 1 Freezing point (\times ??? \times [min(x_{1d(min)} , x_{k+1,d(min)}), max(x_{1d(max)} , x_{k+1,d(max)})]).(16)

163 Therefore, the relations of the Cartesian join regions $J(1, k)$? $J(1, k+1)$, $k = 1, 2, \dots, N-1$, in
164 Definition 5

165 , require the following relations for each feature, i.e. for each j ($= 1, 2, \dots, d$), [min(x_{1j(min)} , x_{kj(min)}),
166 max(x_{1j(max)} , x_{kj(max)})] ? [min(x_{1j(min)} , x_{k+1,j(min)}), max(x_{1j(max)} , x_{k+1,j(max)})], $k = 1, 2, \dots, N-1$. (17)

168 We define the monotone structure of interval objects by the same way in Definition 3. A series of interval
169 objects $?1, ?2, \dots, ?N$ is called a monotone structure, if the series satisfies a nesting structure in Definition
170 6.

171 According to Definition 7, we assume a series of interval objects $?1, ?2, \dots, ?N$ is a monotone structure
172 in the space R^d . Then, from Proposition 4, the series of objects satisfies the same nesting in each feature
173 axis. However, the nesting in (17) is based on the closed intervals generated from two objects. Therefore, we
174 cannot evaluate the degree of similarity between two features by direct use of the Kendall or the Spearman's
175 rank correlation coefficient. To remove this difficulty, we split each interval object into the minimum sub-object
176 and the maximum sub-object.

177 PROPOSITION 5: Monotone conditions by sub-objects. Let a series of interval objects $?1, ?2, \dots, ?N$
178 be monotone in the space R^d . Then, at least one condition of the following must be satisfied.

179 (1) The series of the minimum sub-objects, $?1(min), ?2(min), \dots, ?N(min)$, is monotone in R^d .

180 (2) The series of the maximum sub-objects, $?1(max), ?2(max), \dots, ?N(max)$, is monotone in R^d .

181 Proof: Assume that the conditions (1) and (2) are negated simultaneously. Then, there exists a nesting
182 order k in which the object $?k$ satisfies the nesting property in R^d but the corresponding minimum sub-object
183 $?k(min)$ and the maximum sub-object $?k(max)$ breaks the nesting property in R^d , simultaneously. This
184 contradicts the fact given in Proposition 3. On the other hand, if the series of objects satisfies only one
185 condition, we call the series of objects as weakly monotone in R^d . Fig. ?? shows a case of a strongly monotone
186 structure, whereas Fig. 3 illustrates a case of a weakly monotone structure.

187 If a series of interval objects $?1, ?2, \dots, ?N$ in the space R^d is given, we can obtain the $d \times d$ correlation
188 matrix S by splitting each object into the minimum and the maximum sub-objects and by using the Kendall or
189 the Spearman's rank correlation coefficient. PROPOSITION 6: Property of correlation matrix S by the object
190 splitting.

191 (1) If the given series of objects is strongly monotone in a pair of features, the corresponding correlation
192 coefficient shows a strictly high score for $2N$ sub objects by the object splitting.

193 (2) If the given series of interval objects is weakly monotone, the correlation coefficient shows a degraded score
194 compared to the case (1).

195 9 R^d

196 and/or the series of the maximum sub-objects in R^d also become monotone. Therefore, we have the properties
197 (1) and (2) whether the given series of objects is strongly monotone or weakly monotone.

198 In the above, we characterized monotone structures of N interval objects in the space R^d by the nesting
199 property of $2N$ sub-objects in R^d , i.e. the minimum sub-object and the maximum sub-object, and obtained
200 the correlation matrix S based on the Kendall or Spearman's rank correlation coefficient. As noted in the
201 preceding, the monotone structures include any linear structure as a special case. On the other hand, a monotone
202 structure may be approximated well by an appropriately selected linear structure. Therefore, we can use also the
203 Pearson correlation coefficient to evaluate the degree of similarity between two features instead of the Kendall
204 and Spearman's rank correlation coefficients.

205 10 The Object Splitting Method for SO-PCA

206 PROCEDURE 1: Object splitting method for SO-PCA. For a set of N objects $?1, ?2, \dots, ?N$ under d
207 interval valued features, the object splitting method is executed by the following steps.

208 1. We split each object $?k$ into the minimum sub-object $?k(min)$ and the maximum sub-object $?k(max)$.

209 As the result, we have a $(2N) \times d$ numerical data table. 2. We calculate the $d \times d$ correlation matrix S
210 for the $(2N) \times d$ data table obtained in (1) based on the selected correlation coefficient, where we can use the
211 Kendall or Spearman's rank correlation coefficient or the Pearson correlation coefficient. 3. We find the principal
212 components based on the correlation matrix in (2). 4. We represent each symbolic object $?k$ in the factor planes
213 as the arrow line connecting from $?k(min)$ to $?k(max)$, or as the Cartesian join of $?k(min)$ and $?k(max)$,
214 i.e. a rectangular region spanned by $?k(min)$ and $?k(max)$.

215 EXAMPLE 3: Fats' and oils' data (interval-valued data).

216 We applied the object splitting method to the Fats' and oils' data of Table ???. We used only four interval
217 features. The contribution ratios of the first two principal components understanding for the descriptions of
218 symbolic objects in the factor planes compared to the rectangular representation. London Journal of Research in
219 Science: Natural and Formal Chouakria et al. [6] presented a comparative study of the vertices method (V-PCA)
220 and the centers method (C-PCA). The V-PCA is implemented on the numerical data table of the size $(N \times ??$

221 $d \times d$), while the C-PCA is implemented on the size $N \times d$. Therefore, the C-PCA is stronger than the V-PCA
 222 in the computational complexity, when the number of descriptive features is large. The contribution ratios of
 223 the first two principal components for the fats' and oils' data of Table ?? are 68.29% and 20.23% by the V-PCA,
 224 and 75.23% and 15.09% by the C-PCA, respectively. The rectangular representations of objects for these two
 225 methods are similar, although their contribution ratios are different. Moreover, their results are also close to the
 226 arrow line representations in Figs ?? and ??.

227 Lauro et al. [8] presented a comparative study of the V-PCA, the method called spaghetti PCA, and the
 228 method based on interval algebra and optimization theory. For the Fats' and oils' data of Table ??, their
 229 results of rectangular representations in the first factor planes are mutually similar. Among them, the spaghetti
 230 PCA is especially close to the result in Figs ?? and ?? . The spaghetti PCA uses the main diagonals of the
 231 hyper-rectangles to represent multidimensional interval data. The contribution ratios of the first two principal
 232 components are 71.33% and 18.09%. In the representation of interval objects in the first factor plane, the lengths
 233 and the directions of the main diagonals of the rectangular regions are very similar to those of the arrow lines in
 234 Figs ?? and ?? . The spaghetti PCA is a very different method from the object splitting method. However, we
 235 should point out the fact that the main diagonal of an object may be described by two end points: the minimum
 236 vertex and the maximum vertex.

237 In this section, we presented the object splitting method of PCA for interval objects. This method transforms
 238 the given $N \times d$ interval-valued data table into a $2N \times d$ standard numerical data table, then executes the PCA
 239 on the transformed data table. We should note that 1. The object splitting method is simple and works as well
 240 as other methods for interval objects.

241 Especially, this method is easily applicable to large data tables. 2. The arrow line representation of objects in
 242 the factor planes is useful to provide insights about the mutual relationships of the given interval objects.

243 In the next section, we present the quantile method, which is an extension of the object splitting method and
 244 can manipulate not only interval-valued features but also other type features including histogram features and
 245 nominal multi-valued features.

246 11 III. COMMON REPRESENTATION BY QUANTILES

247 In the aggregation process of large data sets, the use of histograms is very natural and common to describe the
 248 reduced data sets. Billard and Diday [2,4] summarize empirical distribution functions and descriptive statistics
 249 for various feature types. Based on knowledge of distribution functions, the quantile method [12] provides a
 250 common framework to represent symbolic data described by features of different types. The basic idea is to
 251 express the observed feature values by some predefined quantiles of the underlying distribution. In the interval
 252 feature case, a distribution is assumed within each interval, e.g., uniform distribution (Bertrand and Goupil
 253 [15]). For a histogram feature, quantiles of any histogram may be obtained simply by interpolation, assuming
 254 the uniformity in each bin of the histogram [2,4,15]. Although the numbers of bins of the given histograms
 255 are mutually different in general, we can obtain the same number of quantiles for each histogram. For nominal
 256 multi-valued features, quantiles are determined from ranking defined on the categorical values based on their
 257 frequencies. Therefore, when we choose quartiles, for example, we can represent each feature value for different
 258 feature types in the same form of a 5-tuple (min, Q 1 , Q 2 , Q 3 , max)

259 . This common representation then allows for a unified approach to S-PCA. In the following subsections, we
 260 describe detail procedures to have quantile values for various feature types.

261 12 Quantiles for Interval-valued Feature

262 Let a feature F_j be an interval-valued feature and let each object $k \in U$ be represented by an interval: $I_{kj} =$
 263 $[x_{kj}(\min), x_{kj}(\max)]$, $k = 1, 2, \dots, N$. (18)

264 We assume that each interval has a uniform distribution [2,4,15]. Then, in the case of m quantiles, the
 265 resultant $(m-1)$ quantile values become $Q_{kji} = x_{kj}(\min) + (x_{kj}(\max) - x_{kj}(\min)) \times i/m$, $i = 1, 2, \dots, m-1$. (19)

266 Therefore, each object $k \in U$ for the feature F_j is described by an $(m+1)$ -tuple: $(x_{kj}(\min), Q_{kj1}, Q_{kj2}, \dots, Q_{kj(m-1)}, x_{kj}(\max))$, $k = 1, 2, \dots, N$. (20)

267 Fig. 6: A histogram-valued data.

269 13 Quantiles for Histogram-valued Feature

270 Let a feature F be a histogram feature and let an object $\in U$ be represented by a histogram in Fig. 6. Let the
 271 histogram be composed of n bins, and let p_i be the probability of the i th bin, where it is assumed that $p_1 + p_2 + \dots + p_n = 1$.

272 Then, under the assumption that n bins (subintervals) have uniform distributions, we define the cumulative
 273 distribution function $F(x)$ of the histogram [2,4] as: The Quantile Method for Symbolic Principal Component
 274 Analysis Then, in the case of m quantiles, we can find $(m+1)$ values including $(m-1)$ quantile values from the
 275 equations: $F(x) = 0$ for $x \leq x_1$ $F(x) = p_1(x - x_1)/(x_2 - x_1)$ for $x_1 < x \leq x_2$ $F(x) = F(x_2) + p_2(x - x_2)$
 276 $/(x_3 - x_2)$ for $x_2 < x \leq x_3$ \dots $F(x) = F(x_n) + p_n(x - x_n)/(x_{n+1} - x_n)$ for $x_n < x \leq x_{n+1}$ $F(x) =$
 277 1 for $x \geq x_{n+1}$. London Journal of $F(\min) = 0$, (i.e. $\min = x_1$) $F(Q_2) = 1/m$, $F(Q_3) = 2/m \dots, F(Q_m)$

15 PROPOSITION 8: PROPERTY OF CORRELATION MATRIX S BY THE QUANTILE METHOD

280 $= (m - 1)/m$, and $F(\max) = 1$, (i.e. $\max = x_{n+1}$).

281 Therefore, the object $\{k\} \subseteq U$ is described by an $(m + 1)$ -tuple $(x_{\min}, Q_1, Q_2, \dots, Q_{m-1}, x_{\max})$. (21)

282 In general, we can describe each object $\{k\} \subseteq U$ under a histogram-valued feature F_j by an $(m + 1)$ -tuple: $(x_{kj(\min)}, Q_{kj1}, Q_{kj2}, \dots, Q_{kj(m-1)}, x_{kj(\max)})$, $k = 1, 2, \dots, N$. (22)

283 It should be noted that the numbers of bins of the given histograms are mutually different in general. However,
284 we can select an integer number m , and obtain $(m + 1)$ -tuples as the common representation for all histograms.

286 14 Quantiles for Nominal (categorical) Multi-valued Feature

287 Let F_j be a multi-valued feature which takes n possible categorical values c_i , $i = 1, 2, \dots, n$. For each i ,
288 let p_i be the relative frequency of categorical value c_i in terms of N objects [2,4,15]. Then, we sort the relative
289 frequency values. For simplicity, we assume that: $p_1 \leq p_2 \leq \dots \leq p_n$. (23)

290 According to this order, we suppose rank values $1, 2, \dots, n$ for the categorical values c_1, c_2, \dots, c_n ,
291 respectively. We define the cumulative distribution function for each object $\{k\} \subseteq U$ based on the rank values.

292 Let n_k be the number of possible categorical values taken by object $\{k\} \subseteq U$ under F_j . Let q_{ki} be the
293 frequency value associated with the category c_i and given by $q_{ki} = 1/n_k$ if c_i is a possible value for $\{k\} \subseteq U$
294 under F_j , $= 0$ otherwise.

295 Therefore, we define a piecewise linear cumulative distribution function for each object $\{k\} \subseteq U$ based on
296 uniform densities attached to rank values (see Example 4). Then we find $(m + 1)$ values including quantile values
297 for the selected integer number m . Therefore, we can obtain again the common $(m + 1)$ -tuple representation: $(x_{kj(\min)}, Q_{kj1}, Q_{kj2}, \dots, Q_{kj(m-1)}, x_{kj(\max)})$, $k = 1, 2, \dots, N$. (24)

298 EXAMPLE 4: The fifth feature (Major acids) of Table ?? is an example of nominal multi-valued feature.
299 We suppose the quartile case, i.e. $m = 4$. For this purpose, we use basically the procedure given in the above.
300 However, in order to prevent ties of rank values, we use the sums of frequency values attached to the category
301 values of each object. where we should note that the interval [9,10] is attached to the maximum rank value nine.
302 The corresponding cumulative distribution function is a piecewise linear function $F(x)$ characterized by: $F(x) =$
303 $0, 1 \leq x < 4; F(x) = 0.2 \times (x - 4), 4 \leq x < 5; F(x) = 0.2 + 0.2 \times (x - 5), 5 \leq x < 6; F(x) = 0.4, 6 \leq x < 7; F(x) = 0.4 + 0.2 \times (x - 7), 7 \leq x < 8; F(x) = 0.6 + 0.2 \times (x - 8), 8 \leq x < 9; F(x) = 0.8 + 0.2 \times (x - 9), 9 \leq x \leq 10$. (26)

304 By solving the equations $F(x) = 0.25$, $F(x) = 0.5$, and $F(x) = 0.75$, we obtain the quartile values Let each
305 object $\{k\} \subseteq U$ be described with the given d features by $(m + 1)$ -tuples: London Journal of Research in Science:
306 Natural and FormalQ 1 = 5.25,30 Volume 23 | Issue 12 | Compilation 1.0 © 2023 Great Britain Journal Press

307 The Quantile Method for Symbolic Principal Component Analysis $(x_{kj(\min)}, Q_{kj1}, Q_{kj2}, \dots, Q_{kj(m-1)}, x_{kj(\max)})$, $j = 1, 2, \dots, d$; $k = 1, 2, \dots, N$.

308 (

309 Then, we define the quantile sub-object $\{k\} \subseteq U$ as: $x_{kj(\min)} = (Q_{kj1}, Q_{kj2}, \dots, Q_{kj(m-1)})$, $i = 1, 2, \dots, m - 1$; $k = 1, 2, \dots, N$. (29)

310 PROPOSITION 7: For each object $\{k\} \subseteq U$, the minimum sub-object $\{k\} \subseteq U$, $(m - 1)$ quantile sub-objects
311 $(\{k\} \subseteq U, \{k\} \subseteq U, \dots, \{k\} \subseteq U)$, and the maximum sub-object $\{k\} \subseteq U$ organize a monotone structure in the
312 space R^d .

313 Proof: From the definition of $(m + 1)$ sub-objects, we can obtain the following nesting relations of the Cartesian
314 join regions: $J(\{k\} \subseteq U, \{k\} \subseteq U) \subseteq J(\{k\} \subseteq U, \{k\} \subseteq U) \subseteq \dots \subseteq J(\{k\} \subseteq U, \{k\} \subseteq U)$. (30)

315 Thus, Definition 7 leads the conclusion.

322 15 PROPOSITION 8: Property of correlation matrix S by the 323 quantile method

324 Let a series of objects $\{k\} \subseteq U$, $k = 1, 2, \dots, N$, is monotone in the space R^d and let the $d \times d$ correlation
325 matrix S be obtained by applying the Kendall or Spearman's rank correlation coefficients to the $N \times (m + 1)$
326 sub-objects of Definition 9. Then, the absolute value of each off-diagonal element of S is large.

327 Proof: From Proposition 7, $(m + 1)$ sub-objects for each of N objects organize always a monotone structure
328 in any subspace of R^d . Therefore, if the given series of objects is monotone, their nesting property restrict the
329 order of $N \times (m + 1)$ sub-objects to be similar in any subspace of R^d . This leads to the conclusion. Now, the
330 quantile method for general S-PCA is summarized as follows.

331 PROCEDURE 2: The quantile method for S-PCA Let the set of N objects $\{1, 2, \dots, N\}$ be described
332 by d features, which are a mixture of interval features, histogram features, nominal multi-valued features, and
333 other types. Then, we execute the quantile method by the following steps.

334 1. We select an integer value m ($1 \leq m < N$). 2. For each feature F_j , we find the common representation of
335 N objects by the $(m + 1)$ -tuples: $(x_{kj(\min)}, Q_{kj1}, Q_{kj2}, \dots, Q_{kj(m-1)}, x_{kj(\max)})$, $k = 1, 2, \dots, N$.

337 16 3.

338 For each object $\in k$, we find $(m + 1)$ d-dimensional sub-objects: the minimum sub-object $\in k(\min)$, $(m - 1)$
339 quantile sub-objects, $\in kQ1, \in kQ2, \dots, \in kQ(m-1)$, and the maximum sub-object $\in k(\max)$. Then we split
340 each object into $(m + 1)$ sub-objects. As the result, we have an $\{N \times (m + 1)\} \times d$ numerical data table. 4.
341 We calculate the $d \times d$ correlation matrix S for the $\{N \times (m + 1)\} \times d$ data table obtained in 3) based on the
342 selected correlation coefficient, where we can use the Kendall or Spearman's rank correlation coefficient, or the
343 Pearson correlation coefficient. 5. We find the principal components based on the correlation matrix in 4).

344 In the factor planes, we can reproduce each object $\in k, k = 1, 2, \dots, N$, as a series of m arrow lines: $\in k(\min)$
345 $\in kQ1, \in kQ2, \dots, \in kQ(m-1), \in k(\max)$.

346 (31)

347 As a different representation, we can use also a series of m rectangles.

348 In this procedure, if we select as $m = 1$, the quantile method is reduced to the original "object splitting
349 method".

350 V. EXAMPLES OF THE QUANTILE METHOD FOR S-PCA EXAMPLE 5: Fats' and oils' data

351 We illustrate the quartile case, i.e. $m = 4$. In this case, the common representation of each object under a
352 feature is 5-tuple, i.e. $(\min, Q1, Q2, Q3, \max)$. For the fifth feature Major acids, we used the quantification in
353 Example 4. For the data in Table ??, we obtain the necessary 5-tuples for each of the eight objects with respect
354 to five features. Then, we split each object into five sub-objects, i.e. the minimum sub-object, three quartile
355 sub-objects, and the maximum sub-object. Therefore, we have 40 sub-objects for the given eight objects. Table
356 3 shows a part of our data, where five sub-objects are presented only for Linseed and Perilla. C, and so on. We
357 selected the following eight features to describe objects (hardwoods). The data formats for other features F 2 -F 8
358 are the same with Table 5, viz., In this example, deciles and quartiles describe each object, where the preselected
359 number m is 6, and the 7-tuple is used as a common representation for the given Ichino: The Quantile Method
360 for Symbolic PCA 195 6 shows a part of the transformed data table.

361 Table 7 shows the 8×8 correlation matrices, where the upper triangular matrix shows the elements of the Pearson
362 son correlation matrix, and the lower triangular matrix shows the elements of the Spearman's rank correlation
363 matrix. The Pearson and the Spearman correlation matrices are similar in many elements. However, some
364 differences should be pointed out. Features F 1 (ANNT), F 2 (JANT), F 3 (JULT), and F 7 (GDC5) are highly
365 correlated mutually for the Spearman coefficient. Feature F 4 (ANNP) is strongly correlated with features F 5
366 (JANP) and F 8 (MITH) for the Spearman coefficient, while F 4 (ANNP) is largely correlated with features F 5
367 (JANP) and F 6 (JULP) for the Pearson coefficient. We see also a difference between the Pearson and Spearman
368 correlation coefficients concerning feature F 7 (GDC5).

369 The contribution ratios of the first two principal components are 77.01% and 11.64% for the Pearson correlation
370 matrix, and are 87.41% and 8.38% for the Spearman correlation matrix. 15 line representations of sixteen
371 hardwoods in the factor planes by the Pearson and Spearman correlation matrices, respectively. In the two
372 factor planes, the first principal component plays the role of the size factor, and the given eight features take
373 similar positive weights. In the second principal component, four features concerning precipitation and moisture,
374 i.e. ANNP, JANP, JULP, and MITH, take positive weights, while other features for temperature and growing
375 degree, i.e. ANNT, JANT, JULT, and GDC5, took negative weights. For the Spearman correlation matrix,
376 moisture (MITH) takes an especially large positive weight for the second principal component. However, for the
377 Pearson correlation matrix, the corresponding weight is very small.

378 In Fig. 9, many series of arrow lines tend to be slightly right down. Almost all kinds of hardwood in the
379 eastern area of the US organize a large stream of arrow lines. This tendency of the main stream depends on
380 temperature and precipitation. On the other hand, largely fluctuating and mutually separate streams are mainly
381 composed of the hardwoods in the western area. For example, Acer West, Alnus West, Betula, and Fraxinus
382 West most drastically change toward the upper right with the last decile. This change is heavily dependent on
383 precipitation and moisture. In Fig. 10, the main stream of arrow lines has two branches. Each branch initially
384 grows toward the upper right, and then changes direction toward right down. This property is not clear in Fig.
385 9. Generally, mutual arrow lines are clearly represented in Fig. 10. Therefore, in this example, the Spearman
386 correlation matrix may be better than the Pearson correlation matrix. Since the quantile method is based on the
387 monotonic property of the given set of objects, the use of the Spearman correlation matrix may be natural.

388 17 VI. CONCLUDING REMARKS

389 We presented the quantile method for the S-PCA. The quantile method can treat not only histogram-valued
390 data, but also nominal and ordinal multi-valued type data, and is simply based on the property of monotone
391 structure of the given objects. By selecting a common integer number m , the quantile method transforms a given
392 $N \times d$ complex symbolic data table to a simple $(N \times (m + 1)) \times d$ numerical data table. An important aspect
393 is that we can select the integer m as a sufficiently small number compared to the number N of objects, and we
394 can apply the traditional PCA simply to the $(N \times (m + 1)) \times d$ data table. We presented several experimental

11

Figure 1: and J (? 1 Fig. 1 :

42

Figure 3: PROPOSITION 4 :Fig. 2 :

Figure 4:

395 results in order to show the effectiveness of the quantile method. An arrow line representation of objects in the
396 factor plane may be a useful tool to analyze complex symbolic data tables.

1 2 3 4 5 6 7 8 9 10

¹ Volume 23 | Issue 12 | Compilation 1.0 © 2023 Great Britain Journal PressThe Quantile Method for Symbolic Principal Component Analysis

² ©

³ ©

⁴ Volume 23 | Issue 12 | Compilation 1.0 © 2023 Great Britain Journal PressThe Quantile Method for Symbolic Principal Component Analysis

⁵ ©

⁶ ©

⁷ ©

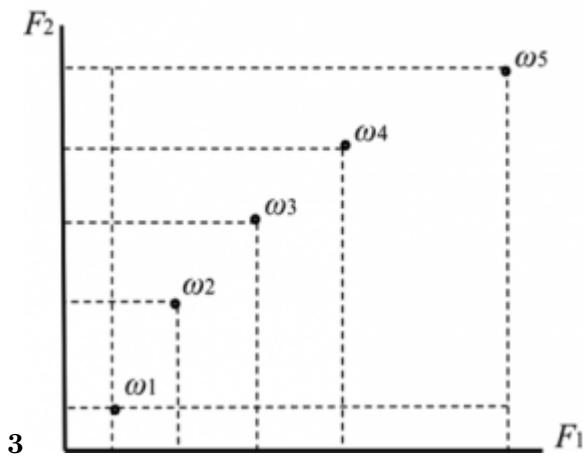
⁸ ©

⁹ Scientific Research (C) 19500130). The author wishes to thank referees and editors for suggestions leading improvements in this article. The author also acknowledges to Professor Paula Brito for her collaborations.

¹⁰ Volume 23 | Issue 12 | Compilation 1.0 © 2023 Great Britain Journal PressThe Quantile Method for Symbolic Principal Component Analysis

Figure 6:

(a) Monotone increasing.



(b) Monotone decreasing.

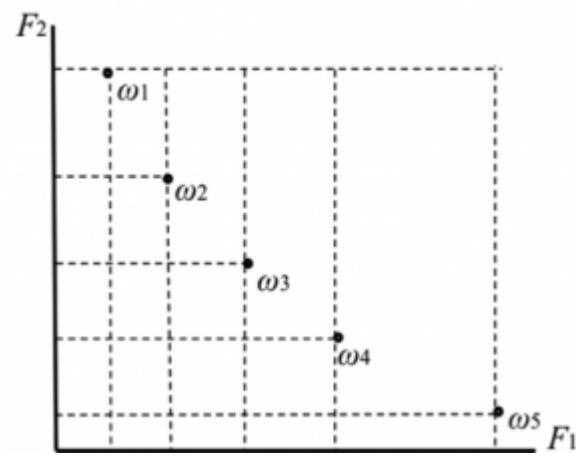


Figure 7: Fig. 3 :

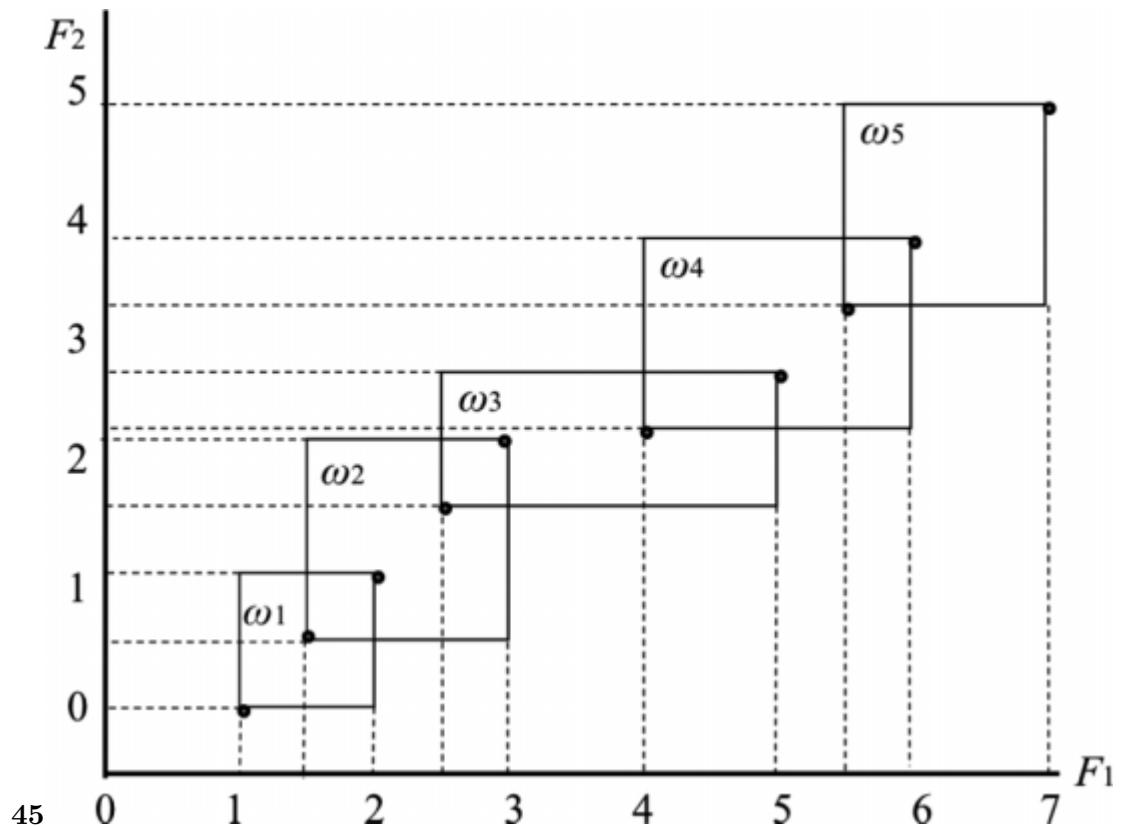


Figure 8: Fig. 4 :Fig. 5 :

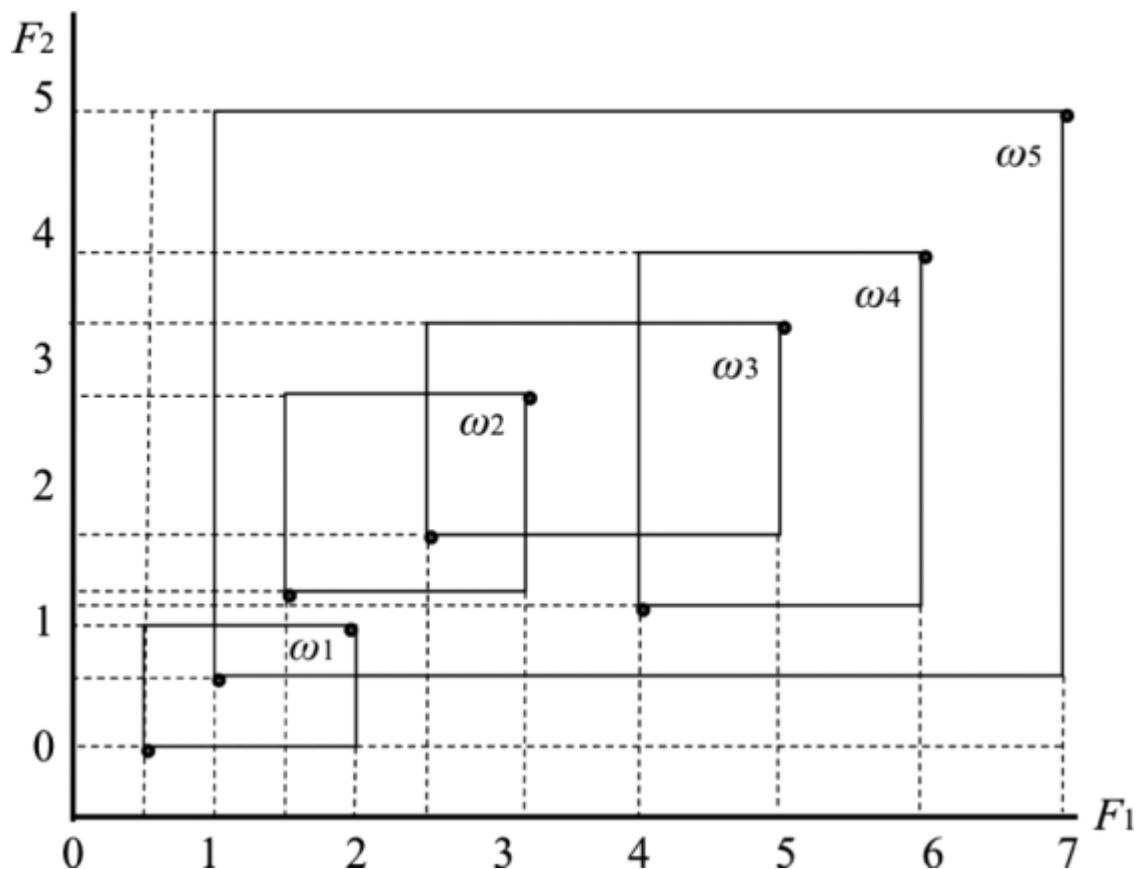


Figure 9:

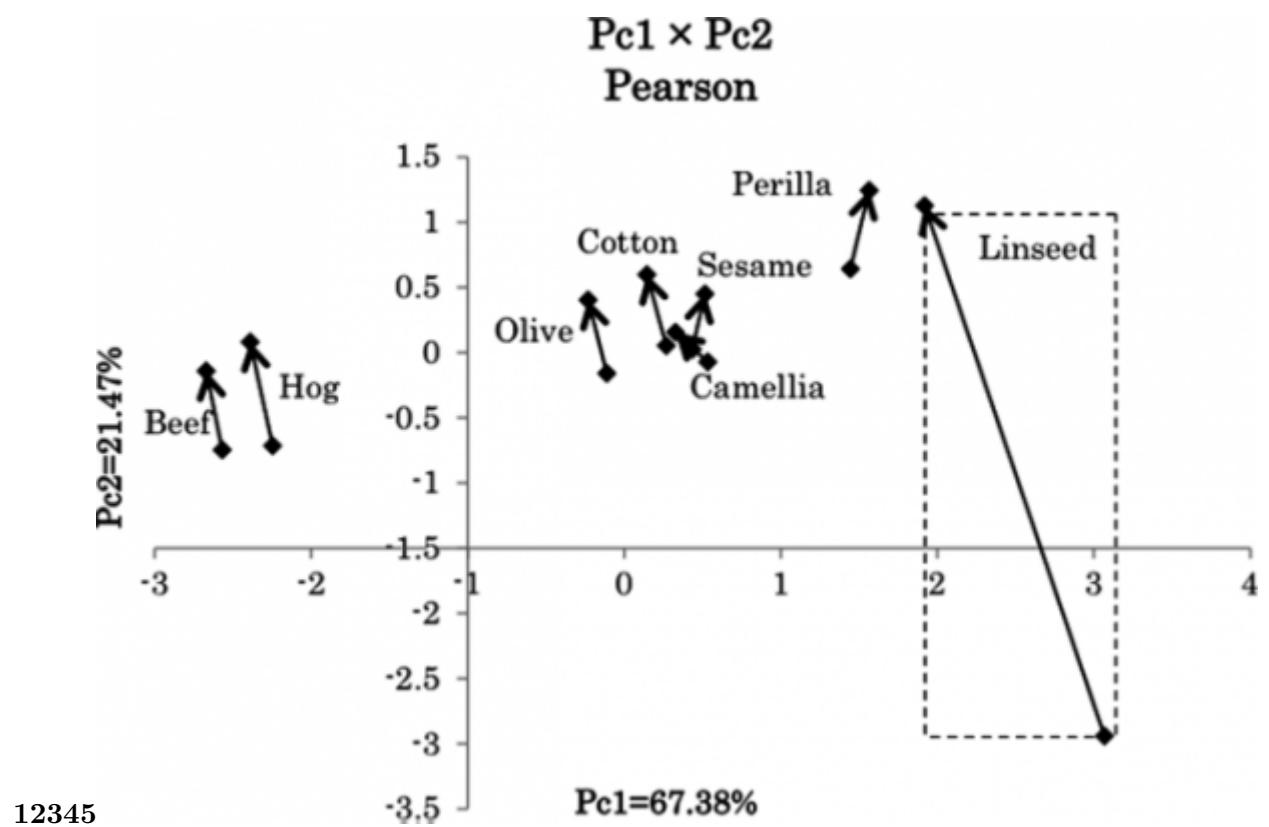


Figure 10: F 1 :F 2 :F 3 :F 4 :F 5 :

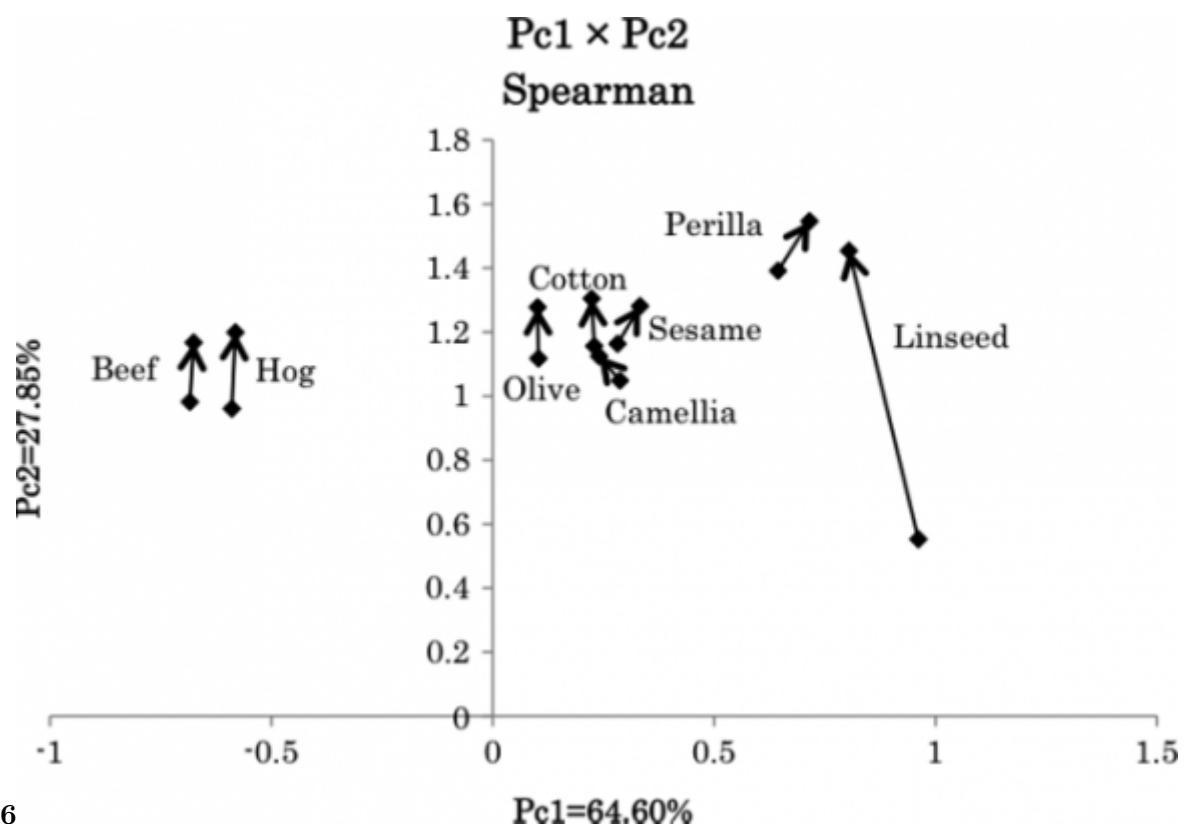


Figure 11: F 6 :

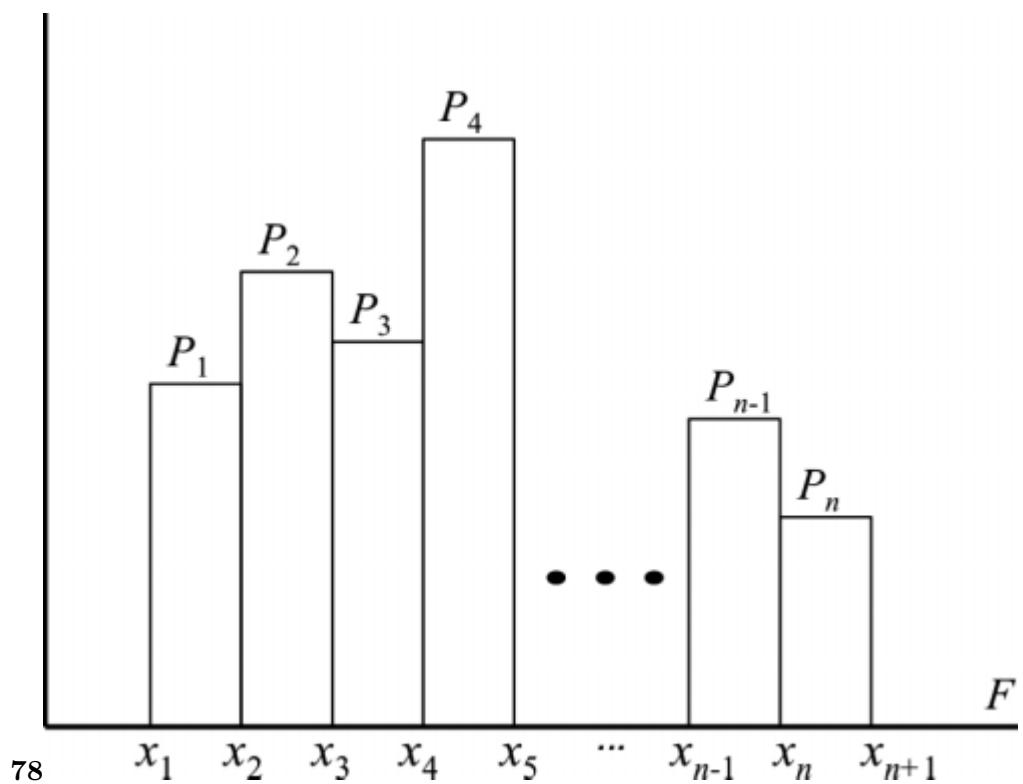


Figure 12: F 7 :F 8 :

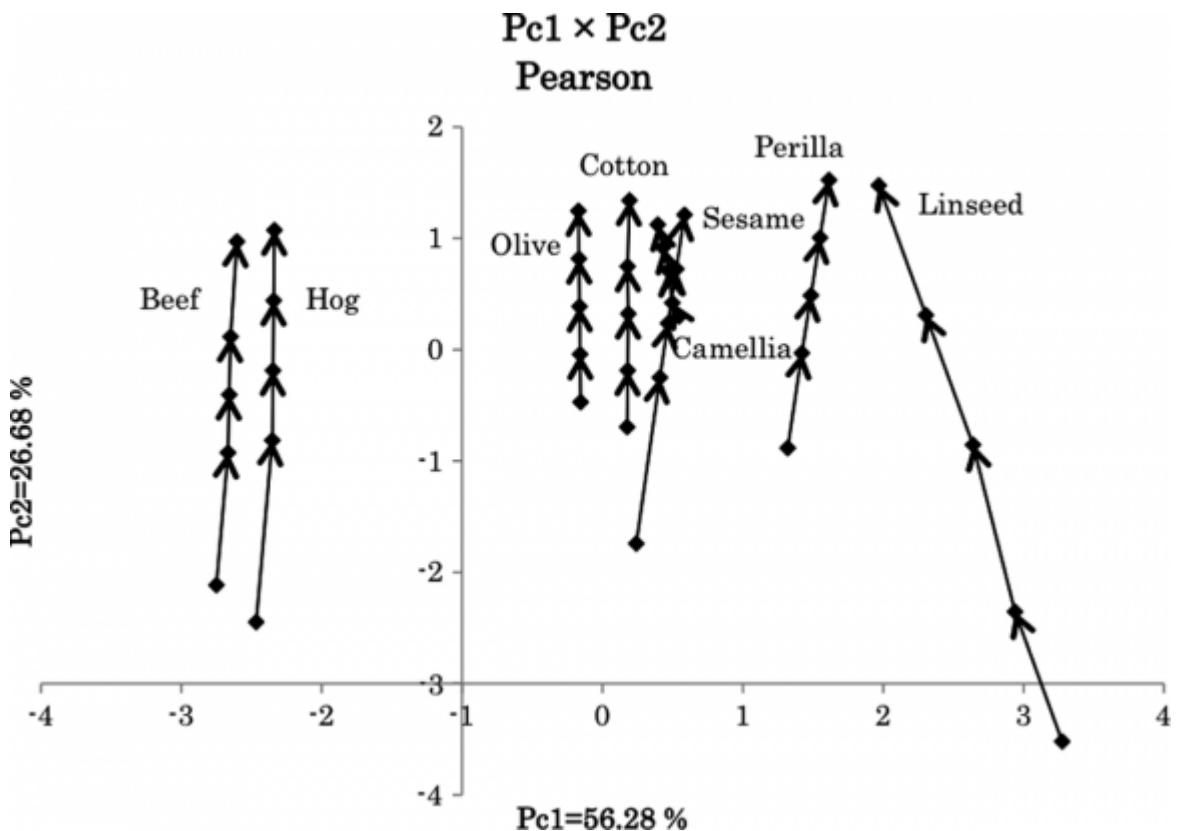


Figure 13:

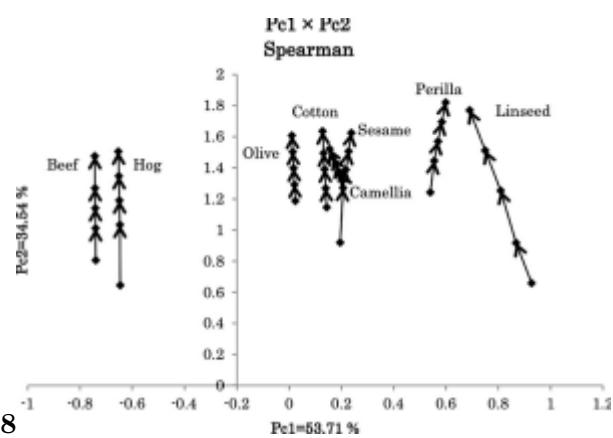


Figure 14: Fig. 8 :

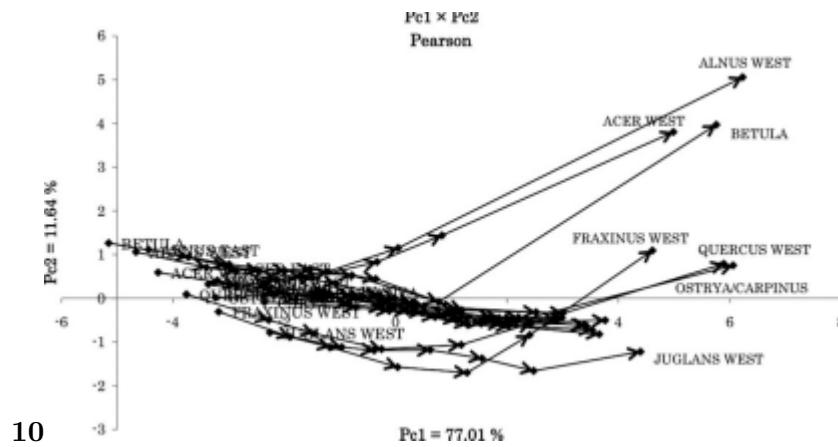


Figure 16: Fig. 10 :

$$[1,4[:0;4,5[:0.2;[5,6[:0.2;[6,7[:0.2;[7,8[:0.2; [8,9[:0.2;[9,10]:0.2, \quad (25)$$

Figure 17:

2

Object	Lu	A	C	Ln	M	S	P	L	O
Linseed	0	0	0	0.2	0 .2	0	0 .2	0 .2	0 .2
Perilla	0	0	0	0.2	0	0 .2	0 .2	0 .2	0 .2
Cotton	0	0	0	0	0.2	0 .2	0 .2	0 .2	0 .2
Sesame	0	0.2	0	0	0	0 .2	0 .2	0 .2	0 .2
Camellia	0	0	0	0	0	0	0	0.5	0 .5
Olive	0	0	0	0	0	0.25	0.25	0.25	0.25
Beef	0	0	0.2	0	0 .2	0 .2	0 .2	0	0 .2
Hog	0.167	0	0	0	0.167	0.167	0.167	0.167	0.167
q ij	0.167	0.2	0	0 .4	0	1.217	1.417	1.717	1.917
R a n k	1	2	2	4	5	6	7	8	9

$Q_2 = 7.5$, and $Q_3 = 8.75$, respectively. Finally, we have the desired 5-tuple:

$$(4, 5.25, 7.5, 8.75, 10). \quad (27)$$

IV. THE QUANTILE METHOD FOR S-PCA

DEFINITION 9: Quantile sub-objects.

Figure 18: Table 2 :

3

London Journal of Research in Science: Natural and Formal

	F 1	F 2	F 3	F 4	F 5
Linseed					
1	0.93000	-27	170	118	4
2	0.93125	-24.75	178.5	137.5	5 .25
3	0.93250	-22.5	187	157	7.5
4	0.93375	-20.25	195.5	176.5	8 .75
5	0.93500	-18	204	196	10
Perilla					
1	0.93000	-5	192	188	4
2	0.93175	-4.75	196	190.25	6.25
3	0.93350	-4.5	200	192.5	7 .5
4	0.93525	-4.25	204	194.75	8.75
5	0.93700	-4	208	197	10

32 Volume 23 | Issue 12 | Compilation 1.0

© 2023 Great Britain Journal Press

Figure 19: Table 3 :

4

S	Spec.	Freez.	Iodine	Sapon.	M. acids
Spec.	1.0000 -0.8923		0.7682 -0.3187		0.2432
Freez.	-0.6309	1.0000 -0.6368		0.4968 -0.1138	
Iodine	0.9582 -0.6142		1.0000 -0.3834		0.1107
Saponi.	-0.2044	0.6437 -0.1980		1.0000	0.3634
M. acids	0.2558	0.0398	0.1805	0.6428	1.0000

Fig. 7: The result of the S-PCA for Fats' and oils' data (Pearson). 16 hardwoods. According to the Procedure 2 for S-PCA in Section 4, we transform the given (16 objects) \times (8 features) symbolic data table to a (16 \times 7 sub-objects) \times (8 features) standard numerical data table.

Figure 20: Table 4 :

Figure 21: Table

5

Taxon	name	N	6	865	0%	-2.3	-3.9	-10.2	-12.2	-	50%	9	.2	75%	1	90%	1	7	100%	2			
Acer	East	1	954	10	13.4	3.6	Histogram	10%	0	4	.2	0	.6	4	.4	7	.9	1	0	.3			
Acer	West	144		4	.6	0	.2	-4.4	-4.6	-8.4	data	0	.3	-1.0	.5	6	.1	1	5	.0	.9		
Alnus	East	761	16	(annual	25%	3	.8	1	.9	-2.3	tempera-	3	.2	3	.6	1	2	.6	1	8	.7	2	0
Alnus	West	815		4	-3.0	-5.1					ture).			.9							.3		
Betula	Carya		638																				

London Journal of Research in Science: Natural and Formal
The Quantile Method
for Symbolic Principal Component Analysis

Figure 22: Table 5 :

6

Figure 23: Table 6 :

7

London Journal of Research in Science: Natural and Formal 36 Volume 23 | Issue
12 | Compilation 1.0 © 2023 Great Britain Journal Press The Quantile Method for
Symbolic Principal Component Analysis

Figure 24: Table 7 :

397 .1 ACKNOWLEDGMENTS

398 This research was partly supported by Japan Society of the Promotion of Science (Grant-in Aid for
399 [London Journal of Research in Science: Natural and Formal] , *London Journal of Research in Science: Natural*
400 *and Formal*

401 [Bock and Diday (eds.) ()] *Analysis of Symbolic Data, Exploratory Methods for Extracting Statistical Information*
402 *from Complex Data*, H H Bock , E Diday (eds.) (Berlin) 2000. Springer-Verlag.

403 [Billard and Diday ()] L Billard , E Diday . *Symbolic Data Analysis: Conceptual Statistics and Data Mining*,
404 (Chichester, Wiley) 2006.

405 [Chatfield et al. ()] 'Descriptive statistics for symbolic data'. C Chatfield , A J Collins , P Bertrand , F Goupi
406 . *Analysis of Symbolic Data*, H.-H Bock , E Diday (eds.) (New York; Berlin) 1984. 2000. Springer-Verlag.
407 (Introduction to Multivariate Analysis)

408 [Chouakria ()] *Extension de l'analyse en composantes principales a des donnees de type intervalle*, A Chouakria
409 . 1998. University of Paris IX Dauphine (Doctoral 'Thesis)

410 [Billard and Diday ()] 'From the statistics of data to the statistics of knowledge: symbolic data analysis'. L
411 Billard , E Diday . *J Am Stat Assoc* 2003. 98 (462) p. .

412 [Ichino ()] 'General metrics for mixed features-the Cartesian space theory for pattern recognition'. M Ichino .
413 *Proceedings on International Conference on Systems, Man, and Cybernetics*, (on International Conference
414 on Systems, Man, and CyberneticsChaina, Beijin) 1988.

415 [Ichino and Yaguchi ()] 'Generalized Minkowski metrics for mixed feature type data analysis'. M Ichino , H
416 Yaguchi . *IEEE Trans Syst Man Cybern* 1994. 24 (4) p. .

417 [Histogram data by the U.S. Geological Survey, Climate Vegetation Atlas of North America (2008)]
418 <http://pubs.usgs.gov/pp/p1650-b/> *Histogram data by the U.S. Geological Survey, Climate*
419 *Vegetation Atlas of North America*, October 2, 2008.

420 [Lauro and Palumbo ()] 'Principal component analysis of interval data: a symbolic data analysis approach'. C
421 Lauro , F Palumbo . *Comput Stat* 2000. 15 (1) p. .

422 [Lauro et al. ()] 'Principal component analysis of symbolic data described by intervals'. C Lauro , R Verde , A
423 Irpino . *Symbolic Data Analysis and the SODAS Software*, E Diday , M Noirhomme-Fraiture (eds.) 2008.
424 Chichester, Wiley. p. .

425 [Diday and Noirhomme-Fraiture (eds.) ()] *Symbolic Data Analysis and the SODAS Software*, E Diday , M
426 Noirhomme-Fraiture (eds.) (Chichester, Wiley) 2008.

427 [Ichino et al. ()] 'Symbolic pattern classifiers 13. based on the Cartesian system model'. M Ichino , M Ichino ,
428 H Yaguchi . *Proceedings of IASC 2008*, Data Science , Related Classification , C Methods , Hayashi (eds.)
429 (IASC 2008Japan, Yokohama; Tokyo) 2008. 1998. Springer-Verlag. p. . (Symbolic PCA for histogram-valued
430 data)

431 [Chouakria et al. ()] 'Symbolic principal component analysis'. A Chouakria , P Cazes , E Diday . *Analysis of*
432 *Symbolic Data*, H.-H Bock , E Diday (eds.) (Berlin) 2000. Springer-Verlag.

433 [Ichino ()] 'Symbolic principal component analysis based on the nested covering'. M Ichino . *Proceedings ISI2007*,
434 (ISI2007Portugal, Lisbon) 2007.