

CrossRef DOI of original article:

1 Antihyperlipidemic Activity of Rhynchosia Beddomei whole
2 Plant: An in Vitro, in Vivo and in Silico Approach

3

4 *Received: 1 January 1970 Accepted: 1 January 1970 Published: 1 January 1970*

5

6 **Abstract**

7

8 *Index terms—*

9 **1 I. INTRODUCTION**

10 Hyperlipidaemia, commonly known as hypercholesterolemia or hyperlipoproteinemas, is a condition when
11 there are abnormally high levels of fats in the blood. The structure and functionality of blood-circulating
12 cholesterol is complex. According to (Ankur et al., 2012), TGs are quickly recycled, deposited in adipocytes,
13 absorbed from the intestine, or processed in hepatic tissue. When endothelial cells begin to suffer damage from
14 atherosclerotic abrasion, cholesterol crystals are discovered. Increased blood lipids (LDL) have been proven to
15 cause atherosclerosis, while epidemiological data has shown that high HDL levels have a protective effect. The
16 greatest risk factor for artery hardening and narrowing is hyperlipidemia. Additional issues include thrombosis,
17 elevated blood pressure, weight gain, and T2DM (Desu and Saileela, 2013). High fat diet and Dexamethasone
18 are used in induction of hyperlipidaemia and Pravastatin, Atorvastatin serves as standard in our present study.
19 The healthcare system is structured in such a way that natural remedies are now widely perceived as inferior or
20 something that people use when they cannot afford modern medicine.

21 Rhynchosia beddomei called as adavi kandi and vendaku, found in dry deciduous forests. It is rampant in
22 South India; originate in AP and Karnataka. The leaves of Rhynchosia beddomei have abortifacient, antibacterial,
23 antifungal, antidiabetic hepatoprotective properties and are also used for healing London Journal of Research
24 in Science: Natural and Formal wounds, cuts, boils and rheumatic pains by adivasi tribes. Root decoction is
25 applied on chronic sores to keep off infection due to airborne diseases. A liniment prepared from the root is
26 applied to reduce the pain near swollen wounds. The crushed stem parts are boiled in the sesame oil and used
27 externally to cure sprains. The leaf paste is used as an antidote to treat insect bites. The aim of our study is to
28 evaluate anti-hyperlipidemic activity of the whole plant extract of Rhynchosia beddomei in Wistar Albino rats
29 and to execute in-silico analysis.

30 **2 II. MATERIALS AND METHODS**

31 All the chemicals used in the present study were procured from Sigma-Aldrich, Loba Chemie, Merck, Sdfine-
32 Chem, Himedia and Spectrochem.

33 **3 Plant collection & drying**

34 Rhynchosia beddomei whole plant procured, prepared and referred for certification which were verified by Dr. K.
35 Madhava Chetty, botanist, S.V University, Tirupati. Whole plant, cleaned under running water to remove debris
36 and dried in shade. The dried plant material is then made into a coarse powder and was subjected to further
37 steps.

38 **4 Preparation of Plant Extract**

39 The powdered plant material was successively extracted in 500 ml of methanol using Soxhlet extraction and
40 plant material was suspended in the round bottomed flask containing extraction solvent. This was then equipped
41 by a condenser and flask was then heated; active constituents of extract get into the fluid. The finale of the
42 extraction process source was filtered. The excess was vaporized and extracts were then kept in desiccators to
43 remove remaining moisture, if extant, and finally stored in air tight ampoules at 4°C until used.

44 **5 Preliminary phytochemical screening**

45 Preliminary phytochemical screening of the methanolic whole plant extract of *R. beddomei* (MERB) was
46 qualitatively tested for the presence of phytochemical constituents such as alkaloids, flavonoids, terpenoids,
47 phenols, tannins etc.,

48 **6 Antihyperlipidemic Activity**

49 **7 In vitro HMG-CoA reductase activity**

50 The concentration of the purified human enzyme stock solution was 0.52-0.85 mg protein/mL. Pravastatin was
51 cast off as reference. To characterize HMG-CoA reductase inhibition under defined assay conditions, reactions
52 containing 4 μ L of NADPH (to obtain a final concentration of 400 μ M) and 12 μ L of HMG-CoA substrate (to
53 obtain a final concentration of 400 μ M) in a final volume of 0.2 mL of 100 mM potassium phosphate buffer, pH
54 7.4 (containing 120 mM KCl, 1 mM EDTA, and 5 mM DTT), were initiated (time 0) by the addition of 2 μ L of
55 the catalytic domain of human recombinant HMG-CoA reductase and incubated at 37 °C in presence or absence
56 (control) of 1 μ L aliquots of drugs dissolved in DMSO. The rates of NADPH consumed were monitored every 20
57 sec up to 15 min spectrophotometrically. IC 50 value was calculated and the % inhibitory enzymatic activity
58 was calculated using the formula (Suvarchala et al., 2015).

59 **8 In vivo Anti-hyperlipidemic Activity**

60 **9 High fat diet induced hyperlipidaemia in rats**

61 High cholesterol diet was prepared by mixing cholesterol 2%, sodium cholate 1% and coconut oil 2%, with
62 powdered standard animal food. The diet which was prepared as pellets was placed in the cage and administered
63 for 20 days. Adult Wistar albino rats were administered with corresponding treatments for one month. They
64 were divided into 5 groups with 6 animals per group. Study design of High fat diet induced hyperlipidaemia
65 method is Group -I serves as Control (Normal saline) were as Group -II received HFD, Group -III received HFD
66 and methanolic extract of *Rhynchosia beddomei* (300mg/kg, p.o) and Group -IV received HFD and atorvastatin
67 (10 mg/kg/day p.o) (Suvarchala et al., 2015).

68 **10 Biochemical investigations for body fat**

69 The serum triglycerides and HDL (High Density Lipoproteins) and total cholesterol were measured using span
70 diagnostic kit. TC, TG and High-Density Lipoproteins profiles were estimated using standard monograph.

71 **11 Measurement of cardiac disorder threat issue**

72 Atherogenic index (AI), which is a measure of the atherogenic potential of an agent, was calculated using the
73 formula and the results were tabulated.

74 Atherogenic Index (AI) = LDL -cholesterol/HDL -cholesterol % Protection = AI of control-AI of treated group
75 $\times 100$ Atherogenic Index of control

76 **12 Dexamethasone-induced hyperlipidaemia in rats**

77 To induce hyperlipidaemia, dexamethasone, (a glucocorticoid excess is known to evoke plasma lipid elevation) in
78 the dose of 10 mg/kg/day, s.c. was administered to Wistar rats for 8 days and animals were divided into five
79 groups each group containing six rats. After the induction of hyperlipidaemia, MERB were given to the rats for
80 8 days at a dose of 300 mg/kg and on 9 th day, after overnight fasting blood was collected from retro-orbital
81 plexus for the study of biochemical parameters. Study design of High fat diet induced hyperlipidaemia method is
82 Group-I serves as Control (Normal saline) were as Group -II received dexamethasone 10 mg/kg, b.w., s.c., Group
83 -III received dexamethasone 10 mg/kg, b.w., s.c. and methanolic extract of *Rhynchosia beddomei* (300 mg/kg,
84 p.o) and Group -IV received HFD and atorvastatin (10 mg/kg/day p. o) (Suvarchala et al., 2015).

85 **13 In silico analysis 2.6.1 Molecular Docking Studies**

86 Molecular docking is an attractive scaffold to understand drug bimolecular interactions for rational drug design
87 and discovery. Molecular docking generates different possible adduct structures that are ranked and grouped
88 together using a scoring function in the software. The main objective of molecular docking is to attain ligand-
89 receptor complex with optimized conformation and with the intention of possessing less binding free energy
90 (Suvarchala et al., 2021). Molecular docking performed with mCule online tool.

91 London Journal of Research in Science: Natural and Formal

92 **14 Structure based drug design**

93 Initially the protein downloaded in PDB format was prepared in discovery studio by generating attributes
94 of sphere. Water molecules present in both the chains are removed. Later molecules are drawn using
95 chemdraw/Chemsketch in mol format. Protein and ligand were docked against proteins like 3ASX, 6Q2T and

96 7S5G. Docking indicates that some of our compounds, docked with protein of Squalene synthase Inhibitor (PDB
97 ID: 3ASX), Lanosterol 14 alpha demethylase Inhibitor (PDB ID: 6Q2T) and PCSK9 Inhibitor (PDB ID: 7S5G)

98 **15 Docking results visualization**

99 The resulting docking poses were visualized through discovery studio. The best docked structures were chosen
100 using glide score function. The more negative the glide score the more favourable the binding. Additionally, the
101 docked ligand poses were visualized and the different ligand receptor interactions were studied (Ganga raju et
102 al., 2021).

103 **16 Ramachandran plot**

104 The docked proteins of Squalene synthase Inhibitor (PDB ID: 3ASX), Lanosterol 14 alpha demethylase Inhibitor
105 (PDB ID: 6Q2T) and PCSK9 Inhibitor (PDB ID: 7S5G) protein were validated and evaluated by using procheck
106 by calculating the Ramachandran plot to access the quality of the model by looking into the allowed and disallowed
107 regions of the plot (Ganga raju et al., 2022). The Ramachandran plot shows the phi-psi torsion angles for all
108 residues in the ensemble (except those at the chain termini). The colouring/shading on the plot represents the
109 different regions described by Morris. the darkest areas (here shown in red) correspond to the "core" regions
110 representing the most favourable combinations of phi-psi values.

111 **17 Statistical analyses**

112 The Results were expressed as the AM \pm S.E.M. The significance of the results was calculated using ANOVA and
113 Dunnett's t-test and results were deliberated statistically noteworthy when significant $p < 0.01$, $p < 0.05$ ns-non
114 significant.

115 **18 III. RESULTS AND DISCUSSION**

116 **19 Preparation of Rhynchosia beddomei methanolic extract**

117 The methanolic extract of Rhynchosia beddomei was prepared by soxhlation technique. The percentage yield of
118 the extract was calculated by using the following formula.

119 Amount of extract obtained (grams) % yield of extract = $\times 100$ Amount of the powder used (grams) = 35.43%.
120 w/w.

121 **20 Preliminary phytochemical screening**

122 Crude extract was then subjected to preliminary phytochemical screening of Rhynchosia beddomei showed the
123 presence of alkaloids, glycosides, steroids, flavonoids, carbohydrates, proteins and tannins.

124 **21 Invitro antihyperlipidemic Activity 3.3.1 In vitro HMG CoA 125 Reductase Inhibitor Activity**

126 The data of percent inhibition and IC 50 at two dose levels of methanolic extracts of two plants are presented in
127 Table 1 indicated that the % inhibition is increased with increase in dose of plant extract, though proportionate
128 increase was not obtained. Additionally, inhibition data were processed for relative inhibition compared to
129 standard and reported. The processing is done on the lines of expressions of relative bioavailability (%). Higher
130 the relative inhibition, the greater is the inhibition of HMG CoA reduction. In this study, standard is pravastatin.
131 As expected, pravastatin produced inhibition at lower dose (100 μ g/mL). Plant extracts also showed appreciable
132 inhibition at greater doses (500 μ g/mL). The methanolic extracts of both plants showed same extent of %
133 inhibition of the HMG CoA reduction.

134 The IC 50 values of standard and test extracts are compared and the ratio was found to be less by 55%
135 respectively, for MERB.

136 **22 In vivo Antihyperlipidemic Activity**

137 Hyperlipidaemia was induced by giving high cholesterol diet and dexamethasone (10 mg/kg, b.w., s. c) and
138 parameters measured were TC, triglyceride, low density lipoproteins, VLDL, high density lipoprotein levels.
139 Atherogenic index and % protection were also measured.

140 **23 High fat diet (HFD) induced hyperlipidaemia**

141 Rats fed on HFD is a means for the induction of metabolic syndrome features including distinctive visceral
142 adiposity, dyslipidaemia which are typically associated with human obesity. The rat model of diet-induced
143 obesity is often used to investigate the effects of metabolic syndrome ameliorating agents. The data of cholesterol,
144 triglycerides, LDL, VLDL and HDL levels upon the treatment of Rhynchosia beddomei methanolic extract at one
145 dose level (300 mg/kg, b.w.) are presented in Table2. When HFD is provided to rats, cholesterol, triglycerides,
146 LDL, VLDL levels increased and HDL level decreased from 80 to 100% within 20 days. MERB were administered

28 MEASUREMENT OF CARDIAC DISORDER THREAT ISSUE 3.4.2.1 EFFECT ON ATHEROGENIC INDEX (AI)

147 and levels decreased within 30 days compared to Disease control group. The standard in the present study is
148 atorvastatin (10 mg/kg, b.w.). As expected, standard produced lower levels of cholesterol, triglycerides, LDL,
149 VLDL and increased HDL levels at 10 mg/kg. The MERB 300 also showed appreciable decrease of cholesterol
150 levels and nearer to the standard value. In the present work, *Rhynchosia beddomei* was reported to contain
151 ?-sitosterol and stigmasterol. These might be responsible to lower cholesterol in animals fed with HFD.

152 London Journal of Research in Science: Natural and Formal In view of reducing cholesterol by plant extracts
153 and other related parameters, TG, LDL, VLDL was further evaluated. When HFD is provided to rats, triglyceride
154 levels were increased by 80 to 100% within 20 days and LDL levels were amplified by 300% within 20 days, VLDL
155 levels were doubled by within 20 days, HDL levels were decreased by 20% within 20 days in disease group. The
156 plant extract was administered, the triglyceride levels, LDL, VLDL levels decreased compared to control, the
157 test samples of significant in $p<0.05$, compared to standard, the samples have significantly different ($p<0.01$)
158 and HDL increased within 30 days compared to control ($p<0.05$), when compared to standard the samples are
159 significantly different ($p<0.05$).

160 24 Measurement of Cardiac Disorder Threat Issue

161 25 Atherogenic Index

162 The atherogenic index is obtained based on the knowledge of cholesterol, LDL and HDL values. Thus the index
163 was calculated. The data of atherogenic index upon the treatment of plant extracts at one dose level (300 mg/kg,
164 b.w.) shown in figure, indicated that the atherogenic index remained same for the control up to 30 days. When
165 high fat diet is provided to rats, the atherogenic index was increased by 3 times (300%) within 20 days. The
166 differences between control and cholesterol control are significant ($p<0.05$). The plant extracts were administered,
167 the atherogenic index reached the value of control within 30 days, the test samples are significant ($p<0.05$), when
168 compared to standard, the samples are significantly same ($p<0.01$). The lower the atherogenic index, the higher
169 is the hypolipidemic activity (of the test extracts). The standard in the present study is atorvastatin (10 mg/kg,
170 b.w.). As expected, atorvastatin produced lower levels of atherogenic index (1) at a dose level of 10 mg/kg. The
171 plant extract also showed appreciable decrease of atherogenic index and nearer to the standard value ($p<0.05$).

172 26 Effect on % protection

173 The percent protection of heart is considered based on the levels are different parameters evaluated so far. In the
174 calculation of atherogenic index, control and cholesterol control values are not included. But in the calculation
175 of percent protection, control values are also included. % Protection was calculated for the groups treated with
176 MERB 300 mg/kg, b.w. explained in table 3. As observed in the values of atherogenic index, the percent
177 protection is 30 times lower than the standard, when dose-normalized. London Journal of Research in Science:
178 Natural and Formal

179 27 Dexamethasone induced hyperlipidaemia

180 Dexamethasone, triggering a disproportion in lipid metabolism leading to hyperlipidaemia (Wiesenbergs et al.,
181 1998). Hyperlipidaemia was produced by administering dexamethasone (10 mg/kg, b.w., s. c). The parameters
182 measured were total cholesterol; triglyceride, LDL, VLDL, HDL levels, atherogenic index and percent protection
183 were also measured. The antihyperlipidemic activity was evaluated for MERB.

184 The cholesterol, triglycerides, LDL, VLDL and HDL levels upon the treatment MERB at one dose level (300
185 mg/kg, b.w.) are presented in Table 4 indicated that all levels remained same for the control upto 11 days.
186 When dexamethasone is injected to rats, the cholesterol, TGL, VLDL levels were almost doubled, the LDL levels
187 increased nearly 3½ times and HDL levels were decreased by 5 to 6% within 11 days. The Methanolic extract of
188 *Rhynchosia beddomei* extract were administered, the cholesterol, triglycerides, LDL, VLDL levels decreased and
189 HDL levels increased when compared to control, the results of test samples are significant ($p<0.05$) that indicates
190 the higher is the hypolipidemic activity of the test extract may be due to the presence of phytosterol (Bopanna
191 et al 1997). Any lipid reduction (1% cholesterol) produces a 2-3% reduction in CHD risk (Xu et al 2005). The
192 standard, atorvastatin (10 mg/kg, b.w.) produced lower levels of cholesterol. In the present work, *Rhynchosia*
193 *beddomei* was reported to contain ?-sitosterol and stigmasterol. These might be responsible for lowering the
194 Lipid levels, though the animals were injected with dexamethasone.

195 28 Measurement of cardiac disorder threat issue 3.4.2.1 Effect 196 on atherogenic index (AI)

197 When dexamethasone is provided to rats, the atherogenic index was increased by 3 times within 10 days. The
198 data of atherogenic index upon the treatment of MERB at one dose level (300 mg/kg, b.w.) are presented in
199 Table 5. Atherogenic index remained the same for the control upto 11 days. When the MERB was administered,
200 the atherogenic index decreased within 11 days, compared to control and values are nearer to the standard value
201 standard,

202 **29 Effect on % protection**

203 Percent protection was calculated for the groups treated with MERB 300 mg/kg, b.w. As observed in the
204 values of atherogenic index, the percent protection is 30 times lower than the standard, when dose-normalized.
205 Dexamethasone induced hyperlipidaemia, the animal model effectively used for evaluating the antihyperlipidemic
206 activity of natural products (Kumar et al., 2007). In the present study, treatment with MERB (300 mg/kg) has
207 reduced the serum cholesterol, triglycerides levels and atherogenic index, in dexamethasone treated animals. The
208 extracts inverted the hyperlipidaemia produced by administration of dexamethasone. The low lipoprotein lipase
209 activity in the liver may be responsible for low degradation of lipoprotein, triglycerides and cholesterol. Hence
210 the hyperlipidemic effect of dexamethasone was found to be reversed by MERB, further this was also found to
211 be comparable with that of atorvastatin. In this work, friedelin is proposed to decrease the TC, TG, and LDL-C
212 and increase the HDL-C levels significantly. The methanolic extract of *Rhynchosia beddomei* contains London
213 *Journal of Research in Science: Natural and Formal phytosterol and flavonoids*. The high amount of flavonoids
214 complemented the phytosterols which might be accountable for the hypolipidemic effect. It also improves HDL-
215 cholesterol levels and lower atherogenic index. More specifically the presence of friedelin has the added benefit
216 of stimulating the synergistic effect for eliciting the antihyperlipidemic activities. G score = glide score, Higher
217 the negativity, the more favourable the binding.

218 **30 Ramachandran plot Analysis**

219 Protein 3ASX, 6Q2T and 7S5G were analysed for Ramachandran plot to know amino acid presence in different
220 regions of respective protein tabulated in table 8 and pictorial representation by figure ???. The standard
221 pravastatin was found to possess 65.0% inhibition at 100 µg/mL. Graded response is an encouraging observation.
222 The extract lowered the TC, TG, LDL and VLDL, results were consistently observed in two models, also showed
223 appreciable decrease of atherogenic index and nearer to the standard value. Therefore, more research into the
224 use of a methanolic extract of *Rhynchosia beddomei* whole plant as an alternative therapeutic agent to statins
225 and other medications, but one that has no unwanted side effects, is necessary for the treatment of cardiovascular
disorders.

1 2 3

Figure 1: 3. 5

93

Figure 2: 9 Figure 3 :

226

¹ N V L Suvarchala Reddy, Ganga Raju M, M, Mamatha, M. Lakshmi Madhuri Shabnam Kumari Thakur, Pavani K & G. Kinnara Ratnasri

² Volume 23 | Issue 10 | Compilation 1.0 © 2023 Great Britain Journal Press Anthyperlipidemic Activity of *Rhynchosia Beddomei* whole Plant: An in Vitro, in Vivo and in Silico Approach

³ Volume 23 | Issue 10 | Compilation 1.0 © 2023 Great Britain Journal Press Anthyperlipidemic Activity of *Rhynchosia Beddomei* whole Plant: An in Vitro, in Vivo and in Silico Approach

4

Figure 3: Figure 4 :

5

Figure 4: Figure 5 :

Figure 5:

1

Test extract/standard	Dose ($\mu\text{g}/\text{mL}$)	Percentage	% Relative IC 50 ($\mu\text{g}/\text{mL}$) inhibition
		inhibition AM \pm SEM (n=3)	
Methanolic extract of Rhynchosia beddomei	100	43.33 \pm 0.76	33.34
	500	85 \pm 0.012	73.9
Pravastatin (Standard)	100	66.86 \pm 0.0788	100
	500	100 \pm 0.012	75
			100

Figure 6: Table 1 :

2

model

Figure 7: Table 2 :

3

Groups	Treatment/Standard%	
	Dose mg/kg, b.w.	AM \pm SEM, (n=6)
I	Control	-
II	Cholesterol control	-
III	MERB 300	72.04 \pm 0.43 b,A
IV	Atorvastatin 10	72.6 \pm 0.56 b

Test groups were compared with control group and standard group. By using Dunnett's t-test significant values are expressed as control group (a= $p < 0.01$, b= $p < 0.05$) and standard (A = $p < 0.01$, B = $p < 0.05$), ns-non significant.

Figure 8: Table 3 :

4

model

Test groups were compared with control group, cholesterol control group and standard group. By using Dunnett's t-test significant values are expressed as control group (a=p<0.01, b=p<0.05), cholesterol control (**= p<0.01, *= p<0.05) and standard (A = p < 0.01, B = p < 0.05), ns-non significant. London Journal of Research in Science: Natural and Formal

Figure 9: Table 4 :

5

Group	Treatment/ Standard	Atherogenic Index
I	Dose mg/kg, b.w.	AM±SEM, (n=6)
II	Control	0.93±0.28
	Cholesterol control	5±0.27 b,A
III	MERB 300	1.23±0.11 a,A
IV	Atorvastatin 10	1.09±0.04 a

Test groups were compared with control group, cholesterol control group and standard group. By using Dunnett's t-test significant values are expressed as control group (a=p<0.01, b=p<0.05), cholesterol control (**= p<0.01, *= p<0.05) and standard (A = p < 0.01, B = p < 0.05), ns-non significant.

Figure 10: Table 5 :

6

Groups	Treatment/Standard	Pro- tection
I	dose, mg/kg, b.w.	AM±SEM (n=6)
II	Control	-
	Cholesterol control	-
III	MERB 300	81.2±0.41 a,A
IV	Atorvastatin 10	81±0.74 a

Test groups were compared with control group, cholesterol control group and standard group. By using Dunnett's t-test significant values are expressed as control group (a=p<0.01, b=p<0.05), cholesterol control (**= p<0.01, *= p<0.05) and standard (A = p < 0.01, B = p < 0.05), ns-non significant.

Figure 11: Table 6 :

7

Compounds	3ASX	6Q2T	7S5G
Quercitin-7-O-methyl ether	-8.4	-6.2	-5.8
Isovitexin	-8.5	-6.3	-6.2
5,7,3',4'-tetrahydroxy 6-c-?	-7.5	-5.6	-5.9
-D-glucopyranosyl flavone			
Apigenin	-8.2	-7.0	-6.0
Vitexin	-8.3	-6.2	-5.9
Vicenin	-8.3	-5.9	-6.3
Orientin	-8.1	-5.8	-5.7
Isoorientin	-7.9	-6.3	-6.5
Lucenin	-8.5	-5.4	-6.1
Rutin	-8.8	-5.6	-5.9
Rhynchosin	-7.9	-6.9	-6.0
Biochanin	-7.7	-7.3	-6.2
D-Pinitol	-4.8	-3.5	-3.9
D-Inositol	-4.6	-3.5	-4.0
Atorvastatin	-7.9	-8.7	-5.4

Figure 12: Table 7 :

8

Residues	3ASX	6Q2T	7S5G
Most favourable region (%)	94.8	90.9	88.4
Additional allowed regions (%)	5.2	8.9	11.2
Generously allowed regions (%)	0.0	0.00	0.0
Disallowed regions (%)	0.0	0.3	0.3

Figure 13: Table 8 :

227 [London Journal of Research in Science: Natural and Formal] , *London Journal of Research in Science: Natural*
228 *and Formal*

229 [Desu and Saileela ()] 'Anti-hyperlipidemic activity of methanolic extract of Rhinacanthus nasutus'. Bsr Desu ,
230 C H Saileela . *Int J Res Pharm Chem* 2013. 3 (3) p. .

231 [Bopanna et al. ()] 'Antidiabetic and antihyperlipidemic effects of neem seed kernal powder on alloxan diabetic
232 rabbits'. K N Bopanna , J Kannan , S Gadgil , R Balaraman , S P Rathod . *Ind J Pharmacol* 1997. 29 p. .

233 [Reddy et al. ()] 'Antihyperlipidemic activity of Cassia fistula bark using high fat diet induced hyperlipidemia'.
234 Suvarchala Reddy , Nvl , Pooja Raj , GB , Ganga Raju , M Sneha , J Anarthe . *International Journal of*
235 *Pharmacy and Pharmaceutical Sciences* 2015. 7 (10) p. .

236 [Reddy et al. ()] 'Antihyperlipidemic activity of methanolic extract of Syzygium alternifolium bark against high-
237 fat diet and dexamethasone induced hyperlipidemia in rats'. Suvarchala Reddy , Nvl , Swetha Aveti , M
238 Anjum , Ganga Raju , M . *Asian Journal of Pharmaceutical and Clinical Research* 2015. 8 (6) p. .

239 [Debose-Boyd ()] 'Feedback regulation of cholesterol synthesis: sterol-accelerated ubiquitination and degradation
240 of HMG CoA reductase'. R Debose-Boyd . 10.1038/cr.2008.61. <https://doi.org/10.1038/cr.2008.61>
241 *Cell Res* 2008. 18 p. .

242 [Reddy et al. ()] 'GC-MS analysis, In silico docking studies and diuretic activity of methanolic extract of Citrus
243 medica l. Leaf in Wistar albino rat model'. Suvarchala Reddy , Nvl , M Ganga Raju , M Mamatha , Nandini
244 . *Bull. Env.Pharmacol. Life Sci* 2021. 10 (3) p. .

245 [Ankur et al. ()] 'Hyperlipidemia-a deadly pathological condition'. R Ankur , D Nidhi , R Seema , D Amarjeet ,
246 K Ashok . *Int J Curr Pharm Res* 2012. 4 (2) p. .

247 [Venugopal and Ramakrishna ()] 'Indirect assessment of hydroxymethylglutaryl-CoA reductase (NADPH) activ-
248 ity in liver'. A Venugopal , S Ramakrishna . *Clin Chem* 2005. 21 p. .

249 [Xu et al. ()] 'Introduction of hyperglycaemia and dyslipidaemia in the pathogenesis of diabetic vascular
250 complications'. Y Xu , Z He , G L King . *London Journal of Research in Science: Natural and Formal*
251 2005. 5 (2) p. . (Curr Diabetic Rep)

252 [Raju et al. ()] 'Natural Compounds as D2 receptor agonist, M4 receptor antagonist and ACHE modulator:
253 Mechanistic and in silico modeling studies'. Ganga Raju , M , Veena Yadav , N V L Suvarchala Reddy , V .
254 *Journal of research in medical and dental science* 2021. 9 (6) p. .

255 [Kourounakis and Bavavea (2020)] 'New applications of squalene synthase inhibitors: Membrane cholesterol as
256 a therapeutic target'. A P Kourounakis , E Bavavea . 10.1002/ardp.202000085. 32557793. *Arch Pharm* 2020
257 Sep. 2000085. 2020 Jun 18. Weinheim. 353 (9) .

258 [Raju et al. ()] 'Novel In Silico and In Vivo Insights of Flavonoids as Anti-Diabetic and Anti-Oxidant in Rodent
259 Models'. Ganga Raju , M , Sony Priyanka , G , Suvarchala Reddy , Nvl . *Indian J Pharm Sci* 2022. 84 (4) p.
260 .

261 [Sible et al. (2016)] 'PCSK9 Inhibitors: An Innovative Approach to Treating Hyperlipidemia'. A M Sible , J J
262 Nawarskas , J R Anderson . 10.1097/CRD.0000000000000102. 26886466. *Cardiol Rev* 2016 May-Jun. 24 (3)
263 p. .

264 [Kumar et al. ()] 'Serum glucose and triglyceride lowering activity of some novel glitazones against
265 dexamethasone-induced hyperlipidaemia and insulin resistance'. Brp Kumar , T K Praveen , M J Nanjan
266 , M D Karvekar , B Suresh . *Ind J Pharmacol* 2007. 39 p. .

267 [Wiesenbergs et al. ()] 'Specific activation of the nuclear receptor PPAR γ and RORA by the antidiabetic
268 thiazolidinedione BRL 49653 and the antiarthritic thiazolidinedione derivative GGP 52608'. I Wiesenbergs ,
269 M Chiesi , M Missbach , C Spanka , W Pignat . *Mol Pharmacol* 1998. 53 p. .