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ABSTRACT
Given two arbitrary univariate stochastic processes {Yt}, {Zt}, assumed to only share the same time t.

When considered as describing (time dependent) random quantities that are physically separated

(the baseline case), the processes are independent for every time epoch t. From this trivial case we

move to the case where physical interactions between the quantities make them, at any moment t,

stochastically dependent. For each time epoch t, we impose stochastic dependence on two “initially

independent” random variables Yt, Zt by multiplying the product of their survival functions by a

proper ‘dependence factor’ φt (yt,zt) , obtaining in this way a universal (“canonical”) form of any (!)

bivariate distribution (in some known cases, however, this form may become complicated thou it

always exists). This factor, basically, may have the form φt (y,z) = exp[ - ∫0

y
∫0

z
ψt (s;u) dsdu ]

whenever such a function ψt (s;u) exists, for each t. That representation of stochastic dependence by

the functions ψt (s;u) leads, in turn, to the phenomenon of change of the original (baseline) hazard

rates of the marginals, similar to those analyzed by Cox (1972) and, especially Aalen (1989) for single

pairs (or sets) of, time independent, random variables. That is why, until Section 4, we would rather

consider single random vectors (Y, Z)’ joint survival functions, mostly as a preparation to the theory

of bivariate stochastic processes {(Yt, Zt)} constructions as initiated in Section 4.

The bivariate constructions are illustrated by examples of some applications in biomedical and

econometric areas. Reliability applications, associated with the considered “micro shock �

microdamage” paradigm, obviously may follow.

Keywords: bivariate survival functions, bivariate stochastic processes’ constructions, dependence
functions, biomedical applications, econometrics, bivariate Wiener and Pareto stochastic processes
construction.

Author: Dept. of Mathematics and Computer Science, Oakton College.
Dept. of Mathematics, Northeastern Illinois University.

I. INTRODUCTION

Suppose two random variables Y, Z are given, with some “real life” interpretation.

Mainly we consider a pair Y, Z to have bio-medical, reliability or econometric interpretation. For
example, Y, Z may be (stochastically dependent) levels of some chemicals (hormones, for example) in a
human or an animal body. In particular, one may consider Y to describe random level of “bad”
cholesterol and Z an accompanying sugar level (both measured at the same time). Apparently, the two
(random) quantities are stochastically dependent on each other. Another tandem of random quantities
Y, Z can be daily salt consumption Y and blood pressure Z. There are a countless number of such pairs
of random quantities that have biomedical meanings. They mostly are stochastically dependent. This
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means that a measured value z’ of Z has an influence on the probabilities P(Y ≥ y0 ) (if, for a fixed
value z, the random event Z ≥ z occurs and z’, such that z’ ≥ z, is its elementary realization). In
particular, y0 may be considered a ‘critical value’ of Y (for example, the critical cholesterol level y0) so
that occurrence of the random event Y ≥ y0 means occurrence of a disease.

Again, the probability of occurring of the so defined disease may depend on the measured value z’ of
the random quantity Z when, for a given measurement z’, we observe that z’ ≥ z, for some fixed value
z. Here notice that, in this framework, one may disregard an obtained by a measurement particular
value z’ and only notice if z’ ≥ z or otherwise. The more essential value, in this case, is z.

In the general case of two random variables Y, Z we will be interested in finding analytical formulas for
all the conditional probabilities P(Y≥ y | Z ≥ z) for any arbitrary value y of Y and not only for a
critical one y0 . To achieve this goal we will outline methodology for construction of the joint
probability distribution of the random variables Y, Z under various situations.

A similar but different development of methodology of construction of bivariate probability
distributions based on Cox and Aalen ideas (see, [2] and [1] ) can be found in [3].

The constructions so far rely on building bivariate probability distributions of random vectors.
However, the main goal of this work is to extend the obtained methods to methods where the random
variables Y, Z are replaced by t-dependent stochastic processes {Yt}, {Zt}. Thus, given two marginal
(originally independent) univariate stochastic processes, we provide tools for constructing a class of
bivariate processes {(Yt, Zt)} such that the “initial” processes {Yt}, {Zt} and their probability
distributions, for each t, remain as the marginals within the constructed joint. The obtained methods of
the constructions turn out to be quite general and are governed by some (linear, in particular) integral
equations.

As an example of the construction of processes with continuous time we consider construction of some
classes of “bivariate Wiener processes” based on two given Wiener univariates. In applications, the
underlying univariate Wiener processes may have econometric meanings. For example, one of the two
marginal processes may describe the stock market level time evolution while the other the
accompanying gross national product rate at time t. In another application, a process describes the
level of inflation at a given time and the other processes the level of employment at the same time. In
all cases one is interested in the stochastic dependence between the two marginal processes. That need
motivates constructions of the ‘joint stochastic processes’. In general, the marginal processes, as
applied in econometry, are normal. However, among all the mutual stochastic dependencies at any
given time epoch t we choose not to be those described by the classical bivariate normal models, since
such dependencies are very well known. Our method provides a large variety of stochastic
dependencies, some possibly overlooked in literature.

In another example we consider discrete time bivariate processes associated with first Pareto
distributions. All the bivariate stochastic processes considerations are included in section 4.
Random Vectors, A General Approach

2.1 Suppose we are given two arbitrary random variables Y, Z with known marginal survival functions
S1(y) = P(Y ≥ y) and S2(z) = P(Z ≥ z) . Our aim is to provide a general methodology for constructions of
various joint survival functions S(y,z) = P(Y ≥ y, Z ≥ z) such that all their marginal survival functions
are invariant with respect to the performed constructions, always remaining the same as the originally
given S1(y) and S2(z) . In general, we restrict our considerations to the cases where both the
probability distributions, given by the survival functions S1(y) , S2(z) , possess probability densities so
that the corresponding hazard rates λ1(y) , λ2(z) exist too. In this case, according to the common rule,
we can express the considered marginal survival functions as follows:

A General Method for Construction of Bivariate Stochastic Processes Given Two Marginal Processes
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S1(y) = exp [ - ∫0
y λ1(t ) dt ] , S2(z) = exp [ - ∫0

z λ2(u ) du ] . (1)

In the simplest case, i.e., when the random variables Y, Z are independent, their joint survival function
S*(y, z) satisfies:

S*(y, z) = S1(y) S2(z) = exp [ - ∫0
y λ1(t ) dt - ∫0

z λ2(u ) du ] . (2)

To impose a dependence structure for the above “initially” independent random variables Y, Z , we
multiply the right hand side of formula (2) by a “dependence factor” φ(y,z) . This factor we propose to
call the “Aalen factor”.

2.2 At this point realize that for any joint survival function S(y,z) having the same fixed marginals
S1(y) , S2(z) there exist unique Aalen factor φ(y, z) = S(y,z) / S1(y) S2(z) . However, in most situations
we may encounter, we do not know in advance the joint survival function S(y,z) but rather we have the
marginals S1(y) , S2(z) . We aim to choose a proper Aalen factor φ(y, z) in order to construct the
corresponding S(y,z) . To give some more intuitive meaning to the Aalen factor we express it in
exponential form:

φ(y,z) = exp [ - α(y,z) ] = exp[ - ∫0
y ∫0

z ψ(t;u) dudt ] .

The function α(y,z) we call the “joiner” of the two marginal survival functions S1(y), S2(z).

Of course, the joiner α(y,z) is uniquely determined by a given Aalen factor φ(y,z) since we have α(y,z)
= - log φ(y,z) . However, the joiner α (y,z) not always is represented by the integral ∫0

y ∫0
z ψ(t;u) dudt .

The ‘integral representation’ of a joiner is only valid when such a function ψ(t; u) , considered as a kind

of an “additional hazard rate”, exists. Existence of ψ(t; u) together with the existence of the hazard
rates λ1(t) , λ2(u) involves existence of the joint probability density of the considered random vector
(Y,Z) . Using the function ψ(t; u) we define the conditional hazard rate of Y | Z = u to be equal to:
λ1(t | Z = u) = λ1 (t ) + ψ(t; u)du ,

and the conditional hazard rate of Z | Y = t as:

λ2(u | Y = t) = λ2(u ) + ψ(t; u)dt .

For the meaning of the differentials ψ(t;u)du and ψ(t;u)dt see section 2.4 and the associated
“(microshok � microdamage) � microchange in hazard rate” paradigm. (These infinitesimal
“microchanges” correspond to the above considered differentials.)

Since we are mostly dealing with the survival functions (not with probability densities), we will rather
be interested in the conditional hazard rates of Y | Z ≥ z which involve the form:

λ1(Y = t | Z ≥ z) = λ1 (t ) + ∫0
z ψ(t;u) du ,

(3)
and in the conditional hazard rates of Z | Y ≥ y using the form

λ2(Z = u | Y ≥ y) = λ2 (u ) + ∫0
y ψ(t;u) dt . (3*)

The non-negativity assumption for the function ψ(t;u) is not mandatory but simplifies many
considerations. More general and also necessary assumption for the class of functions ψ(t; u) are given
by the inequalities:

λ1(t ) + ∫0
z ψ(t;u) du ≥ 0 , and

λ2(u ) + ∫0
y ψ(t;u)dt ≥ 0 ,

A General Method for Construction of Bivariate Stochastic Processes Given Two Marginal Processes
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for any nonnegative t, u . As we have already defined it, the left hand sides of the above inequalities
represent the (conditional) hazard rates, so they must be non-negative.

Also recall that λ1(t ) , λ2(u ) are always nonnegative.

Restricting the function ψ(t; u) to nonnegative values implies considering positive stochastic
dependences only between the considered random variables Y, Z .

2.3 Assuming existence of the underlying hazard rates, let us analyze the general form of the joint
survival function under the investigation:

S(y,z) = P(Y ≥ y , Z ≥ z) = exp[ -∫0
y λ1(t) dt - ∫0

y ∫0
z ψ(t;u) dudt - ∫0

z λ2(u) du ] (4)

with ψ(t; u) ≥ 0.

First realize that upon setting on the right hand side of (4) z = 0 , the expression reduces to the
marginal exp[ -∫0

y λ1(t) dt ] = S1(y) . Likewise, upon the setting y = 0 in (4) turns the expression to
the marginal exp [- ∫0

z λ2(u) du ] = S2(z) .

Second, upon dividing both sides of (4) by S2(z) one obtains the conditional survival function

S1(y | z) = P( Y≥ y | Z ≥ z ) = exp [ -∫0
y λ1(t) dt - ∫0

y ∫0
z ψ(t;u) dudt ] . (5)

Also dividing (4) by S1(y) yields the conditional survival function

S2(z | y) = P(Z ≥ z | Y≥ y ) = exp [ -∫0
z λ2(u) du - ∫0

y ∫0
z ψ(t;u) dudt ] . (6)

2.4 Let us explain more the structure of the conditional hazard rate λ1(y | Z ≥ z) , given “initially” the
marginal (baseline) hazard rate λ1(y). The case of λ2(z | Y ≥ y) can be understood in an analogous way.
Example 1. Suppose we have two different objects O1, O2 whose “behaviors” are exhibited by the
random quantities Y, Z respectively. Take, at first, object O1 as the object “of main interest”,
characterized by the quantity Y. Now consider the “activity” of object O2 , measured by the random
quantity Z . The activity Z is regarded as “stress” that the object O1 is subjected to.

(Such an ”activity” may be understood as temperature, for example.) In short, the stress Z is an
explanatory variable for the variable of the main interest Y. In the physical absence of the object O2 the
variable Y is independent on Z, so the corresponding hazard rate for Y is simply equal to λ1(t) , and the
(unconditioned) survival function of Y equals

S1(y) = P(Y≥ y) = exp [ -∫0
y λ1(t) dt ] .

( The following ‘micro-shocks � micro-damages’ mechanism that yields the stochastic dependence is
described in more detail in [4].)

When we consider the case where the object O2 is physically accompanying (“connected to”) object O1,
its activity “produces” at each time epoch ‘physical’ micro-shock on O1 . These micro-shocks result in
corresponding micro-damages in the physical structure of O1 which in turn result in micro-changes in
the hazard rate of the corresponding random quantity Y. Every such a micro-change (as related to a
quantity u) at a given moment t relies on adding to the Y’s hazard rate the infinitesimal quantity ψ(t;
u)du . This change is, actually, too small to be recognized by any physical measurement, but
mathematically we can express it as an infinitesimal differential ψ(t;u)du as proportional to the given
“intensity” ψ(t; u) . The microchanges cumulate as u (for Z = u) “runs” through the interval [0,z] .

A General Method for Construction of Bivariate Stochastic Processes Given Two Marginal Processes

L
on

d
on

 J
ou

rn
al

 o
f 

R
es

ea
rc

h
 in

 S
ci

en
ce

: N
at

u
ra

l &
 F

or
m

al

©2025 Great Britain Journals PressVolume 25 | Issue 1 | Compilation 1.08



This phenomenon of the cumulation of the micro-changes (as corresponding to an ‘elementary’ random
events Y = t) results in the conditional hazard rate

λ1(t | Z ≥ z) = λ1(t ) + ∫0
z ψ(t;u) du (7)

which, evidently, is different from the “original” (baseline) λ1(t ) .
The foregoing integration relates to the transfer from an elementary event Z = u to the random event 0
≤ Z < z [ Here realize that since we apply, as the analytic tool, the survival functions, instead of the
distribution functions, we eventually will ‘calculate’ the probability of its complement, i.e., the
probability of Z ≥ z ].

Integrating (7) with respect to “time” t over the interval [0,y] and applying formula (5), we obtain the
conditional survival function P( Y≥ y | Z ≥ z ) . The latter, once multiplied by the marginal distribution
in the form P(Z ≥ z) , results again in the joint survival function of the random vector (Y,Z) .
Setting ∫0

z ψ(t;u) du = φ(t,z) we obtain the formula

λ1(t | Z ≥ z) = λ1(t) + φ(t,z) , (7*)

which corresponds to the Aalen additive model [1] being the modification of the famous Cox
proportional hazards model [2] .

Remark 1: In a more general case one may consider the second differential ψ(t;u)dtdu of the joiner α
( , ) as a microchange (corresponding to both elementary events [“actions”] t and u [or u at the time
epoch t] ) in both hazard rates caused by mutual interaction of the “micro-shocks” described by t and
u, caused by activities of the objects O1 and O2. Realize that neither t nor u needs to represent time
(they may, for example, be levels of hormones in a human body).

In this framework, that interaction may be better understood if the intensity ψ(t; u) is chosen to have
separated variables, i.e., ψ(t; u) = ψ1(t) ψ2(u) (see examples in below). Notice also that the secondary
differential ψ(t;u) dtdu is added to both the original hazard rates λ1(t) and λ2(u) , which agrees with
the idea of mutual interactions.

On Representation of Bivariate Survival Functions

3.1 The Representation

Write formula (4) in a slightly more general form:

S(y,z) = P(Y ≥ y, Z ≥ z) = exp[ -∫0
y λ1(t) dt - α(y,z) - ∫0

z λ2(u) du . (4*)

We now depart from the Aalen-like model towards a more general paradigm. We even may drop the
assumption on the existence of the hazard rates λ1(y) , λ2(z) , and the function α(y,z) need not to be
expressed by the integral ∫0

y ∫0
z ψ(t;u) dudt . Instead of formulas (4) and (4*) for the joint survival

function of (Y,Z) we may use the following, more general, formula:

S(y, z) = S1(y) S2(z) exp[ -a(y,z) ], (8)

where α(y,z) is assumed to be a real function, defined for y ≥ 0, z ≥ 0 .

We will require that it satisfies the conditions specified as follows. Thus the function α(y,z) is:

(1) continuous, for each z, with respect to y and for each y with respect to z,
(2) nondecreasing in y and z,

A General Method for Construction of Bivariate Stochastic Processes Given Two Marginal Processes
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From the last condition we directly obtain the following Property.

Property 1: If the latter condition (3) is satisfied, then both the marginal probability distributions of
the joint distribution given by formula (8) are preserved in the sense that they are the same as the
baseline distributions S1(y) , S2(z) originally given.

If the marginal and the joint probability densities of the considered random variables Y, Z exist, the
concern is on non-negativity of them. While the marginal densities, say, f(y) , g(z) are non-negative due
to the common assumption, we need some special condition for α(y,z) to assure non-negativity of the
corresponding joint density h(y,z) .

For the joint density h(y,z) to exist, the function α(y,z) must have continuous partial derivatives of
first order αy(y,z) , αz(y,z) and the continuous second order mixed partial derivative αy,z(y,z) = ψ(y,z) .

An additional condition that must be satisfied by α(y,z) has the form of the following inequality:

[ λ1(y) + αy(y,z) ] . [ λ2(z) + αz(y,z) ] ≥ αy,z (y,z) = ψ(y,z) . (9)

This follows from the form of the joint density (if it exists):

h(y,z) = ∂2/∂y∂z S(y,z)

= { [ λ1(y) + αy(y,z) ] x [ (λ2(z) + αz(y,z) ] - αy,z (y,z) } exp[- Λ1(y) - Λ2(z) - α(y,z) ] ,

which must be nonnegative. Here, d/dy Λ1(y) = λ1(y) , and d/dz Λ2(z) = λ2(z) , and αy,z(y,z) = ψ(y,z) .
A simpler condition than (9) for the non-negativity of h(y,z) , which is sufficient and necessary too, for
the existence of the joint survival function (4*) is the following, obtained
from (9):

λ1(y) λ2 (z) ≥ αy,z(y,z) = ψ(y,z) . (9*)

The condition (9) or (9*) together with the conditions (1), (2), and (3) are sufficient and necessary for
“connecting” the two survival functions S1(y) , S2 (z) by a given joiner α(y,z) into the bivariate model
S(y, z) .

As it was pointed out above, there may be a numerous of such models.

3.2 Particular Cases of the Bivariate Models

A. Obviously, when α(y,z) reduces to zero for all y , z , then model (8) describes independent random
variables.
B. If the baseline hazard rates exist and are constant, we call this model “exponential”.
In this case we may choose ψ(y,z) = a = constant to obtain the following special case
of model (4*):

S(y,z) = exp [ - λ1 y - ayz - λ2 z ] , (10)

where 0 ≤ a ≤ λ1 λ2 .

This, apparently, represents the first bivariate exponential Gumbel probability distribution (see [5]).

C. One also obtains the following ‘Weibullian version’ of the above bivariate Gumbel:

A General Method for Construction of Bivariate Stochastic Processes Given Two Marginal Processes
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S(y,z) = exp [ - λ1 yγ1 - ayγ1zγ2 - λ2 zγ2 ] , (11)

where γ
1

and γ
2

are positive reals.

The latter two models are special cases of representation (4*).
We only need to check when condition (9*) is satisfied, i.e.,

λ1(y) λ2 (z) ≥ ψ(y,z) . (11*)

To check for that, we properly differentiate the terms of the expression - λ1 yγ1 - ayγ1zγ2 - λ2 zγ2

( λ1 yγ1 over y and λ2 zγ2 over z and ayγ1zγ2 over y and z) , and set inequality (11*) in the form:

λ1λ2 γ1 γ2 y γ1 - 1 z γ2 – 1 ≥ a γ1 γ2 y γ1 - 1 z γ2 – 1 . (12)

It holds, for every nonnegative y and z , whenever

a ≤ λ1λ2 .

Thus, if the latter condition is satisfied then model (11) is properly defined.

Remark 2: As for the above given Weibullian version (11) of the Gumbel exponential model (with a ≤
λ1 λ2) , this can be ‘partially’ generalized by the following model:

S(y,z) = exp [ - λ1 yγ1 - ayδ1zδ2 - λ2 zγ2 ]. (13)

Now inequality (12) takes the form:

λ1λ2 γ1 γ2 y γ1 - 1 z γ2 – 1 ≥ a δ1 δ2 y δ1 - 1 z δ2 – 1 . (14)

The necessary condition for (14) to hold for all nonnegative values y , z is that

1 ≤ δi ≤ γi , for i = 1, 2, (15)

together with

a ≤ λ1λ2 . (16)

However, condition (15) makes inequality (14) not true for 0 ≤ y , z < 1 . The remedy for this is to shift
the variables y , z by imposing the additional conditions:
1 = c = y , 1 = c = z for some real c.

Now model (13) is well defined with 1 ≤ δi ≤ γi .

Remark 3: The form of model (8) and Property 1 allows us to construct numerous of bivariate
probability distributions. Namely, realize that:

1. For any given fixed ‘joiner function’ α(y,z, ‘any’ pair of two probability distributions [not
necessarily both from the same class of the distributions], determined by S1(y) , S2 (z) (such that
inequality (9) or (9*) is satisfied), may be “connected” by formula (8) to “become” the bivariate
survival (distribution) function in which they remain the marginals.

2. For any fixed pair of probability distributions S1(y) , S2 (z) , there is a wide class of possible joiners
α(y,z) [determined by the conditions (1), (2), (3) from section 3.1 together with inequality (9) or (9*)]
such that the two distributions can be “connected” into the bivariate model (8) in as many ways as
there are possible proper functions α(y, z) .
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Finally notice that the above methods for “connecting” any two probability distributions into bivariate
distributions, resembles the idea of the copula methodology [6]. It is, however, different. For more
remarks on that see [3]. •

II. ON CONSTRUCTION OF BIVARIATE STOCHASTIC PROCESSES GIVEN ANY TWO
UNIVARIATE MARGINAL PROCESSES WHICH SHARE THE SAME TIME

Suppose the (marginal) stochastic processes {Yt}, {Zt} are completely defined. So, for every time epoch
t ∈ T (T is a nonempty set) two random variables Yt, Zt have known in advance survival functions
St(y) = P( Yt ≥ y) ,
Rt (z) = P( Zt ≥ z) .

If the corresponding hazard rates λ1(y, t), λ 2(z, t) exist, then, according to what was pointed out in
previous sections, for any joiner function αt(y,z) = α(y,z,t) [satisfying, for each t, inequality (9) with
respect to the λ1(y ,t) , λ2(z, t) as well as conditions (1) – (3) from section 3.1] there exist a unique joint
survival function which is also a function of time t, given by:

St(y,z) = P(Yt ≥ y , Zt ≥ z) = St(y) Rt (z) exp[ - α(y,z,t) ].

Our intention is to consider, for each t ∈ T, the function St (y, z) as the joint survival function (or joint
distribution) of the bivariate stochastic process { (Yt, Zt ) } t ∈ T . At this point recall that the marginals
St(y), Rt (z) [as functions of time t] are assumed to define completely the processes {Yt}, {Zt}
respectively.

Suppose time t is continuous. If both survival functions St(y) and Rt (z) are continuous functions of
the time then we will postulate the joiner α(y,z,t) to be continuous, as a function of t, as well . Now
consider two examples of bivariate stochastic processes whose constructions are based on known initial
univariate (marginal) processes.

Example A: Consider two Wiener stochastic processes {Yt}, {Zt} with the, given in advance, for each t,
survival functions

P(Yt ≥ y ) = 1 - φ( (y – bt) /σ1√t ) and (17)

P(Zt ≥ z ) = 1 - φ( (z – ct ) / σ2√t ) , (17*)

where φ(x) = (1/√2π)∫ -∞
x exp[ -w2 / 2] dw, and b, c are the real parameters of the considered Wiener

processes.

For all time epochs s , t such that 0 < s < t , all the distributions of the random vectors (Ys, Yt) and
(Zs, Zt) are described by the usual bivariate formulas associated with Wiener processes.

We seek, for every time epoch t, a joiner a(y,z,t) for the two survival functions (17), (17*) which
analytically is nice and simple enough, also as a function of t . It needs to satisfy conditions (1) – (3)
[section 3.1] as well as inequality (9) or (9*) for each t . If found, then, for each t > 0, the joint survival
function of the stochastic process { (Yt, Zt )} would have the form (8) which, in this case, is:

St(y,z) = S(y,z,t) = P(Yt ≥ y) P(Zt ≥ z) exp[ - α(y,z,t)] . (18)

Of course, in the vast majority of cases, (18) is different from classical bivariate normal distributions
even if the marginals are normal.
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Realize that conditions (1) – (3) from section 3.1 are usually easily checked to be satisfied, so that we
really need to check condition (9).

Recall, in the case of stochastic processes, this amounts to checking if:

∂2 /∂y∂z α (y,z,t) = αyz(y,z,t) = Ψ(y,z,t)

≤ [ λ1(y,t) + αy(y,z,t) ] x [ λ2(z,t) + αz(y,z,t) ] . (19)

This inequality needs to be satisfied for each t.

At this point notice that:

αy(y,z,t) = ∫-∞
z Ψ(y,v,t) dv and

αz(y,z,t) = ∫-∞
y Ψ(u,z,t) du .

These quantities, upon the additional assumption Ψ(u,v,t) = 0 for all nonnegative u, v, are
nonnegative and therefore the inequality

λ1(y,t) λ2(z,t) ≤ [ λ1(y,t) + αy(y,z,t) ] x [ λ2(z,t) + αz(y,z,t) ]

always holds.

The latter together with (19), provides solutions of (19) in the form:

Ψ(y,z,t) = ω(t) λ1(y,t) λ2(z,t) ,

where the coefficient function ω(t) satisfy 0 ≤ ω(t) ≤ 1 , and, in particular, ω(t) may be considered a
constant in t , especially one may set ω(t) = 1 for each t.

The model (or rather a candidate for a model in a practical application) we have obtained, has the form
of the time dependent joint survival function of the random vectors (Yt,Zt) for t ≥ 0 . It has the
following form:

St(y,z) = P(Yt ≥ y) P(Zt ≥ z) exp[ - ω(t) ∫-∞
y ∫-∞

z λ1(u,t) λ2(v,t) du dv ]

= exp[ - ∫-∞
y λ1(u t)du - ω(t) ∫-∞

y ∫-∞
z λ1(u,t) λ2(v,t) du dv - ∫-∞

z λ2(v,t)dv] .

For the above considered ‘bivariate Wiener stochastic process’ the marginals P(Yt ≥ y) and P(Zt ≥ z)
present in the last formula, are given by (17) and (17*).

Also, in the above case, λ1(u,t), λ 2(v,t) are the corresponding hazard rates associated with the
considered normal distributions. It is clear, however, that the obtained class of models is much wider
than the class of the bivariate Wiener. Write inequality (19) in the form:

Ψ(y,z,t) ≤ [ λ1(y,t) + ∫-∞
z Ψ(y,v,t)dv ] x [ λ2(z,t) + ∫-∞

y Ψ(u,z,t)du] . (19*)

Another candidate for a set of the models (i.e., set of “bivariate Wiener stochastic processes”) will be
given by the set of the functions Ψ(y,z,t) that are solutions of the following integral equation directly
derived from inequality (19*):

Ψ(y,z,t) = [ λ1(y,t) +ω1(t) ∫-∞
z Ψ(y,v,t)dv ] . [ λ2(z,t) + ω2(t) ∫-∞

y Ψ(u,z,t)du] , (20)

Where 0 ≤ ωi(t) ≤ 1 , for i = 1, 2 .
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Realize that the right-hand side of (20) is always less than or equal than the right hand side of (19*).
For equation (20) to hold the condition Ψ(y,z,t) ≥ 0 is , in general, essential.

The integral equation (20) is nonlinear. However, it can be simplified to the following:

Ψ(y,z,t) = g(y,z,t) + ω1(t) λ2(z,t) ∫-∞
z Ψ(y,v,t)dv + ω2(t) λ1(y,t) ∫-∞

y Ψ(u,z t)du , (20*)

where 0 ≤ g(y,z,t) ≤ λ1(y,t) λ2(z,t) is any continuous function.

Equation (20*) is linear (nonhomogeneous), but the (in general, known) coefficients are still variable.

The set of solutions of (20*) is contained in the set of solutions of equation (19*) , so that any solution
of (20*) is a solution of (19*).

Equation (20*) can be simplified more. This will yield a smaller set of solutions being still solutions of
(20*). Namely, setting g(y,z,t) = 0, we obtain the (purely) linear integral equation

ω1(t) λ2(z,t) ∫-∞
z Ψ(y,v,t) dv + ω2(t) λ1(y,t) ∫-∞

y Ψ(u,z,t) du = Ψ(y,z,t) . (20**)

So the set of solutions of (20**) forms a vector space over the field of real numbers. In the narrowest
version of the problem the coefficients can be made constants. Especially the assumptions λ1(y,t) = λ1

and λ2(z,t) = λ2 comprise the exponential case. But to stick with the ”Wiener model” one must keep the
hazard rates (coefficients) λ1(y,t) , λ2(z,t) in (20*) and in (20**) as corresponding to the distributions
given by (17) and (17*).

Now, having any solution Ψ(y,z,t) of any integral equation above, we find the joint survival function of
the corresponding bivariate stochastic process as expressed by formula (18), where α(y,z,t ) = ∫-∞

y ∫-∞
z

Ψ(s,r,t) dsdr . The so obtained joiner α(y,z t) (or α(y,z) in the case of random vectors only) would be a
candidate for the bivariate stochastic model.

Next steps are statistical verifications of an eventual fit of the obtained models to a given data that
might yield the eventual choice of the best solution among all the obtained. This subject is, however,
out of scope of this paper.

Notice that the above presented method for construction of bivariate Wiener processes is applicable to
any two (marginal) stochastic processes {Yt} , {Zt } such that each random variable Yt and Zt

possesses a hazard rate. Thus, one obtains more models. The method also includes discrete time cases
like the case described below.

Example B. In this example we seek an additional method for constructions. From now on we slightly
change the notation by replacing the symbols (Y, Z) for the random vectors by the symbols (X,Y) .
Consider the following first Pareto survival functions for two random variables X , Y :

S(x) = P(X ≥ x) = (x0 / x)α ,

R(y) = P(Y ≥ y) = (y0 / y)β ,

where x ≥ x0 > 0 , y ≥ y0 > 0 , α > 0 , β > 0 .

In this (Pareto) case the variables X , Y usually (but not always) describe income or wealth
redistributed within a society. We consider the case where the same society is subdivided in some
manner into two groups that differ by professions or some other social indicator (ethnicity, race,
gender, age etc … ). In the models the differences between the two groups income redistributions are
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reflected by the parameters x0 , y0 (minimal incomes), and by the shape parameters α , β . It is
reasonable to assume that the probability distributions of the incomes together with the incomes
themselves will evolve over time. That is why we consider stochastic (Pareto) processes {Xt} , {Yt}
description, where the discrete time t is defined as multiplicities t = r, 2r, 3r, … of some time period r
such as a year, a quarter, or a month. In our notation we adopt r = 1 , and therefore t = 1, 2, 3 … . We
now assume that, for each t, the random variables Xt , Yt are distributed according to the rules:

St(x) = P(Xt ≥ x) = (x0 (t) / x)α(t) ,

Rt (y) = P(Yt ≥ y) = (y0 (t) / y ) β (t) .

For simplicity we will assume that x0(t) = x0 = constant, and y0(t) = y0 = constant.

The above univariate “Pareto stochastic processes” are determined by the constants x0 , y0 , and the way
we define the functions α(t) , β(t) for t = 1, 2, 3, … . Our (simplest) proposition is to define

α(t) = A + (t – 1)r , β(t) = B + (t – 1)s ,

where (as a particular example) 1 ≤ A ≤ 2 , 1 ≤ B ≤ 2 , r = 0.10 , s = 0.15 .

Now, for each t, we find the joint survival functions Ut(x,y) of the random vector (Xt,Yt) . Recall the
general form of the joint survival functions:

Ut(x,y) = St(x) Rt (y) exp[ - α*(x,y,t) ] , (here, α* ≠ α and the meaning of α* is different than that of α ).

Since we already have both St(x) and Rt (y) as given above, we need to find a class of proper joiners
α*(x,y,t) to make, for each t, the joint survival function Ut(x y) of (Xt,Yt) properly defined. Set
α*(x,y,t) = α*t(x,y).

Recall that we have:

α*t(x,y) = ∫x0
x ∫y0

y Ψt (u,v) dudv,

where, for every t, the function αt*(x,y) must satisfy conditions (1) - (3) from section 3.1. Since the
domain of this function is reduced to [x0,+∞) x [y0,+∞) ,

with positive x0 and y0 , condition (3) (section 3.1) now takes the form:

αt*(x0,y) = αt*(x,y0) = 0 , for each t .

Also, for each t, we have St(x0) = 1 and Rt (y0) = 1 .

Therefore, as pointed out in Property 1 (section 3.1), it follows that, for each t, the functions St(x) , Rt (y)
are the marginal survival functions for the joint Ut(x,y) . Moreover, we restrict ourselves to positive
stochastic dependences only, so we have, for every t , Ψt (u,v) ≥ 0 . [As already mentioned, the last
assumption is not necessary (and not necessarily true in this case), but makes the initial considerations
clearer.] In order to determine a proper class of the (not necessarily all) joiners α*t(x,y) [which are
equivalent to the corresponding functions Ψt(u,v)], we need to examine (for each t) inequality (9*)
which is

Ψt (u,v) ≤ λ1(u,t) λ2(v,t) , (21)

where, in this ’Pareto case’, we have λ1(u,t) = α(t) / u and λ2(v,t) = β(t) / v .
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Thus inequality (21) takes the form

Ψt(u,v) ≤ α(t) β(t) / uv , for every t .

Like in Example A, the first easiest solution to our problem is

Ψt (u,v) = ω(t) α(t) β(t) / uv ,

where, for every t , 0 ≤ ω(t) ≤ 1 .

Recall at this point that like the variables x , y also the variables u , v satisfy u ≥ x0 , v ≥ y0 .

The natural assumption in this Pareto case is that both x0 ≥ 1 , y0 ≥ 1 (i.e., the minimal incomes in
both social groups are at least 1 ”unit”). Taking the above under the consideration we may choose for
Ψt(u,v) (the determinant of the stochastic dependence between Xt and Yt) the following:

Ψt(u,v) = α(t) β(t) / uγ1 vγ2 , for γ1 ≥ 1 , γ2 ≥ 1 .

This Ψt(u,v) satisfies (21).

Finally, the full version of the so derived joint survival function of the Pareto random vectors (Xt,Yt) ,
for every t , is:

Ut(x,y) = St(x) Rt (y) exp[ - α(t) β(t) ∫x0
x ∫y0

y u - γ1 v - γ2 dudv] , γ1 ≥ 1 , γ2 ≥ 1 .

Annotation: Just in recent days, when this paper was already finalized, we learned that similar results
as for the bivariate distributions (and not bivariate stochastic processes) were considered by
Finkelstein [7] in 2003. The author also considered the “Aalen factor” ( see formulas (4) and (5) in [7] )
but under different names and with no reference to Aalen or Cox. Our impression, however, is that the
generality of Finkelstein’s approach is somewhat limited. Also, in the references he provides, the results
are rather specific and the generality or even universality of this bivariate distributions’ representation
was probably overlooked. But, anyway, the novum of our results became somehow (but not drastically)
limited.
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