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s Abstract

7 L. INTRODUCTIONFinite Quantum Field Theories (FQFT) originate from the early causal

s and nite approach of Bogoliubov-Epstein-Glaser (BEG-CSF T ) [17]. The inital steps are

9 based on the early recognition that, in general, elds are not regular functions in the usual sense
10 but distributions [8,9]. However the setting up of a Lagrangian formalism in the QFT context
11 encounters products of elds as distributions at the same space-time point, which are ill-dened
12 and the later sources of crippling divergences. Past QFT history essentially deals with the

13 search for counter-terms cancelling these anoying divergences. On the opposite the BEG -CSF
1 T approach under the forms of Refs. [6,7] aims from the start at a Lagrangian formulation in
15 keeping with the basic underlying classical dierentiable structure of the space-time manifold.
16 The taming of these divergencies involves regularization procedures which ought to preserve,
17 to start with, the symmetry principles of the Lagrangian. Using a naive cut-o for instance is
18 known to violate Lorentz and gauge invariances, whereas Dimensional Regularization (DR)

19 [10] and that of Ref.[7] -dubbed T LRS here after-do preserve these fundamental symmetries.
20 The two procedures have in common the distinctive aspect of their implementation

21

22 Index terms—
23 Basics of scalar and vector Finite Quantum Field Theories are recalled, stressing the importance of the

24 quantization of classical physical fields as Operator-Valued-Distributions with specific fast decreasing test
25 functions of the coordinates. The procedure respects full Lorentz and symmetry invariances and, due to the
26 presence of test functions, leads to finite Feynman diagrams directly at the physical dimension D = 2. 4. In
27 dimension 2 it is only with such test function that the canonical quantization of the massless scalar field is
28 found to be fully consistent with the most successfull Conformal Field Theoretic approach, pioneered by Belavin,
29 Polyakov and Zamolodchikov in the early 1980’s. The question is then raised how Poliakov’s wordline path
30 integral representation of the relativistic string could possibly lead tofinite Feynmann diagrams. The natural way
31 of inquiries is through the extension of the string formalism with classical convoluted coordinates leading then to
32 Operator-Valued-Distributions and thereby to Finite Quantum Field Theories. It is shown that in the process
33 some age-old certitudes about quantized strings are somewhat jostled.

34 Basics of scalar and vector Finite Quantum Field Theories are recalled, stressing the importance of the
35 quantization of classical physical fields as Operator-Valued-Distributions with specific fast decreasing test
36 functions of the coordinates. The procedure respects full Lorentz and symmetry invariances and, due to the
37 presence of test functions, leads to finite Feynman diagrams directly at the physical dimension D = 2.. 4. In
38 dimension 2 it is only with such test function that the canonical quantization of the massless scalar field is
39 found to be fully consistent with the most successfull Conformal Field Theoretic approach, pioneered by Belavin,
40 Polyakov and Zamolodchikov in the early 1980’s. The question is then raised how Poliakov’s wordline path
41 integral representation of the relativistic string could possibly lead tofinite Feynmann diagrams. The natural way
42 of inquiries is through the extension of the string formalism with classical convoluted coordinates leading then to
43 Operator-Valued-Distributions and thereby to Finite Quantum Field Theories. It is shown that in the process
44 some age-old certitudes about quantized strings are somewhat jostled.
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prior to the construction of the Lagragian density. The use of DR does not however address directly to the
origin of these divergencies but just avoids them in going to an hypothetical space in D = 4-? dimensions. T LRS
was developped in Ref. [11,12]. Since the early applications of this scheme [13,14] the calculation of radiative
corrections to the Higgs mass [15] and the treatment of the axial anomaly [16,17] are relevant illustrations of
the practical use of the T LRS procedure in the D = 4 context. It was shown recently how T LRS solves the
long-standing consistency problem [18] encountered between EqualTime (EQT) and Light-Front-Time (LFT)
quantizations of bosonic twodimensional massless elds. Our purpose here is to confront the ndings of [18] with
the standard bosonic string theory approach of [19,20] and elaborate on the values of the critical dimension for
the cancelation of the conformal anomaly.

1 II.

THE MATHEMATICAL SETTING

2 Classical wave equations

To the original classical eld-distribution ?(x 0 , x 1 ) is associatted a translationconvolution product 7(?) built
on a rapidly decreasing test functions 7(x 0, x 1 ), symmetric under reexion in the variables x 0 and x 1 . In
Fourier-space variables this linear functional can be written as an integral with the proper bilinear form ? p, x
’=paga? x? (ga? =diag{l,-1})(? *?)(x0,x1)=dp0dp1(2?) 2e-?7px? ?(p0,p1)f (p20,p21
)

, where 7(p 0, p 1) (resp. f (p 20, p 2 1)) is the Fourier-space transform of 7(x 0, x 1) (resp. of ?(x 0, x
1)). Hereafter ?(x 0, x 1 ) will stand for (? * ?)(x0,x 1 ).

The wave-equation for the classical convoluted distribution in space-time variables is obtained from the
hyperbolic partial dierential equation (HPDE)??(x 0,x1)=72x0-? 2x17(x0,x1) =0.(2.1)

A solution of the Cauchy problem in the sense of convolution of tempered distributions is nothing else than
D’Alembert’s (1717 -1783) solution. It can be written as?(x 0, x1)=12? d2p?(p20-p21)?(p0,p1)e
7px? f(p20,p21),(2.2)

with ?(£|p1],p1) =7 £ (p1) . Canonical quantization of the zero mass scalar quantum operator valued-
distribution (OPVD) eld ?(x 0 , x 1 ) proceeds from Eq.(2.2) via the correspondance, in terms of creation and
annihilation operators, {? -(p) ? a ? (p), ? + (p) ? a(p)}, with commutator algebra [a(p), a + (q)] = 47p?(p-q)
and a vacuum | 0 > such that a(p) | 0 >= 0 ?p. That is London Journal of Research in Science: Natural and
Formal?(x 0,x1)=147 7 0dpp

[a(p)e -Tp(x 0-x 1) +a? (ple?7p(x0+x1)]f(p2).

(2.3)

Then, one easily evaluates the commutator of two free scalar OPVD to?(x), 7(0) ? ??7(x) =-7 ? ? 0dp p
sin(px 0 ) cos(px 1 )f2 (p 2). (2.4)

This integral is nite without the test function and the limiting procedure where {2 (p 2 ) ? f (p 2 ) = 1 refers
to important mathematical properties of metric spaces (whether Minskowskian or Euclidean) [18].

Going to light-cone (LC) variables x 0 £x 1 = x %+ is motivated by Dirac’s early observation that the LC-
stability group is maximal: LC-dynamics has much to share with gallilean dynamics (e.g.relative motion of
LC-interacting particles decouples from global center of mass motion...). However in the LC-variables the nature
of the initial Klein-Gordon equation in Eq.(2.1) is changed to a characteristic initial value problem (CIVP)
relative to the partial-dierential equation? + ? -7(x + , x -) = 0(2.5)

with initial data on characteristic surfaces?(x + ,x-0) =f(x + ), ?(x+ 0, x -) = g(x -),(2.6)

and the continuity condition?(x +0,x-0) =1f(x+0) =g(x-0). (2.7)

At rst sight the LC-Lagrangian is singularl : W (x,y) =? 2 L ?[? -?(x)]?[? -?(y)] =0

, but the appearence of a primary contrainst is known to be of no physical signicance [21]. 1 The Hessian is
indentically null

3 The ET-LFT consistency problem

Nevertheless the consistency of the solutions in the two reference frames cannot be established without further
insight. This is just the content of Ref. [18], with two main conclusions:

-On the one hand, full consistency of EQT and LFT quantizations can only be achieved when elds are considered
as OPVD with partition of unity test-functions f (p + 2 ) such that, for the light-cone momentum p + , limp +
0W+f(p+2)p+=0.

-On the other hand operator series in the Discretized-LC-Quantization (DLCQ) nd their natural handling of
divergences in the substraction scheme embedded in the OPVD formulation. The net eect of the PU-test function
is the appearence of its inherent RGscale parameter (7).

4 London Journal of Research in Science: Natural and Formal

Then the LF-formulation and CFT analysis of 2d-massless models are in complete agreement in their
representation of the energy-impulsion tensor in term of innite dimensional Virasoro Lie-algebras.
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The motion under consideration here is taking place on a 2d-worksheet embedded in a D-dimensionnal space.
The initial eld variables are then x a (7, 7 ), pa (7, 7 ) elevated to OPVD. A well-dened Lagrangian is then
obtained in terms these regular eld variables X a (7,7 ), P a (7, 7 ). After dealing with the LC-gauge conditions
the equation of motion for X a (7, 7 ) is just that of Eq.(2.1) with appropriate position and time variables.
Accordingly the sum of the zero-point energies of the rst quantized string is just(D-2) 2 7 n =0

n. The well-known conventional evaluation of this sum is given by the Zeta-function ?(s) = ? n=0 1 n s with
2(-1) =-112.

The critical dimension for the absence of the overall conformal anomaly must then be such as to suppress
that one with the cental charge ¢ = 1 coming from the 2d worksheet analysis and thus obeys (D-2) 2 7(-1) = -1,
that is D = 26! However, even though at the same time this reasoning based on Zetafunction was already under
scruteny [24], this critical value survived the long haul! In the advocated 2d QFT treatment the key role is in
the pseudo-function distribution extension Pf ( 1 p 2 ) of 1 p 2 at the origin. It is dened by the integrall N = 7 0
dp2 )Pt (1p2)f(p2)=deflim??20[? ??2d(p2)p2+1?772722d(p2)p2+2mIn(?)] =In(?27) (3.1)

where 7 is the dilatation-scale inherent to the construction of the test function f (p 2 ) [7,14]. The term in
In(?) corresponds to the general Hadamard substraction procedure to generate a Finite part (F.p.).

5 III. THE QUANTUM BOSONIC STRING [19, 23_ 27]

3.1. Equations of motion of the scalar bosonic string in the LC-gauge

6 TLRS and the Renormalization Group

London Journal of Research in Science: Natural and Formal

The factor ? is arbitrary 2 with no physical meaning unless explicit symmetry violations need enforcement.
Consider now the identityIP £ (?) =d 2 (p) (27) 2)f(p2)p27d2(p) 2?)2(p+q)2p2(p+q)2f(p2
),=10dxd2(p) 2?7)2(p2+q2(1-x)2)[p2+q2x(1-x)]2f(p2),=147? (In(?27) -1). (3.2)

This is easy to understand due to the identity in the UV limit of the p-integration where f[(p + q) 2 ]f (p 2)
7f2(p2)?7f(p2)

Moreover the overall O(2) p-invariance implies that terms linear in p do not contribute to the integral.
Consider then the one loop Feynman diagram in relation to the energy-momentum tensor of the X-eld and in
the same UV limit 37 abled (q) = D8d 2 p (2?) 2tab (p,q)tc,d (p,q) p2(p+q)2f[p2lf[(p+4q)2],=D
810dxd2p (2?) 2tab (p,q,x)tcd (p,a,x) P2+ q2x(1-x)]2f[p2],(3.3)

witht a,b (p,q) =pa(p+a) b+pb(p+a)a-?ab(p.(p+a)tab(p,ax) =(p-q(lx)a(p+aqx)
b+ (p+ax) a(p-q(1-x)) b-7 ab [p 2-pq(l -2x) -q 2 x(1 -x)].

The presence of the test-function f [p 2 | ensures the existence of this phase-space integral, which otherwise
would exibit divergences when p 7 7 . The common pratice in the far past was to consider their cancelations by
appropriate counter terms. In that case the only surviving regular contribution to ? ablcd (q) is 47 reg ablcd
() =D8(2qaqb-q27?7ab)(2qcqd-q2?¢d)10dxx2(1-x)2d2p(2?)2[p2+q2x(1-x)]2=-Dq
2M 1927 (? a,b-2qaqbq2)(?cd-2qcqdq?2) (3.4)

2 For Gauge Theories 7 is related to the gauge xing parameter [12].

3 This is the 2-points-function, eq.( ?77.158), of Poliakov’s monograph. A coupling vertex factor would be ?
g22facdfbed=7 g22CA7?ad. 4 Here g M is with Minkowski’s signature opposite to Euclid’s one. )
what is at sake is the sum (e.g. Trace) of the eigen-modes of this matrix. It can be diagonalized by a unitary
transformation with a preserved Trace equal to 4. The result 5 is then just the same critical dimension for the
absence of the conformal anomaly 5 In the perpective of the analytic continuation of sect. ?73.1) it is instructive
to note how here this decomposes as

7 London
-q2M47 (D-2) 2 * 84

6 ,4 from the trace itself and 1 6 from the nal x-integrationl 0 dxx(1 -x) = 1 6 c¢f Appendix B

obtained in the rst quantization framework, that is D cr = 26. It is clear then that the elimination of diverging
contributions by counter-terms just leaves the evaluation of (3.4) in keeping with the ndings of [19].

However our TLRS formalism shows that this is not the end of the story.Indeed from examples (3.1,3.2) we
observe that diverging integrals in p 2 and p 4 carry essential dependencies on the RG-parameter ?. Then the
complete 7-dependence governing the RG-analysis of the critical equation is concerned with the behaviour of the
central charge under the ow of the renormalization group (RG). Zamolodchikov realized this as early as 1986
with his c-theorem [29]:

"There is a function C on the space of unitary 2d-eld theories that monotonically decreaes along the RG-ows
and which coincides with the Virasoro central charge c at xed points.”

It takes the formp ddp C(p, ?) 2 n?dd(p?) C(p?,1)=7dd? C(?,1) =-7(, g, j)?G, 7)

where the Calan-Symanzik ?-function at xed point is independent of ? and takes the primitive value [30] 6

LambertW (6) .

With the stress energy-tensors ?(z) ? T z,z and ?(z) ? T z,z the C-function and the metric write [31,33]C = -
1 27 real surface dz ? dz < ?(z) ?(z) > ¢ | IR(T LRS limit) (3.5)
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andg (z,z) = 67 2 p4 < ?(z) 7(z) > ¢ | IR(T LRS limit) ,
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where the subscript ¢ at the bracket indicates connected collerator contributions. 1 is an arbitrary inverse
distance inherent to the construction of the TLRS test function as a partition of unity with a dimensionless
argument (cf footnote 5). The elds ? i (x) originate from local coupling sources 7 i (x).

Let us consider the correlator of two stress tensors on the plane in the TLRS context [31] < T 7,? (x)T 7,?
(0)>=73720dpC(p)d2pf(p2) (2?) 2exp(?px) (g?? p2-p?p?)(g??p2-p?p?)p2+n2.

We are only left with the unknown scalar function of the mass scale p, the spectral density [32] C(p). Its
properties have to comply to the following requirements:

(i) Reexion positivity of the euclidean eld theory, i.e. unitarity of the Hibert space, implies C(n) ? 0, (ii) Due
to dim(T 77 ) = 2 the spectral density is a dimensionless measure of degrees of freedoom, (iii)The form of C(n)
in a scale invariant eld theory is completely xed by it dimensionality. Since dpC(n) is dimensionless one may not
exclude C(p) ? ¢ p . This IR divergence at p = 0 is fully understood in the TLRS context [7,12] as long as the
scaling limit to 1 of the test fuctions is not taken too early.Indeed the correlator is 6 < 7(x)7(0) > =c? 3 7 4 |x|
?70dppf(p2)d2pf(p2)(2?7) 2exp(Ppx)p2+p2,=-¢c12?2 In(? 2)? 4 |x| [? E+ In(?x]2)], =147
In(? 2) 2¢ |x| 4

(iv) Conformity with conformal invariance is exibited through the 1 |x| 4 dependence in agreement with the
results of [18](Eq.( ?76)) for < 0|T (z)T (w)|0 >. The study of the central charge C from Eq.(3.5) on a 2d-curved
manifold [34] has established the general validity of Zamolodchikov c-theorem. It is sucent, for our purpose, to
consider only a at real surface with coordinate parametrization {z, z} = ? exp(£??) which leads to 7 , 8 6 It is
always possible to write the initial PU-test function regulating the p-integral asf2 (p2)? f(p2)f (p2+1n2)
?f(p2) (n2), for, in the UV-limit, f (p 2)f (p2+pn2)?2£f2(P2)?7f(p2)

, whereas in the IR-limit the remaining f (p 2 ) function just validates the corresponding integral. 7 Note
that in the initial {z, z}-integrals the factor is 1 |z-z| 4 so that the ?-integral is on the variable v = 7 2 sin 2
(?), hence the independent factorization of the remaining ?-integrals with the appearance the ubiquitous 1 12
factor [18](eq.56). 8 The TLRS analytic evaluation of g(v 2 ) is proportional to the dierence of step-functions
[16,32].The nal v-integration is then trivial, after Hadamard substractions of diverging contributions in In(?),
leaving the In(? 2 ) factor. [?(v -x11) -?(v -x12)], with x11 = (? 2 ) (17?7 ) ,x12=(2?72)(17)

8 London

(7)) =-132270d(?) sin2(?) 20d(v)f(v2)v2=1322704d(?) sin2 (?
1322?27 0d(?) sin2(?) 7?7 0dvvg(v2)withg(v2)=ddvi(v2)=-1
d(?)[1sin2(?) +1cos2(?) ]} =1121In(? 2) (3.6)

It is plain to see that this result is in agreement with the observation about the unicity of the solution, up to
to an arbitrary constant (here In(? 2 )), of "Cayley’s identity” known as the ”Schwarz derivative” [18].

Recently J.F. Mathiot established that, within general arguments valid in the TLRS framework, the trace of
the energy-momentum tensor in 4-dimensions does not show any anomalous contribution even though quantum
corrections are considered [35]. It is then our concern to turn now to the determination of the critical dimension
D cr for the absence of the overall conformal anomaly with p 2 and p 4 divergences of the Poliakovtensor treated
in the TLRS formalism(cf Appendix A). As mentioned after Eq.(3.4) the elimination of diverging contributions
by counter-terms just leads to the evaluation in keeping with the ndings of [19], that is D cr = 26 . However
with TLRS the situation is dierent as shown in Appendix A. The surviving initial Poliakov-term comes with
extra TLRS 7-independent components. The immediate issue is then the fate of the D cr = 26 value under these
additional TLRS terms 9 .Following Poliakov’s analysis [19] a direct calculation of ?

~|-(q, ?) shows explicitly the critical value D cr = 4, as detailed in Appendix B. Consider now the
diagonalization of the normalized matrix ? ablcd (q) with a Lagrange parameter ? in relation to the stress-
energy constraint T ab = 0. At the value D cr = 4 7 is completely xed, indicating that reparametrizations of
the world-sheet and conformal rescaling allow to fully x g ab to anything wanted.

As a nal additional observation it is instructive to consider the string description for the VVA-anomaly [22]
versus its direct calculation with TLRS [16,17]. In the string treatment of the massless case (cf Eq.(6.44) of [22])
?explicit divergences are made of a dierence of two tadepoles type and hence do not contribute in dimensional
regularization, whereas for the remaining terms integrations are elementary, and the result is, using 1?”-function
identities, easily identied to the standard result for the massless QED vacuum polarization”. In TLRS the
calculation is directly in dimension D = 4 with the IV. FINAL REMARKS usual ? 5 and all contributions are
either null or nite: a simple bookeeping leads then to the standard VVA-anomaly without further ado. The TLRS
procedure does provide a very clear and coherent picture. All known invariance properties, besides those of the
VVA-anomaly, are preserved ??1315]. It is a direct consequence of the fundamental properties of TLRS. As an
?a-priori” regularization procedure, it provides a well dened mathematical meaning to the local Lagrangian we
start from in terms of products of OPVD at the same space-time point. It also yields a well dened unambiguous
strategy for the calculation of elementary amplitudes, which are all nite in strictly 4-dimensional space-time and
with no new non-physical degrees of freedom nor any cut-o in momentum space.

In summary the strategy developped here was based on the passage from rstquantization to second quantization
of the bososnic string. It is characterized by the introduction of the notion of L.Schwartz’s Pseudo-Functions

)?70d(v)ddv (1v)f(v2)=-
32In(? 2)lim??20 {17 7 2-77
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[8](cf Eq.(3.1)) with their dilatation scale dependences. This result is at variance wih the usual dilatation-scale
independant Zeta-fuction evaluation of the discrete sum on inverse quantum n of rstquantized space-time objects.
Actually it is easy to see that the standard evaluation of the Zeta-function through normal Eulers’integral in the
integration interval (0, ?) should be considered as the limit ? ? 0 of the same integral in the interval (7?7, ? 2 ?
), thereby collecting rst from the logarithmic term the contribution In( ? 2 7 ) and not the value 7(-1) =-112.

The main conclusion is then that String Theory in the OPVD picture reduces to Finite Quantum Field Theory,
directly in 4-dimensions with no trace anomaly of the energymomentum tensor , and in the limit where the tension

along the string becomes innite. * 2 2 4

Figure 1: 31 ©

Figure 2: 33 ©
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