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Abstract6

I. INTRODUCTIONFinite Quantum Field Theories (FQFT) originate from the early causal7

and nite approach of Bogoliubov-Epstein-Glaser (BEG-CSF T ) [17]. The inital steps are8

based on the early recognition that, in general, elds are not regular functions in the usual sense9

but distributions [8,9]. However the setting up of a Lagrangian formalism in the QFT context10

encounters products of elds as distributions at the same space-time point, which are ill-dened11

and the later sources of crippling divergences. Past QFT history essentially deals with the12

search for counter-terms cancelling these anoying divergences. On the opposite the BEG -CSF13

T approach under the forms of Refs. [6,7] aims from the start at a Lagrangian formulation in14

keeping with the basic underlying classical dierentiable structure of the space-time manifold.15

The taming of these divergencies involves regularization procedures which ought to preserve,16

to start with, the symmetry principles of the Lagrangian. Using a naïve cut-o for instance is17

known to violate Lorentz and gauge invariances, whereas Dimensional Regularization (DR)18

[10] and that of Ref.[7] -dubbed T LRS here after-do preserve these fundamental symmetries.19

The two procedures have in common the distinctive aspect of their implementation20

21
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prior to the construction of the Lagragian density. The use of DR does not however address directly to the45
origin of these divergencies but just avoids them in going to an hypothetical space in D = 4-? dimensions. T LRS46
was developped in Ref. [11,12]. Since the early applications of this scheme [13,14] the calculation of radiative47
corrections to the Higgs mass [15] and the treatment of the axial anomaly [16,17] are relevant illustrations of48
the practical use of the T LRS procedure in the D = 4 context. It was shown recently how T LRS solves the49
long-standing consistency problem [18] encountered between EqualTime (EQT) and Light-Front-Time (LFT)50
quantizations of bosonic twodimensional massless elds. Our purpose here is to confront the ndings of [18] with51
the standard bosonic string theory approach of [19,20] and elaborate on the values of the critical dimension for52
the cancelation of the conformal anomaly.53

1 II .54

THE MATHEMATICAL SETTING55

2 Classical wave equations56

To the original classical eld-distribution ?(x 0 , x 1 ) is associatted a translationconvolution product ?(?) built57
on a rapidly decreasing test functions ?(x 0 , x 1 ), symmetric under reexion in the variables x 0 and x 1 . In58
Fourier-space variables this linear functional can be written as an integral with the proper bilinear form ? p, x59
?= p a g a,? x ? (g a,? = diag{1, -1})(? * ?)(x 0 , x 1 ) = dp 0 dp 1 (2?) 2 e -??p,x? ?(p 0 , p 1 )f (p 2 0 , p2 160
)61

, where ?(p 0 , p 1 ) (resp. f (p 2 0 , p 2 1 )) is the Fourier-space transform of ?(x 0 , x 1 ) (resp. of ?(x 0 , x62
1 )). Hereafter ?(x 0 , x 1 ) will stand for (? * ?)(x 0 , x 1 ).63

The wave-equation for the classical convoluted distribution in space-time variables is obtained from the64
hyperbolic partial dierential equation (HPDE)??(x 0 , x 1 ) = ? 2 x 0 -? 2 x 1 ?(x 0 , x 1 ) = 0.(2.1)65

A solution of the Cauchy problem in the sense of convolution of tempered distributions is nothing else than66
D’Alembert’s (1717 -1783) solution. It can be written as?(x 0 , x 1 ) = 1 2? d 2 p?(p 2 0 -p 2 1 )?(p 0 , p 1 )e67
-??p,x? f (p 2 0 , p 2 1 ),(2.2)68

with ?(±|p 1 |, p 1 ) = ? ± (p 1 ) . Canonical quantization of the zero mass scalar quantum operator valued-69
distribution (OPVD) eld ?(x 0 , x 1 ) proceeds from Eq.(2.2) via the correspondance, in terms of creation and70
annihilation operators, {? -(p) ? a ? (p), ? + (p) ? a(p)}, with commutator algebra [a(p), a + (q)] = 4?p?(p-q)71
and a vacuum | 0 > such that a(p) | 0 >= 0 ?p. That is London Journal of Research in Science: Natural and72
Formal?(x 0 , x 1 ) = 1 4? ? 0 dp p73

[a(p)e -?p(x 0 -x 1 ) + a ? (p)e ?p(x 0 +x 1 ) ]f (p 2 ).74
(2.3)75
Then, one easily evaluates the commutator of two free scalar OPVD to?(x), ?(0) ? ??(x) = - ? ? ? 0 dp p76

sin(px 0 ) cos(px 1 )f 2 (p 2 ). (2.4)77
This integral is nite without the test function and the limiting procedure where f 2 (p 2 ) ? f (p 2 ) = 1 refers78

to important mathematical properties of metric spaces (whether Minskowskian or Euclidean) [18].79
Going to light-cone (LC) variables x 0 ±x 1 = x ± is motivated by Dirac’s early observation that the LC-80

stability group is maximal: LC-dynamics has much to share with gallilean dynamics (e.g.relative motion of81
LC-interacting particles decouples from global center of mass motion...). However in the LC-variables the nature82
of the initial Klein-Gordon equation in Eq.(2.1) is changed to a characteristic initial value problem (CIVP)83
relative to the partial-dierential equation? + ? -?(x + , x -) = 0(2.5)84

with initial data on characteristic surfaces?(x + , x - 0 ) = f(x + ), ?(x + 0 , x -) = g(x -),(2.6)85
and the continuity condition?(x + 0 , x - 0 ) = f(x + 0 ) = g(x - 0 ). (2.7)86
At rst sight the LC-Lagrangian is singular1 : W (x, y) = ? 2 L ?[? -?(x)]?[? -?(y)] = 087
, but the appearence of a primary contrainst is known to be of no physical signicance [21]. 1 The Hessian is88

indentically null89

3 The ET-LFT consistency problem90

Nevertheless the consistency of the solutions in the two reference frames cannot be established without further91
insight. This is just the content of Ref. [18], with two main conclusions:92

-On the one hand, full consistency of EQT and LFT quantizations can only be achieved when elds are considered93
as OPVD with partition of unity test-functions f (p + 2 ) such that, for the light-cone momentum p + , limp +94
?0 + f (p + 2 ) p + = 0.95

-On the other hand operator series in the Discretized-LC-Quantization (DLCQ) nd their natural handling of96
divergences in the substraction scheme embedded in the OPVD formulation. The net eect of the PU-test function97
is the appearence of its inherent RGscale parameter (?).98
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Then the LF-formulation and CFT analysis of 2d-massless models are in complete agreement in their100
representation of the energy-impulsion tensor in term of innite dimensional Virasoro Lie-algebras.101
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The motion under consideration here is taking place on a 2d-worksheet embedded in a D-dimensionnal space.102
The initial eld variables are then x a (?, ? ), p a (?, ? ) elevated to OPVD. A well-dened Lagrangian is then103
obtained in terms these regular eld variables X a (?, ? ), P a (?, ? ). After dealing with the LC-gauge conditions104
the equation of motion for X a (?, ? ) is just that of Eq.(2.1) with appropriate position and time variables.105
Accordingly the sum of the zero-point energies of the rst quantized string is just(D-2) 2 ? n =0106

n. The well-known conventional evaluation of this sum is given by the Zeta-function ?(s) = ? n=0 1 n s with107
?(-1) = -1 12 .108

The critical dimension for the absence of the overall conformal anomaly must then be such as to suppress109
that one with the cental charge c = 1 coming from the 2d worksheet analysis and thus obeys (D-2) 2 ?(-1) = -1,110
that is D = 26! However, even though at the same time this reasoning based on Zetafunction was already under111
scruteny [24], this critical value survived the long haul! In the advocated 2d QFT treatment the key role is in112
the pseudo-function distribution extension Pf ( 1 p 2 ) of 1 p 2 at the origin. It is dened by the integralI N = ? 0113
d(p 2 )Pf ( 1 p 2 )f (p 2 ) = def lim ??0 [ ? ?? d(p 2 ) p 2 + 1 ? ? ? 2 d(p 2 ) p 2 + 2 ln(?)] = ln( ? 2 ? ) (3.1)114

where ? is the dilatation-scale inherent to the construction of the test function f (p 2 ) [7,14]. The term in115
ln(?) corresponds to the general Hadamard substraction procedure to generate a Finite part (F.p.).116

5 III. THE QUANTUM BOSONIC STRING [19, 23_27]117

3.1. Equations of motion of the scalar bosonic string in the LC-gauge118

6 TLRS and the Renormalization Group119

London Journal of Research in Science: Natural and Formal120
The factor ? is arbitrary 2 with no physical meaning unless explicit symmetry violations need enforcement.121

Consider now the identityIP f (?) = d 2 (p) (2?) 2 ) f (p 2 ) p 2 ? d 2 (p) (2?) 2 (p + q) 2 p 2 (p + q) 2 f (p 2122
), = 1 0 dx d 2 (p) (2?) 2 (p 2 + q 2 (1 -x) 2 ) [p 2 + q 2 x(1 -x)] 2 f (p 2 ), = 1 4? (ln( ? 2 ? ) -1). (3.2)123

This is easy to understand due to the identity in the UV limit of the p-integration where f[(p + q) 2 ]f (p 2 )124
? f 2 (p 2 ) ? f (p 2 )125

. Moreover the overall O(2) p-invariance implies that terms linear in p do not contribute to the integral.126
Consider then the one loop Feynman diagram in relation to the energy-momentum tensor of the X-eld and in127
the same UV limit 3? ab|cd (q) = D8d 2 p (2?) 2 t a,b (p, q)t c,d (p, q) p 2 (p + q) 2 f [p 2 ]f [(p + q) 2 ], = D128
8 1 0 dx d 2 p (2?) 2 t a,b (p, q, x)t c,d (p, q, x) [p 2 + q 2 x(1 -x)] 2 f [p 2 ],(3.3)129

witht a,b (p, q) = p a (p + q) b + p b (p + q) a -? a,b (p.(p + q)), t a,b (p, q, x) = (p -q(1 -x)) a (p + qx)130
b + (p + qx) a (p -q(1 -x)) b -? a,b [p 2 -pq(1 -2x) -q 2 x(1 -x)].131

The presence of the test-function f [p 2 ] ensures the existence of this phase-space integral, which otherwise132
would exibit divergences when p ? ? . The common pratice in the far past was to consider their cancelations by133
appropriate counter terms. In that case the only surviving regular contribution to ? ab|cd (q) is 4? reg ab|cd134
(q) = D 8 (2q a q b -q 2 ? a,b )(2q c q d -q 2 ? c,d ) 1 0 dxx 2 (1 -x) 2 d 2 p (2?) 2 [p 2 + q 2 x(1 -x)] 2 = - Dq135
2 M 192? (? a,b -2 q a q b q 2 )(? c,d -2 q c q d q 2 ) (3.4)136

2 For Gauge Theories ? is related to the gauge xing parameter [12].137
3 This is the 2-points-function, eq.( ??.158), of Poliakov’s monograph. A coupling vertex factor would be ?138

g 2 2 f acd f bcd = ? g 2 2 C A ? ad . 4 Here q M is with Minkowski’s signature opposite to Euclid’s one. )139
what is at sake is the sum (e.g. Trace) of the eigen-modes of this matrix. It can be diagonalized by a unitary140
transformation with a preserved Trace equal to 4. The result 5 is then just the same critical dimension for the141
absence of the conformal anomaly 5 In the perpective of the analytic continuation of sect. ??3.1) it is instructive142
to note how here this decomposes as143
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-q 2 M 4? (D-2) 2 * 84145
6 ,4 from the trace itself and 1 6 from the nal x-integration1 0 dxx(1 -x) = 1 6 cf Appendix B146
obtained in the rst quantization framework, that is D cr = 26. It is clear then that the elimination of diverging147

contributions by counter-terms just leaves the evaluation of (3.4) in keeping with the ndings of [19].148
However our TLRS formalism shows that this is not the end of the story.Indeed from examples (3.1,3.2) we149

observe that diverging integrals in p 2 and p 4 carry essential dependencies on the RG-parameter ?. Then the150
complete ?-dependence governing the RG-analysis of the critical equation is concerned with the behaviour of the151
central charge under the ow of the renormalization group (RG). Zamolodchikov realized this as early as 1986152
with his c-theorem [29]:153

”There is a function C on the space of unitary 2d-eld theories that monotonically decreaes along the RG-ows154
and which coincides with the Virasoro central charge c at xed points.”155

It takes the formµ d dµ C(µ, ?) ? µ ? d d( µ ? ) C( µ ? , 1) = ? d d? C(?, 1) = -?(i, ?)g(i, j)?(j, ?)156
where the Calan-Symanzik ?-function at xed point is independent of ? and takes the primitive value [30] 6157
LambertW (6) .158
With the stress energy-tensors ?(z) ? T z,z and ?(z) ? T z,z the C-function and the metric write [31,33]C = -159

1 2? real surface dz ? dz < ?(z) ?(z) > c | IR(T LRS limit) (3.5)160

3



8 LONDON

andg (z,z) = 6? 2 µ 4 < ?(z) ?(z) > c | IR(T LRS limit) ,161
London Journal of Research in Science: Natural and Formal162
where the subscript c at the bracket indicates connected collerator contributions. µ is an arbitrary inverse163

distance inherent to the construction of the TLRS test function as a partition of unity with a dimensionless164
argument (cf footnote 5). The elds ? i (x) originate from local coupling sources ? i (x).165

Let us consider the correlator of two stress tensors on the plane in the TLRS context [31] < T ?,? (x)T ?,?166
(0) >= ? 3 ? 0 dµC(µ) d 2 pf (p 2 ) (2?) 2 exp(?px) (g ?? p 2 -p ? p ? )(g ?? p 2 -p ? p ? ) p 2 + µ 2 .167

We are only left with the unknown scalar function of the mass scale µ, the spectral density [32] C(µ). Its168
properties have to comply to the following requirements:169

(i) Reexion positivity of the euclidean eld theory, i.e. unitarity of the Hibert space, implies C(µ) ? 0, (ii) Due170
to dim(T ?? ) = 2 the spectral density is a dimensionless measure of degrees of freedoom, (iii)The form of C(µ)171
in a scale invariant eld theory is completely xed by it dimensionality. Since dµC(µ) is dimensionless one may not172
exclude C(µ) ? c µ . This IR divergence at µ = 0 is fully understood in the TLRS context [7,12] as long as the173
scaling limit to 1 of the test fuctions is not taken too early.Indeed the correlator is 6 < ?(x)?(0) > = c? 3 ? 4 |x|174
? 0 dµ µ f (µ 2 ) d 2 pf (p 2 ) (2?) 2 exp(?p.x) p 2 + µ 2 , = - c 12? ln(? 2 )? 4 |x| [? E + ln( ?|x| 2 )], = 1 4?175
ln(? 2 ) 2c |x| 4176

(iv) Conformity with conformal invariance is exibited through the 1 |x| 4 dependence in agreement with the177
results of [18](Eq.( ??6)) for < 0|T (z)T (w)|0 >. The study of the central charge C from Eq.(3.5) on a 2d-curved178
manifold [34] has established the general validity of Zamolodchikov c-theorem. It is sucent, for our purpose, to179
consider only a at real surface with coordinate parametrization {z, z} = ? exp(±??) which leads to 7 , 8 6 It is180
always possible to write the initial PU-test function regulating the p-integral asf 2 (p 2 ) ? f (p 2 )f (p 2 + µ 2 )181
? f (p 2 )f (µ 2 ), for, in the UV-limit, f (p 2 )f (p 2 + µ 2 ) ? f 2 (p 2 ) ? f (p 2 )182

, whereas in the IR-limit the remaining f (µ 2 ) function just validates the corresponding integral. 7 Note183
that in the initial {z, z}-integrals the factor is 1 |z-z| 4 so that the ?-integral is on the variable v = ? 2 sin 2184
(?), hence the independent factorization of the remaining ?-integrals with the appearance the ubiquitous 1 12185
factor [18](eq.56). 8 The TLRS analytic evaluation of g(v 2 ) is proportional to the dierence of step-functions186
[16,32].The nal v-integration is then trivial, after Hadamard substractions of diverging contributions in ln(?),187
leaving the ln(? 2 ) factor. [?(v -x11) -?(v -x12)], with x11 = (? 2 ) ( 1 ? ) , x12 = (2? 2 ) ( 1 ? )188
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(?) = - 1 32 2? 0 d(?) sin 2 (?) ? 0 d(v) f (v 2 ) v 2 = 1 32 2? 0 d(?) sin 2 (?) ? 0 d(v) d dv ( 1 v )f (v 2 ) = -190
1 32 2? 0 d(?) sin 2 (?) ? 0 dv v g(v 2 ) with g(v 2 ) = d dv f (v 2 ) = - 1 32 ln(? 2 )lim ??0 { 1 ? ? 2 -? ?191
d(?)[ 1 sin 2 (?) + 1 cos 2 (?) ]} = 1 12 ln(? 2 ) (3.6)192

It is plain to see that this result is in agreement with the observation about the unicity of the solution, up to193
to an arbitrary constant (here ln(? 2 )), of ”Cayley’s identity” known as the ”Schwarz derivative” [18].194

Recently J.F. Mathiot established that, within general arguments valid in the TLRS framework, the trace of195
the energy-momentum tensor in 4-dimensions does not show any anomalous contribution even though quantum196
corrections are considered [35]. It is then our concern to turn now to the determination of the critical dimension197
D cr for the absence of the overall conformal anomaly with p 2 and p 4 divergences of the Poliakovtensor treated198
in the TLRS formalism(cf Appendix A). As mentioned after Eq.(3.4) the elimination of diverging contributions199
by counter-terms just leads to the evaluation in keeping with the ndings of [19], that is D cr = 26 . However200
with TLRS the situation is dierent as shown in Appendix A. The surviving initial Poliakov-term comes with201
extra TLRS ?-independent components. The immediate issue is then the fate of the D cr = 26 value under these202
additional TLRS terms 9 .Following Poliakov’s analysis [19] a direct calculation of ?203

–|–(q, ?) shows explicitly the critical value D cr = 4, as detailed in Appendix B. Consider now the204
diagonalization of the normalized matrix ? ab|cd (q) with a Lagrange parameter ? in relation to the stress-205
energy constraint T ab = 0. At the value D cr = 4 ? is completely xed, indicating that reparametrizations of206
the world-sheet and conformal rescaling allow to fully x g ab to anything wanted.207

As a nal additional observation it is instructive to consider the string description for the VVA-anomaly [22]208
versus its direct calculation with TLRS [16,17]. In the string treatment of the massless case (cf Eq.(6.44) of [22])209
”explicit divergences are made of a dierence of two tadepoles type and hence do not contribute in dimensional210
regularization, whereas for the remaining terms integrations are elementary, and the result is, using Î?”-function211
identities, easily identied to the standard result for the massless QED vacuum polarization”. In TLRS the212
calculation is directly in dimension D = 4 with the IV. FINAL REMARKS usual ? 5 and all contributions are213
either null or nite: a simple bookeeping leads then to the standard VVA-anomaly without further ado. The TLRS214
procedure does provide a very clear and coherent picture. All known invariance properties, besides those of the215
VVA-anomaly, are preserved ??1315]. It is a direct consequence of the fundamental properties of TLRS. As an216
”a-priori” regularization procedure, it provides a well dened mathematical meaning to the local Lagrangian we217
start from in terms of products of OPVD at the same space-time point. It also yields a well dened unambiguous218
strategy for the calculation of elementary amplitudes, which are all nite in strictly 4-dimensional space-time and219
with no new non-physical degrees of freedom nor any cut-o in momentum space.220

In summary the strategy developped here was based on the passage from rstquantization to second quantization221
of the bososnic string. It is characterized by the introduction of the notion of L.Schwartz’s Pseudo-Functions222
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[8](cf Eq.(3.1)) with their dilatation scale dependences. This result is at variance wih the usual dilatation-scale223
independant Zeta-fuction evaluation of the discrete sum on inverse quantum n of rstquantized space-time objects.224
Actually it is easy to see that the standard evaluation of the Zeta-function through normal Eulers’integral in the225
integration interval (0, ?) should be considered as the limit ? ? 0 of the same integral in the interval (??, ? 2 ?226
), thereby collecting rst from the logarithmic term the contribution ln( ? 2 ? ) and not the value ?(-1) = - 1 12 .227

The main conclusion is then that String Theory in the OPVD picture reduces to Finite Quantum Field Theory,228
directly in 4-dimensions with no trace anomaly of the energymomentum tensor , and in the limit where the tension229
along the string becomes innite. 1 2 3 4

31

Figure 1: 31 ©

33

Figure 2: 33 ©
230

1 Finite Quantum-Field Theory and the Bosonic String Formalism: A Critical Point of View Volume 23 | Issue
8 | Compilation 1.0 © 2023 Great Britain Journal Press

2 given by Eq.(A.9) of Appendix A.London Journal of Research in Science: Natural and Formal
3 Volume 23 | Issue 8 | Compilation 1.0 © 2023 Great Britain Journal Press
4 ©

5



8 LONDON

Figure 3: C
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