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Basics of scalar and vector Finite Quantum Field Theories are recalled, stressing the importance of the

quantization of classical physical fields as Operator-Valued- Distributions with specific fast decreasing

test functions of the coordinates. The procedure respects full Lorentz and symmetry invariances and,

due to the presence of test functions, leads to finite Feynman diagrams directly at the physical

dimension D = 2.4. In dimension 2 it is only with such test function that the canonical quantization of

the massless scalar field is found to be fully consistent with the most successfull Conformal Field

Theoretic approach, pioneered by Belavin, Polyakov and Zamolodchikov in the early 1980's. The

question is then raised how Poliakov's wordline path integral representation of the relativistic string

could possibly lead tofinite Feynmann diagrams. The natural way of inquiries is through the extension

of the string formalism with classical convoluted coordinates leading then to Operator-

Valued-Distributions and thereby to Finite Quantum Field Theories. It is shown that in the process

some age-old certitudes about quantized strings are somewhat jostled.
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ABSTRACT

I. INTRODUCTION

Finite Quantum Field Theories (FQFT) originate from the early causal and �nite

approach of Bogoliubov-Epstein-Glaser (BEG−CSFT ) [1�7]. The inital steps are based

on the early recognition that, in general, �elds are not regular functions in the usual

sense but distributions [8, 9]. However the setting up of a Lagrangian formalism in the

QFT context encounters products of �elds as distributions at the same space-time point,

which are ill-de�ned and the later sources of crippling divergences. Past QFT history

essentially deals with the search for counter-terms cancelling these anoying divergences.

On the opposite the BEG− CSFT approach under the forms of Refs. [6, 7] aims from

the start at a Lagrangian formulation in keeping with the basic underlying classical

di�erentiable structure of the space-time manifold. The taming of these divergencies

involves regularization procedures which ought to preserve, to start with, the symmetry

principles of the Lagrangian. Using a naïve cut-o� for instance is known to violate

Lorentz and gauge invariances, whereas Dimensional Regularization (DR) [10] and

that of Ref. [7] -dubbed TLRS here after- do preserve these fundamental symmetries.

The two procedures have in common the distinctive aspect of their implementation
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Basics of scalar and vector Finite Quantum Field Theories are recalled, stressing the importance of

the quantization of classical physical fields as Operator-Valued- Distributions with specific fast

decreasing test functions of the coordinates. The procedure respects full Lorentz and symmetry

invariances and, due to the presence of test functions, leads to finite Feynman diagrams directly at

the physical dimension D = 2..4. In dimension 2 it is only with such test function that the canonical

quantization of the massless scalar field is found to be fully consistent with the most successfull

Conformal Field Theoretic approach, pioneered by Belavin, Polyakov and Zamolodchikov in the

early 1980's. The question is then raised how Poliakov's wordline path integral representation of

the relativistic string could possibly lead tofinite Feynmann diagrams. The natural way of

inquiries is through the extension of the string formalism with classical convoluted coordinates

leading then to Operator- Valued-Distributions and thereby to Finite Quantum Field Theories. It is

shown that in the process some age-old certitudes about quantized strings are somewhat jostled.



prior to the construction of the Lagragian density. The use of DR does not however

address directly to the origin of these divergencies but just avoids them in going to an

hypothetical space inD = 4−ϵ dimensions. TLRS was developped in Ref. [11,12]. Since

the early applications of this scheme [13,14] the calculation of radiative corrections to the

Higgs mass [15] and the treatment of the axial anomaly [16,17] are relevant illustrations

of the practical use of the TLRS procedure in the D = 4 context. It was shown

recently how TLRS solves the long-standing consistency problem [18] encountered

between EqualTime (EQT) and Light-Front-Time (LFT) quantizations of bosonic two-

dimensional massless �elds. Our purpose here is to confront the �ndings of [18] with

the standard bosonic string theory approach of [19, 20] and elaborate on the values of

the critical dimension for the cancelation of the conformal anomaly.

II. THE MATHEMATICAL SETTING

2.1. Classical wave equations

To the original classical �eld-distribution ϕ(x0, x1) is associatted a translation-

convolution product Φ(ρ) built on a rapidly decreasing test functions ρ(x0, x1),

symmetric under re�exion in the variables x0 and x1. In Fourier-space variables

this linear functional can be written as an integral with the proper bilinear form

≪ p, x ≫= paga,νx
ν (ga,ν = diag{1,−1})

(Φ ∗ ρ)(x0, x1) =

∫
dp0dp1
(2π)2

e−ı≪p,x≫ϕ̃(p0, p1)f(p
2
0, p

2
1),

where ϕ̃(p0, p1) (resp. f(p20, p
2
1)) is the Fourier-space transform of ϕ(x0, x1) (resp. of

ρ(x0, x1)). Hereafter Φ(x0, x1) will stand for (Φ ∗ ρ)(x0, x1).

The wave-equation for the classical convoluted distribution in space-time variables is

obtained from the hyperbolic partial di�erential equation (HPDE)

□Φ(x0, x1) =
[
∂2
x0 − ∂2

x1

]
Φ(x0, x1) = 0. (2.1)

A solution of the Cauchy problem in the sense of convolution of tempered distributions

is nothing else than D'Alembert's (1717− 1783) solution. It can be written as

Φ(x0, x1) =
1

2π

∫
d2pδ(p20 − p21)χ(p0, p1)e

−ı≪p,x≫f(p20, p
2
1), (2.2)

with χ(±|p1|, p1) = χ±(p1) . Canonical quantization of the zero mass scalar

quantum operator valued-distribution (OPVD) �eld Φ̂(x0, x1) proceeds from Eq.(2.2)

via the correspondance, in terms of creation and annihilation operators, {χ−(p) ↷
a†(p), χ+(p) ↷ a(p)}, with commutator algebra [a(p), a+(q)] = 4πpδ(p−q) and a vacuum

|0> such that a(p) |0>= 0 ∀p. That is
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Φ̂(x0, x1) =
1

4π

∫ ∞

0

dp

p
[a(p)e−ıp(x0−x1) + a†(p)eıp(x

0+x1)]f(p2). (2.3)

Then, one easily evaluates the commutator of two free scalar OPVD to[
Φ̂(x), Φ̂(0)

]
≡ ı∆(x) = − ı

π

∫ ∞

0

dp

p
sin(px0) cos(px1)f 2(p2). (2.4)

This integral is �nite without the test function and the limiting procedure where

f 2(p2) ≡ f(p2) = 1 refers to important mathematical properties of metric spaces

(whether Minskowskian or Euclidean) [18].

Going to light-cone (LC) variables x0±x1 = x± is motivated by Dirac's early observation

that the LC-stability group is maximal: LC-dynamics has much to share with gallilean

dynamics (e.g.relative motion of LC-interacting particles decouples from global center

of mass motion...). However in the LC-variables the nature of the initial Klein-Gordon

equation in Eq.(2.1) is changed to a characteristic initial value problem (CIVP) relative

to the partial-di�erential equation

∂+∂−Φ(x
+, x−) = 0 (2.5)

with initial data on characteristic surfaces

Φ(x+, x−
0 ) = f(x+), Φ(x+

0 , x
−) = g(x−), (2.6)

and the continuity condition

Φ(x+
0 , x

−
0 ) = f(x+

0 ) = g(x−
0 ). (2.7)

At �rst sight the LC-Lagrangian is singular1 : W (x, y) = δ2L
δ[∂−Φ(x)]δ[∂−Φ(y)]

= 0, but the

appearence of a primary contrainst is known to be of no physical signi�cance [21].

1 The Hessian is indentically null

2.2. The ET-LFT consistency problem

Nevertheless the consistency of the solutions in the two reference frames cannot be

established without further insight. This is just the content of Ref. [18], with two main

conclusions:

-On the one hand, full consistency of EQT and LFT quantizations can only be achieved

when �elds are considered as OPVD with partition of unity test-functions f(p+2
) such

that, for the light-cone momentum p+ , limp+→0+
f(p+

2
)

p+
= 0.

-On the other hand operator series in the Discretized-LC-Quantization (DLCQ) �nd

their natural handling of divergences in the substraction scheme embedded in the OPVD

formulation. The net e�ect of the PU-test function is the appearence of its inherent RG-

scale parameter (η).
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Then the LF-formulation and CFT analysis of 2d-massless models are in complete

agreement in their representation of the energy-impulsion tensor in term of in�nite

dimensional Virasoro Lie-algebras.

The motion under consideration here is taking place on a 2d-worksheet embedded in a

D-dimensionnal space. The initial �eld variables are then xa(σ, τ), pa(σ, τ) elevated

to OPVD. A well-de�ned Lagrangian is then obtained in terms these regular �eld

variables Xa(σ, τ), Pa(σ, τ). After dealing with the LC-gauge conditions the equation of

motion for Xa(σ, τ) is just that of Eq.(2.1) with appropriate position and time variables.

Accordingly the sum of the zero-point energies of the �rst quantized string is just

(D−2)
2

∞∑
n
=0

n. The well-known conventional evaluation of this sum is given by the Zeta-

function ζ(s) =
∞∑
n=0

1

ns
with ζ(−1) = − 1

12
. The critical dimension for the absence of the

overall conformal anomaly must then be such as to suppress that one with the cental

charge c = 1 coming from the 2d worksheet analysis and thus obeys (D−2)
2

ζ(−1) = −1,

that is D = 26! However, even though at the same time this reasoning based on Zeta-

function was already under scruteny [24], this critical value survived the long haul!

In the advocated 2d QFT treatment the key role is in the pseudo-function distribution

extension Pf( 1
p2
) of 1

p2
at the origin. It is de�ned by the integral

IN =

∫ ∞

0

d(p2)Pf(
1

p2
)f(p2) =

def
lim
ϵ→0

[

∫ Λ

ξϵ

d(p2)

p2
+

∫ 1
Λ

ϵ
η2

d(p2)

p2
+ 2 ln(ϵ)] = ln(

η2

ξ
) (3.1)

where η is the dilatation-scale inherent to the construction of the test function f(p2)

[7, 14]. The term in ln(ϵ) corresponds to the general Hadamard substraction procedure

to generate a Finite part (F.p.).

III. THE QUANTUM BOSONIC STRING [19, 23_27]

3.1. Equations of motion of the scalar bosonic string in the LC-gauge

3.2. TLRS and the Renormalization Group
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The factor ξ is arbitrary2 with no physical meaning unless explicit symmetry

violations need enforcement. Consider now the identity

IPf(η) =

∫
d2(p)

(2π)2)

f(p2)

p2
≡

∫
d2(p)

(2π)2
(p+ q)2

p2(p+ q)2
f(p2),

=

∫ 1

0

dx

∫
d2(p)

(2π)2
(p2 + q2(1− x)2)

[p2 + q2x(1− x)]2
f(p2),

=
1

4π
(ln(

η2

ξ
)− 1).

(3.2)

This is easy to understand due to the identity in the UV limit of the p-integration where

f [(p+q)2]f(p2) ≡ f2(p2) ≡ f(p2). Moreover the overall O(2) p-invariance implies that

terms linear in p do not contribute to the integral.

Consider then the one loop Feynman diagram in relation to the energy-momentum

tensor of the X-�eld and in the same UV limit3

Πab|cd(q) =
D
8

∫
d2p

(2π)2
ta,b(p, q)tc,d(p, q)

p2(p+ q)2
f [p2]f [(p+ q)2],

=
D
8

∫ 1

0

dx

∫
d2p

(2π)2
ta,b(p, q, x)tc,d(p, q, x)

[p2 + q2x(1− x)]2
f [p2], (3.3)

with

ta,b(p, q) = pa(p+ q)b + pb(p+ q)a − δa,b(p.(p+ q)),

ta,b(p, q, x) = (p− q(1− x))a(p+ qx)b + (p+ qx)a(p− q(1− x))b

−δa,b[p
2 − pq(1− 2x)− q2x(1− x)].

The presence of the test-function f [p2] ensures the existence of this phase-space integral,

which otherwise would exibit divergences when p → ∞ . The common pratice in the

far past was to consider their cancelations by appropriate counter terms. In that case

the only surviving regular contribution to Πab|cd(q) is
4

Πreg
ab|cd(q) =

D
8
(2qaqb − q2δa,b)(2qcqd − q2δc,d)

∫ 1

0

dxx2(1− x)2
∫

d2p

(2π)2[p2 + q2x(1− x)]2

= − Dq
2

M

192π
(δa,b − 2

qaqb
q2

)(δc,d − 2
qcqd
q2

) (3.4)

2 For Gauge Theories ξ is related to the gauge �xing parameter [12].
3 This is the 2-points-function, eq.(9.158), of Poliakov's monograph. A coupling vertex factor would

be ı g
2

2 facdf bcd = ı g
2

2 CAδ
ad.

4 Here qM is with Minkowski's signature opposite to Euclid's one.
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Here, from the embedding of the 2 − d worksheet, D does stand for D − 2. Follwing

sect(3.1) what is at sake is the sum (e.g. Trace) of the eigen-modes of this matrix. It

can be diagonalized by a unitary transformation with a preserved Trace equal to 4. The

result5 is then just the same critical dimension for the absence of the conformal anomaly

5 In the perpective of the analytic continuation of sect.(3.1) it is instructive to note how here this

decomposes as − q2M
4π

(D−2)
2∗8

4
6 ,4 from the trace itself and 1

6 from the �nal x-integration
∫ 1

0
dxx(1−x) = 1

6

cf Appendix B

obtained in the �rst quantization framework, that is Dcr = 26. It is clear then that

the elimination of diverging contributions by counter-terms just leaves the evaluation of

(3.4) in keeping with the �ndings of [19].

However our TLRS formalism shows that this is not the end of the story.Indeed from

examples (3.1,3.2) we observe that diverging integrals in p2 and p4 carry essential

dependencies on the RG-parameter η. Then the complete η-dependence governing the

RG-analysis of the critical equation is concerned with the behaviour of the central charge

under the �ow of the renormalization group (RG). Zamolodchikov realized this as early

as 1986 with his c-theorem [29]:

"There is a function C on the space of unitary 2d-�eld theories that monotonically

decreaes along the RG-�ows and which coincides with the Virasoro central charge c at

�xed points."

It takes the form

µ
d

dµ
C(µ,Λ) ≡ µ

Λ

d

d( µ
Λ
)
C(

µ

Λ
, 1) = η

d

dη
C(η, 1) = −β(i, η)g(i, j)β(j, η)

where the Calan-Symanzik β-function at �xed point is independent of η and takes the

primitive value [30] 6
LambertW (6)

.

With the stress energy-tensors Θ(z) ≡ Tz,z and Θ̄(z̄) ≡ Tz̄,z̄ the C-function and the

metric write [31,33]

C = − 1

2ı

∫
real surface
dz ∧ dz̄ < Θ(z)Θ̄(z̄) >c |IR(TLRS limit) (3.5)

and

g
(z,z̄)

=
6π2

µ4
< ϕ(z)ϕ̄(z̄) >c |IR(TLRS limit),
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where the subscript c at the bracket indicates connected collerator contributions. µ is

an arbitrary inverse distance inherent to the construction of the TLRS test function

as a partition of unity with a dimensionless argument (cf footnote 5). The �elds ϕi(x)

originate from local coupling sources λi(x).

Let us consider the correlator of two stress tensors on the plane in the TLRS context [31]

< Tα,β(x)Tρ,σ(0) >=
π

3

∫ ∞

0

dµC(µ)

∫
d2pf(p2)

(2π)2
exp(ıpx)

(gαβp
2 − pαpβ)(gρσp

2 − pρpσ)

p2 + µ2
.

We are only left with the unknown scalar function of the mass scale µ, the spectral

density [32] C(µ). Its properties have to comply to the following requirements:

(i) Re�exion positivity of the euclidean �eld theory, i.e. unitarity of the Hibert space,

implies C(µ) ≥ 0,

(ii) Due to dim(Tαβ) = 2 the spectral density is a dimensionless measure of degrees of

freedoom,

(iii)The form of C(µ) in a scale invariant �eld theory is completely �xed by it

dimensionality. Since dµC(µ) is dimensionless one may not exclude C(µ) ∼ c
µ
.

This IR divergence at µ = 0 is fully understood in the TLRS context [7, 12] as long as

the scaling limit to 1 of the test fuctions is not taken too early.

Indeed the correlator is6

< Θ(x)Θ(0) > =
cπ

3
∂4

|x|

∫ ∞

0

dµ

µ
f(µ2)

∫
d2pf(p2)

(2π)2
exp(ıp.x)

p2 + µ2
,

= − c

12π
ln(η2)∂4

|x|[γE + ln(
Λ|x|
2

)],

=
1

4π
ln(η2)

2c

|x|4

(iv) Conformity with conformal invariance is exibited through the 1
|x|4 dependence in

agreement with the results of [18](Eq.(56)) for < 0|T (z)T (w)|0 >. The study of the

central charge C from Eq.(3.5) on a 2d−curved manifold [34] has established the general

validity of Zamolodchikov c-theorem. It is su�cent, for our purpose, to consider only a

�at real surface with coordinate parametrization {z, z̄} = ρ exp(±ıθ) which leads to7 , 8

6 It is always possible to write the initial PU-test function regulating the p-integral as f2(p2) ∼
f(p2)f(p2 + µ2) ∼ f(p2)f(µ2), for, in the UV-limit, f(p2)f(p2 + µ2) ≡ f2(p2) ∼ f(p2), whereas in the

IR-limit the remaining f(µ2) function just validates the corresponding integral.
7 Note that in the initial {z, z̄}-integrals the factor is 1

|z−z̄|4 so that the ρ-integral is on the variable

v = ρ2 sin2(θ), hence the independent factorization of the remaining θ-integrals with the appearance

the ubiquitous 1
12 factor [18](eq.56).

8The TLRS analytic evaluation of g(v2) is proportional to the di�erence of step-functions

[θ(v − x11) − θ(v − x12)], with x11 = (η2)(
1
ϵ ), x12 = (2η2)(

1
ϵ ) [16, 32].The �nal v-integration is then

trivial, after Hadamard substractions of diverging contributions in ln(ϵ), leaving the ln(η2) factor.
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C(η) = − 1

32

∫ 2π

0

d(θ)

sin2(θ)

∫ ∞

0

d(v)
f(v2)

v2
=

1

32

∫ 2π

0

d(θ)

sin2(θ)

∫ ∞

0

d(v)
d

dv
(
1

v
)f(v2)

= − 1

32

∫ 2π

0

d(θ)

sin2(θ)

∫ ∞

0

dv

v
g(v2) with g(v2) =

d

dv
f(v2)

= − 1

32
ln(η2)lim

ϵ→0
{1
ϵ

∫ π
2
−ϵ

ϵ

d(θ)[
1

sin2(θ)
+

1

cos2(θ)
]}

=
1

12
ln(η2) (3.6)

It is plain to see that this result is in agreement with the observation about the unicity of

the solution, up to to an arbitrary constant (here ln(η2)), of "Cayley's identity" known

as the "Schwarz derivative" [18].

Recently J.F. Mathiot established that, within general arguments valid in the TLRS

framework, the trace of the energy-momentum tensor in 4-dimensions does not show

any anomalous contribution even though quantum corrections are considered [35]. It is

then our concern to turn now to the determination of the critical dimension Dcr for the

absence of the overall conformal anomaly with p2 and p4 divergences of the Poliakov-

tensor treated in the TLRS formalism(cf Appendix A). As mentioned after Eq.(3.4) the

elimination of diverging contributions by counter-terms just leads to the evaluation in

keeping with the �ndings of [19], that is Dcr = 26 . However with TLRS the situation is

di�erent as shown in Appendix A. The surviving initial Poliakov-term comes with extra

TLRS η-independent components. The immediate issue is then the fate of the Dcr = 26

value under these additional TLRS terms9 .Following Poliakov's analysis [19] a direct

calculation of Π
(4)
−−|−−(q, η) shows explicitly the critical value Dcr = 4, as detailed in

Appendix B. Consider now the diagonalization of the normalized matrix Πab|cd(q) with

a Lagrange parameter ξ in relation to the stress-energy constraint Tab = 0. At the value

Dcr = 4 ξ is completely �xed, indicating that reparametrizations of the world-sheet

and conformal rescaling allow to fully �x gab to anything wanted.

As a �nal additional observation it is instructive to consider the string description for

the VVA-anomaly [22] versus its direct calculation with TLRS [16, 17]. In the string

treatment of the massless case (cf Eq.(6.44) of [22]) "explicit divergences are made of

a di�erence of two tadepoles type and hence do not contribute in dimensional regular-

ization, whereas for the remaining terms integrations are elementary, and the result is,

using Γ-function identities, easily identi�ed to the standard result for the massless QED

vacuum polarization". In TLRS the calculation is directly in dimension D = 4 with the

IV. FINAL REMARKS

usual γ5 and all contributions are either null or �nite: a simple bookeeping leads then

to the standard VVA-anomaly without further ado. The TLRS procedure does provide

9 given by Eq.(A.9) of Appendix A.
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a very clear and coherent picture. All known invariance properties, besides those of

the VVA-anomaly, are preserved [13�15]. It is a direct consequence of the fundamental

properties of TLRS. As an "a-priori" regularization procedure, it provides a well de�ned

mathematical meaning to the local Lagrangian we start from in terms of products of

OPVD at the same space-time point. It also yields a well de�ned unambiguous strategy

for the calculation of elementary amplitudes, which are all �nite in strictly 4-dimensional

space-time and with no new non-physical degrees of freedom nor any cut-o� in momen-

tum space.

In summary the strategy developped here was based on the passage from �rst-

quantization to second quantization of the bososnic string. It is characterized by the

introduction of the notion of L.Schwartz's Pseudo-Functions [8](cf Eq.(3.1)) with their

dilatation scale dependences. This result is at variance wih the usual dilatation-scale

independant Zeta-fuction evaluation of the discrete sum on inverse quantum n of �rst-

quantized space-time objects. Actually it is easy to see that the standard evaluation

of the Zeta-function through normal Eulers'integral in the integration interval (0,∞)

should be considered as the limit ϵ → 0 of the same integral in the interval (ξϵ, η
2

ϵ
),

thereby collecting �rst from the logarithmic term the contribution ln(η
2

ξ
) and not the

value ζ(−1) = − 1
12
.

The main conclusion is then that String Theory in the OPVD picture reduces to Finite

Quantum Field Theory, directly in 4-dimensions with no trace anomaly of the energy-

momentum tensor , and in the limit where the tension along the string becomes in�nite.
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