

Electrochemical Obtaining of Thin Tellurium Coatings from Chloride-Sulphate Solutions

3

Received: 1 January 1970 Accepted: 1 January 1970 Published: 1 January 1970

5

6 Abstract

7

Index terms—

9 1 I. INTRODUCTION

10 In recent years, with the development of semiconductor technology, the need for tellurium has increased sharply.
11 In this regard, research aimed at studying the electrodeposition of tellurium from various electrolytes is of great
12 scientific and practical interest [1][2][3][4][5]. Tellurium has a number of specific properties. As the purity level
13 increases, new properties are revealed, the scale and specificity of their application are expanded. In expanding
14 the field of application there is a need for intensive research into the chemical and physico-chemical properties as
15 well as the technology for obtaining pure and ultrapure tellurium and its compounds.

Tellurium is mainly used in semiconductor technology, in instrument engineering, in the chemical and metallurgical industries [6][7][8][9][10][11]. Unlike other semiconductors, tellurium easily melts and evaporates; therefore, semiconductor films which are necessary in modern microelectronics can be obtained from it without any particular difficulties. It should be noted that pure tellurium is rarely used as a semiconductor; metal tellurides are more common. Tellurium is used in the production of lead alloys with increased plasticity and strength (used, for example, in cable production). When introducing 0.05% tellurium, lead losses during dissolution under the influence of sulfuric acid are reduced by 10 times, and this is used in the production of lead-acid batteries. Production of lanthanide tellurides, their alloys and alloys with metal selenides for manufacturing thermoelectric generators with very high (up to 72-78%) efficiency will be very important in the coming years, that will allow to use them in the energy sector and automotive industry.

26 London Journal of Research in Science: Natural and Formal

As have been well known from the literature [12][13][14], acidic electrolytes are the best tellurium electrolytes [15][16][17][18][19][20]. During electrolysis from acidic tellurium-containing solutions, depending on the electrolysis condition and electrolyte composition, coarse-crystalline or fine-grained tellurium precipitates are deposited on the cathode. The high positive potential of the Te/Te 4+ system and good solubility of TeO₂ and TeCl₄ in hydrochloric acid solutions are very favorable for the electrolytic extraction of pure tellurium. In this work, chloride-sulfate electrolyte was used to obtain tellurium semiconductor coatings. The choice of chloride-sulfate electrolyte was explained by the fact that high-quality tellurium deposits can be obtained from this electrolyte, while high-quality tellurium films cannot always be obtained from an alkaline electrolyte. In addition, precipitates obtained from chloride baths always contain 2% chlorine in the form of TeCl₂, the content of which increases with the increase in the acidity of the solution and in the current density. Also, preliminary experiments have shown that high-quality tellurium films can be obtained from chloride-sulfate electrolyte even at very low concentrations of tellurium in the electrolyte. This is very important when co-deposition tellurium with more electronegative metals such as bismuth, antimony, cadmium, rhenium. At low concentrations of tellurium in the electrolyte, its deposition is accompanied by high polarization, which causes the tellurium deposition potential to shift to the deposition potential of more electronegative metal and thus creates favorable conditions for the co-deposition of these metals. Therefore, in this case, the study of the kinetics and mechanism of tellurium deposition focused on those factors that contribute not only to high-quality precipitation, but also significantly shift the potential of the more noble metal to the negative side (or deposition of the more noble metal is accompanied by high polarization). For this purpose the cathodic reduction of Te(IV) in chloride-sulfate electrolyte on Pt and Te electrode was investigated. The present work was carried out in order to find out the possibility of obtaining by

3 III. EXPERIMENTAL PART

47 electrochemical method tellurium coatings during electrolysis from chloride-sulfate electrolyte. The investigations
48 were carried out in solutions containing (mol/l): 0.01 -0.08 TeO₂ + 1.5H₂SO₄ + 1.5HCl + 0.01 -0.08 (NH₄)₂SO₄ + 1.0 gelatin.
49

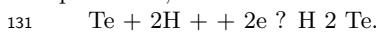
50 2 II. METHODS

51 Platinum electrode with a visible surface of 0.07 cm² was used as a working electrode. The three-electrode
52 cell contained investigated electrode, an auxiliary platinum electrode with an area of 4 cm², and silver-silver
53 chloride reference electrode. All potential values are given relative to this electrode. The working electrodes were
54 washed with alcohol and water. Current-voltage curves were recorded without stirring. The deposition of films
55 for investigation of structure and composition was carried out on Pt, Cu, and Ni substrates with an area of 2.0
56 cm². The working temperature during electrodeposition was 75°, the deposition time was 30-60 minutes. After
57 deposition, the samples were washed with distilled water. pH value was measured on instrument AZ 86551 and
58 in a solution of the composition (mol/l): 0.01 -0.08 TeO₂ + 1.5H₂SO₄ + 1.5HCl + 0.01 -0.08 (NH₄)₂SO₄
59 + 1.0 gelatin.

60 The study has been carried out from a chloride-sulfate solution containing tellurium oxide. The kinetics of
61 the processes was explored using measurements by the method of cyclic voltammetry on IVIUMSTAT. The films
62 were obtained in galvanostatic mode without electrolyte stirring.

63 3 III. EXPERIMENTAL PART

64 Usually, after immersion of the Te-electrode in a chloride-sulfate solution for 30 minutes, the electrode potential
65 takes the constant value equal to +0.5 ± 0.05 V, which does not change by change in concentration of Te in the
66 solution. However, in the case of a platinum electrode, the stationary London Journal of Research in Science:
67 Natural and Formal potential has a value of +0.36 V and within 30 minutes takes the value +0.56 V. When
68 establishing a stationary potential, the main role is played not by the equalization of the concentration ratios in
69 the cathode layer, but by the equilibrium between the electrode surface and a solution, which are caused by the
70 presence of a film of oxide and insoluble tellurium compounds on the cathode surface. It is more likely that the
71 insoluble TeCl₂ salt plays the main role in the contamination of the cathode surface, because tellurium oxide
72 compounds are readily soluble in these solutions.


73 As can be seen from fig. 1, the forward and reverse branches of the polarization curves differ significantly. The
74 observed hysteresis on PS can be easily explained if we assume that tellurium oxide compounds existing on the
75 surface are reduced during cathodic polarization and the surface of tellurium electrode is in an active state. The
76 presence of hysteresis on polarization curves in this case may be due to the semiconducting nature of tellurium
77 itself. Usually, the rate of electrode reaction on a semiconductor surface depends not only on the concentration
78 of charge carriers. The more active manifestation of the semiconducting properties of tellurium in the field of
79 relatively high cathodic polarization can be explained as follows. It is known that tellurium oxide compounds are
80 electron donors, i.e. source of electrons generation. Since with increasing cathodic polarization there is a gradual
81 reduction of tellurium oxide compounds, it is easy to see that the donor levels and related electron generation
82 centers also disappear. As a result, the discharge of tellurium ions at the cathode is difficult, the rate of the process
83 drops sharply, and the polarization curve shifts towards negative potentials. Therefore, in this case, when studying
84 the kinetics and mechanism of tellurium deposition, the main attention was paid to those factors that contribute
85 not only to the production of high-quality precipitation, but also significantly shift the potential of a more noble
86 metal to the electronegative side. Therefore, a more detailed study of tellurium electrodeposition patterns from
87 the selected electrolyte was required, knowledge of which would help to choose the optimal conditions for the
88 co-deposition of tellurium with other metals. For this purpose, preliminary experiments were carried out to study
89 the effect of various complexing agents and surfactant additives on the rate of the cathodic process and on the
90 quality of the obtained precipitates from different acid concentrations. The highest quality precipitates were
91 obtained from an electrolyte containing ammonium sulfate and gelatin. Therefore, most of the experiments were
92 carried out with (NH₄)₂SO₄, which ensured the stability of the electrolyte and made it possible to create
93 an increased concentration of the complexing agent in the electrolyte. Below are the main results of polarization
94 measurements obtained by using the specified electrolyte. With the increase in the concentration of HCl in
95 the electrolyte from 0.5 mol / l to 4 mol / l, the cathodic deposition of tellurium becomes easier (Fig. 1), the
96 polarization curves shifts to the positive direction. Thus, in this case, it is logical to assume that with an increase
97 in the concentration of HCl in the solution, the dissolution of partially hydrolyzed tellurium ions occurs, and at
98 2-3 mol/l of HCl, TeCl₄ is formed, which dissociates well into ions, which causes the polarization curves to shift
99 in the positive direction. The same pattern with a change in polarization curves in solutions containing up to 3
100 mol / l HCl was observed in [12][13][14][15][16][17][18][19][20][21][22][23] ??24].

101 London Journal of Research in Science: Natural and Formal However, in more acidic solutions (>4 mol / l
102 HCl), with an increase in the concentration of hydrochloric acid, the polarization curves shifts to the negative
103 side. This is probably due to the change in the nature of complex ions of tellurium with chlorine. According
104 to [19], in the concentration range of 0.1-0.05 mol/l HCl, the potential-determining ion is Te(OH)Cl₂, and at
105 HCl<5 mol/l -Te(OH)₂Cl₂. Hence, we can conclude that the composition of the solution has a significant
106 effect on the kinetics of tellurium deposition, which is mainly determined by the state of tellurium-containing

107 ions in the solution. With an increase in the concentration of H_2SO_4 in the solution, the equilibrium potential
108 of tellurium slightly shifts to the negative side, and the cathodic deposition of tellurium occurs at a significant
109 negative potentials. Moreover, the increase in polarization with an increase in the current density is much stronger
110 and probably due to the higher strength of the sulfate complex than the tellurium chloride complex. It should be
111 noted that the high polarization during deposition of tellurium from the chloride-sulfate electrolyte is associated
112 with the previous chemical reaction of $TeO_2 + 2H^+ + 2e^- \rightarrow Te + H_2O$ dissociation: $TeO_2 + 2H^+ + 2e^- \rightarrow Te + H_2O$ + $4Cl^-$

113 In cathodic reduction, the dissociation product $TeO_2 + 2H^+ + 2e^- \rightarrow Te + H_2O$ is directly involved. Figure 2 (a) shows the
114 cathodic polarization curves recorded at different concentrations of tellurium in solution. It can be seen from
115 the curves that with an increase in the concentration of tellurium dioxide in the electrolyte, the rate of tellurium
116 extraction at the cathode increases, the potential shifts towards positive values. At a concentration of 0.01
117 -0.07 mol/l TeO_2 , the cathodic process is characterized by the occurrence of a wave. At a potential of +
118 0.3V, the wave appears on the polarization curves and the cathode surface is covered with a layer of elementary
119 tellurium. The value of i_{lim} is directly proportional to the concentration of tellurium in the electrolyte (Fig. 2
120 b). This shows that at the indicated concentration of tellurium in the electrolyte, the nature of the tellurium-
121 containing ions participating in the cathodic process does not change. When i_{lim} is reached, due to a decrease
122 in the surface concentration of London Journal of Research in Science: Natural and Formal tellurium ions, the
123 electrode potential shifted to the negative side, reaching a value at which hydrogen is released. We assume that
124 initially the electrode process is determined by the reaction: $[Te(OH)_2Cl_4]^{2-} + 2e^- \rightarrow [Te(OH)_2]^{2+} + 4Cl^- + [Te$
125 $(OH)_2]^{2+} + 4e^- + 2H^+ + Te + 2H_2O$

126 According to [8][9][10][11], the overall reaction occurs in stages, since the rate-determining stage is the receiving
127 of the last electron: The cathodic polarization curve has three sections. Section I is due to the reduction of
128 tetravalent tellurium to the elementary state. In the area where the wave appears, the release of powdery tellurium
129 is observed. From a potential of +0.28 V, the wave falls, and then rises again (II section). Perhaps, in these
130 potentials, TeO_2 is formed on the electrode surface.

132 Section III of the polarization curve is due to the vigorous evolution of hydrogen, which occurs according to
133 the reaction: $Te + 2H^+ + 2e^- \rightarrow Te + H_2$

134 The resulting Te^{2-} ions diffuse from the cathode surface, meeting with $[Te(OH)_2]^{2-}$ ions, form elementary
135 tellurium, and disproportionation reaction occurs in the solution according to the equation: $Te + 2Te^{2-} \rightarrow 3Te$

136 since the possibility of a cathodic reaction in concentrated solutions is much greater than in dilute solutions.
137 At more positive potentials ($<0.3 \text{ V}$), anodic oxidation of tellurium occurs. The large potential difference between
138 the cathodic reduction and anodic oxidation waves indicates that the tellurium deposition reaction is irreversible.

139 As it's known, during electrolysis, metal ions, before entering the crystal lattice of the precipitate, go through
140 a number of successive stages, each of which proceeds at a certain rate. The slowest stage limits the rate of
141 the processes in general. The electrodeposition of tellurium is significantly affected by the temperature of the
142 electrolyte. As the experiments have shown, the temperature has a significant effect on the rate of the process
143 under study. In the studied temperature range, the polarization curves have waves. As the London Journal of
144 Research in Science: Natural and Formal 8 temperature rises, the rate of the electroreduction reaction increases,
145 which is accompanied by increase in wave height. It was found that with the increase in temperature, the content
146 of tellurium in the precipitate also increases, and fine-crystalline precipitates are obtained at the cathode. To
147 determine the nature of cathodic polarization during tellurium deposition, on the basis of the data in Fig. 4, the
148 $lg i_{lim} - 1/T$ graphs were plotted at various constant values of the cathodic potential. From the slope of these curves,
149 we find the effective activation energy. Data provided in Fig. 4 show that the logarithmic rate dependence of the
150 electrode process ($lg i_{lim}$) on $1/T$ in the potential range 0.50 to 0.20 V is linear. With the increase in the cathodic
151 potential, the slope of the curves gradually decreases; in the range of cathodic potentials 0.2 to 0.1 V, it remains
152 almost unchanged. Based on the results, it can be concluded that at cathodic potentials up to 0.2 V, the process
153 of tellurium electrodeposition from a chloride-sulfate electrolyte is accompanied mainly by chemical polarization
154 and the effective activation energy at these potentials reaches 40 kJ/mol, and at a potential of 0, 30-0.25 V the
155 process is controlled by mixed kinetics. Thus, the totality of the obtained results give reason to consider that the
156 rate of the cathodic process at the initial stages is limited by chemical difficulties and determined by diffusion
157 only in the zone of limiting current.

158 As can be seen from figure 6, one wave is observed on the cyclic polarization curves, which shows the oxidation
159 of tellurium. These data are consistent with the references presented in [9][10]. We have also studied the effect of
160 the electrode substrate (Pt, Ni) on the mechanism and quality of tellurium deposition.

161 On the figure 7 are presented the cyclic polarization curves of cathodic deposition and anodic dissolution of
162 tellurium on various (Ni) electrodes in solutions containing (mol/l): $TeO_2 + 2H^+ + 2SO_4^{2-} + 2HCl$. Scan speed ,
163 temperature 348 °K.

164 It can be seen from the figure 7 that the cyclic polarization curves of tellurium on a nickel electrode do not
165 differ significantly from the cyclic polarization curves obtained on a platinum electrode. However, oxidation on
166 the platinum electrode occurs at more positive potentials and the maximum on the nickel electrode is lower
167 than on the platinum one. Thus, according to the experiments the electrolyte with following composition was

3 III. EXPERIMENTAL PART

169 proposed to produce thin tellurium films from chloride-sulfate solutions. Electrolyte composition is as follows
170 (mol/l): 0,01TeO₂ +1,5H₂SO₄ +1,5HCl , i k =1-4 mA/sm² , t=75 0 C, pH=0,5

171 IV. CONCLUSION

172 1. With an increase in the concentration of HCl in the electrolyte from 0.5 mol/l to 4 mol/l, the cathodic
173 deposition of tellurium is facilitated, the polarization curves are shifted to the positive side. Thus, in this case,
174 it can be assumed that with an increase in the HCl concentration in solution, partially hydrolyzed tellurium ions
175 dissolve and at 2-3 mol/l HCl -TeCl₄ is formed, which dissociates well into ions, that causes the polarization
176 curves to shift to the positive side. 2. Therefore, the experiments carried out in solutions containing chloride-
177 sulfate ions show that in the initial stages of the cathodic process the main role is played by chemical difficulties,
178 and at negative potentials of the process they are limited by diffusion polarization. 3. Based on the results, it can
179 be concluded that at cathodic potentials up to 0.2 V, the process of tellurium deposition from a chloride-sulfate
180 electrolyte is accompanied mainly by chemical polarization and the effective activation energy at these potentials
181 reaches 40 kJ/mol, and at a potential 0.30-0.25 V the process is controlled by mixed kinetics. 4. The small
182 value of the effective activation energy (12 KJ/mol) in the range of cathodic potentials (+0.2) -(+0.1) V and its
183 insignificant independence from the potential show that in this case the rate of the cathodic process is limited
only by diffusion of discharging ions to the cathode surface. ^{1 2 3}

1

Figure 1: Fig. 1 :

623

Figure 2: 6 7 23 |

184

¹ Volume 23 | Issue 8 | Compilation 1.0 © 2023 Great Britain Journal Press Electrochemical Obtaining of Thin Tellurium Coatings from Chloride-Sulphate Soluti?ns

² Electrochemical Obtaining of Thin Tellurium Coatings from Chloride-Sulphate Soluti?ns

³ © 2023 Great Britain Journal Press Electrochemical Obtaining of Thin Tellurium Coatings from Chloride-Sulphate Soluti?ns

Figure 3: [

Figure 4: Fig. 2 :

3 III. EXPERIMENTAL PART

3

Figure 5: Fig. 3 :

Figure 6: Fig. 4 :

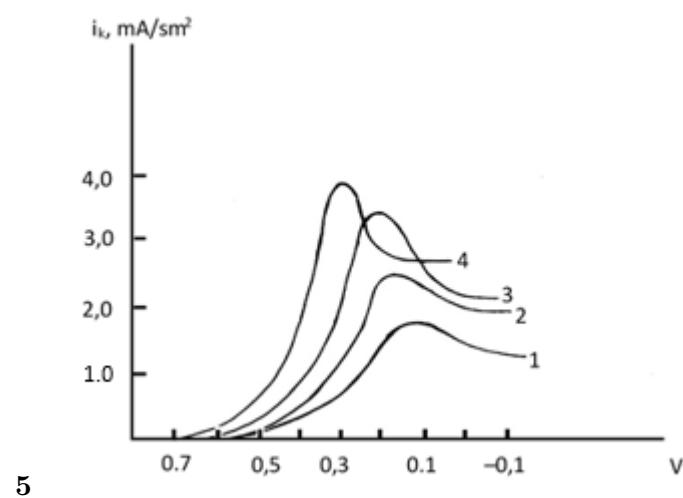
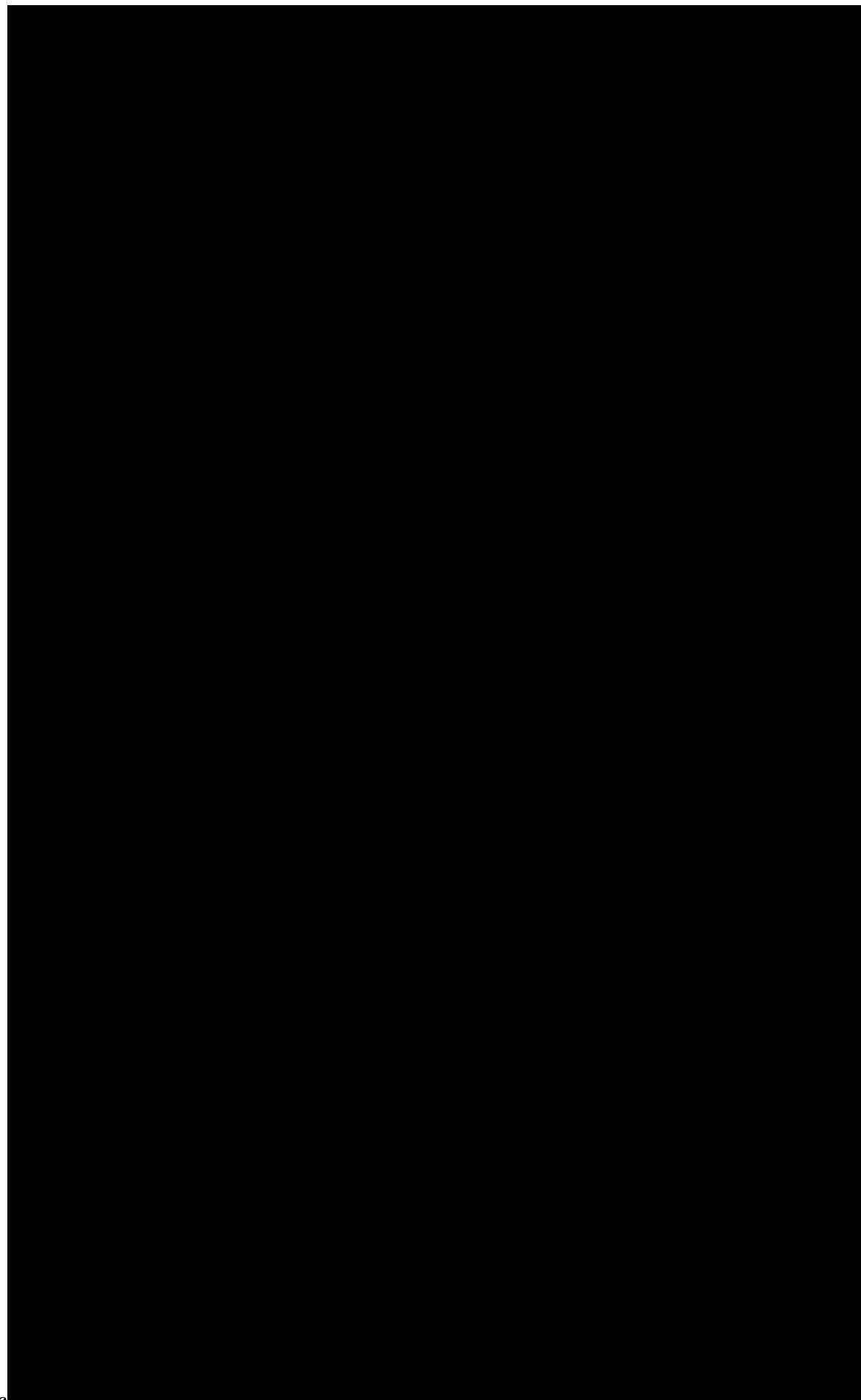



Figure 7: Fig. 5 :

3 III. EXPERIMENTAL PART

© Great Britain Journal Press

Electrochemical Obtaining of Thin Tellurium Coatings from Chloride-Sulphate Soluti?ns

Figure 10:

185 [London Journal of Research in Science: Natural and Formal] , *London Journal of Research in Science: Natural*
186 *and Formal*

187 [Yang et al. ()] 'A new opportunity for the emerging tellurium semiconductor: making resistive switching
188 devices'. Yifei Yang , Mingkun Xu , Shujing Jia , Bolun Wang , Lujie Xu , Xinxin Wang , Huan Liu ,
189 Shuang Yuan , Yuzheng Liu , Lidan Guo , Shukai Wang , Kai Duan , Min Liu , Jing Zhu , Wenrui Pei ,
190 Dameng Duan , Huanglong Liu , Li . 41467-021-26399-1. <https://doi.org/10.1038/s> *London Journal*
191 *of Research in Science: Natural and Formal* 2021. 12 p. 6081. (Nature Communications.)

192 [Rudnik and Sobesto ()] *Cyclic voltammetric studies of tellurium in diluted HNO₃ solutions. Archives of*
193 *metallurgy and materials*, E Rudnik , J Sobesto . 10.2478/v10172-011-0030-z. 2011. 56.

194 [Zhu et al. ()] 'Electrochemical characterization of the underpotential deposition of tellurium on Au electrode'.
195 W Zhu , J Y Yang , D X Zhou , S Q Bao , X A Fan , X K Duan . ?11. P. 3660-13. *Electrochim. Acta* 2007.
196 52.

197 [Ibishev et al. ()] 'Electrochemical reduction of tellurate ion using a high-voltage pulsed discharge'. K S Ibishev , S
198 V Belyaev , N A Kargina , S M Temirgaliev . *Modern methods in theoretical and experimental electrochemistry.*
199 *II International Scientific Conf. Abstracts of reports*, (PLYOS) 2010. (Ivanovo June 21-25. C. 151. (Russian)

200 [Dergacheva et al. ()] 'Electrochemical reduction of tellurium (IV) on solid electrodes in neutral solutions'. M B
201 Dergacheva , V N Statsyuk , L A Vogel . *Electrochemistry* 2001. 37 (6) p. . (Russian)

202 [Alekperov ()] *Electrochemistry of selenium and tellurium. Russian Chemical Reviewer*, A I Alekperov . 1974.
203 Moscow. Russia. 43 p. .

204 [Dergacheva et al. ()] 'Electrodeposition of CdTe films from ammonium chloride buffer electrolyte'. M B
205 Dergacheva , V N Statsyuk , L A Vogel . *Journal.Appl. Chemistry* 2004. 77 (2) p. . (Russian)

206 [El-Khouli et al. ()] 'Electrodeposition of palladium, thallium and tellurium from baths of various compositions'.
207 A A El-Khouli , M A Hafez , I M Kenavi . *Electrochemistry* 2006. 42 (3) p. . (Russian)

208 [Kadyrov and Rasulov ()] 'Electrodeposition of tellurium from sulfate electrolytes in an ultrasonic field'. R K
209 Kadyrov , K R Rasulov . *Electrochemistry* 1972. (2) p. . (Russian)

210 [Salakhova et al. ()] 'Electrodeposition of thin tellurium coatings from chloride-borate electrolyte'. E A Salakhova
211 , F S Novruzova , V A Majidzadeh . *Azerbaijan chem. jour* 2005. (4) p. . (Russian)

212 [Li and Zhang] 'Flexible Tellurium-Based Electrode for High-Performance Lithium-Tellurium Battery'. Yan Li ,
213 Ye Zhang . 10.3390/nano11112903. <https://doi.org/10.3390/nano11112903> *Nanomaterials* 2021 (11)
214 p. 2903.

215 [Munirathnam et al. ()] 'High purity tellurium production using dry refining processes'. N R Munirathnam , D
216 S Prasad , J V Rao , T L Prakash . *Bull. Mater. Sci* 2005. p. .

217 [Bigelis et al. ()] 'Influence of the composition of fluoride electrolytes and the conditions of electrodeposition on
218 some properties of tellurium'. V M Bigelis , G N Kim , O A Abrarov . *J.Electrochemistry. Moscow. Russia*
219 1981. p. .

220 [Bigelis et al. ()] 'Influence of the electrolysis regime on the properties of tellurium coatings obtained from
221 hydrochloric acid baths'. V M Bigelis , G N Kim , L V Navalikhin . ?11. P.1457-1461. *J.Electrochemistry*
222 1982. Moscow. Russia.

223 [Mamedov ()] 'Polarization during the deposition of tellurium from fluoroborate solutions'. M N Mamedov .
224 *Azerbaijan Chem. Journal* 2000. (2) p. . (Russian)

225 [Munirathnam et al. ()] 'Preparation of high purity tellurium by zone refining'. N R Munirathnam , D S Prasad
226 , Sudheer Ch , A J Singh , T L Prakash . *Bull. Mater. Sci* 2002. 2 p. .

227 [Lebed et al. ()] *Production of selenium and tellurium at JSC "Uralelektromed*, A Lebed , S S Boychenko , V A
228 Shunin . 2015. Yekaterinburg: Ural University Press. p. 114. (Russian)

229 [Hageman et al. ()] 'Purification of tellurium to 6N using a multistage vacuum distillation method'. A M
230 Hageman , M J Harrison , N Fritz , T N Krehbiel , R White , J Patenaude , D S McGregor . Proc. of
231 SPIE 2007. p. .

232 [Avetisov et al. ()] *Region of homogeneity of zinc telluride. News of higher educational institutions. Materials of*
233 *electronic engineering*, I Avetisov , Kh , E N Mozhevitsina , A V Khomyakov , R I Avetisov , A Zinovyev , Yu
234 . 2013. 61 p. . (Russian)

235 [Bigelis et al. ()] 'Stationary and equilibrium potentials of tellurium in fluoride-sulfate electrolytes'. V M Bigelis
236 , E M Bykova , O A Abrarov . *London Journal of Research in Science: Natural and Formal* 1976. p. . (J.
237 *Electrochemistry. Moscow. Russia*)

238 [Samuel et al. (2022)] 'Template-free electrochemical deposition of tellurium nanowires with eutectic solvents'. C
239 Samuel , Joshua Perry , Iris White , Nandhakumar . 10.1016/j.electacta.2022.141674. <https://doi.org/10.1016/j.electacta.2022.141674> *Electrochimica Acta* 20 january 2022. 439.

3 III. EXPERIMENTAL PART

241 [Santos and Machado ()] 'Voltammetric and nano gravimetric study of Te underpotential deposition on Pt in
242 perchloric acid medium'. M C Santos , S A Machado . 50. ? 11. P. 2289-2295. *Electrochim. Acta* 2005.

243 [Fishman et al. ()] 'Yerusalim Chick I.G. Study of the electrochemical behavior of tellurium'. V A Fishman , V I
244 Liner , D M Russian)chizhikov , V P Happy , Tellurides M Tellurium . No. 5. 1969. C. 530-533. *Electrochemistry*
245 1966. p. 279. (Nauka)