

CrossRef DOI of original article:

1 Asymptotic Normality of the Encompassing Test Associated to
2 the Linear Parametric Modelling and the Kernel Method
3 for-Mixing Processes

4

5 *Received: 1 January 1970 Accepted: 1 January 1970 Published: 1 January 1970*

6

7 **Abstract**

8

9 **Index terms—**

10 **1 INTRODUCTION**

11 Model selection is a challenging step in statistical modelling. Modelling any data requires characterization of
12 the associated data generating process (DGP). The DGP is unknown and therefore we face several admissible
13 competing models. Model selection consists on selecting a model, which mimics such unknown DGP, from a
14 set of admissible models according to a criterion. One retains the model which makes such criterion optimal,
15 Tibshirani et al. (2015), Ferraty and Hall (2015) and Li et al. (2017). There exist various model selection criteria
16 in the literature when admissible models have fully parametric specification, such as the Wald test, the likelihood
17 ratio test, the Lagrange multiplier test, the information criteria and so on, see Hamilton (1994), Greene (2003)
18 and Hooten and Hobbs (2015). The other case, when admissible models contain simultaneously parametric and
19 nonparametric specifications, seems underdeveloped, Hendry et al. (2008). Encompassing tests appear to be
20 helpful for the latter situation where an encompassing model is intended to account the salient feature of the
21 encompassed model. Therefore, encompassing test can detect redundant models among the admissible models.

22 London Journal of Research in Science: Natural and Formal

23 Encompassing tests are based on two points, that the encompassing model ought to be able to explain the
24 predictions and to predict some mis-specifications of the encompassed model, Hendry et al. (2008). We know
25 that there are various considerations and developments of encompassing tests, we refer readers to Mizon (1984),
26 Hendry and Richard (1989), Gouriéroux and Monfort (1995) and Florens et al. (1996). For an overview on the
27 concept of encompassing tests, see Bontemps and Mizon (2008) and Mizon (2008). Applications of encompassing
28 tests can be found inside the model selection procedure of general to specific (GETS) modelling developed by
29 Hendry and Doornik (1994), Hoover and Perez (1999). For application in real data, see Nazir (2017).

30 Recently, ??ontemps et al. (2008) have developed encompassing tests which cover large set of methods such
31 as parametric and nonparametric methods. Among their results, encompassing tests for kernel nonparametric
32 regression method are established. They provide asymptotic normality of the associated encompassing statistics
33 under the independent and identically distributed hypothesis (i.i.d.). We extend their results by relaxing the
34 independent hypothesis. We then focus on processes with some dependence structures. This extension lies on
35 the generalization of encompassing test to dependent processes.

36 The paper is organized as follows. In section 2, we provide an overview of encompassing test. In section 3, we
37 study the asymptotic behaviors of the encompassing test associated to the linear parametric modelling and the
38 kernel nonparametric method. In last section, we conclude. The encompassing statistic is given by the difference
39 between \hat{M}_2 and \hat{M}_1 scaled by a coefficient a_n . Specification of the encompassing test will depend on
40 the estimation of the regression method: parametric or nonparametric methods.

41 **2 II. ENCOMPASSING TEST**

42 **3 London Journal of Research in Science: Natural and Formal**

43 Let $S = (Y, X, Z)$ be a zero mean random process with valued in $R^d \times R^q$ where $d, q \in \mathbb{N}^*$. For

6 PARAMETRIC MODELLING FOR M1 AND M2

44 $x \in \mathbb{R}$ and $z \in \mathbb{R}$, consider the two models M 1 and M 2 as the conditional expectations $m(x)$ and $g(z)$,
45 respectively. These can be defined as follows: M 1 : $m(x) = E[Y | X = x]$ and M 2 : $g(z) = E[Y | Z = z]$ (2.1)

46 Moreover, the general unrestricted model is given by $r(x, z) = E[Y | X = x, Z = z]$.

47 Following the encompassing test in ??ontemps et al. (2008), we are interested in testing the hypothesis that
48 M 1 encompasses M 2, and then introducing the null hypothesis: $H : E[Y | X = x, Z = z] = E[Y | X = x]$. (2.2)

49 This null states that M 1 is the owner model, and M 2 will be served on validating this statement and is called
50 the rival model. We test this hypothesis H through the following implicit encompassing hypothesis: $H^* : E[E[Y | X = x] / Z = z] = E[Y | Z = z]$. (2.3)

51 1 Kullback-Leiber Information Criterion

52 The following homoskedasticity condition will be assumed all along this work: $V \text{ar}[Y | X = x, Z = z] = 2$
53 . (2.4)

54 Moreover, a necessary condition for the encompassing test relies on the errors of both models where the
55 intended encompassing model M 1 should have smaller standard error than the encompassed model M 2.

56 In general, M 1 or M 1 can be estimated using nonparametric or parametric regression method.

57 We will consider these different situations when the processes (S_n) are dependent. We begin by constructing
58 the encompassing statistic associated to each of these four situations and then discuss their asymptotic behaviors.

60 4 III. ASYMPTOTIC BEHAVIOR OF THE ENCOMPASS- 61 ING STATISTIC

62 We are interested on the asymptotic behavior of the encompassing statistic associated to the null hypothesis M
63 1 EM 2. We can encounter the following four situations: M 1 and M 2 are both estimated parametrically, M 1
64 and M 2 are both estimated nonparametrically, M 1 is estimated nonparametrically and M 2 parametrically and
65 M 1 is estimated parametrically and M 2 nonparametrically. We will consider the kernel regression estimate for
66 nonparametric methods and the linear regression for parametric methods. For both dependent processes, we will
67 study and establish the asymptotic normality of the corresponding four encompassing tests.

68 5 London Journal of Research in Science: Natural and Formal

69 Consider a sample $S_i = (Y_i, X_i, Z_i)$, $i = 1, \dots, n$, which can be viewed as realization of the random process
70 $S = (Y, X, Z)$ with values in \mathbb{R}^3 where $d, q \in \mathbb{N}^*$. We suppose that S_i , $i = 1, \dots, n$ has a joint
71 density f . Moreover, $\rho(\cdot, \cdot)$, $\rho(\cdot | \cdot)$ and $\rho(\cdot)$ will denote the joint, the conditional and the marginal densities
72 of the process (Y, Z) , respectively. That is, for $y \in \mathbb{R}$ and $z \in \mathbb{R}$, $\rho(y, z)$, $\rho(y | z)$ and $\rho(z)$ correspond to the
73 density of the following processes (Y, Z) at point (y, z) , $(Y | Z = z)$ at point y and Z at point z , respectively.
74 Similarly, h will denote the joint, the conditional and the marginal densities of the process (Y, X) , according to
75 the argument that it takes.

76 To get the asymptotic normality of the associated encompassing statistic, we need the following assumptions
77 from Bosq (1998). The first assumption characterizes the dependence structure. Assumption 3.1. (S_t) is β -mixing
78 with $\beta(n) = O(n^{-\beta})$ where $\beta > 2 + 4$

79 β for some positive β .

80 The next assumption collects regularity conditions on the continuity and on the differentiability of the density
81 functions. with ∂^2 denotes any partial derivative of order 2 for ρ . Next, $\sup_{t \in \mathbb{N}} \|\rho(Z_1, Z_t)\| < \infty$ and
82 last, $\rho(\cdot)E[Y_2 | Z_1 = \cdot]$

83 is continuous at z .

84 The last assumption concerns finiteness of the moments of (Y_n, Z_n) . Assumption 3.3. $\|E[Y_1 | Z_1 = \cdot]\| < \infty$
85 $\|E[Z_1 | Z_1 = \cdot]\| < \infty$; $E[\|Z_1 | Z_1 = \cdot\|^2] < \infty$ for some positive β ; $\sup_{t \in \mathbb{N}} \|E[Y_i | Y_j | Z_t = \cdot, Z_1 = \cdot]\| < \infty$ where $i > j$, $i + j = 2$.

86 Throughout this section, we assume the existence of continuous version of the various joint and marginal
87 density functions and of the three conditional means m , g and r . In addition, the square integrability will be
88 assumed.

89 For more precision, $N(\mu, \sigma^2)$ will denote the Gaussian distribution with mean μ and variance σ^2 .

90 We now consider the first case that is the encompassing test when the two models M 1 and M 2 have parametric
91 specification. London Journal of Research in Science: Natural and Formal

93 6 Parametric modelling for M1 and M2

94 Encompassing test for parametric modelling has been developed a lot in the literature. We discuss briefly one
95 parametric encompassing test where models M 1 and M 2 have linear parametric specification. In that case, the
96 two models M 1 and M 2 are given in relation (3.1) with the nesting model $r(x) = \rho(x)$ with $\rho = (E[XX])^{-1}$
97 $E[XY] g(z) = \rho z$ with $\rho = (E[ZZ])^{-1}$ $E[ZY] r(x, z) = \rho w$ with $\rho = (E[WW])^{-1}$ $E[WY] = W$ and $W = (X, Z)$.
98 (3.1)

99 We can get the estimates ρ , ρ and ρ of the parameters ρ , ρ and ρ , respectively, using the sample $S_i = (Y_i, X_i, Z_i)$,
100 Now, testing M 1 EM 2 corresponds

7 to the test of the null hypothesis

¹⁰² H where the conditional mean is just the linear projection. Therefore, the encompassing statistic of the null M

103 1 EM 2 can be written as follows.??,? = ? -?L (?),(3.2)

104 where $\hat{L}(\cdot)$ is an estimate of the pseudo-true value $L(\cdot)$ associated with \cdot on H_1 . Remarking that the
 105 pseudo-true value is defined by $L(\cdot) = (E[ZZ]) - 1 E[ZX]\cdot, \cdot \sim N(0, \cdot^2)$ in distribution as $n \rightarrow \infty$.
 106 (3.3)

107 where? = $V \text{ ar}(Z) - 1 E[V \text{ ar}(Z | X)]V \text{ ar}(Z) - 1$.

¹⁰⁸ For development on this asymptotic behavior of the encompassing statistic, we refer to Gouriéroux Next, we
¹⁰⁹ will study the completely nonparametric case.

110 London Journal of Research in Science: Natural and Formal

8 Nonparametric modelling for M1 and M2

112 We now consider the case where the two models M 1 and M 2 defined in (2.1) are estimated using nonparametric
 113 techniques. To test the hypothesis " M 1 encompasses M 2 ", we build the corresponding encompassing statistic
 114 and establish asymptotic property of such statistic.

115 Considering the functional estimates m_n and g_n of the unknown functions m and g in relation (2.1)
116 respectively, we define the encompassing statistic as follows: $\hat{m}_n(z) = g_n(z) - \hat{m}_n(z)$, (3.4)

117 where $\hat{G}(m|n)$ is an estimate of the pseudo true value $G(m)$ associated with $g|n$ on H , which is defined by $G(m)$
 118 $= E[m | Z = z]$.

Using the sample $S_i = (Y_i, X_i, Z_i)$, $i = 1, \dots, n$, the kernel regression estimates m_n of the function m , and g_n of the function g have the following expressions: $m_n(x) = \frac{1}{nh} \sum_{i=1}^{nh} K_1(x - X_i/h) Y_i$, $g_n(z) = \frac{1}{nh} \sum_{i=1}^{nh} K_1(z - Z_i/h) g_n(z_i)$. (3.5)

123 where h_{jn} and K_j , $j = 1, 2$ are window widths and kernel densities, respectively. The kernel densities satisfy K

124 $j(u) \geq 0$ and $K_j(u)du = 1$ $j = 1, 2, \dots, 6$)
125 We provide in the following, a theorem establishing the asymptotic convergence of the encompassing statistic.

Theorem 3.2. Suppose that assumptions 3.1-3.3 hold. Moreover, suppose that relation (3.6) is satisfied. Then, under H , we get: $nh q(2n) \bar{m}_g(z) \xrightarrow{D} N(0, \frac{1}{2} K^2 \bar{m}_g(u)du)$ in distribution as $n \rightarrow \infty$. (3.7)

Proof of theorem 3.2 The proof of this theorem will be based on the decomposition of the expression of the encompassing statistic into two parts as follows: London Journal of Research in Science: Natural and Formaln

$$q(2n) \cdot m(g(z)) = nh q(2n) (g(n(z)) - m(n(z))) = nh q(2n) (n \sum_{t=1}^K K_2(z - Z_t) h^{2n}) - nh q(2n) (n \sum_{t=1}^K K_2(z - Z_t) h^{2n}) Y_t - nh q(2n) \sum_{t=1}^K K(z - Z_t) h^n - nh q(2n) \sum_{t=1}^K K(z - Z_t) h^n m(n(x_t)) = nh q(2n) n \sum_{t=1}^K K_2(z - Z_t) h^{2n} - nh q(2n) n \sum_{t=1}^K K_2(z - Z_t) h^{2n} (m(x_t) - m(n(x_t))) = C_1 + C_2.$$

$$(3.8)$$

135 The first part C 1 coincides to the kernel regression of the residuals $t = Y t - m(x t)$ onto $Z t$.

When assumptions 3.1-3.3 hold, then under H , we achieved the convergence in distribution of the first part to a normal distribution using Rhomari's result in Bosq (1998). The second part C_2 reflects the limit in probability of the supremum of the difference $m_n(x_t) - m(x_t)$ at $x_t \in R^d$ scaled by $nh^{1/2}n^{-1}$ and its convergence can be derived from the rate of convergence of the uniform convergence of the estimate $m_n(x_t)$ which has been provided by Bosq (1998).

9 Parametric modelling M1 vs nonparametric modelling M2

142 We consider the case that model M 1 is a linear parametric model and M 2 is estimated by kernel nonparametric
 143 technique. Therefore, the hypothesis H will have linear parametric specification.

144 The encompassing statistic associated to the null M 1 EM 2 can be written as follows:??,g (z) = g n (z) -?L (

145 ?)(z),(3.9)

146 where $\hat{L}(\cdot)$ is an estimate of the pseudo-true value $G_L(\cdot)(z)$ associated with g_n on H , which is defined
 147 by $\hat{L}(\cdot)(z) = \hat{E}[X \mid Z = z]$.

148 For the nonparametric specification of M_2 , we consider the estimate \hat{g}_n as the kernel regression estimate
 149 of g given in (2.1). Since the rival model g is estimated using kernel method, the various assumptions on kernel
 150 density and window width will be maintained.

151 Even the process exhibits some dependences, we can still establish the asymptotic normality of the
 152 encompassing statistic defined in relation (3.9). London Journal of Research in Science: Natural and Formal

152 encompassing statistic defined in relation (3.9). London Journal of Research in Science. Natural and Formal
 153 with linear specification and when the bandwidth $h \geq 2n$ satisfy kernel regularity condition, we get: $nh \geq 2n \geq g$
 154 $(z) \sim N(0, \frac{1}{2} K^2 \int u^2 du) \sim N(0, \frac{1}{2} g(z))$
 155) in distribution as $n \rightarrow \infty$.
 (2.18) $S_n(z)$ is the empirical density of the Z_n .

Proof of theorem 3.3 Using similar techniques as previously, we can write the encompassing statistic as follows:

161 **10 Nonparametric modelling M1 vs parametric modelling M2**

162 We consider the owner model M 1 to be estimated using a nonparametric method and the rival model M 2 to
163 be a linear parametric method. Therefore, the encompassing statistic associated to the null M 1 EM 2 is given
164 by: $\chi^2_m = \chi^2(m, n)$, (3.12)

165 where $\chi^2(m, n)$ is an estimate of the pseudo-true value $\chi^2(m)$ associated with χ^2 on H , which is defined by $\chi^2(m)$
166 $= (E[ZZ]) - 1 E[Zm]$.

167 When the estimate of model M 1 is obtained from the kernel regression and the model M 2 is from linear
168 parametric modelling, we summarize the asymptotic results in the following theorem. London Journal of Research
in Science: Natural and Formal ^{1 2 3 4 5 6}

Figure 1: Assumption 3 . 2 .

Figure 2:

169

¹ © 2023 Great Britain Journals Press

² © 2023 Great Britain Journals Press

³ ©

⁴ Great Britain Journals Press

⁵ London Journal of Research in Science: Natural and Formal

⁶ © 2023 Great Britain Journals Press

33

Figure 3: Theorem 3 . 3 .

22

Figure 4: 2 ?(z) K 2 2

170 Funding statement : this work was performed as part of my employment at the Ministry of Higher Education
171 and Scientific Research of Madagascar. London Journal of Research in Science: Natural and Formal

172 Theorem 3.4. Assume that relation ??2.4) is satisfied. When the kernel K_1 and the bandwidth h_1 satisfy
173 the usual regularity condition and when we have one of the following points: Assumption 3.1 holds and the kernel
174 regression estimate m_n and the process (Y_n, X_n) satisfy assumptions 3.2 and 3.3.

175 Then, under H , we get:

176 where $\hat{\theta} = \text{plim}_n \hat{\theta}_n$ $\text{Var}(\hat{\theta}_n) = m_n$.

177 Proof of theorem 3.4 We split the encompassing statistic $\hat{\theta}_n \hat{\theta}_m$ into two parts. The first part yields
178 which gives the asymptotic normality of the theorem, Peligrad and Utev (1997).

179 The second part is

180 . Again, we bound this by taking the supremum with respect to x_i . Thus, F_2 vanishes to zero from the
181 uniform convergence of $m_n(x_i)$, Bosq (1998). This completes the proof of theorem 3.4.

182 We remark that we should be careful about mutual encompassing of both models which concerns the bijection
183 of the pseudo true value function $G(\cdot)$.

.1 IV. CONCLUSION

184 We have considered encompassing test for functional parameters. As stated in Hendry et al. When using kernel
185 method and linear regression as estimator of conditional expectations, we have established asymptotic normality
186 of the encompassing test for dependent processes. These results would be helpfull for analysing non-nested
187 non-parametric and parametric models.

188 [Oxford Bulletin of Economics and Statistics] , *Oxford Bulletin of Economics and Statistics* 70 p. .

189 [Bulletin of Economics and Statistics] , *Bulletin of Economics and Statistics* 70 p. .

190 [Hooten and Hobbs ()] 'A guide to bayesian model selection for ecologists'. M B Hooten , N T Hobbs . *Ecological*
191 *monographs* 2015. 85 (1) p. .

192 [Ferraty and Hall ()] 'An algorithm for nonlinear, nonparametric model choice and Prediction'. F Ferraty , P
193 Hall . *J. Comput. Graph. Stat* 2015. 24 p. .

194 [Bontemps and Mizon ()] C Bontemps , G E Mizon . *Encompassing: concepts and implementation*, (Oxford)
195 2008.

196 [Bosq ()] D Bosq . *Nonparametric Statistics for Stochastic Processes: Estimation and Prediction*, 1998.

197 [Peligrad and Utev ()] 'Central limit theorem for Linear Processes'. M Peligrad , S A Utev . *The Annals of*
198 *Probability* 1997. 25 p. .

199 [Li et al. ()] 'Cross-validated mixed-datatype bandwidth selection for nonparametric cumulative distribution/survivor functions'. C Li , Q Li , J S Racine . *Econometric Reviews* 2017. 36 (6-9) p. .

200 [Hoover and Perez ()] 'Data mining reconsidered: encompassing and the general-to-specific approach to specification search'. K D Hoover , S J Perez . *Econometrics Journal* 1999. 2 p. .

201 [Greene (ed.) ()] *Econometric analysis*, W H Greene . NJ. Hamilton J.D. (ed.) 2003. 1994. Princeton, NJ:
202 Princeton University Press. (Time series analysis)

203 [Hendry and Nielsen ()] *Econometric modeling: a Likelihood Approach*, D F Hendry , B Nielsen . 2006. Princeton:
204 Princeton University Press.

205 [Hendry et al. ()] 'Encompassing'. D F Hendry , M Marcellino , G E Mizon . *Special Issue: Oxford* 15, 2008.
206 Guest Editor Introduction.

207 [Mizon ()] 'Encompassing'. G E Mizon . <http://www.dictionaryofeconomics.com/article?id=pde2008E000243> *The New Palgrave Dictionary of Economics*, 2nd edn. *The New Palgrave Dictionary of Economics Online*, L E Blume , S N Durlauf (eds.) 2008. Palgrave Macmillan.

208 [Florens et al. ()] 'Encompassing and specificity'. J P Florens , D F Hendry , J F Richard . *Econometric Theory*
209 1996. 12 p. .

210 [Govaerts et al. ()] 'Encompassing in stationary linear dynamic models'. B Govaerts , D F Hendry , J F Richard
211 . *Journal of Econometrics* 1994. 63 p. .

212 [Nazir ()] 'Encompassing of nested and non-nested models: energy-growth models'. S Nazir . <https://mpra.ub.uni-muenchen.de/77487/> *MPRA Paper N°77487*, 2017.

213 [Sawa ()] 'Information criteria for discriminating among alternative regression models'. T Sawa . *Econometrica*
214 1978. 46 p. .

215 [Lecture Notes in Statistics] *Lecture Notes in Statistics*, (Berlin) Springer-Verlag.

216 [Hendry and Doornik ()] 'Modelling linear dynamic econometric systems'. D F Hendry , J A Doornik . *Scottish*
217 *Journal of Political Economy* 1994. 41 p. .

218 [Bontemps et al. ()] *Parametric and non-parametric encompassing*, C Bontemps , J P Florens , J F Richard .
219 2008.

226 [Hendry and Richard ()] ‘Recent developments in the theory of encompassing’. D F Hendry , J F Richard .
227 *Contributions to Operations Research and Economics*, B Cornet , H Tulkens (eds.) (Cambridge) 1989. p. .

228 [Tibshirani et al. ()] *Statistical learning with sparsity : the lasso and generalizations*, R Tibshirani , M Wainwright
229 , T Hastie . 2015. Chapman and Hall.

230 [Gouriéroux et al. ()] ‘Testing nested or non-nested hypotheses’. C Gouriéroux , A Monfort , A Trognon . *Journal*
231 *of Econometrics* 1983. 21 p. .

232 [Gouriéroux and Monfort ()] ‘Testing, encompassing, and simulating dynamic econometric models’. C
233 Gouriéroux , A Monfort . *Econometric Theory* 1995. 11 p. .

234 [Mizon ()] ‘The encompassing approach in econometrics’. G E Mizon . *Econometrics and Quantitative Economics*,
235 D F Hendry , K F Wallis (eds.) 1984. p. .

236 [Mizon and Richard ()] ‘The encompassing principle and its application to non-nested hypothesis tests’. G E
237 Mizon , J F Richard . *Econometrica* 1986. 54 p. .