
Asymptotic Normality of the Encompassing Test Associated to1

the Linear Parametric Modelling and the Kernel Method2

for-Mixing Processes3

4

Received: 1 January 1970 Accepted: 1 January 1970 Published: 1 January 19705

6

Abstract7

8

Index terms—9

1 INTRODUCTION10

Model selection is a challenging step in statistical modelling. Modelling any data requires characterization of11
the associated data generating process (DGP). The DGP is unknown and therefore we face several admissible12
competing models. Model selection consists on selecting a model, which mimics such unknown DGP, from a13
set of admissible models according to a criterion. One retains the model which makes such criterion optimal,14
Tibshirani et al. (2015), Ferraty and Hall (2015) and Li et al. (2017). There exist various model selection criteria15
in the literature when admissible models have fully parametric specification, such as the Wald test, the likelihood16
ratio test, the Lagrange multiplier test, the information criteria and so on, see Hamilton (1994), Greene (2003)17
and Hooten and Hobbs (2015). The other case, when admissible models contain simultaneously parametric and18
nonparametric specifications, seems underdeveloped, Hendry et al. (2008). Encompassing tests appear to be19
helpful for the latter situation where an encompassing model is intended to account the salient feature of the20
encompassed model. Therefore, encompassing test can detect redundant models among the admissible models.21
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Encompassing tests are based on two points, that the encompassing model ought to be able to explain the23

predictions and to predict some mis-specifications of the encompassed model, Hendry et al. (2008). We know24
that there are various considerations and developments of encompassing tests, we refer readers to Mizon (1984),25
Hendry and Richard (1989), Gouriéroux and Monfort (1995) and Florens et al. (1996). For an overview on the26
concept of encompassing tests, see Bontemps and Mizon (2008) and Mizon (2008). Applications of encompassing27
tests can be found inside the model selection procedure of general to specific (GETS) modelling developed by28
Hendry and Doornik (1994), Hoover and Perez (1999). For application in real data, see Nazir (2017).29

Recently, ??ontemps et al. (2008) have developed encompassing tests which cover large set of methods such30
as parametric and nonparametric methods. Among their results, encompassing tests for kernel nonparametric31
regression method are established. They provide asymptotic normality of the associated encompassing statistics32
under the independent and identically distributed hypothesis (i.i.d). We extend their results by relaxing the33
independent hypothesis. We then focus on processes with some dependence structures. This extension lies on34
the generalization of encompassing test to dependent processes.35

The paper is organized as follows. In section 2, we provide an overview of encompassing test. In section 3, we36
study the asymptotic behaviors of the encompassing test associated to the linear parametric modelling and the37
kernel nonparametric method. In last section, we conclude. The encompassing statistic is given by the difference38
between ?M 2 and ?( ?M 1 ) scaled by a coefficient a n . Specification of the encompassing test will depend on39
the estimation of the regression method: parametric or nonparametric methods.40

2 II. ENCOMPASSING TEST41
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Let S = (Y, X, Z) be a zero mean random process with valued in RxR d xR q where d, q ? N * . For43
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6 PARAMETRIC MODELLING FOR M1 AND M2

x ? R d and z ? R q , consider the two models M 1 and M 2 as the conditional expectations m(x) and g(z),44
respectively. These can be defined as follows:M 1 : m(x) = E[Y |X = x] and M 2 : g(z) = E[Y |Z = z] (2.1)45

Moreover, the general unrestricted model is given by r(x, z) = E[Y |X = x, Z = z].46
Following the encompassing test in ??ontemps et al. (2008), we are interested in testing the hypothesis that47

M 1 encompasses M 2 , and then introducing the null hypothesis:H : E[Y |X = x, Z = z] = E[Y |X = x].(2.2)48
This null states that M 1 is the owner model, and M 2 will be served on validating this statement and is called49

the rival model. We test this hypothesis H through the following implicit encompassing hypothesis:H * : E[E[Y50
|X = x]/Z = z] = E[Y |Z = z].(2.3)51

1 Kullback-Leiber Information Criterion52
The following homoskedasticity condition will be assumed all along this work:V ar[Y |X = x, Z = z] = ? 253

.(2.4)54
Moreover, a necessary condition for the encompassing test relies on the errors of both models where the55

intended encompassing model M 1 should have smaller standard error than the encompassed model M 2 .56
In general, M 1 or M 1 can be estimated using nonparametric or parametric regression method.57
We will consider these different situations when the processes (S n ) n are dependent. We begin by constructing58

the encompassing statistic associated to each of these four situations and then discuss their asymptotic behaviors.59

4 III. ASYMPTOTIC BEHAVIOR OF THE ENCOMPASS-60

ING STATISTIC61

We are interested on the asymptotic behavior of the encompassing statistic associated to the null hypothesis M62
1 EM 2 . We can encounter the following four situations: M 1 and M 2 are both estimated parametrically, M 163
and M 2 are both estimated nonparametrically, M 1 is estimated nonparametrically and M 2 parametrically and64
M 1 is estimated parametrically and M 2 nonparametrically. We will consider the kernel regression estimate for65
nonparametric methods and the linear regression for parametric methods. For both dependent processes, we will66
study and establish the asymptotic normality of the corresponding four encompassing tests.67
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Consider a sample S i = (Y i , X i , Z i ), i = 1, ..., n, which can be viewed as realization of the random process69
S = (Y, X, Z) with valued in RxR d xR q where d, q ? N * . We suppose that S i , i = 1, ..., n has a joint70
density f . Moreover, ?(., .), ?(. | .) and ?(.) will denote the joint, the conditional and the marginal densities71
of the process (Y, Z), respectively. That is, for y ? R and z ? R q , ?(y, z), ?(y | z) and ?(z) correspond to the72
density of the following processes (Y, Z) at point (y, z), (Y | Z = z) at point y and Z at point z, respectively.73
Similarly, h will denote the joint, the conditional and the marginal densities of the process (Y, X), according to74
the argument that it takes.75

To get the asymptotic normality of the associated encompassing statistic, we need the following assumptions76
from Bosq (1998). The first assumption characterizes the dependence structure.Assumption 3.1. (S t ) is ?-mixing77
with ?(n) = O(n -? ) where ? > ? 2 +478

2? for some positive ?.79
The next assumption collects regularity conditions on the continuity and on the differentiability of the density80

functions. with ? (2) denotes any partial derivative of order 2 for ?. Next,Sup t?k ||?(Z 1 , Z t )|| ? < ? and81
last, ?(.)E[Y 2 1 |Z 1 = .82

] is continuous at z.83
The last assumption concerns finiteness of the moments of (Y n , Z n ) n .Assumption 3.3. ||E[|Y 1 | 4+? |Z84

1 = .]|| ? < ?; E[|Z 1 | 4+? ] < ? for some positive ?; Sup t?N ||E[Y i 1 Y j t |Z t = ., Z 1 = .]|| ? < ? where i ?85
0, j ? 0, i + j = 2.86

Throughout this section, we assume the existence of continuous version of the various joint and marginal87
density functions and of the three conditional means m, g and r. In addition, the square integrability will be88
assumed.89

For more precision, N (µ, v) will denote the Gaussian distribution with mean µ and variance v.90
We now consider the first case that is the encompassing test when the two models M 1 and M 2 have parametric91

specification. London Journal of Research in Science: Natural and Formal92

6 Parametric modelling for M1 and M293

Encompassing test for parametric modelling has been developed a lot in the literature. We discuss briefly one94
parametric encompassing test where models M 1 and M 2 have linear parametric specification. In that case, the95
two models M 1 and M 2 are given in relation (3.1) with the nesting model r:m(x) = ? x with ? = (E[XX ]) -196
E[XY ] g(z) = ? z with ? = (E[ZZ ]) -1 E[ZY ] r(x,z) = ? w with ? = E[W W ] -1 E[W Y ] and W = (X, Z).97
(3.1)98

We can get the estimates ?, ? and ? of the paramaters ?, ? and ?, respectively, using the sampleS i = (Y i ,99
X i , Z i ), i = 1, ..., n. Now, testing M 1 EM 2 corresponds100
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7 to the test of the null hypothesis101

H where the conditional mean is just the linear projection. Therefore, the encompassing statistic of the null M102
1 EM 2 can be written as follows.??,? = ? -?L ( ?),(3.2)103

where ?L ( ?) is an estimate of the pseudo-true value ? L (?) associated with ? on H 1 . Remarking that the104
pseudo-true value is defined by ? L (?) = (E[ZZ ]) -1 E[ZX ]?,? n ??,? ? N (0, ? 2 ?) in distribution as n ? ?.105
(3.3)106

where? = V ar(Z) -1 E[V ar(Z | X)]V ar(Z) -1 .107
For development on this asymptotic behavior of the encompassing statistic, we refer to Gouriéroux Next, we108

will study the completely nonparametric case.109
London Journal of Research in Science: Natural and Formal110

8 Nonparametric modelling for M1 and M2111

We now consider the case where the two models M 1 and M 2 defined in (2.1) are estimated using nonparametric112
techniques. To test the hypothesis ” M 1 encompasses M 2 ”, we build the corresponding encompassing statistic113
and establish asymptotic property of such statistic.114

Considering the functional estimates m n and g n of the unknown functions m and g in relation (2.1)115
respectively, we define the encompassing statistic as follows:?m,g (z) = g n (z) -?(m n )(z),(3.4)116

where ?(m n ) is an estimate of the pseudo true value G(m) associated with g n on H, which isdefined by G(m)117
= E[m | Z = z].118

Using the sample S i = (Y i , X i , Z i ), i = 1, ..., n, the kernel regression estimates m n of the function m,119
and g n of the function g have the following expressions:m n (x) = 1 nh d 1n n i=1 K 1 ( x-X i h 1n )Y i 1 nh120
d 1n n i=1 K 1 ( x-X i h 1n ) g n (z) = 1 nh q 2n n i=1 K 2 ( z-Z i h 2n )Y i 1 nh q 2n n i=1 K 2 ( z-Z i h 2n121
)(3.5)122

where h jn and K j , j = 1, 2 are window widths and kernel densities, respectively. The kernel densities satisfyK123
j (u) ? 0 and K j (u)du = 1 j = 1, 2.(3.6)124

We provide in the following, a theorem establishing the asymptotic convergence of the encompassing statistic.125
Theorem 3.2. Suppose that assumptions 3.1-3.3 hold. Moreover, suppose that relation (3.6) is satisfied. Then,126

under H, we get:nh q 2n ?m,g (z) ? N (0, ? 2 K 2 2 (u)du ?(z) ) in distribution as n ? ?.(3.7)127
?(z) is the marginal density of the Z at z and? 2 = V ar[Y |X = x, Z = z].128
Proof of theorem 3.2 The proof of this theorem will be based on the decomposition of the expression of the129

encompassing statistic into two parts as follows: London Journal of Research in Science: Natural and Formalnh130
q 2n ?m,g (z) = nh q 2n (g n (z) -?(m n )(z)) = nh q 2n ( n t=1 K 2 ( z-Zt h 2n ) n t=1 K 2 ( z-Zt h 2n ) Y t -131
n t=1 K( z-Zt hn ) n t=1 K( z-Zt hn ) m n (x t )) = nh q 2n n t=1 K 2 ( z-Zt h 2n ) n t=1 K 2 ( z-Zt h 2n )132
(Y t -m(x t )) + nh q 2n n t=1 K( z-Zt hn ) n t=1 K( z-Zt hn ) (m(x t ) -m n (x t )) = C 1 + C 2 .133

(3.8)134
The first part C 1 coincides to the kernel regression of the residuals t = Y t -m(x t ) onto Z t .135
When assumptions 3.1-3.3 hold, then under H, we achieved the convergence in distribution of the first part to136

a normal distribution using Rhomari’s result in Bosq (1998). The second part C 2 reflects the limit in probability137
of the supremum of the difference m n (x t ) -m(x t ) at x t ? R d scaled by nh q n and its convergence can138
be derived from the rate of covergence of the uniform convergence of the estimate m n (x t ) which has been139
provided by Bosq (1998).140

9 Parametric modelling M1 vs nonparametric modelling M2141

We consider the case that model M 1 is a linear parametric model and M 2 is estimated by kernel nonparametric142
technique. Therefore, the hypothesis H will have linear parametric specification.143

The encompassing statistic associated to the null M 1 EM 2 can be written as follows:??,g (z) = g n (z) -?L (144
?)(z),(3.9)145

where ?L ( ?) is an estimate of the pseudo-true value G L (?)(z) associated with g n on H, which is defined146
by GL (?)(z) = ? E[X | Z = z].147

For the nonparametric specification of M 2 , we consider the estimate g n as the kernel regression estimate148
of g given in (2.1). Since the rival model g is estimated using kernel method, the various assumptions on kernel149
density and window width will be maintained.150

Even the process exhibits some dependences, we can still establish the asymptotic normality of the151
encompassing statistic defined in relation (3.9). London Journal of Research in Science: Natural and Formal152
with linear specification and when the bandwidth h 2n satisfy kernel regularity condition, we get:nh q 2n ??,g153
(z) ? N (0, ? 2 K 2 2 (u)du ?(z)154

) in distribution as n ? ?.155
(3.10) ?(z) is the marginal density of the Z at z.156
Proof of theorem 3.3 Using similar techniques as previously, we can write the encompassing statistic as follows:157

converges in distribution to zero. This completes the proof.nh q 2n ??,g (z) = nh q 2n (g n (z) -?L ( ?)(z)) = nh158
q 2n ( n t=1 K 2 ( z-Zt hn ) n t=1 K 2 ( z-Zt h 2n ) Y t - n t=1 K( z-Zt hn ) n t=1 K( z-Zt hn ) ? X t ) = nh159
q 2n n t=1 K 2 ( z-Zt hn ) t=1 K 2 ( z-Zt h 2n ) (Y t -? X t ) + nh q160
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10 NONPARAMETRIC MODELLING M1 VS PARAMETRIC MODELLING
M2

10 Nonparametric modelling M1 vs parametric modelling M2161

We consider the owner model M 1 to be estimated using a nonparametric method and the rival model M 2 to162
be a linear parametric method. Therefore, the encompassing statistic associated to the null M 1 EM 2 is given163
by:?m,? = ? -?(m n ),(3.12)164

where ?(m n ) is an estimate of the pseudo-true value ?(m) associated with ? on H, which isdefined by ?(m)165
= (E[ZZ ]) -1 E[Zm].166

When the estimate of model M 1 is obtained from the kernel regression and the model M 2 is from linear167
parametric modelling, we summarize the asymptotic results in the following theorem. London Journal of Research168
in Science: Natural and Formal 1 2 3 4 5 6
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Figure 1: Assumption 3 . 2 .

Figure 2:
169
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Figure 3: Theorem 3 . 3 .
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Figure 4: 2 ?(z) K 2 2
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.1 IV. CONCLUSION
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Theorem 3.4. Assume that relation ??2.4) is satisfied. When the kernel K 1 and the bandwidth h 1n satisfy172
the usual regularity condition and when we have one of the following points: Assumption 3.1 holds and the kernel173
regression estimate m n and the process (Y n , X n ) n satisfy assumptions 3.2 and 3.3.174

Then, under H, we get:175
where ? = plim n?? V ar( ? n ?m,? ).176
Proof of theorem 3.4 We split the encompassing statistic ? n ?m,? into two parts. The first part yields177
) which gives the asymptotic normality of the theorem, Peligrad and Utev (1997).178
The second part is179
. Again, we bound this by taking the supremum with respect to x i . Thus, F 2 vanishes to zero from the180

uniform convergence of m n (x i ), Bosq (1998). This completes the proof of theorem 3.4.181
We remark that we should be careful about mutual encompassing of both models which concerns the bijection182

of the pseudo true value function G(.).183

.1 IV. CONCLUSION184

We have considered encompassing test for functional parameters. As stated in Hendry et al. When using kernel185
method and linear regression as estimator of conditional expectations, we have established asymptotic normality186
of the encompassing test for dependent processes. These results would be helpfull for analysing non-nested187
non-parametric and parametric models.188

[ Oxford Bulletin of Economics and Statistics] , Oxford Bulletin of Economics and Statistics 70 p. .189

[ Bulletin of Economics and Statistics] , Bulletin of Economics and Statistics 70 p. .190

[Hooten and Hobbs ()] ‘A guide to bayesian model selection for ecologists’. M B Hooten , N T Hobbs . Ecological191
monographs 2015. 85 (1) p. .192

[Ferraty and Hall ()] ‘An algorithm for nonlinear, nonparametric model choice and Prediction’. F Ferraty , P193
Hall . J. Comput. Graph. Stat 2015. 24 p. .194

[Bontemps and Mizon ()] C Bontemps , G E Mizon . Encompassing: concepts and implementation, (Oxford)195
2008.196

[Bosq ()] D Bosq . Nonparametric Statistics for Stochastic Processes: Estimation and Prediction, 1998.197

[Peligrad and Utev ()] ‘Central limit theorem for Linear Processes’. M Peligrad , S A Utev . The Annals of198
Probability 1997. 25 p. .199

[Li et al. ()] ‘Cross-validated mixed-datatype bandwidth selection for nonparametric cumulative distribu-200
tion/survivor functions’. C Li , Q Li , J S Racine . Econometric Reviews 2017. 36 (6-9) p. .201

[Hoover and Perez ()] ‘Data mining reconsidered: encompassing and the general-to-specific approach to specifi-202
cation search’. K D Hoover , S J Perez . Econometrics Journal 1999. 2 p. .203

[Greene (ed.) ()] Econometric analysis, W H Greene . NJ. Hamilton J.D. (ed.) 2003. 1994. Princeton, NJ:204
Princeton University Press. (Time series analysis)205

[Hendry and Nielsen ()] Econometric modeling: a Likelihood Approach, D F Hendry , B Nielsen . 2006. Princeton:206
Princeton University Press.207

[Hendry et al. ()] ‘Encompassing’. D F Hendry , M Marcellino , G E Mizon . Special Issue: Oxford 15, 2008.208
Guest Editor Introduction.209

[Mizon ()] ‘Encompassing’. G E Mizon . http://www.dictionaryofeconomics.com/article?id=210
pde2008E000243 The New Palgrave Dictionary of Economics, 2nd edn. The New Palgrave Dictionary211
of Economics Online, L E Blume , S N Durlauf (eds.) 2008. Palgrave Macmillan.212

[Florens et al. ()] ‘Encompassing and specificity’. J P Florens , D F Hendry , J F Richard . Econometric Theory213
1996. 12 p. .214

[Govaerts et al. ()] ‘Encompassing in stationary linear dynamic models’. B Govaerts , D F Hendry , J F Richard215
. Journal of Econometrics 1994. 63 p. .216

[Nazir ()] ‘Encompassing of nested and non-nested models: energy-growth models’. S Nazir . https://mpra.217
ub.uni-muenchen.de/77487/ MPRA Paper N°77487, 2017.218

[Sawa ()] ‘Information criteria for discriminating among alternative regression models’. T Sawa . Econometrica219
1978. 46 p. .220

[Lecture Notes in Statistics] Lecture Notes in Statistics, (Berlin) Springer-Verlag.221

[Hendry and Doornik ()] ‘Modelling linear dynamic econometric systems’. D F Hendry , J A Doornik . Scottish222
Journal of Political Economy 1994. 41 p. .223

[Bontemps et al. ()] Parametric and non-parametric encompassing, C Bontemps , J P Florens , J F Richard .224
2008.225

7

http://www.dictionaryofeconomics.com/article?id=pde2008E000243
http://www.dictionaryofeconomics.com/article?id=pde2008E000243
http://www.dictionaryofeconomics.com/article?id=pde2008E000243
https://mpra.ub.uni-muenchen.de/77487/
https://mpra.ub.uni-muenchen.de/77487/
https://mpra.ub.uni-muenchen.de/77487/


10 NONPARAMETRIC MODELLING M1 VS PARAMETRIC MODELLING
M2

[Hendry and Richard ()] ‘Recent developments in the theory of encompassing’. D F Hendry , J F Richard .226
Contributions to Operations Research and Economics, B Cornet , H Tulkens (eds.) (Cambridge) 1989. p. .227

[Tibshirani et al. ()] Statistical learning with sparsity : the lasso and generalizations, R Tibshirani , MWainwright228
, T Hastie . 2015. Chapman and Hall.229

[Gouriéroux et al. ()] ‘Testing nested or non-nested hypotheses’. C Gouriéroux , A Monfort , A Trognon . Journal230
of Econometrics 1983. 21 p. .231

[Gouriéroux and Monfort ()] ‘Testing, encompassing, and simulating dynamic econometric models’. C232
Gouriéroux , A Monfort . Econometric Theory 1995. 11 p. .233

[Mizon ()] ‘The encompassing approach in econometrics’. G E Mizon . Econometrics and Quantitative Economics,234
D F Hendry , K F Wallis (eds.) 1984. p. .235

[Mizon and Richard ()] ‘The encompassing principle and its application to non-nested hypothesis tests’. G E236
Mizon , J F Richard . Econometrica 1986. 54 p. .237

8


