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ABSTRACT
This paper contributes on model selection between parametric and nonparametric methods

through the use of encompassing test. We provide asymptotic normality of encompassing

statistic associated to the encompassing hypothesis for parametric and nonparametric

regression methods. We develop various results on this test for more general processes

satisfying several dependence structures.
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I. INTRODUCTION

Model selection is a challenging step in statistical modelling. Modelling any data requires charac-

terization of the associated data generating process (DGP). The DGP is unknown and therefore

we face several admissible competing models. Model selection consists on selecting a model,

which mimics such unknown DGP, from a set of admissible models according to a criterion. One

retains the model which makes such criterion optimal, Tibshirani et al. (2015), Ferraty and

Hall (2015) and Li et al. (2017). There exist various model selection criteria in the literature

when admissible models have fully parametric specification, such as the Wald test, the likelihood

ratio test, the Lagrange multiplier test, the information criteria and so on, see Hamilton (1994),

Greene (2003) and Hooten and Hobbs (2015). The other case, when admissible models contain

simultaneously parametric and nonparametric specifications, seems underdeveloped, Hendry et

al. (2008). Encompassing tests appear to be helpful for the latter situation where an encom-

passing model is intended to account the salient feature of the encompassed model. Therefore,

encompassing test can detect redundant models among the admissible models.
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Encompassing tests are based on two points, that the encompassing model ought to be able

to explain the predictions and to predict some mis-specifications of the encompassed model,

Hendry et al. (2008). We know that there are various considerations and developments of en-

compassing tests, we refer readers to Mizon (1984), Hendry and Richard (1989), Gouriéroux and

Monfort (1995) and Florens et al. (1996). For an overview on the concept of encompassing tests,

see Bontemps and Mizon (2008) and Mizon (2008). Applications of encompassing tests can be

found inside the model selection procedure of general to specific (GETS) modelling developed

by Hendry and Doornik (1994), Hoover and Perez (1999). For application in real data, see Nazir

(2017).

Recently, Bontemps et al. (2008) have developed encompassing tests which cover large set of

methods such as parametric and nonparametric methods. Among their results, encompassing

tests for kernel nonparametric regression method are established. They provide asymptotic nor-

mality of the associated encompassing statistics under the independent and identically distributed

hypothesis (i.i.d). We extend their results by relaxing the independent hypothesis. We then fo-

cus on processes with some dependence structures. This extension lies on the generalization of

encompassing test to dependent processes.

The paper is organized as follows. In section 2, we provide an overview of encompassing test. In

section 3, we study the asymptotic behaviors of the encompassing test associated to the linear

parametric modelling and the kernel nonparametric method. In last section, we conclude.

II. ENCOMPASSING TEST

This section introduces the encompassing test and then builds the corresponding encompassing

hypothesis. So, given two regression models M1 and M2, we are interested in knowing if the

modelM1 can account the result of modelM2. In other words, we want to know ifM1 encom-

passes M2 or in a short notation M1EM2. Testing such a hypothesis will be done using the

notion of encompassing test.

Generally speaking, model M1 encompasses model M2, if the parameter θM2 of the latter

model can be expressed in function of the parameter θM1 of the former model. In other words,

let ∆(θM1) be the pseudo true value of θM2 onM1. In general, the pseudo-true value is defined

as the plim of θ̂M2 on M1, Bontemps et al. (2008). For more discussion on pseudo-true value

associated with the KLIC1, we refer to Sawa (1978) and Govaerts et al. (1994) among others.

The encompassing statistic is given by the difference between θ̂M2 and ∆(θ̂M1) scaled by a coef-

ficient an. Specification of the encompassing test will depend on the estimation of the regression

method: parametric or nonparametric methods.
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Let S = (Y,X,Z) be a zero mean random process with valued in RxRdxRq where d, q ∈ N∗. For

x ∈ Rd and z ∈ Rq, consider the two modelsM1 andM2 as the conditional expectations m(x)

and g(z), respectively. These can be defined as follows:

M1 : m(x) = E[Y |X = x] and M2 : g(z) = E[Y |Z = z] (2.1)

Moreover, the general unrestricted model is given by r(x, z) = E[Y |X = x, Z = z].

Following the encompassing test in Bontemps et al. (2008), we are interested in testing the

hypothesis thatM1 encompassesM2, and then introducing the null hypothesis:

H : E[Y |X = x, Z = z] = E[Y |X = x]. (2.2)

This null states that M1 is the owner model, and M2 will be served on validating this state-

ment and is called the rival model. We test this hypothesis H through the following implicit

encompassing hypothesis:

H∗ : E[E[Y |X = x]/Z = z] = E[Y |Z = z]. (2.3)

1Kullback-Leiber Information Criterion

The following homoskedasticity condition will be assumed all along this work:

V ar[Y |X = x, Z = z] = σ2. (2.4)

Moreover, a necessary condition for the encompassing test relies on the errors of both models

where the intended encompassing model M1 should have smaller standard error than the en-

compassed modelM2.

In general,M1 orM1 can be estimated using nonparametric or parametric regression method.

We will consider these different situations when the processes (Sn)n are dependent. We begin

by constructing the encompassing statistic associated to each of these four situations and then

discuss their asymptotic behaviors.

III. ASYMPTOTIC BEHAVIOR OF THE ENCOMPASSING STATISTIC

We are interested on the asymptotic behavior of the encompassing statistic associated to the

null hypothesisM1EM2. We can encounter the following four situations: M1 andM2 are both

estimated parametrically, M1 andM2 are both estimated nonparametrically, M1 is estimated

nonparametrically and M2 parametrically and M1 is estimated parametrically and M2 non-

parametrically. We will consider the kernel regression estimate for nonparametric methods and

the linear regression for parametric methods. For both dependent processes, we will study and

establish the asymptotic normality of the corresponding four encompassing tests.
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Consider a sample Si = (Yi, Xi, Zi), i = 1, ..., n, which can be viewed as realization of the random

process S = (Y,X,Z) with valued in RxRdxRq where d, q ∈ N∗. We suppose that Si, i = 1, ..., n

has a joint density f . Moreover, ϕ(., .), ϕ(. | .) and ϕ(.) will denote the joint, the conditional

and the marginal densities of the process (Y, Z), respectively. That is, for y ∈ R and z ∈ Rq,

ϕ(y, z), ϕ(y | z) and ϕ(z) correspond to the density of the following processes (Y,Z) at point

(y, z), (Y | Z = z) at point y and Z at point z, respectively. Similarly, h will denote the joint,

the conditional and the marginal densities of the process (Y,X), according to the argument that

it takes.

To get the asymptotic normality of the associated encompassing statistic, we need the following

assumptions from Bosq (1998). The first assumption characterizes the dependence structure.

Assumption 3.1. (St) is α-mixing with α(n) = O(n−ρ) where ρ > ν2+4
2ν for some positive ν.

The next assumption collects regularity conditions on the continuity and on the differentiability

of the density functions.

Assumption 3.2. ϕ and g∗ϕ are C2,d(b) for some real b where C2,d(b) the space of twice contin-

uously differentiable real valued functions f , defined on Rd, such that ||ϕ||∞ ≤ b and ||ϕ(2)||∞ ≤ b

with ϕ(2) denotes any partial derivative of order 2 for ϕ. Next, Supt≥k||ϕ(Z1, Zt)||∞ < ∞ and

last, ϕ(.)E[Y 2
1 |Z1 = .] is continuous at z.

The last assumption concerns finiteness of the moments of (Yn, Zn)n.

Assumption 3.3. ||E[|Y1|4+ν |Z1 = .]||∞ <∞; E[|Z1|4+ν ] <∞ for some positive ν;

Supt∈N||E[Y i
1Y

j
t |Zt = ., Z1 = .]||∞ <∞ where i ≥ 0, j ≥ 0, i+ j = 2.

Throughout this section, we assume the existence of continuous version of the various joint and

marginal density functions and of the three conditional means m, g and r. In addition, the

square integrability will be assumed.

For more precision, N(µ, v) will denote the Gaussian distribution with mean µ and variance v.

We now consider the first case that is the encompassing test when the two modelsM1 andM2

have parametric specification.
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3.1 Parametric modelling for M1 and M2

Encompassing test for parametric modelling has been developed a lot in the literature. We discuss

briefly one parametric encompassing test where models M1 and M2 have linear parametric

specification. In that case, the two models M1 and M2 are given in relation (3.1) with the

nesting model r:

m(x) = β′x with β = (E[XX ′])−1E[XY ]

g(z) = γ′z with γ = (E[ZZ ′])−1E[ZY ]

r(x,z) = α′w with α = E[WW ′]−1E[WY ] and W = (X,Z).

(3.1)

We can get the estimates β̂, γ̂ and α̂ of the paramaters β, γ and α, respectively, using the sample

Si = (Yi, Xi, Zi), i = 1, ..., n. Now, testingM1EM2 corresponds to the test of the null hypothesis

H where the conditional mean is just the linear projection. Therefore, the encompassing statistic

of the nullM1EM2 can be written as follows.

δ̂β,γ = γ̂ − γ̂L(β̂), (3.2)

where γ̂L(β̂) is an estimate of the pseudo-true value γL(β) associated with γ̂ on H1. Remarking

that the pseudo-true value is defined by γL(β) = (E[ZZ ′])−1E[ZX ′]β, we state in the following

theorem the asymptotic behavior of the encompassing statistic in relation (3.2).

Theorem 3.1. Assume that the relation 2.4 is satisfied. When the sample Si = (Yi, Xi, Zi),

i = 1, ..., n are i.i.d., then under H, we get:

√
nδ̂β,γ → N(0, σ2Ω) in distribution as n→∞. (3.3)

where Ω = V ar(Z)−1E[V ar(Z | X)]V ar(Z)−1.

For development on this asymptotic behavior of the encompassing statistic, we refer to Gouriéroux

et al. (1983) and Mizon and Richard (1986). For recent discussion on this encompassing test for

fully parametric case, Bontemps et al. (2008) is a good reference.

Development of the parametric encompassing test goes beyond independent processes in the

literature. As encompassing test for dynamic stationary models and time series regressions have

been discussed in Govaerts et al. (1994), Hendry and Nielsen (2006), among others.

Next, we will study the completely nonparametric case.
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3.2 Nonparametric modelling for M1 and M2

We now consider the case where the two models M1 and M2 defined in (2.1) are estimated

using nonparametric techniques. To test the hypothesis "M1 encompassesM2 ", we build the

corresponding encompassing statistic and establish asymptotic property of such statistic.

Considering the functional estimates mn and gn of the unknown functions m and g in relation

(2.1) respectively, we define the encompassing statistic as follows:

δ̂m,g(z) = gn(z)− Ĝ(mn)(z), (3.4)

where Ĝ(mn) is an estimate of the pseudo true value G(m) associated with gn on H, which is

defined by G(m) = E[m | Z = z].

Using the sample Si = (Yi, Xi, Zi), i = 1, ..., n, the kernel regression estimates mn of the function

m, and gn of the function g have the following expressions:

mn(x) =

1
nhd1n

∑n
i=1K1(

x−Xi
h1n

)Yi

1
nhd1n

∑n
i=1K1(

x−Xi
h1n

)
gn(z) =

1
nhq2n

∑n
i=1K2(

z−Zi
h2n

)Yi

1
nhq2n

∑n
i=1K2(

z−Zi
h2n

)
(3.5)

where hjn and Kj , j = 1, 2 are window widths and kernel densities, respectively. The kernel

densities satisfy

Kj(u) ≥ 0 and

∫
Kj(u)du = 1 j = 1, 2. (3.6)

We provide in the following, a theorem establishing the asymptotic convergence of the encom-

passing statistic.

Theorem 3.2. Suppose that assumptions 3.1-3.3 hold. Moreover, suppose that relation (3.6) is

satisfied. Then, under H, we get:

√
nhq2nδ̂m,g(z)→ N(0,

σ2
∫
K2

2 (u)du

ϕ(z)
) in distribution as n→∞. (3.7)

ϕ(z) is the marginal density of the Z at z and σ2 = V ar[Y |X = x, Z = z].

Proof of theorem 3.2 The proof of this theorem will be based on the decomposition of the

expression of the encompassing statistic into two parts as follows:
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√
nhq2nδ̂m,g(z) =

√
nhq2n(gn(z)− Ĝ(mn)(z))

=
√
nhq2n(

n∑
t=1

K2(
z−Zt
h2n

)∑n
t=1K2(

z−Zt
h2n

)
Yt −

n∑
t=1

K( z−Zt
hn

)∑n
t=1K( z−Zt

hn
)
mn(xt))

=
√
nhq2n

n∑
t=1

K2(
z−Zt
h2n

)∑n
t=1K2(

z−Zt
h2n

)
(Yt −m(xt))

+
√
nhq2n

n∑
t=1

K( z−Zt
hn

)∑n
t=1K( z−Zt

hn
)
(m(xt)−mn(xt))

= C1 + C2.

(3.8)

The first part C1 coincides to the kernel regression of the residuals εt = Yt − m(xt) onto Zt.

When assumptions 3.1-3.3 hold, then under H, we achieved the convergence in distribution of

the first part to a normal distribution using Rhomari’s result in Bosq (1998). The second part

C2 reflects the limit in probability of the supremum of the difference mn(xt)−m(xt) at xt ∈ Rd

scaled by
√
nhqn and its convergence can be derived from the rate of covergence of the uniform

convergence of the estimate mn(xt) which has been provided by Bosq (1998).

3.3 Parametric modelling M1 vs nonparametric modelling M2

We consider the case that modelM1 is a linear parametric model andM2 is estimated by kernel

nonparametric technique. Therefore, the hypothesis H will have linear parametric specification.

The encompassing statistic associated to the nullM1EM2 can be written as follows:

δ̂β,g(z) = gn(z)− ĜL(β̂)(z), (3.9)

where ĜL(β̂) is an estimate of the pseudo-true value GL(β)(z) associated with gn on H, which

is defined by GL(β)(z) = β′E[X | Z = z].

For the nonparametric specification ofM2, we consider the estimate gn as the kernel regression

estimate of g given in (2.1). Since the rival model g is estimated using kernel method, the various

assumptions on kernel density and window width will be maintained.

Even the process exhibits some dependences, we can still establish the asymptotic normality of

the encompassing statistic defined in relation (3.9).
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Theorem 3.3. Assume that relation 2.4 and assumptions 3.1-3.3 are satisfied. Then, under H

with linear specification and when the bandwidth h2n satisfy kernel regularity condition, we get:√
nhq2nδ̂β,g(z)→ N(0,

σ2
∫
K2

2 (u)du

ϕ(z)
) in distribution as n→∞. (3.10)

ϕ(z) is the marginal density of the Z at z.

Proof of theorem 3.3 Using similar techniques as previously, we can write the encompassing

statistic as follows:√
nhq2nδ̂β,g(z) =

√
nhq2n(gn(z)− ĜL(β̂)(z))

=
√
nhq2n(

n∑
t=1

K2(
z−Zt
hn

)∑n
t=1K2(

z−Zt
h2n

)
Yt −

n∑
t=1

K( z−Zt
hn

)∑n
t=1K( z−Zt

hn
)
β̂′Xt)

=
√
nhq2n

n∑
t=1

K2(
z−Zt
hn

)∑n
t=1K2(

z−Zt
h2n

)
(Yt − β′Xt)

+
√
nhq2n

n∑
t=1

K( z−Zt
hn

)∑n
t=1K( z−Zt

hn
)
X ′t(β − β̂)

= D1 +D2.

(3.11)

When assumptions 3.1-3.3 hold, then under H, D1 converges in distribution to a normal law

with mean zero and variance σ2

ϕ(z)

∫
K2

2 (u)du, see Bosq (1998). Concerning D2, using central

limit theorem for linear processes in Peligrad and Utev (1997), the normality asymptotic of

the linear process has been established. Therefore, this implies the normality asymptotic of
√
n(β − β̂). The remaining expression in D2 vanishes to zero as n tends to infinity. Thus, D2

converges in distribution to zero. This completes the proof.

3.4 Nonparametric modelling M1 vs parametric modelling M2

We consider the owner modelM1 to be estimated using a nonparametric method and the rival

model M2 to be a linear parametric method. Therefore, the encompassing statistic associated

to the nullM1EM2 is given by:

δ̂m,γ = γ̂ − γ̂(mn), (3.12)

where γ̂(mn) is an estimate of the pseudo-true value γ(m) associated with γ̂ on H, which is

defined by γ(m) = (E[ZZ ′])−1E[Zm].

When the estimate of model M1 is obtained from the kernel regression and the model M2 is

from linear parametric modelling, we summarize the asymptotic results in the following theorem.
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Theorem 3.4. Assume that relation (2.4) is satisfied. When the kernel K1 and the bandwidth

h1n satisfy the usual regularity condition and when we have one of the following points:

Assumption 3.1 holds and the kernel regression estimate mn and the process (Yn, Xn)n satisfy

assumptions 3.2 and 3.3.

Then, under H, we get:

√
nδ̂m,γ → N(0,Σ) in distribution as n→∞. (3.13)

where Σ = plimn→∞V ar(
√
nδ̂m,γ).

Proof of theorem 3.4 We split the encompassing statistic
√
nδ̂m,γ into two parts. The first part

yields F1 =
√
n( 1

n

∑n
i=1 ZiZi)

−1( 1
n

∑n
i=1 Zi(Yi −m(xi))) which gives the asymptotic normality

of the theorem, Peligrad and Utev (1997).

The second part is F2 =
√
n( 1

n

∑n
i=1 ZiZi)

−1( 1
n

∑n
i=1 Zi(m(xi) − mn(xi))). Again, we bound

this by taking the supremum with respect to xi. Thus, F2 vanishes to zero from the uniform

convergence of mn(xi), Bosq (1998). This completes the proof of theorem 3.4.

We remark that we should be careful about mutual encompassing of both models which concerns

the bijection of the pseudo true value function G(.).

IV. CONCLUSION

We have considered encompassing test for functional parameters. As stated in Hendry et al.

(2008) that the work of Bontemps et al. (2008) is the starting treatment of such type of encom-

passing test based on nonparametric methods. We have extended that work to dependent process.

When using kernel method and linear regression as estimator of conditional expectations, we

have established asymptotic normality of the encompassing test for dependent processes. These

results would be helpfull for analysing non-nested non-parametric and parametric models.

Development of encompassing test to nonparametric methods opens new research direction in

theory as well as in practice. Application of the various results on real data would accelerate

such development.

Funding statement : this work was performed as part of my employement at the Ministry of

Higher Education and Scientific Research of Madagascar.
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