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l INTRODUCTION

Model selection is a challenging step in statistical modelling. Modelling any data requires charac-
terization of the associated data generating process (DGP). The DGP is unknown and therefore
we face several admissible competing models. Model selection consists on selecting a model,
which mimics such unknown DGP, from a set of admissible models according to a criterion. One

retains the model which makes such criterion optimal, Tibshirani et al. (2015), Ferraty and

London Journal of Research in Science: Natural and Formal

Hall (2015) and Li et al. (2017). There exist various model selection criteria in the literature

when admissible models have fully parametric specification, such as the Wald test, the likelihood

ratio test, the Lagrange multiplier test, the information criteria and so on, see Hamilton (1994),
Greene (2003) and Hooten and Hobbs (2015). The other case, when admissible models contain
simultaneously parametric and nonparametric specifications, seems underdeveloped, Hendry et
al. (2008). Encompassing tests appear to be helpful for the latter situation where an encom-
passing model is intended to account the salient feature of the encompassed model. Therefore,

encompassing test can detect redundant models among the admissible models.
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Encompassing tests are based on two points, that the encompassing model ought to be able
to explain the predictions and to predict some mis-specifications of the encompassed model,
Hendry et al. (2008). We know that there are various considerations and developments of en-
compassing tests, we refer readers to Mizon (1984), Hendry and Richard (1989), Gouriéroux and
Monfort (1995) and Florens et al. (1996). For an overview on the concept of encompassing tests,
see Bontemps and Mizon (2008) and Mizon (2008). Applications of encompassing tests can be
found inside the model selection procedure of general to specific (GETS) modelling developed
by Hendry and Doornik (1994), Hoover and Perez (1999). For application in real data, see Nazir
(2017).

Recently, Bontemps et al. (2008) have developed encompassing tests which cover large set of
methods such as parametric and nonparametric methods. Among their results, encompassing
tests for kernel nonparametric regression method are established. They provide asymptotic nor-
mality of the associated encompassing statistics under the independent and identically distributed
hypothesis (i.i.d). We extend their results by relaxing the independent hypothesis. We then fo-
cus on processes with some dependence structures. This extension lies on the generalization of

encompassing test to dependent processes.

The paper is organized as follows. In section 2, we provide an overview of encompassing test. In
section 3, we study the asymptotic behaviors of the encompassing test associated to the linear

parametric modelling and the kernel nonparametric method. In last section, we conclude.

Il ENCOMPASSING TEST

This section introduces the encompassing test and then builds the corresponding encompassing
hypothesis. So, given two regression models M; and My, we are interested in knowing if the
model M; can account the result of model Ms. In other words, we want to know if M7 encom-
passes My or in a short notation M;EMs. Testing such a hypothesis will be done using the

notion of encompassing test.

Generally speaking, model M; encompasses model My, if the parameter 0, of the latter
model can be expressed in function of the parameter 6,4, of the former model. In other words,
let A(Or,) be the pseudo true value of 64, on M;. In general, the pseudo-true value is defined
as the plim of 6, on M, Bontemps et al. (2008). For more discussion on pseudo-true value
associated with the KLIC!, we refer to Sawa (1978) and Govaerts et al. (1994) among others.
The encompassing statistic is given by the difference between 6 M, and A(é M, ) scaled by a coef-
ficient a,. Specification of the encompassing test will depend on the estimation of the regression

method: parametric or nonparametric methods.
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Let S = (Y, X, Z) be a zero mean random process with valued in RxR4xR? where d, g € N*. For
z € R? and 2 € RY, consider the two models Mj and My as the conditional expectations m(z)

and g(z), respectively. These can be defined as follows:
Mi: m(z)=EY|X=2] and Msz: g(z)=E[Y|Z=2] (2.1)

Moreover, the general unrestricted model is given by r(z,2) = E[Y|X =z, Z = z|.
Following the encompassing test in Bontemps et al. (2008), we are interested in testing the

hypothesis that M; encompasses Mo, and then introducing the null hypothesis:
H:EY|X =2,Z=z2]=EY|X =2z (2.2)

This null states that My is the owner model, and My will be served on validating this state-
ment and is called the rival model. We test this hypothesis H through the following implicit

encompassing hypothesis:
H*:E[EY|X =2|/Z =z =E[Y|Z =z]. (2.3)
The following homoskedasticity condition will be assumed all along this work:
VarlY|X =z, 7 = 2] = o2 (2.4)

Moreover, a necessary condition for the encompassing test relies on the errors of both models
where the intended encompassing model M should have smaller standard error than the en-

compassed model M.

In general, My or M can be estimated using nonparametric or parametric regression method.
We will consider these different situations when the processes (S,), are dependent. We begin
by constructing the encompassing statistic associated to each of these four situations and then

discuss their asymptotic behaviors.

. ASYMPTOTIC BEHAVIOR OF THE ENCOMPASSING STATISTIC

We are interested on the asymptotic behavior of the encompassing statistic associated to the
null hypothesis M1EMy. We can encounter the following four situations: M7 and My are both
estimated parametrically, M; and My are both estimated nonparametrically, M1 is estimated
nonparametrically and My parametrically and M is estimated parametrically and Ms non-
parametrically. We will consider the kernel regression estimate for nonparametric methods and
the linear regression for parametric methods. For both dependent processes, we will study and

establish the asymptotic normality of the corresponding four encompassing tests.

Kullback-Leiber Information Criterion
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Consider a sample S; = (Y;, X;, Z;), i = 1, ..., n, which can be viewed as realization of the random
process S = (Y, X, Z) with valued in RxR?xRY where d,q € N*. We suppose that S;, i = 1,...,n
has a joint density f. Moreover, ¢(.,.), ¢(. | .) and ¢(.) will denote the joint, the conditional
and the marginal densities of the process (Y, Z), respectively. That is, for y € R and z € RY,
©(y,2), ¢(y | z) and ¢(z) correspond to the density of the following processes (Y, Z) at point
(y,2), (Y | Z = z) at point y and Z at point z, respectively. Similarly, h will denote the joint,
the conditional and the marginal densities of the process (Y, X), according to the argument that

it takes.

To get the asymptotic normality of the associated encompassing statistic, we need the following

assumptions from Bosq (1998). The first assumption characterizes the dependence structure.

Assumption 3.1. (S;) is a-mizing with a(n) = O(n™") where p > ”2;;4 for some positive v.

The next assumption collects regularity conditions on the continuity and on the differentiability

of the density functions.

Assumption 3.2. ¢ and gx¢ are Cy 4(b) for some real b where Cy q(b) the space of twice contin-
uously differentiable real valued functions f, defined on R?, such that ||¢||se < b and ||e®||s < b
with ) denotes any partial derivative of order 2 for . Next, Supisil|o(Z1, Zi)||oo < 00 and
last, () E[Y{|Z1 = ] is continuous at z.

The last assumption concerns finiteness of the moments of (Y, Z, ).

Assumption 3.3. ||E[|Y1[*"|Z1 = || < 00; E[|Z1|*"7] < o0 for some positive v;

SuptGNHE[YfYﬂZt =71 =]||oc <00 wherei>0,5>0,i1+j=2.

Throughout this section, we assume the existence of continuous version of the various joint and
marginal density functions and of the three conditional means m, g and r. In addition, the

square integrability will be assumed.

For more precision, N(u,v) will denote the Gaussian distribution with mean p and variance v.
We now consider the first case that is the encompassing test when the two models M7 and My

have parametric specification.

Asymptotic Normality of the Encompassing Test Associated to the Linear Parametric Modelling and the Kernel Method
for-Mixing Processes

Volume 23 |Issue7 | Compilation 1.0 © 2023 Great Britain Journals Press



© 2023 Great Britain Journals Press

3.1 Parametric modelling for M1 and M2

Encompassing test for parametric modelling has been developed a lot in the literature. We discuss
briefly one parametric encompassing test where models M; and My have linear parametric
specification. In that case, the two models M; and My are given in relation (3.1) with the

nesting model r:

m(x) = 'z with B = (E[XX']) 'E[XY]
9(2) =~z with v = (E[ZZ')) ' E[ZY] (3.1)

r(z,2) = d'w with o = EWW/ | 'EWY] and W = (X, Z).

We can get the estimates B , ¥ and & of the paramaters 3, v and «, respectively, using the sample

Si = (Y, X, Z;),i=1,...,n. Now, testing M7;E My corresponds to the test of the null hypothesis
‘H where the conditional mean is just the linear projection. Therefore, the encompassing statistic

of the null M1EMs can be written as follows.
06 =4 — (), (3.2)

where 7 (3) is an estimate of the pseudo-true value vz (8) associated with 4 on H;. Remarking
that the pseudo-true value is defined by v1,(8) = (E[ZZ']) "' E[ZX']3, we state in the following

theorem the asymptotic behavior of the encompassing statistic in relation (3.2).

Theorem 3.1. Assume that the relation 2.4 is satisfied. When the sample S; = (Y;, X;, Z;),

t=1,...,n are i.i.d., then under H, we get:
Vnds, — N(0,0%Q) in distribution as n — oo. (3.3)

where Q = Var(Z) 'E[Var(Z | X)|Var(Z)~ L.

For development on this asymptotic behavior of the encompassing statistic, we refer to Gouriéroux
et al. (1983) and Mizon and Richard (1986). For recent discussion on this encompassing test for

fully parametric case, Bontemps et al. (2008) is a good reference.

Development of the parametric encompassing test goes beyond independent processes in the
literature. As encompassing test for dynamic stationary models and time series regressions have
been discussed in Govaerts et al. (1994), Hendry and Nielsen (2006), among others.

Next, we will study the completely nonparametric case.
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3.2 Nonparametric modelling for M1 and M2

We now consider the case where the two models M; and My defined in (2.1) are estimated
using nonparametric techniques. To test the hypothesis " M7 encompasses My ", we build the
corresponding encompassing statistic and establish asymptotic property of such statistic.

Considering the functional estimates m, and g, of the unknown functions m and ¢ in relation

(2.1) respectively, we define the encompassing statistic as follows:

dimg(2) = gn(2) = G(ma)(2), (3.4)

where G(m,,) is an estimate of the pseudo true value G(m) associated with g, on H, which is

defined by G(m) = E[m | Z = 2].

Using the sample S; = (Y;, X;, Z;), i = 1, ..., n, the kernel regression estimates m,, of the function

m, and g, of the function g have the following expressions:

1 —Xi —Z;
@Z?:l K1 (5.21)Y; ) @Z?:l Ko(5.20)Y)
- In\Z) = ,
—X; —7Z;
@ Zy:l Kl(xhln ) @ Z?:l KQ(Zh?.n )

(3.5)

my () =

where hj, and K, j = 1,2 are window widths and kernel densities, respectively. The kernel

densities satisfy

K;(u) >0 and /Kj(u)du =1j=12 (3.6)

We provide in the following, a theorem establishing the asymptotic convergence of the encom-

passing statistic.

Theorem 3.2. Suppose that assumptions 3.1-3.3 hold. Moreover, suppose that relation (3.6) is
satisfied. Then, under H, we get:
. 2 [ K3(u)d
\/nhd om g(2) = N(O, UI(Q()U)U) in  distribution as n — o0. (3.7)
w(z
¢(z) is the marginal density of the Z at z and 0® = VarlY|X =z, 7 = z].

Proof of theorem 3.2 The proof of this theorem will be based on the decomposition of the

expression of the encompassing statistic into two parts as follows:
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nh n Y, — — " m, (2
QH(; Yo Ko (5 Zt) ;Zt K (52 nZt) ()
Z Zt

=./n 2n22t v h2nz Zt)(yt—m(a;t)) (3.8)

han
t

z Z
T y/nhg, z zt y Zt) (m(x1) = ma(z))
= (Ch + Cs.

The first part C7 coincides to the kernel regression of the residuals ¢, = Y; — m(z;) onto Z;.
When assumptions 3.1-3.3 hold, then under H, we achieved the convergence in distribution of
the first part to a normal distribution using Rhomari’s result in Bosq (1998). The second part
Cs reflects the limit in probability of the supremum of the difference my,(z;) — m(z;) at 2; € R?
scaled by m and its convergence can be derived from the rate of covergence of the uniform

convergence of the estimate m,,(x;) which has been provided by Bosq (1998).

3.3 Parametric modelling M1 vs nonparametric modelling M2

We consider the case that model M is a linear parametric model and Mo is estimated by kernel
nonparametric technique. Therefore, the hypothesis H will have linear parametric specification.

The encompassing statistic associated to the null M{EMs can be written as follows:

0p.9(2) = gn(2) = GL(B)(2), (3.9)

where G1(8) is an estimate of the pseudo-true value G, (3)(z) associated with g, on H, which

is defined by GL(8)(z) = f'E[X | Z = z].

London Journal of Research in Science: Natural and Formal

For the nonparametric specification of Ms, we consider the estimate g,, as the kernel regression
estimate of g given in (2.1). Since the rival model g is estimated using kernel method, the various

assumptions on kernel density and window width will be maintained.

Even the process exhibits some dependences, we can still establish the asymptotic normality of

the encompassing statistic defined in relation (3.9).
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Theorem 3.3. Assume that relation 2.4 and assumptions 8.1-3.8 are satisfied. Then, under H
with linear specification and when the bandwidth heo, satisfy kernel reqularity condition, we get:
A 2 [ K2(u)d
nhi 05 4(z) = N(O, M) in distribution as n — 0. (3.10)
2n"P,9 ‘70(2)
©(2) is the marginal density of the Z at z.

Proof of theorem 3.3 Using similar techniques as previously, we can write the encompassing
statistic as follows:

nh8,85.4(2) = \/nhd, (9n(2) — CL(B)(2)

n K2(z Zt z Zt)

nhgn(z Zt 1K2 z Zt Z z Zt)B/Xt)

t=1 t=1 =1 K Ton

ZZt

- ,/nhgnz Z = zt)(Yt — B'Xy) (3.11)
t= l

" K Z—Zf .
Y ”hgnzz?l(K]Tz_)zt)X{(ﬁﬁ)

t=1 hn

= Dy + Ds.
When assumptions 3.1-3.3 hold, then under H, D; converges in distribution to a normal law
with mean zero and variance % [ K2(u)du, see Bosq (1998). Concerning Do, using central
limit theorem for linear processes in Peligrad and Utev (1997), the normality asymptotic of
the linear process has been established. Therefore, this implies the normality asymptotic of
Vn(p — B) The remaining expression in Do vanishes to zero as n tends to infinity. Thus, Do

converges in distribution to zero. This completes the proof.

3.4 Nonparametric modelling M1 vs parametric modelling M2

We consider the owner model M to be estimated using a nonparametric method and the rival
model M to be a linear parametric method. Therefore, the encompassing statistic associated

to the null M1EM,; is given by:
Omy = = F(ma), (3.12)
where 4(my,) is an estimate of the pseudo-true value (m) associated with 4 on H, which is

defined by v(m) = (E[ZZ']) " E[Zm].

When the estimate of model M is obtained from the kernel regression and the model Mo is

from linear parametric modelling, we summarize the asymptotic results in the following theorem.
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Theorem 3.4. Assume that relation (2.4) is satisfied. When the kernel Ky and the bandwidth

h1n satisfy the usual regularity condition and when we have one of the following points:

Assumption 3.1 holds and the kernel regression estimate m, and the process (Y, Xn)n satisfy
assumptions 3.2 and 3.5.

Then, under ‘H, we get:

Vi~ — N(0,%) in  distribution as n — oo. (3.13)

where ¥ = plimy, ooV ar(y/ndm.)-

Proof of theorem 3.4 We split the encompassing statistic \/ﬁSmW into two parts. The first part
yields Fy = /n(2 3" Z:Z;)7 (2 7, Zi(Yi — m(z;))) which gives the asymptotic normality
of the theorem, Peligrad and Utev (1997).

The second part is Fy = vi(L Y0, Z,2,)7 (L S0, Zi(m(a;) — ma(2:))). Again, we bound
this by taking the supremum with respect to x;. Thus, F5 vanishes to zero from the uniform

convergence of my,(z;), Bosq (1998). This completes the proof of theorem 3.4.

We remark that we should be careful about mutual encompassing of both models which concerns

the bijection of the pseudo true value function G(.).

V. CONCLUSION

We have considered encompassing test for functional parameters. As stated in Hendry et al.
(2008) that the work of Bontemps et al. (2008) is the starting treatment of such type of encom-

passing test based on nonparametric methods. We have extended that work to dependent process.

When using kernel method and linear regression as estimator of conditional expectations, we
have established asymptotic normality of the encompassing test for dependent processes. These

results would be helpfull for analysing non-nested non-parametric and parametric models.

Development of encompassing test to nonparametric methods opens new research direction in
theory as well as in practice. Application of the various results on real data would accelerate

such development.
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