Age, Size, Dynamics of Energy, Matter, and Masses of Black Holes in the Model of Accelerated Expansion of the Universe, based on the Idea of a Hypothetical 4-dimensional Inverted Substance

Table of contents

1. ___________________________________________ ABSTRACT

The consequences of the previously proposed model of accelerated expansion of the Universe based on the idea of a hypothetical 4-dimensional substance with an inverse population of energy levels are considered. Based on the data on the time and redshift of the beginning of recombination and the last scattering, taking into account the dependence of the redshift on time obtained in this model, the age of the Universe was found, which turned out to be ?230 billion years. The dimensions of the Universe, which is a 4-dimensional spherical layer with a radius of 2400 Gpc, are determined. The dynamics of black hole mass growth is found to coincide with the observed data on the growth of black hole masses in elliptical galaxies, where there is no gas, the accretion of which could explain the growth of their masses. The dynamics of the masses of black holes in the considered model is compared with the dynamics of the masses in the model based on the standard model. It is shown that the dynamics of the growth of the energy of baryonic and dark matter coincides in form with the dynamics of the growth of the masses of black holes. The rate of matter formation is compared with the rate of star formation. It is concluded that currently dark matter is practically not formed, and it was formed at the most rapid temps at a redshift of more than two.

2. ?????????

3. I. ???Ð?"????

? ?????? [1] ?? ?????? ????????????? ? ?????????????? 4-?????? ?????????? ? ????????? ????????????? ?????????????? ??????? ???? ?????????? ?????? ??????????? ?????????? ?????????, ??????? ? ??????? ????????? ????????? ????????? ?????? ??? ?????????? ???? Ia [2], ???????? [3] ? ?????????? ?????-????????? [4]. ??? ????? ????????? ????????? ?????? ???????? ??????, ???????????? ?? ??????????? ?????????, ?????????? ?? ????????? ??????, ?????????? ?? ?????? ???????? ?????????? [5,6].

??? ? ? [7][8][9][10]

4. II. ??????? ????????? ? ??Ð?"??? ????? ?????Ð?"??Ð?"? ?????????

??????????? ???????? ???????? ?? ??????? ??????????????? ????????? ?? ????????? ? ??????????????? ?????? ??????????? ???????? (1) ??? x = (t -t e )/t 0 ; H 0 -???????? ??????; t -????????? ?????? ???????; t e -?????? ???????, ? ??????? ?????????? ????????? ?????????; t 0 -?????? ???????, ????? ?????? 4-?????? ??????????? ????, ?? ???? ???? ?????????; R 0 -?????? 4-??????? ???????????? ???? ? ?????? ??? ????????????? t 0 ; T 0 = ct 0 . ??? ?????????, ???????? ? ??????? ?????????? ? [1] ?? ????????? ?????????? ???????????? ? ??????????? ?????? ??? ?????????? Ia, ???????? ? ?????-?????????: H 0 = 67.7 ??/?/???; t 0 = 27.7 ???? ???; H 0 t 0 = 1.92; R 0 = 2.24 Ð?"??; T 0 = 8.5 Ð?"??; H 0 t 0 T 0 /(2?R 0 ) = ?/4, ??? ? = 4.64 [1]. ?????? ??????? t e ??? ??????, ??????? ??????????? ? ??????? ?? ?????????? ???????. ???????? ?????????? ? ???????????? ???????? ??????? ????? ?????????? ?????? ?.

??? ????????, ? ?????? ???????? ?????? [16] ?????????????? ????? ???????? ????? ????? ????????????? 4-??????? ???????????? ???? ????????? ???????????? ??????????? ? ???????? ?? ????????? ???????????? ????? ?????????????? ????????-?????-????????? ??????, ????? ??????? ? ???????. ??????? ????????? ???????? ????? ??????, ??? ????? ??????????? ?????, ???? ?????????????, ????? ????? ??????????? ? ??????????? ?? ??????? ? ?????????. ?????? ??????????????? ? ????????? ???????, ????????? ??? ?????????? ???????? ?????????? ?????? ? ??????????? ?? ???.

?? ???? ?????????? ????????? ?????? ????????. ? ?????-?? ?????? ?????? ??????????? ? ????????? ???, ?????????? ?????????? ? ?????????? ???????????? ?? ??? ???????, ??????????? ??, ??? ?????????? ?????????? ?????????? [19]. ????? ???????, ??????????? ??????? ?????????? ????????? ???????????? ?? ????? ???????? ?????????????? ??????????????????? ?????? ? ????????? ???? ??????????? ?????? -?????? ???????? ? ?????.

??????? ???????, ? ??????? ???????????? ?????????? ?????????, ???????? ???????????? ?????????? ????????? [16]. ??? ???????? ??? ?? ???? ?????? ? ????? ???? ???????????? ? ???? ????? ??????? R f . ?????? ??????????? ?????????? ????????? ????????? ???????? ??????????. ??????????? ?????????? ????????? ???????????? ??? ??????????? ?????? ????? 3000 ? ? ????????? ???????? ????????? 380000 ??? [20]. ??????? ???????? ??? ??????????? ?????????? ????????? ?????????? z f ? 1090 [21]. ?? ?? ??????? ?????????? ????????? ???? ????? ????????? ?????????????? ?????? ? ????????? ?? ??? ????? ????????????. ?????? ????? ???????????? ????????????? 200000 ??? ?? t 0 ? z r = 1400 [22]. ????????? ???? ???????? ?????? ?????????? ? ??????????? ??????????????? ??????. ? ??????????????? ?????? ??????????? ???????? ?????????? ? ???????????? ???????? ??????? ? ?? ???????? ????????, ?????????? ?? ??????????? ? ??????????? ?????? ? ??????????? ???????? (1), ???. 1. ?????, ??? ??? ?????????????? ?????????, ??????????? ? ???????, ???????????

? ? ? ? 0 0 0 0 0 0 exp ln 1 1 2? H t T x z x H t x x x R ? ? ? ? ? ? ? ? ? ? ? ? ? ? London Journal of

5. ??????? ?????????

???? ??????? ?????????, ????? ???????? ???????? ? ?? ????????. ??????? ? ??????? ??? ??????? 4-??????? ???????????? ????

?????????? ? [1], t -t 0 = T, ??????? ?????? ????????? R = R(t 0 + T) ? 2.4?10 3

Ð?"??, ??? ???????? ? ???? ?????? ????????? ? [1] ?????? ?????????? ????????? ????????? ?????????, ?????? ???? ?? ????? ???????? ??????????? ??? ?? ????? ??????? ???????? UDFj-39546284 ? GN-z11 ?? ????? ??????? ?????????. ??? ???????? ? [1] ?????????? ?? ???? ???????? ?????????? ???????? D g ? 80 Ð?"??. Ð?"?? ?????????? ?????? ?????????? ??????????? ? 3-?????? ????? ? ????? ???????????? ????? Ð?"???????? ?? ??????????? ??????????? ? ????? ???????????? ??????????? ?????????, ??????? ??????? ?? ?????????? D g . ???? ????? ????????????? ?? ?????? 3-?????? ????? ? ???? Ð?"???????? ? ? ??????? ????????? ? = D g /R. ?????????? ??????????? ? ????? ?????????? ?? ????????? ????????? ? = R(1/cos? -1) ? R? 2 /2. ?????????? ???? ?, ???????? ?/R ? (D g /R) 2 /2 ? 0,55?10 -3 << ? k , ??? ? k = 0.04 -???????? ?????????, ????????? ? [18]. ????? ???????, ?????????? ?? 3-?????? ????? ?? ?????????? ?? ????? ??????? ???????? ???????? ? 73 ???? ?????? ???????? ?????????, ??? ???? ?? ????? ???????? ?? ??????????? ????? ???????? ??????????????? ????????????? ???????. ????? ????? ???? ???????? ???????? ????????? ?? ??????????? ???????? ?????????? ?????????? ????????? ????????? ?? ????? Ð?"???????? ?? D g > R(2? k ) 1/2 ? 680 Ð?"??.

? ??????????????? ?????? ????? ?????? ??????? ????? ???????? ?????????, ?? ???? ????? ???????? 3-?????? ????? L e = 2?R, ??????? ?????????? ? 1.5?10 4 Ð?"??. ???????? ????????? R f /(L e /2) ? 0.74 ?????, ??? ?????????? ????????? ???????? ?? ???????, ??????? ?????? ????????? 4-??????? ????. ????? ???????, ????? ??????? ?????, ??? ? ??????????????? ?????? ??????? ????? ????????? ????????? ??? ??????????? ?????????.

????? ????? ???????? ?? ?????? ?????????, V ??? ??????? ???????????????? 3-?????? ????? S 3 :

V = S 3 = (4/3)? 2 R 3 ? 1.7?10 11 Ð?"?? 3 . ? ???????????? ? ????????? ? [1] ????????? ????????? ( ) 0 0 0 0 0 0 0 exp ln 1 1 d 2 2 1 x H t ct H t D x ct x x x p p ì ü ï ï ï ï = - + + í ý ï ï ï ï î þ ò ( ) 2 0 0 0 0 0 0 exp ln 1 1 d 2 2 1 H t ct H t x D x ct x x x R x p p ì ü ae ö ¢ ï ï ï ï ÷ ç é ù ¢ ¢ ¢ = - + + ÷ í ý ç ê ú ÷ ë û ÷ ç ï ï ¢ è + ø ï ï î þ . ¢ ¢ ¢ ? ? ? ? 0 2 3 0 0 0 0 0 exp ln 1 1 d 5.6 10 4 2? 1 f t f f H t x D t T x x x x ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? T R T Ð?"??. ? ? 0 0 0 0 0 exp ln 1 4 t t t t R t R t t ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

, London Journal of Research in Science: Natural and Formal ??????? ? 4-?????? ???? ? ?? ????????? ??? ????????? ???????????????? ???????? ?????? ??????? ?????????.

6. IV. Ð?"??????? ?????? ????Ð?"?? ?????????

???? ??????? ????????? ????? ?????? ?????????? ?? ??????? ??? ???????? ????????? ??????? ?????? 4-??????? ????, ? ???????? ????????? 4-?????? ??????????? ???? ?, ??????????????, ?? ??????? ??? ??????????? ????????? ??????? ??????? ?? ??????? ??????????? 4-??????? ???????????? ????. ?????????? ? ?????????? ? [1] ????????? ? ? (t) = ? ? (t 0 )(t/t 0 ) ? ???????? t = T + t 0 , ???????? ? ? (T)/? ? (t 0 ) = (1 + T/t 0 ) ? ? 3?10 4 . ?? ??????? ?? ??? ??????????? ????????? ??????? ??????? ?? ????????? ? E (t), ??? ??? ? ?????? ?????? ? E (t) = const/? ? (t) [1]. ????????? ????????? ??????? ??????? ?? ????????? ? ????????? ?????? ?????????????? ?????? ??????????? ????????? ? ?????????? 5.2?10 -6 Ð?"??/?? 3 [23], ?? ? ?????? ??????????? ????????? ? E (t 0 ) = ? E (T)(1 + T/t 0 ) ? ? 0.16 Ð?"??/?? 3 .

?????? ??????? ????????? ?????? 4-??????? ????

? ?????? ????, ??? ? ? (t 0 )(R 0 ) 4 = ?(t 0 ), ? ? (t) = ? ? (t 0 )(t/t 0 ) ? , ? ????????? R(t)/R 0 ????? ???? ???????????? ? ???? (2)

?????? ??????? ?????? 4-??????? ???? ?????????? ??? ?(t) = ?(t 0 )exp[?(t -t 0 ) ? ?????? ???????????? ? ???????? ? [1] ?????????? d?/dt = ??, ??? ? = 5.31×10 -18 ? -1 -???????????? ? [1] ??????????? ???????? ? ???????? ????????? ? ??????? ?????????????? ??????? 4-?????? ?????????????? ?????????? ?? ???????????.

?????? ??????? ??????? ?? ????????? ???????? ? ???????????? ? ???????? ???

E(t 0 ) = ? E (t 0 )V(t 0 ) = (4/3)? 2 (R 0 ) 3 ? E (t 0 ) -?????? ??????? ????????? ? ?????? ?? ???????????. ? ?????? (2), ? ????, ??? ? E (t) = ? E (t 0 )(t/t 0 ) -? , ????????(3)

Ð?"????? ??????????? E(t)/E(t 0 ) ??????????? ?? ???. 2. ?????, ??? ??????? ?????? ??????? ????????? ?????? ???????? ? 9 ???, ? ????? ???????? ????? ? ????? ?????????? ???????, ?????? ???????? ?????????, ????????????? ? 4?10 4 ??? ?? ????????? ? ???????? ????????? ? ?????? ?? ???????????. ????? ???????, ???????? ? ??????, ??? ????? ????? ??? ??????, ??? ? ?????? ??????? ??????? ?? ?????????. ????? ???????? ??????????? ????? ???????? ??????? ? ?? ???????? ????????????? ?????????? ??? ???????? ????????? ??????? ?? ?????????, ??????? ?????????? ?????????????????? (3) ?? ???????: . ?? ????????? ??????? ?? ???. 2 ? ?? ??????? (4) ?????, ??? ??? t = t 0 ??????????? ????????????. ?????? ?????????? ???????, ????????????? ?? ??????? ??????? ??????????? ????????? t -t 0 = 4t 0 /3 ? 37 ???? ??? ??????????? ?????????? ? ????, ? ????? ????????? ?????????? ? ??? t -t 0 ? ? ????????? ? ???????? 3?/4t 0 . ??????? ? ??????? ? 37 ???? ??? ?????? ???????? ????????? ??????.

( ) ( ) ( ) ( ) ( ) ( ) ( ) 4 4 4 0 0 0 0 t R t t t V t t R t R r r r r X X X X é ù ê ú X = = ê ú ë û . ? ? 4 0 0 0 0 0 exp 1 4 R t t t t t t t R ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ( ) ( ) ( ) ( ) ( ) ( ) ( ) 3 E E 0 E 0 0 t R t E t t t E t t R r r r é ù ê ú = = ê ú ë û V ( ) ( ) 7 4 0 0 0 0 0 3 exp 1 4 E t t t t t t t E t b b ae ö ae ö - - ÷ ÷ ç ç ÷ ÷ = + ç ç ÷ ÷ ç ç ÷ ÷ ç ç è ø è ø London Journal of

7. ???. 2:

????????? ?????? ??????? ????????? ?? ??????? ? ??????? ?? ???????????. ???????????? ????????? ?????? ????????????? ???????? ????????? 228 ???? ???, ????????????? ?? ??????????????? ??????.

8. V. Ð?"??????? ???? ?????? Ð?"??

????????? ?????????? ?????? ??????? ???????????? ?? ???, ??? ????? ???????, ??????????? ?? ????????? ?? 4-??????? ????, ??????????? ??????? ?????? (?Ð?") [24]. ????? ??????? ????????? ? 4-?????? ???? ?????? ??????????????? [1]. ??? ??? «?????????????» ?????????? ??????? 4-??????? ???????????? ???? ??????? ?????? ??-?? ?????? ?????????? ??????? ????????? ? 4-?????? ????, ?? ??????? ?????????? ??????? ?Ð?" ??????????? ??? ????????? ??????????? ??? ? 4-?????? ??????????? ????, ????????????? «??????????????» ?????????? ??????? 4-??????? ???????????? ???? ???????? ????????? ?????????????? 4-?????? ??????????. ?? ???? ????????????????? ????? ????? ??????? ????????? ? 4-?????? ???? ??????? «?????????????» ????????????? ? ???????? ???????? ???????????? ?????? ???????? ??? ???????? ??????? ? ?Ð?".

( )

0 0 0 d 7 3 d 4 1 E E t t t t t b é ù ê ú = - ê ú + - ê ú ë û

. ; ? -???? ??????? E (+) ? ?????? ??????????? ????????? ? ?????? ??????? E: E (+) (t 0 ) = ?E(t 0 ); 0 ? ?? 1, ? + ? = 1. ????????? ? ???????? (1), ? ??????? x = ?/t 0 , ???????? ??????????????? ??????????? ??????? ????? G ??????? ??????? ?? ???????? ????????, ?????? ??????? ??????????? ?? ???. 3b. ?????, ??? ??????? ????? ????????? ???????????? ??????? ? ??????????? ?Ð?" ????? ?? ?????. ??? ??????? ? ?????????? ???? ???????????? ???????, ??? ????????????? ??????? [27].

London

??????? dE (+) /dt ????? ??? ? ??????? E(t) ??????????? ??? t -t 0 = 4t 0 /3 ? 37 ???? ??? ?? ??????????? ?????????. ????????? ??????? (1), ???????, ??? ????? ??????? ??????? ????????????? z = (4/3)H 0 t 0 exp(?/3)/(7/3) (1+?/4) ? 1.93. ??? ???????? [28], ??? ????? ???????? z ??????????? ???????? ???????? ?????????????????. ? ????? ? ???? ?????????? ??????? ???????????????? ??????? [dE (+) /dt] -1 , ? ??????? ???????? t -t 0 ???????? ?? ?:

. (6)

? ???????????? ? ???????? (1) ???????? ??????????????? ??????????? M FR ?? z. Ð?"????? ???? ??????????? ????????? ?? ???. 4 ???????? ??????. ???????? ??????? (6) ?????????? ?? ??????? ??????? dE (+) /dt, ?? ???? ?? ???????? z = 1.93, ? ????????? ????????????? ???????? ? ???????? ??? z = 0 ?????????? (7/3) 7?/4 exp(-?) ? 9.4, ??? ????????? ? ???????????????? ???? ???????? ????????????????? [28].

?? ?????? ?????? [29] ???? ??????????? ????? ??? z = 1.125 ?? ??????? ???? ? 4 ???? ????????? ??????????? ???????? ??? z = 0.375. ?? ?????? ????? [28,30] ???????? ????????????????? ??? z = 2.75 ? ??? ???? ????????? ??????????? ????????, ?? ? ?????? ???? ????, ??? ??? z = 1. ??? ? ??? ???? ??????????? ???????? ????????????????? ????????? ? z = 4. ??????????? ?? ???? ?????? ?????? ??????????? ???????? ????????????????? ?? ???????? ???????? ????????? ?? ???. 4 ????????? ??????. ????? ?? ????????? ???????? ????????????????? ??????????? ????????? ?? ????????? ???????????? ???????, ? ?????????????? ??????????? ???? ??. ???????? ?? z =1.3 ?? z = Z ?????????? ? 90% ?? ????? ????????? ?? z ?? z = 0 ?? z = Z, ??? ??????????? ?????? 50%, ??? ??? ????????????????? [28]. London Journal of Research in Science: Natural and Formal ???. 4: ??????????? ???????? ???????????? ??????? ?? ???????? ???????? (???????? ??????) ? ???????? ????????????????? (????????? ??????). ????? ??????????? ? ???????????? ? ??????? ????? [28][29][30].

???? ?????????, ??? ?????? ??????? (6) ????????? ???????? ???????????? ???????, ?? ????? ????????????, ??? ??????????????? ??????? ????????????? ???????? ???????????? ?? ?????? ????????? ???????, ?? 10% ????? ??????? ??????? ??????, ?? ? ???????? ???????????? ???????? ?????? ???????. ??? ????????????? ??????? ??????????????, ??????? ??????? ?? ????? ?????? ??????.

9. VII. ?????Ð?"???? ???????????

??? ?????????? ? [1] ????????? ? ??? ??????? ????????? ? 270 ???? ??? ? ???????????? ? ?????? ?????? ? ?????? 230 ???? ??? ??????????? ? ??????? ??????????, ? ??????? ??????????, ??? ???????? ??????????????? ????? ? ???? ????? ???????? ?????????? ?? ????????? ?? ??? ????? ?? ?????, ??., ????????, [31]. ? [32] ?????????, ??? ?? ????????? ???? ?????? ???????? ??????, ??? ?? ?????? ????? ?????????? ???-???? ? ???????? ????????? ??? ??????? ?????????. ????? ???? ????????????? ????? ? ???, ??? ?????????? ????????? ???, ????????????????? ? ?????????????? ?????????? ????? ? ????????, ???? ????????? ??? ??????????? ? ?????? ????????????? ?????????. ??????????????? ?????? ?? ???? ?????? ??????????? ? ????? ??????????????. ?????????? ? ??? ??????? ????????? ?230 ???? ??? ???? ????? ??? ? 16 ??? ?????? ???????? ? ??????????? ?????????? ?????? ? 14 ???? ???, ?? ???????.

?????? ? [1] ??????? ?????????, ????????? ?? ??????? ?/D g = D g /(2R) ? 0.1? k , ???? ??? R ???????? ?10 4 Ð?"??, ? ??? ???????? ????????? 270 ???? ???. ???? ???????? ?? ??????? ?/R ? (D g /R) 2 /2 ? 0.1? k , ?? ???????? R ? 900 Ð?"??, ? ??????? ????????? ??? ????? ???????? R ?????????? ? 200 ???? ???. ????? ???????, ?????????? ?? ?????? ?????? ? ?????????? ????????? ? ?????? ? ????????? ???????????? ?????? ????????? R ? 2,4?10 3 Ð?"?? ???????? ????? ?????????? 900 ? 10 4 Ð?"??, ??????????? ?? ?????? ?????? ? ???????? ???????????? ?????????, ? ??????? ????????? T = 230 ???? ??? -????? ?????????? 200 ? 270 ???? ???, ??? ??????????? ????????????? ????????? ? ?????? ?????? ???????? R ? T. ????????? R/R 0 ? 1000, ????????? ??????? (6) ?? ????????? ????????????????? ???????? ? ?????????????, ??? ???????? ????????????????? ? ???????? ???????????? ??????? ??????? ??????????????? ???????? ??????? ??????? ?? ????????? ?? ??????? ???????, ??????????? ?Ð?". ????? ???????, ????? ????????????, ??? ??????????????? ??????? (6) ????????????? ???????? ???????????? ?? ?????? ????????? ???????, ?? 10% ??????? ??????? ??????, ?? ? ???????? ?????? ???????. ??, ??? ??? z ? 1.9 ?????????????? ??????? (6) ????????? ? ???????????????? ???????? ?????????????????, ? ???????? ?? ??? ? ????????? ???????? 1.3 ? z ? Z ??????????? ????????? ??????????????? ???????? ?? ???????? ????????????????? ??????? ? ???, ??? ? ????? ?????? ????? ???????????? ????????? ? ???????? ?????? ??????? ??? ????? ?????????? ?? ????????? ?? ?????????????????? ? ??????, ??????? ? ????????? 0 < z < 1.9. ?????????? ???????? ???????????? ???????? ?????? ??????? ? ???????? ???????????? ????????? ??????? ??????? ?? ????? ?????? ?????? ? ??????? ?????????? ????????????.

10. VIII. ??????????

? ?????? ?????? ??????????????? ????????? ?? ???????????? ????? ? [1] ?????? ??????????? ?????????? ?????????, ?????????? ?? ????????????? ? ?????????????? 4-?????? ?????????? ? ????????? ????????????? ?????????????? ???????. ?? ?????? ?????? ? ??????? ? ??????? ???????? ?????? ???????????? ? ?????????? ????????? ? ?????????? ? [1] ??????????? ???????? ???????? ?? ???????? ?????????? ??????? ??????? ? ??????? ???????, ? ??????? ??????????? ??????? ?????????, ?????? ??????? ?????????, ??????? ???????? ?????? ?230 ???? ???. ??? ??????????? ? ???????? ?? ???????????? ???????? ???????? ??????????????? ????? [31] ? ? ???????? ???????? ?????????, ??????????? ? [1] ?? ?????? ???????? ?????????.

????????? ?????? 4-??????? ????, ? ???????? ????????? ???? ? ????????, ?? ???? ?????? ?????????, R ? 2.4?10 3 Ð?"??, ? ????? ????? ???????? ????? ???? L e = 2?R, ??????? ?????????? ? 1.5?10 4 Ð?"??. ????????, ??? ????????? ???????? R ??????????? ? ???????? ?? ?????? ???????? London Journal of Research in Science: Natural and Formal

?????????. ?????? ????? ????? ????????? V ??? ??????? ???????????????? 3-?????? ?????: V ? 1,9?10 10 Ð?"?? 3 .

????????? ?????? ????? ?????????? ????????? R f , ??????? ???????? ?????? ? 5,6?10 3 Ð?"??. ?? ????????? R f ? L e ?????? ?????, ??? ? ??????????????? ?????? ??????? ????? ????????? ????????? ??? ??????????? ?????????. ? ?????????????, ??? ? ????????? ????? ????????? ??????? ?? ????????? ????? ??????????? ??????? ????????? ??????? ??? ????????????? ?????????, ??????? ?????????? 0.16 Ð?"??/?? 3 . ???????????????? ???????? ?????? ??????? ?????????. ????????, ??? ? ?????? ?????? ?????? ??????? ????????? ???????? ?? ???????. ? ??????? ?????? 37 ???? ??? ????? ????????????? ????????? ?? ?????? ??????? ?????? ???????? ? 10 ???, ? ????? ???????? ????? ? ? ?????????? ??????? ??????? ??????????? ???????? ? 10 4 ??? ?? ????????? ? ???????? ????????? ? ?????? ?? ???????????. ????? ???????, ?????? ?????, ??? ????? ????? ??? ??????, ??? ? ?????? ??????? ?? ?????????. ?? ?????? ??????? ???????? ????????? ??????? ?? ????????? ? ????????? ? ??????? ?????????? ?? ?????? ???? ?????? ??? ? ????????????? ?????????? ?????? ?????, ??? ?????? ??????? ?? ????????? ??????????? ?? ??????????? ??????? ??????, ? ?????? ?????????? ???????????? ??? ? ??????? 4-?????? ???? ??? ????????? «?????????????» ?????????? ??????? ????? ???? ???????? ????????? ? 4-?????? ????, ???????????? ? ???????? ??????????????? ????????? ? ??????? ?????????????? ??????? ?????????????? 4-?????? ?????????? ?? ???????????. ????????, ??? ???????? ????? ???? ?????? ???, ??????????? ??????????? ? ????????? ?????? ?????????, ?? ??????? ?? ?????? ?????? ????. ?????????? ???????? ??????????, ??? ????? ?????? ??? ? ????????? 0 ? z ? 1.2 ?????????? ????? ? 7 ???, ? ? ????????? 0 ? z ? 2 -? 20 ???. ??? ?????? ????????? ? ???????????? ?????????? ?????? ??? ? ????????????? ?????????? [25,26], ??? ? ??????? ?????????? ?????? ??? ?? ???????? ???????? ??? ?????????? ?? ????.

????????? ???????? ?Ð?", ????????????? ? ?????? ??????, ? ???????????? ???????????? ???????? ?Ð?", ?????????? ? ?????? ???????, ??????????, ??? ? ????????? ?????????? ???????? z ??????? ?????????? ?????????????????? ??????????. ??? ? ??????????????????? ?????? [34], ??????????? ?? ??????????? ??????????????? ??????, ??? ???? ??????????????? ?????, ?????? 2,96 ??????? ?????????????????? ?????????? ? ????????? ???????? 1 ? z ? 4.5. ??? ?????? ?? ??????? ?????????? ????????? ?????????? ???????? ?? ?????? [34] ?????? ?????????? ?? ??????????? ???????? ?? ???????? ????????? ??????. Ð?"?? ????????? ???? ????? ??????????? ????????? ????????? ????? ???? ?Ð?" ?????????? ?????????? ?????????? ????????, ????????? ?? ??? ?? z ? 4.5.

????????, ??? ???????? ????? ??????? ????????? ? ?????? ??????? ?? ????? ????????? ? ????????? ????? ???? ?????? ???. ????????? ????????? ???????? ???????????? ??????? ?? ????????? ?????????????????. ?????? ?????, ??? ? ????????? ????? ?????? ??????? ??????????? ?? ??????????, ? ???????? ???????? ??????? ??? ?????????????? ??? ??????? ???????? ?????? ????.

11. ???????? ?????????

????? ??????????? ?????????? ????????? ?????????, ????????? ? ??????????? ?????? ??????. London Journal of Research in Science: Natural and Formal

Figure 1.
Figure 2.
Figure 3.
Figure 4. 4 )
4
Figure 5. . ( 5 ) 3 :
53
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
???????????? ???????? ???? ?Ð?", ??????????? ? ?????? [33], ? ????? ????????????,
???????????, ????????, ? [27], ??????????, ??? ? ????? ??????, ????????? ????? ?Ð?" ??
??????? ??????? ?? ?????? ?Ð?". ????????????, ??????????? ? ?????? ??????, ???????? ?
??????????, ??? ???????? ???? ?Ð?" ?? ??????? ?? ?????? ?Ð?", ? ??????? ? ????????????? ??
???????? ? ????????? ???? ?? ??? ?????? ?? ???????? ??????? ????????? ? 4-?????? ???? ?
???????? ?????????? ?????????. ? ????????? ???????? 0 ? z ? 10 ???????? ???? ?Ð?"
??????????? ?? ??????? ?? ???? ???????, ??????????? ? ??? ??? ???????? ?????????.
29
33
37

Appendix A

  1. , London Journal of Research in Science: Natural and Formal
  2. , ??????? ?????????? ???????????? (?.: ??????? ?????????? ???????????? 2004.
  3. ???????????? ?? 5-??????. (?.: Ð?"?????????????? ???????????? ???????????????????? ??????????, ? ? ????? . 1956.
  4. ???????????????-????????? ????????? ????? ?????? ?????????? ? ???????? ????????????? ?????????. ???????? ???? ? 16, ? ? ????? . http://preprints.lebedev.ru 2004. ????.
  5. ???????? ???????????????-????????? ????????? ????? ?????? ??????????????????? ?????????? ? ??????? ???????????? ?????? ?????????, ? ? ????? . http://preprints.lebedev.ru 2014. (???????? ???? ? 3. ?.: ????)
  6. ????? ??????? ?????? ? ????????? ??????? ?? ?????????????? ?????????? ?? ?????? ????????? ??????????????? ????????????????? ?????????. ? ? ????? . http://preprints.lebedev.ru ???????? ???? ? 1. ?.: ???? E P Orlov (ed.) 2016. 2016.
  7. ? ? ??????? . accessed: 30.03. http://www.timeorigin21.narod.ru/rus_time/Alt_cosmology.pdf ?????????????? ??????????, 2011-2020. 2023.
  8. ????: ??????? ??? <<????????, ? ???????? , S ??????????: ??? ; Weinberg , Cosmology . ?.?. ?????????, ?.?. ??????. (?. (ed.) 2013. 2008. Oxford University Press.
  9. ????????? ? ???????? ????????? Ð?"????????. ? ? ???????? . Special Astrophysical Observatory of the Russian Academy of Sciences, Nizhny Arhyz V A // Marsakov (ed.) 2007. 2007. 2007. (Ph.D. Thesis) (Structure and evolution of Galaxy subsystems)
  10. ?????? ??????????????? ? ????? ???????? ???????. ???????? ???? ? 18, ? ? ???????? , ? ? ????? . http://preprints.lebedev.ru 2010. ????.
  11. ?????????????? ?????? ?????? ???. ? 2-? ????? / ??????? ? ??????????? ?. ?.-?. ??????????? . The Mathematical Theory of Black Holes, ? ? ???????? , Ð?" ? ??? ???. Ð?".?.-?.? , ( ? : Ð?"??????? , ??? (eds.) 1986. 1983. Oxford University Press.
  12. , ? ? ????????? , ????????? . 1987. (?????, ????? (?.: ?????)
  13. ? ? ????????? . ????????????? ? ???????? ????????//??? ????????? ?.Ð?". ???????, (???????: ???, 2017. 2.
  14. ??????????????. https://astrogalaxy.ru/923.html Astrophysics and its Concepts. Age of Space Objects (??????? ??????????? ???????? (???? ?????????: 05.04.2023. accessed: 05.04.2023)
  15. A 2.4% Determination of the Local Value of the Hubble Constant. A G Riess , L M Macri , S I Hoffmann , D Scolnic , S Casertano , A V Filippenko . 10.3847/0004-637X/826/1/56. https://doi.org/10.3847/0004-637X/826/1/56 The Astrophysical Journal 2016. 826 p. 56.
  16. A G Riess , S Casertano , W Yuan , L Macri , J Anderson , J W Mackenty , J B Bowers . 10.3847/1538-4357/aaadb7. https://doi.org/10.3847/1538-4357/aaadb7 New Parallaxes of Galactic Cepheids from Spatially Scanning the Hubble Space Telescope: Implications for the Hubble Constant, 2018. 855 p. 136.
  17. A Suzuki , N Rubin , D Lidman , C Aldering , G Amanullah , R Barbary . 10.48550/arXiv.1105.3470. arXiv:1105.3470v1[astro-ph.CO. https://doi.org/10.48550/arXiv.1105.3470 The Hubble Space Telescope Cluster Supernova Survey: V. Improving the Dark Energy Constraints Above z>1 and Building an Early-Type-Hosted Supernova Sample, 2011.
  18. B E Schaefer . 10.1086/511742. http://www.arxiv.org/abs/astro-ph/0612285http://dx.doi.org/10.1086/511742 The Hubble Diagram to Redshift >6 from 69 Gamma-Ray Bursts, 2007. 660 p. .
  19. Observational Evidence for Cosmological Coupling of Black Holes and its Implications for an Astrophysical Source of Dark Energy. D Farrah , K S Croker , M Zevin , G Tarlé , V Faraoni , S Petty . 10.3847/2041-8213/acb704. https://doi.org/10.3847/2041-8213/acb704 The Astrophysical Journal Letters 2023. 944 (9) .
  20. A Preferential Growth Channel for Supermassive Black Holes in Elliptical Galaxies at z ? 2. D Farrah , S Petty , K S Croker , G Tarlé , M Zevin , E Hatziminaoglou . 10.3847/1538-4357/acac2e. https://doi.org/10.3847/1538-4357/acac2e The Astrophysical Journal 2023. 943 p. .
  21. Planck Evidence for a Closed Universe and a Possible Crisis for Cosmology. Di Valentino , E Melchiorri , A Silk , J . 10.1038/s41550-019-0906-9. https://doi.org/10.1038/s41550-019-0906-9 Nat Astron 2020. 4 p. .
  22. A Model of Accelerated Expansion of the Universe Based on the Idea about a Hypothetical 4-Dimensial Substance with an Inverse Population of Energy Levels. E P Orlov . 10.4236/jmp.2023.141001. https://doi.org/10.4236/jmp.2023.141001 The Journal of Modern Physics 2023. 14 p. .
  23. G Risaliti , E Lusso . 10.48550/arXiv.1811.02590. arXiv:1811.02590v1[astro-ph.CO. https://doi.org/10.48550/arXiv.1811.02590 Cosmological Constraints from the Hubble Diagram of Quasars at high Redshifts, 2018.
  24. Cosmological corollaries of non-constancy of the speed of light. ????????? ??????????? ????????????? ????????. ??. ?????? ?????-???????? ????. I A Urusovskii . ?.?. ??????. ? 2001. p. .
  25. Hyperverse, 5-Dimensional Gravity and Multiverses as Nested Gogberashvili Shells. I Potemine , Yu . 10.4236/jhepgc.2022.84069. https://doi.org/10.4236/jhepgc.2022.84069 Journal of High Energy Physics, Gravitation and Cosmology 2022. 8 p. .
  26. , J Beringer
    Particle Data Group .
    10.1103/PhysRevD.86.010001. Phys. Rev. D 2012. 86 p. 10001.
  27. Cosmologically Coupled Compact Objects: A Single-parameter Model for LIGO-Virgo Mass and Redshift Distributions. K S Croker , M Zevin , D Farrah , K A Nishimura , G Tarlé . 10.3847/2041-8213/ac2fad. https://doi.org/10.3847/2041-8213/ac2fad The Astrophysical Journal Letters 2021. 921 (6) .
  28. Detection of massive forming galaxies at redshifts z>l. L Cowie , E Hu , A Songaila . 10.1038/377603a0. https://doi.org/10.1038/377603a0 Nature 1995. 377 p. .
  29. Our world as an expanding shell. M Gogberashvili . 10.48550/arXiv.hep-ph/9812365. https://doi.org/10.48550/arXiv.hep-ph/9812365 Europhys.Lett 2000. 49 p. .
  30. The formation and evolution of massive black holes. M Volonteri . 10.1126/science.1220843. Science 2012. 337 p. .
  31. Plank and the cosmic microwave background, ESA). Ð?"??? ?????????: 01 ?????? 2023. European Space Agency.
  32. High-redshift galaxies in the Hubble Deep Field: color selection and star formation history to z ~4. P Madau , H C Ferguson , M E Dickinson , M Giavalisco , C C Steidel , A Fruchter . 10.1093/mnras/283.4.1388. https://doi.org/10.1093/mnras/283.4.1388 Monthly Notices of the Royal Astronomical Society 1996. 283 p. .
  33. Cosmic Star-Formation History. P Madau , M Dickinson . 10.48550/arXiv.1403.0007. arXiv:1403.0007v3[astro-ph.CO. https://doi.org/10.48550/arXiv.1403.0007 Annual Review of Astronomy and Astrophysics 2014. 52 p. .
  34. The ASTRID simulation: the evolution of supermassive black holes. Y Ni , T Di Matteo , S Bird , R Croft , Yu Feng , N Chen . 10.1093/mnras/stac351. https://doi.org/10.1093/mnras/stac351 Monthly Notices of the Royal Astronomical Society 2022. 513 p. .
  35. , Ð?" ? Ð?"??????? , ? ? ??????? . ???????? ? ?????? ?????? ?????????: ?????? ???????? ???????? ?????? (?.: ???????????? ??? 2008.
Notes
29.

© 2023 Great ] Britain Journals Press

33.

© 2023 Great ] Britain Journals Press

37.

© 2023 Great ] Britain Journals Press

Date: 1970-01-01