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ABSTRACT
This paper presents the development and implementation of the IFRS17 Formulated Brighton

Mahohoho Inflation-Adjusted Automated Actuarial Loss Reserving Model, lever-aging advanced

Random Forest techniques to enhance data analytics in fire insurance.

The methodology encompasses the simulation of synthetic fire insurance data with key variables

such as claim frequency, severity, and inflation rates. Exploratory Data Analysis (EDA) and data

visualization techniques were employed to assess relationships and trends, aligning the model

with IFRS17 compliance standards. Random Forest regression models were developed to predict

claim frequency, severity, and inflation adjustments, integrating these predictions to estimate

future loss reserves. Robust evaluation metrics, including Mean Absolute Error (MAE), Mean

Squared Error (MSE), and Root Mean Squared Error (RMSE), ensured model accuracy. Stress

testing and scenario analysis were conducted to assess the model’s resilience under various

conditions. Key IFRS17 metrics such as Present Value of Future Cash Flows (PVFCF), Risk

Adjustments, and Contractual Service Margins (CSM) were calculated, offering a comprehensive

approach to actuarial loss reserving.

Keywords:

I. INTRODUCTION
In recent years, the implementation of IFRS 17 has transformed financial reporting within
the insurance sector, particularly emphasizing the need for accurate loss reserving (Interna-
tional Accounting Standards Board, 2019). This study introduces the Brighton Mahohoho
Inflation-Adjusted Automated Actuarial Loss Reserving Model, which employs advanced
random forest techniques to enhance data analytics in fire insurance. The model aims to
address the complexities of loss reserving under IFRS 17, considering inflation adjustments
that are critical for accurate financial forecasting [5].
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1.1. Actuarial Loss Reserve Methods

1.1.1. Chain Ladder Method:

Table 1: Cumulative Claims Data

The Brighton Mahohoho model integrates inflation-adjusted parameters with automated
actuarial processes to produce more reliable loss reserves. Random forest techniques, a
subset of machine learning, are employed to analyze complex datasets, identifying pat-
terns and correlations that traditional models may overlook [1]. This innovative approach
enhances predictive accuracy and adaptability, vital in an ever-evolving regulatory en-
vironment. The rationale for this study is underscored by the increasing complexity of
insurance contracts and the significant implications of accurate loss reserving under IFRS
17 [2]. As inflation impacts reserve calculations, there is a critical need for methodologies
that can dynamically adjust to economic changes. By leveraging random forest techniques,
this model provides a robust framework that aligns with the rigorous demands of modern
actuarial science.

The Brighton Mahohoho model can be applied in various contexts within the fire insurance
sector, allowing insurers to refine their loss reserving processes. By automating data
analysis and incorporating real-time inflation adjustments, insurers can improve accuracy
in financial statements and enhance decision-making processes regarding premium setting
and risk management [4].This study is crucial for the actuarial field as it demonstrates the
application of advanced machine learning techniques to improve loss reserving accuracy.
The findings could influence best practices in the industry, encouraging a shift towards
data-driven decision-making and regulatory compliance, ultimately contributing to the
financial resilience of insurance companies [6].

Loss reserving is a fundamental aspect of actuarial science, dealing with the estimation of
the reserves necessary to cover future claims. Accurate reserving is crucial for maintaining
the financial health of an insurance company [7].Loss reserving methods can be categorized
broadly into two classes: deterministic methods and stochastic methods.Deterministic loss
reserving methods rely on historical data and fixed parameters to predict future claim
liabilities. Common deterministic methods include the Chain-Ladder method and the
Bornhuetter-Ferguson method.

The Chain-Ladder Model is a popular method in actuarial
science for estimating the reserves needed for unpaid claims. This method relies
on historical claim development patterns to predict future claims. The main idea is to
analyze cumulative claim amounts over different accident years and development lags to
estimate future liabilities.

Accident Year Development Lag 1 Development Lag 2 ... Development Lag n
1 C1,1 C1,2 ... C1,n

2 C2,1 C2,2 ... C2,n
...

...
...

...
...

m Cm,1 Cm,2 ... Cm,n

The Table 1 presented is a triangular array that organizes cumulative claims data Ci,j ,
where i denotes the accident year and j signifies the development lag. The entries Ci,j

represent the cumulative amount of claims reported for accident year i up to development
lag j.The year in which the claims occurred. For example, i = 1 represents the earliest
accident year, while i = m signifies the most recent.The time intervals since the claims
were reported. For instance, j = 1 corresponds to the first development period, while
j = n refers to the last.
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The total claims amount accumulated for accident year i by development lag j. The entries
in the table can be expressed as:

Ci,j =
j∑

k=1
Ci,k

where Ci,k represents the incremental claims reported in development lag k.

The primary assumption of the Chain-Ladder Model is that the development factors fj

remain stable across different accident years. These factors provide an estimate of how
cumulative claims grow from one development period to the next. They can be defined
mathematically as:

fj =
∑m−j

i=1 Ci,j+1∑m−j
i=1 Ci,j

(j = 1, 2, . . . , n− 1)

This formula captures the average growth of cumulative claims from lag j to j + 1, effec-
tively measuring the relationship between claims in successive development periods.

Using the estimated development factors, future cumulative claims for accident years that
have not yet fully developed can be projected. For any i (accident year) and j (development
lag) where j > n, we can use the following recursive relationship:

Ci,j = Ci,j−1 · fj−1 (i = 1, . . . , m− j, j = 2, . . . , n)

This equation states that the projected cumulative claims at development lag j for accident
year i can be estimated by taking the cumulative claims from the previous lag j − 1 and
multiplying it by the estimated development factor fj−1.

Proposition:The cumulative claims Ci,j are non-decreasing for all i and j, where i de-
notes the accident year and j denotes the development year.

Proof: We define the cumulative claims Ci,j as follows:

Ci,j =
j∑

k=0
Ci,k

where Ci,k represents the claims reported up to development year k for accident year i.
To show that Ci,j is non-decreasing, we need to prove that:

Ci,j ≤ Ci,j+1 ∀i, j

Expanding Ci,j+1:

Ci,j+1 =
j+1∑
k=0

Ci,k =
j∑

k=0
Ci,k + Ci,j+1

Ci,j+1 = Ci,j + Ci,j+1

Since Ci,j+1 represents the cumulative claims including the additional claims for the
development year j + 1, we have:

Ci,j+1 ≥ Ci,j (as Ci,j+1 ≥ 0)
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Thus, we conclude:

Ci,j ≤ Ci,j+1 ∀i, j

This demonstrates that the cumulative claims Ci,j are non-decreasing.

Claim: As the number of accident years m increases, the estimates Ci,n (for fully devel-
oped claims) converge to the true future cumulative claims due to the law of large numbers.
The stability of the development factors implies that with sufficient data, the average be-
havior of claims will tend to stabilize, providing more reliable estimates:

lim
m→∞

Ci,n → C∗
i,n

where C∗
i,n denotes the true cumulative claims for accident year i.

• Let Ci,n be the estimate of cumulative claims for accident year i after n develop-
ment years.
• Let C∗

i,n be the true cumulative claims for accident year i after n development
years.
• Let Di,j be the development factor from accident year i to accident year j.

Proof:We assume that the development factors Di,j are stable, meaning they do not fluc-
tuate significantly over time. Additionally, the number of claims in each accident year is
sufficiently large, allowing us to apply the law of large numbers.

The estimate of cumulative claims Ci,n can be expressed in terms of development factors:

Ci,n = Ci,0

n ∏
j=1

Di,j

where Ci,0 is the initial claim amount for accident year i.

By the law of large numbers, as m increases, the average of the development factors
converges to the expected value:

lim
m→∞

1
m

m∑
k=1

Di,j = E[Di,j ]

for each j.

Consequently, as m approaches infinity, the estimates for cumulative claims converge
to:

lim
m→∞

Ci,n = Ci,0

n∏
j=1

E[Di,j ]

The true cumulative claims C∗
i,n can similarly be expressed as:

C∗
i,n = Ci,0

n∏
j=1

D∗
i,j

where D∗
i,j are the true development factors.

Under the assumption of stability of development factors, we can state that:

E[Di,j ] = D∗
i,j

for large m.
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Thus, we have:

lim
m→∞

Ci,n = Ci,0

n∏
j=1

D∗
i,j = C∗

i,n

We conclude that:

lim
m→∞

Ci,n → C∗
i,n

This demonstrates that as the number of accident years increases, the estimates for cumu-
lative claims converge to the true future cumulative claims due to the law of large numbers
and the stability of the development factors.

The mathematical framework surrounding the Chain-Ladder Model, encapsulated in the
triangular table format, offers a systematic approach to estimating unpaid claims reserves.
Through the stability of development factors and the non-decreasing nature of cumulative
claims, actuaries can derive reliable projections for future liabilities, critical for effective
financial management in insurance.

Algorithm 1 Chain-Ladder Method
Input: Cumulative claims triangle Ci,j Calculate development factors: forj = 1

to n − 1 fj =
∑n−j

i=1 Ci,j+1∑n−j

i=1 Ci,j

Project future claims: fori = 1 to n forj = 1 to n − i

Ci,j+1 = Ci,j · fj Output: Estimated total claims

Let Ci,j denote the cumulative claims up to development year j for accident year i. The
development factor fj is given by:

fj =
∑n−j

i=1 Ci,j+1∑n−j
i=1 Ci,j

(1.1)

TheoremIf the claims develop consistently, then the Chain-Ladder method converges to
the true reserve.

Proof:
Let Ci,j denote the cumulative claims amount at development year j for accident year i.
The Chain-Ladder method estimates the reserve using the following formula:

R̂i = Ci,n +
n∑

j=i+1
Ĉi,j

where ˆCi,j is the estimated cumulative claim for accident year i at development year j.
We define the development factors fj as:

fj =
∑n−j

i=1 Ci,j+1∑n−j
i=1 Ci,j

, j = 1, 2, . . . , n− 1

The estimated cumulative claims can then be expressed recursively as:

Ĉi,j = Ci,j−1 · fj−1 for j = i + 1, . . . , n

Assuming consistency in development, we assert that:
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Ci,j = Ci,j−1 · fj−1 + ϵi,j where ϵi,j → 0 as n→∞

Consequently, the reserve estimate can be expressed as:

R̂i = Ci,n +
n∑

j=i+1
Ci,j−1 · fj−1

As n increases, and if the claims develop consistently, we have:

lim
n→∞

R̂i = lim
n→∞

Ci,n +
n∑

j=i+1
Ci,j−1fj−1

 = Ri

where Ri is the true reserve for accident year i.
Thus, we conclude that:

lim
n→∞

R̂i = Ri

This completes the proof that the Chain-Ladder method converges to the true reserve
when claims develop consistently.

The Bornhuetter-Ferguson (BF) method is a
fundamental technique used in actuarial science for estimating reserve liabilities in in-
surance. The method is particularly useful when dealing with incomplete data, allowing
actuaries to incorporate prior information in their estimations (Bornhuetter & Ferguson,
1972).
Let:

• Ci = cumulative claims at development year i,
• Ei = expected claims at development year i,
• fi = development factor from year i to i + 1.

1.1.2. Bornhuetter-Ferguson Method:

The expected claims can be calculated as:

Ei = Ultimate Loss× Loss Development Factor

Where the Ultimate Loss U is a key parameter in the BF method, typically estimated
based on historical data.

Algorithm 2 Computation of Reserves Using Development Factors
Input:C: Cumulative claims to date f : Ultimate claims estimate D: Devel-

opment factors n: Number of accident years
Output:
••••• Reserves

Initialize:
• Ui = fi (for each accident year i)

fori = 1 to n Calculate the development factors:

Dj = Ci,j

Ci,j−1
for j = 2, 3, . . . , n

fori = 1 to n Compute the expected cumulative claims:
Ei,j = Ui ·D2 ·D3 · · ·Dj

fori = 1 to n Compute the reserves for each accident year:
Ri = Ei,n − Ci,n

Return: Reserves R = (R1, R2, . . . , Rn)
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The BF method can be formulated as a weighted average of the observed and expected
claims:

Ci = (1− α)× Ci + α× Ei

where α is a weighting factor that reflects the confidence in prior information versus the
actual data [17].

Proposition 1: The Bornhuetter-Ferguson (BF) method provides an unbiased estima-
tor of the ultimate loss under specific conditions.
Proof : Assume that the prior estimates are unbiased, and the development factors are
consistent across all periods. Under these assumptions, we can prove the proposition as
follows.

Let Ci represent the cumulative losses at development period i, and Ei represent the
expected losses at development period i. We aim to show that:

E[Ci] = E[Ei] for all i. (1.2)

Given that the prior estimates Ei are unbiased, it follows that:

E[Ei] = Ui for all i, (1.3)

where Ui represents the ultimate loss for development period i.

Let di represent the development factors. The development factor for period i is defined
as the ratio of cumulative losses between two successive development periods:

di = Ci+1
Ci

. (1.4)

Under the assumption of consistent development factors, the expectation of cumulative
losses follows the relationship:

E[Ci+1] = di · E[Ci]. (1.5)

By applying equations (1.3) and (1.5), we conclude that:

E[Ci] = E[Ei] for all i, (1.6)

proving that the BF method provides an unbiased estimator of the ultimate loss under
the given conditions.

■
Claim: The Bornhuetter-Ferguson (BF) method converges to the true ultimate loss as
more data becomes available, assuming the underlying development patterns remain stable.

Proof :To prove this, let Ci represent the cumulative losses at development period i, and
let U represent the true ultimate loss. The BF method combines prior estimates with
actual observations, adjusting for the expected development.

The estimate of the ultimate loss Ûi at development period i using the BF method is given
by:

Ûi = Ci + (1− Fi) · Ei, (1.7)
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where:
• Ci is the cumulative reported loss at development period i,
• Fi is the cumulative development factor up to period i,
• Ei is the expected loss for the remaining development.

As more data becomes available, i.e., as i→ n (where n is the final development period),
the cumulative development factor Fi → 1. This implies that the observed data accounts
for the entire development, leaving no need for further estimates.

lim
i→n

(1− Fi) = 0.

Substituting this into equation (1.7), we get:

lim
i→n

Ûi = lim
i→n

(Ci + (1− Fi) · Ei) = Cn. (1.8)

At i = n, Cn is the cumulative loss at the final development period, which equals the true
ultimate loss:

Cn = U. (1.9)

The assumption that the underlying development patterns remain stable ensures that the
development factors Fi follow a predictable pattern, so as more development periods are
observed, the estimate Ûi becomes increasingly accurate.

From equations (1.8) and (1.9), we conclude that:

lim
i→n

Ûi = U, (1.10)

showing that the BF method converges to the true ultimate loss as more data becomes
available.

■
The Bornhuetter-Ferguson method offers a robust framework for estimating reserves in
insurance, blending historical experience with current data. Its ability to adapt to varying
degrees of uncertainty makes it a critical tool for actuaries .

Stochastic methods incorporate randomness into the modeling of claims reserves. This
approach allows for a range of possible outcomes, providing a distribution of reserve esti-
mates.

The Bootstrap method is a powerful statistical tool employed
in loss reserving to estimate both reserves and the uncertainty surrounding these
estimates. The technique was first introduced by [24] and has since found wide applications
in non-life insurance for predicting future liabilities and quantifying the risk associated
with reserve estimates. This method involves resampling residuals to simulate alternative
versions of the loss development triangle, which are then used to calculate a range of pos-
sible reserve outcomes. The goal is to generate a distribution of reserve estimates to assess
variability and confidence intervals.

The Bootstrap approach in loss reserving leverages the underlying development factors
used in traditional chain-ladder methods. By resampling the residuals from the develop-
ment triangles, this method assumes that the variability of past data is reflective of the
variability that can be expected in the future.

1.1.3. Bootstrap Method:.

L
on

d
on

 J
ou

rn
al

 o
f 

R
es

ea
rc

h
 in

 S
ci

en
ce

: N
at

u
ra

l &
 F

or
m

al

©2024 Great Britain Journals PressVolume 24 | Issue 13 | Compilation 1.058

The Innovative Development of the IFRS17 Formulated Brighton Mahohoho Inflation-Adjusted Automated Actuarial Loss Reserving Model:

Harnessing Advanced Random Forest Techniques for Enhanced Data Analytics in Fire Insurance



Given a development triangle of cumulative claims data, the chain-ladder technique esti-
mates future claims by multiplying observed claims in each development period by a set of
development factors. The Bootstrap method goes a step further by resampling residuals
to create alternative possible versions of the triangle and obtain a distribution of reserve
estimates.

Let Ci,j be the cumulative claim in accident year i and development year j. The standard
chain-ladder model estimates the development factors fj such that:

Ci,j+1 = fjCi,j , for i = 1, 2, . . . , n− 1 and j = 1, 2, . . . , n− i.

The development factor fj is typically estimated as:

fj =
∑n−j

i=1 Ci,j+1∑n−j
i=1 Ci,j

.

The residuals ei,j in the chain-ladder model are calculated as:

ei,j = Ci,j+1 − fjCi,j

Ci,j
.

The key assumption in the Bootstrap method is that these residuals follow the same
distribution, and they can be resampled to generate alternative claims triangles.

proposition :The Bootstrap method produces an unbiased estimate of the reserve under
the assumption that the resampled residuals are independent and identically distributed
(i.i.d.).

proof We begin by considering the chain-ladder model, which assumes that the cumulative
claims Ci,j for accident year i and development year j follow a multiplicative structure.
Denote the cumulative claims by:

Ci,j = fj · Ci,j−1 + εi,j , (1.11)

where fj are the development factors, and εi,j represents the residuals.

In the Bootstrap method, residuals εi,j are resampled to generate new sets of claims data.
Let Ĉi,j denote the bootstrapped claim amounts for accident year i and development year
j. These are calculated as:

Ĉi,j = fj · Ĉi,j−1 + ε̂i,j , (1.12)

where ε̂i,j are the resampled residuals.

Given that the original model in equation (1.11) assumes multiplicative development fac-
tors, resampling residuals from εi,j preserves this structure. Specifically, the resampled
data Ĉi,j retain the multiplicative form of the original chain-ladder model, ensuring that:

E
[
Ĉi,j

]
= E [Ci,j ] . (1.13)
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The unbiasedness of the bootstrap reserve estimate follows from the fact that the expected
value of the resampled claims data Ĉi,j is equal to the expected value of the original claims
data Ci,j . Assuming that the residuals εi,j are independent and identically distributed
(i.i.d.), we have:

E [ε̂i,j ] = E [εi,j ] = 0, (1.14)

which implies that:

E
[
Ĉi,j

]
= fj · E

[
Ĉi,j−1

]
= fj · E [Ci,j−1] . (1.15)

By applying this recursively over all development years j, the expected value of the boot-
strap reserve estimate R̂ is equal to the expected value of the original reserve estimate R.
Therefore, the bootstrap method provides an unbiased estimate of the reserve:

E
[
R̂
]

= E [R] . (1.16)

This completes the proof.
□

Lemma:If the residuals ei,j are independent, the bootstrap replicates will reflect the true
variability of the reserves.

Proof :We start by assuming that the residuals ei,j are independent and identically dis-
tributed (i.i.d). Let us consider a model where the reserve R is estimated as a function of
observed data, typically through:

R = f(X, θ) + e

where f(X, θ) represents the deterministic part of the model with parameters θ, and e
denotes the residuals.

To apply the bootstrap method, we generate B bootstrap replicates R̂(b), for b = 1, 2, . . . , B,
using:

R̂(b) = f(X, θ̂(b)) + e(b)

where θ̂(b) are the parameter estimates from the bootstrap sample, and e(b) are the boot-
strap residuals.

The variability of the reserves is derived from the variability of the residuals ei,j . Since we
assume independence of the residuals, the bootstrap replicates R̂(b) will reflect the true
variability of the reserves. The variance of the bootstrap estimate R̂(b) is:

Var(R̂(b)) = Var(f(X, θ̂(b))) + Var(e(b)) (1.17)

Due to the independence assumption of ei,j , the bootstrap residuals e(b) accurately repli-
cate the original data’s residual distribution. Therefore, the second term in Equation
(1.17), Var(e(b)), converges to the true variability of the original residuals as B → ∞.
Thus, the total variability of the reserves, captured by the bootstrap process, accurately
reflects the true variability of the reserves.

□

claim: The Bootstrap method enhances the estimation of confidence intervals by provid-
ing a non-parametric way to estimate the distribution of reserve estimates.
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The Bootstrap method, introduced by [25], is a powerful resampling technique used for
estimating the distribution of a statistic, particularly in cases where the underlying distri-
bution is unknown. For reserve estimation in actuarial science, it enables the construction
of confidence intervals without assuming a parametric form for the data’s distribution.
We shall now proceed to prove how this method enhances the estimation of confidence
intervals.

theorem Let R̂ be the reserve estimate based on a sample {X1, X2, . . . , Xn}. Using the
Bootstrap method, the confidence interval for R̂ is given by the empirical distribution of
bootstrapped reserve estimates R̂b.

Proof ;Let {X1, X2, . . . , Xn} represent the observed data from which the reserve estimate
R̂ is calculated. The key idea of the Bootstrap method is to resample the observed data
with replacement to generate multiple bootstrapped samples {X∗

1 , X∗
2 , . . . , X∗

n}. For each
bootstrapped sample, we compute a new reserve estimate R̂b. Repeating this process B
times yields the set of bootstrapped reserve estimates:

R̂1, R̂2, . . . , R̂B (1.18)

The empirical distribution of the bootstrapped reserve estimates approximates the true
sampling distribution of R̂, which is generally unknown. Using this empirical distribution,
we can construct a confidence interval for R̂ by selecting appropriate percentiles from the
set of bootstrapped estimates.

For a (1− α)× 100% confidence interval, the lower and upper bounds are given by the α
2

and (1− α
2 ) percentiles of the bootstrapped reserve estimates, respectively:(

R̂ α
2
, R̂1− α

2

)
(1.19)

This non-parametric approach bypasses the need for assumptions about the form of the
underlying distribution of reserve estimates, making it highly flexible. Additionally, the
Bootstrap method accounts for the variability in the data through resampling, leading to
more robust confidence interval estimates compared to traditional parametric methods.
This completes the proof.

□
We now present the pseudo-algorithm for implementing the Bootstrap method in loss
reserving.

Algorithm 3 Bootstrap Loss Reserving Method
Input: Development triangle of cumulative claims Ci,j for accident years i =

1, . . . , n and development years j = 1, . . . , n. Step 1: Estimate the development
factors fj using the chain-ladder method:

fj =
∑n−j

i=1 Ci,j+1∑n−j
i=1 Ci,j

for j = 1, . . . , n− 1.

Step 2: Calculate the residuals ei,j for each observed claim:

ei,j = Ci,j+1 − fjCi,j

Ci,j
for j = 1, . . . , n− 1 and i = 1, . . . , n− j.

Step 3: Resample the residuals ei,j with replacement to create a bootstrapped dataset
ẽi,j . Step 4: Reconstruct the claims triangle C̃i,j by applying the resampled residuals:
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C̃i,j+1 = fjCi,j · (1 + ẽi,j).

Step 5: Recalculate the reserves R̃ using the chain-ladder method on the bootstrapped
triangle C̃:

R̃ =
n−1∑
j=1

n−j∑
i=1

C̃i,j

− C1,n.

Step 6: Repeat Steps 3-5 for B iterations to obtain a distribution of reserve estimates
{R̃(b)}Bb=1. Step 7: Calculate the mean R̂, standard deviation σR̃, and (1−α)×100%
confidence intervals from the distribution of reserve estimates:

R̂ = 1
B

B∑
b=1

R̃(b), σR̃ =

√√√√ 1
B − 1

B∑
b=1

(
R̃(b) − R̂

)2
.

Output: Estimated reserves R̂ and confidence intervals
(
R̂lower, R̂upper

)
.

Theorem: Given a large enough number of bootstrap replicates B, the Bootstrap method
produces consistent estimates of the reserve variance.

Proof: As B → ∞, the empirical distribution of the bootstrapped reserves converges to
the true distribution of the reserves, ensuring that the variance of the bootstrapped reserve
estimates consistently approximates the true reserve variance.

The confidence interval CI for the reserves can be calculated as:

CI =
(
R̂α/2, R̂1−α/2

)
,

where R̂α/2 and R̂1−α/2 are the α/2-th and 1 − α/2 -th percentiles of the bootstrap
distribution, respectively.

The Bootstrap loss reserving method provides a robust framework for estimating reserves
and their associated uncertainty. By resampling residuals, the method produces a distri-
bution of reserve estimates, allowing actuaries to compute confidence intervals and assess
reserve variability, contributing to better risk management and reserve planning. This
technique has seen extensive use in actuarial practice, offering a non-parametric approach
to reserve estimation.

The Generalized Linear Model (GLM)
is a flexible generalization of ordinary linear regression that allows for the response variable
to have a distribution other than a normal distribution. This section introduces the theory
and applicability of GLMs in the context of actuarial loss reserving.A GLM consists of
three main components:
• A random component that specifies the probability distribution of the response

variable.
• A systematic component that represents the linear predictor.
• A link function that relates the random and systematic components.

The mathematical representation of a GLM can be expressed as:

g(E[Y ]) = β0 + β1X1 + · · ·+ βkXk (1.20)

1.1.4. Generalized Linear Models (GLMs):.
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Proposition: The expected value of the claim can be modeled as:

E[Y |X] = exp(β0 + β1X1 + · · ·+ βkXk) (1)

Proof: To demonstrate this proposition, we start by considering the relationship between
the dependent variable Y (the claim amount) and the independent variables X1, X2, . . . , Xk

(the predictors).

We assume a log-linear model, which is a commonly used approach in modeling non-
negative continuous outcomes:

Y = exp(β0 + β1X1 + · · ·+ βkXk + ϵ) (2)

where ϵ is a random error term that captures the variability in Y .
Taking the conditional expectation of Y given X:

E[Y |X] = E
[
exp (β0 + β1X1 + · · ·+ βkXk + ϵ)

∣∣∣∣X]
By the properties of the expectation of the exponential function:

E[Y |X] = exp (β0 + β1X1 + · · ·+ βkXk + E[ϵ|X]) (3)

Assuming ϵ has a mean of zero given X (i.e., E[ϵ|X] = 0), we simplify:

E[Y |X] = exp (β0 + β1X1 + · · ·+ βkXk)

Thus, we conclude that the expected value of the claim Y given X is expressed as:

E[Y |X] = exp (β0 + β1X1 + · · ·+ βkXk) (4)

This completes the proof.

Theorem: Under certain conditions, the estimates from the Generalized Linear Model
(GLM) approach converge to the true values of the parameters as the sample size increases.

Proof: Let y = (y1, y2, . . . , yn)T be the response variable, and X = (xij) be the matrix of
predictors, where i = 1, 2, . . . , n and j = 1, 2, . . . , p. The GLM can be expressed as:

g(E[Yi]) = xT
i β, (1.21)

where g(·) is a link function, β is the vector of parameters, and Yi is the i-th observation.

Assume the following conditions hold:

• Identifiability: The parameter β is identifiable, meaning that there is a unique
value of β corresponding to the distribution of y.
• Sufficient Statistics: The sufficient statistics for β are complete and have finite

moments.
• Regularity Conditions:The Fisher information matrix I(β) is positive definite.
• Asymptotic Normality:As the sample size n approaches infinity, the estimates β̂

converge in distribution to a normal distribution:

√
n(β̂ − β) d−→ N(0, I(β)−1). (1.22)
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By the law of large numbers, we can assert that the empirical distributions of the sufficient
statistics converge to their expected values. Specifically,

1
n

n∑
i=1

xi → E[X] (1.23)

almost surely.

Now, the maximum likelihood estimator (MLE) β̂ satisfies the score equations:

∂ℓ(β)
∂β

= 0, (1.24)

where ℓ(β) is the log-likelihood function.

Using Taylor expansion around the true parameter β:

ℓ(β̂) ≈ ℓ(β) + ∂ℓ(β)
∂β

(β̂ − β) + 1
2(β̂ − β)T ∂2ℓ(β)

∂β2 (β̂ − β), (1.25)

mSince ∂ℓ(β)
∂β = 0 at β, we have:

ℓ(β̂)− ℓ(β) ≈ 1
2(β̂ − β)T ∂2ℓ(β)

∂β2 (β̂ − β). (1.26)

Thus, β̂ converges to β as n→∞, proving that:

β̂
p−→ β, (1.27)

which concludes the proof.

Algorithm 4 Generalized Linear Model (GLM) Loss Reserving Estimation
Input: Claims data set D = {(yi, Xi)}ni=1where yi represents the claims amount,

and Xi is the vector of predictor variables for the i-th claim. Initialize: Coefficient
vector β Initial coefficients whileconvergence criteria not met Fit GLM: Update
coefficients using Maximum Likelihood Estimation (MLE):

β arg max
β

ℓ(β;D), (1.28)

where ℓ(β;D) is the log-likelihood function. Predict Claims: Calculate predicted
claims:

ŷi = g−1(XT
i β), (1.29)

where g−1(·) is the inverse of the link function. Output: Estimated claims ŷ =
(ŷ1, ŷ2, . . . , ŷn)

Start

Input Claims Data

Fit GLM Model

Estimate Future Claims

End

Flowchart of the GLM Loss Reserving ProcessFigure 1:
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The Figure 1,serves as a concise visual representation of the steps involved in using a
Generalized Linear Model for estimating future claims in an actuarial context. It helps
to streamline the process and provides a quick reference for actuaries and data analysts
working on loss reserving methodologies. The use of a flowchart enhances understanding
and communication of the process among stakeholders.

The GLM provides a robust methodology for loss reserving in actuarial science, allowing
actuaries to model complex claims data effectively.

Random Forest Regression (RFR) is an ensemble learning method that combines multiple
decision trees to improve predictive accuracy and control over-fitting. It operates by con-
structing a multitude of decision trees during training and outputting the mean prediction
of the individual trees for regression tasks [1].

Random Forests leverage the principle of ensemble learning, where a group of weak learners
(in this case, decision trees) combine to form a strong learner. The randomness introduced
at various stages helps in reducing variance and achieving better generalization.

1.2. The Random Forest Regression

Bagging, or Bootstrap Aggregating, is a fundamental concept in Random Forests. It in-
volves the following steps:

1:(1) Generate multiple subsets of the original dataset by sampling with replacement.
(2) Train a decision tree on each subset.
(3) Aggregate the predictions of the trees to form a final prediction.

Random Forests introduce additional randomness by selecting a random subset of features
at each split, which decorrelates the trees and improves the overall model robustness.

Let D = {(xi, yi)}Ni=1 be the dataset, where xi is the input feature vector and yi is the
target variable.

The prediction of a single decision tree T for an input x is given by:

ŷT (x) = 1
|R|

∑
j∈R

yj

where R is the set of observations falling into the leaf node corresponding to x.

The overall prediction from the Random Forest model is calculated as:

ŷRF (x) = 1
B

B∑
b=1

ŷTb
(x)

where B is the total number of trees in the forest.

The following is the pseudo-code for the general Random Forest algorithm, constructed
using the ‘algorithmic‘ package.
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Algorithm 5 Random Forest Regression Algorithm
Input: Training dataset D = {(x1, y1

), (x2, y2
), . . . , (xn, yn

)} Number of trees T
Number of features m foreach tree t from 1 to T Sample Dt from D with replacement
For each split in tree t: Randomly select m features from the total features Determine
the best split using these m features Output: Average prediction from all trees for a
new observation x

Proposition: Random Forests reduce overfitting compared to a single decision tree due
to the averaging effect across multiple trees.

Proof: Let us denote the training data as D = {(xi, yi)}ni=1, where xi is the feature vector
and yi is the corresponding target variable. A decision tree model f(x) can be represented
as:

f(x) =
J∑

j=1
βj · Ij(x)

where Ij(x) is an indicator function for the j-th leaf node, and βj is the prediction
associated with that leaf.

The risk (expected loss) of a single decision tree can be expressed as:

R(f) = E(x,y)∼P [L(f(x), y)]

where L(·) is the loss function and P is the underlying data distribution.

However, a single decision tree can suffer from high variance, leading to overfitting. The
expected prediction error for a decision tree can be decomposed into three components:

Error = Bias2 + Variance + Irreducible Error
where:

- **Bias**: Error due to assumptions in the learning algorithm. A high bias can lead
to underfitting. - **Variance**: Error due to sensitivity to fluctuations in the training
set. A high variance leads to overfitting.

Random Forests mitigate overfitting by aggregating the predictions of M decision trees:

F (x) = 1
M

M∑
m=1

fm(x)

where fm(x) represents the prediction of the m-th tree.

The expected risk for the Random Forest can be written as:

R(F ) = E(x,y)∼P [L(F (x), y)]

Using the Law of Total Expectation, we can show that:

E[F (x)] = E [E [F (x)|T ]]

where T represents the different trees in the forest. This averaging reduces the variance
of the predictions:
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Variance(F (x)) = Variance 1
M

∑
m=1

fm(x) = 1
M2

∑
m=1

Variance(fm(x))+Covariance terms

The covariance terms Cov(fm(x), fk(x)) (for m ̸= k) also contribute to reducing the
overall variance, leading to:

Variance(F (x)) ≤ Variance(f(x))

Thus, by averaging the outputs of multiple trees, Random Forests effectively reduce the
overall variance and the risk of overfitting compared to a single decision tree.

□
Lemma:The inclusion of feature randomness in tree construction enhances model perfor-
mance.

proof : Consider a decision tree model T trained on a dataset D with features F and
corresponding target variable Y . In standard decision tree construction, all features are
considered at each split, leading to overfitting.

To analyze the effect of feature randomness, let us denote:

• T ∗: the optimal tree without feature randomness,
• TR: the random tree constructed by selecting a subset of features FR ⊂ F at each

split,
• E[T ]: expected model performance metric (e.g., accuracy, F1-score).

The model performance can be expressed as:

E[T ∗] = f(Overfitting), (1.30)

where f is a function that quantifies the impact of overfitting.

By introducing feature randomness, the expected performance of the random tree becomes:

E[TR] = f(Reduced Overfitting) + g(Diversity), (1.31)

where g accounts for the increase in model diversity due to the randomness of feature
selection.

Now, we can define the improvement in model performance as:

∆E = E[TR]−E[T ∗] = (f(Reduced Overfitting) + g(Diversity))− f(Overfitting). (1.32)

Assuming g(Diversity) > 0 and f(Reduced Overfitting) < f(Overfitting), we conclude
that:

∆E > 0 =⇒ E[TR] > E[T ∗]. (1.33)

Thus, incorporating feature randomness in the tree construction results in improved model
performance.

Random Forest Regression offers a powerful and versatile approach to regression tasks,
providing significant improvements in predictive performance and robustness through the
combined strengths of multiple decision trees.
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The necessity for accurate loss reserving models in actuarial science is paramount, espe-
cially in the context of inflation impacts on claims. The proposed model utilizes random
forest regression to estimate the frequency and severity of claims while adjusting for infla-
tion, providing a robust framework for loss reserving [26].Random forests are an ensemble
learning method that constructs a multitude of decision trees at training time. For regres-
sion tasks, the model outputs the mean prediction of the individual trees. Given a set of
input variables X, the random forest prediction can be expressed as:

Ŷ = 1
N

N∑
n=1

Tn(X) (1.34)

where Tn(X) represents the prediction of the nth tree and N is the total number of trees
in the forest.

To account for inflation, the model applies an adjustment factor Ft to the predicted loss
reserves:

Rt = Ŷ · Ft (1.35)

where Rt denotes the adjusted reserve at time t.

The overall loss reserving model can be expressed as:

1.3. The Brighton Mahohoho Random Forest Based Inflation Adjusted Frequency Severity
Reserving ModelLoss

L =
n∑

i=1
Ri,t (1.36)

where L is the total loss reserve, and Ri,t represents the reserves from each claim i at time
t.

Proposition:The use of random forest regression for estimating claim frequency provides
a lower bias and variance compared to traditional linear models.

Proof : To demonstrate this proposition, we will compare the bias and variance of random
forest regression (f̂RF (x)) with that of traditional linear regression (f̂LR(x)).

The bias of an estimator f̂(x) is defined as:

Bias(f̂(x)) = E[f̂(x)]− f(x)

where f(x) is the true underlying function.

For linear regression, the bias can be expressed as:

Bias(f̂LR(x)) = E[f̂LR(x)]− f(x) (1)

In contrast, random forest regression, being a non-parametric model, can fit more complex
relationships. Thus, its bias is generally lower:

Bias(f̂RF (x)) = E[f̂RF (x)]− f(x) (2)

By comparing equations (1) and (2), we conclude:
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Bias(f̂RF (x)) < Bias(f̂LR(x))

The variance of an estimator is defined as:

Var(f̂(x)) = E[(f̂(x)− E[f̂(x)])2]

For linear regression, the variance can be expressed as:

Var(f̂LR(x)) (3)

On the other hand, random forests average multiple decision trees, leading to a reduction
in variance:

Var(f̂RF (x)) = 1
B

B∑
b=1

(f̂b(x)− E[f̂(x)])2 (4)

where B is the number of trees in the forest.

Therefore, we conclude:

Var(f̂RF (x)) < Var(f̂LR(x))

Combining our results, we have shown:

Bias(f̂RF (x)) < Bias(f̂LR(x)) and Var(f̂RF (x)) < Var(f̂LR(x))

Thus, the proposition is proved, demonstrating that random forest regression indeed pro-
vides a lower bias and variance when estimating claim frequency compared to traditional
linear models.

Lemma: If the underlying distribution of claim severity is heterogeneous, then a model
that adjusts for inflation will yield more accurate reserve estimates.

proof :Let X denote the claim severity random variable, which follows a heterogeneous
distribution characterized by a mixture of distributions. We assume that the distribution
can be expressed as:

fX(x) =
k∑

i=1
wifXi(x), where

k∑
i=1

wi = 1 (1.37)

Here, fXi(x) is the probability density function (PDF) of the i-th component, and wi is
the corresponding weight of that component.

When inflation occurs, the claim severity is adjusted by a factor (1+r), where r represents
the inflation rate. Thus, the adjusted claim severity is given by:

Y = (1 + r)X (1.38)

To estimate reserves accurately, we need to compute the expected value of the adjusted
claim severity:
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E[Y ] = E[(1 + r)X] = (1 + r)E[X] (1.39)

Assuming E[X] can be computed from the mixture distribution, we have:

E[X] =
k∑

i=1
wiE[Xi] (1.40)

Consequently, the expected reserve can be expressed as:

R = E[Y ] = (1 + r)
k∑

i=1
wiE[Xi] (1.41)

The accuracy of reserve estimates hinges on capturing the heterogeneity in claim severity
distributions. If we fail to adjust for inflation, the expected reserve estimate would be:

R′ = E[X] =
k∑

i=1
wiE[Xi] (1.42)

The error introduced by not accounting for inflation can be defined as:

Error = R′ −R =
k∑

i=1
wiE[Xi]− (1 + r)

k∑
i=1

wiE[Xi] (1.43)

This simplifies to:

Error = −r
k∑

i=1
wiE[Xi] (1.44)

Since r > 0, we observe that not adjusting for inflation results in an underestimation
of reserves. Thus, when claim severity is heterogeneous, adjusting for inflation improves
reserve estimates:

R ≥ R′ (1.45)

Therefore, we conclude that if the underlying distribution of claim severity is heteroge-
neous, then a model that adjusts for inflation will yield more accurate reserve estimates.
The Brighton Mahohoho Random Forest Based Inflation Adjusted Frequency Severity Loss
Reserving Model represents a significant advancement in actuarial loss reserving practices.
By leveraging the strengths of random forest regression and accounting for inflation, the
model provides enhanced accuracy in loss reserve estimates.

The application of the Random Forest (RF) Regression method in the context of fire insur-
ance loss reserving provides a novel approach to predictive modeling. This section focuses
on the advantages of RF regression for handling complex actuarial data and enhancing
the accuracy of loss reserving under IFRS17 standards.

Random Forests, introduced by Breiman (2001), are ensemble learning methods for regres-
sion and classification tasks. By constructing a multitude of decision trees and aggregating
their predictions, Random Forest Regression provides both robustness and interpretabil-
ity. Mathematically, for a given set of N observations D = {(xi, yi)}Ni=1, where xi ∈ Rd is
a d-dimensional feature vector, and yi ∈ R is the target variable (e.g., loss reserves), the
RF model can be expressed as:

1.4. Novelty for Application of the Random Forest Regression method
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ŷi = 1
T

T∑
t=1

ht(xi)

where T is the number of trees, and ht is the prediction from the t-th decision tree.

The key novelty lies in
ability to manage non-linearity and interactions among variables without requiring
prior assumptions on data distributions. Let f(x) represent the true underlying function
for loss reserves. Traditional regression models often assume f(x) is linear, but in fire
insurance, the relationship between predictors (such as policyholder characteristics, claim
history, etc.) and losses is highly complex and non-linear:

y = f(x) + ϵ

where ϵ ∼ N(0, σ2) is the noise term. RF’s ensemble approach effectively approximates
f(x), capturing hidden interactions and non-linearities by averaging across multiple trees
that divide the feature space in different ways.

Proposition 1: Universal Consistency of Random Forests
Let F denote the space of all possible regression functions. We claim that Random Forests
are consistent estimators of the true regression function f(x) as the number of trees T →∞
and N →∞:

lim
T →∞,N→∞

E
[(

f̂N (x)− f(x)
)2
]

= 0

Proof (sketch): By the Law of Large Numbers, averaging over many decision trees ensures
that Random Forests asymptotically approximate the conditional expectation E[y|x]. This
property makes RF robust against overfitting and capable of generalizing well, even with
small sample sizes.
Lemma 1: Bias-Variance Trade-off
In RF, the prediction error can be decomposed into bias and variance components:

E
[
(y − ŷ)2

]
= Bias2(ŷ) + Var(ŷ) + σ2

Random Forests reduce variance by averaging across multiple trees while maintaining low
bias, a property crucial for accurate estimation of actuarial loss reserves.

Fire insurance losses are affected
by multiple correlated factors such as property values, geographical location, policy
details, and historical claims. Traditional actuarial models struggle with such high-
dimensional data, whereas Random Forests excel by automatically selecting relevant fea-
tures through its inherent variable importance mechanism.

Proposition 2: Optimal Feature Selection
Let S ⊂ {1, 2, . . . , d} denote the subset of important features for predicting fire insurance
loss reserves. RF’s feature importance metric, defined as the total decrease in the Gini
impurity for classification or the variance for regression across all trees, consistently iden-
tifies S:

1.4.2. Application in Fire Insurance under IFRS17:

P
(
Ŝ = S

)
→ 1 as N →∞

Thus, RF automatically selects the optimal set of predictors, enhancing the model’s pre-
dictive power and interpretability.

1.4.1. Addressing Non-linearity and High-dimensionality: RF’s
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Under IFRS17, insurres
provide transparent and accurate fnancial reporting, including precise estimation
of reserves and future cash flows. The Random Forest model, with its ability to handle
non-linearities and interactions, provides a highly adaptable framework for IFRS17 cal-
culations. Additionally, through partial dependence plots, insurers can explain the rela-
tionship between features and predicted loss reserves, aiding in IFRS17’s requirement for
transparency.

IFRS 17 is a globally applicable accounting standard that establishes the principles for
recognizing, measuring, presenting, and disclosing insurance contracts. It replaces IFRS
4, providing a consistent approach to accounting for insurance contracts across countries,
which addresses the significant diversity in practice under the previous standard [27].
In the general insurance sector, the standard impacts various facets of actuarial work,
particularly the valuation of insurance liabilities, risk adjustments, and the calculation of
contract service margins (CSM), which fundamentally alter how profit is recognized over
time.

• Measurement Models: IFRS 17 requires insurance liabilities to be measured using
a combination of fulfilment cash flows and CSM, which ensures that insurance
companies reflect the expected future profitability of their contracts. Actuaries
are responsible for estimating these cash flows based on best estimates of future

1.5.1. Key Components of IFRS 17 in Actuarial Work.

1.5. Overview of IFRS 17 in the General Insurance Sector

1.4.3. IFRS17 Compliance and Random Forest Modeling: must

claims, expenses, and premiums, discounted using a risk-free rate [28]. This repre-
sents a significant shift from previous practices where insurers often used different
discounting methods, making actuarial modeling essential for accurate financial
reporting.
• Risk Adjustment: IFRS 17 introduces a requirement for a risk adjustment for non-

financial risk. This reflects the uncertainty surrounding the amount and timing
of the cash flows from insurance contracts. Actuaries must calculate a margin
to cover this uncertainty, which ensures that insurers set aside adequate reserves
to cover possible adverse outcomes [29]. This component adds an extra layer of
complexity to actuarial reserve calculations, as it requires judgment and often
stochastic modeling to determine the appropriate level of risk adjustment.
• Contract Service Margin (CSM): The CSM represents the unearned profit for in-

surance contracts and is a key feature of IFRS 17. It is amortized over the coverage
period of the insurance contract, ensuring a smoother recognition of profit. Ac-
tuaries must calculate the CSM at inception and update it as new information
becomes available, such as changes in assumptions or the experience of the insur-
ance contract [30]. This change requires actuaries to adopt dynamic models to
track changes in the expected cash flows and update the CSM accordingly.
• Discount Rates: Under IFRS 17, actuaries are required to discount future cash

flows using rates that reflect the characteristics of the liability, such as its duration
and currency. This differs from traditional discounting methods, which might have
used fixed rates or company-specific assumptions. The discount rate used must
be risk-free or adjusted for illiquidity, which affects the valuation of long-term
liabilities and, consequently, the solvency and profitability of insurance companies
[31].
• Disclosures and Transparency: IFRS 17 mandates extensive disclosures regarding

the methods and assumptions used in measuring insurance contracts. Actuaries
must ensure transparency in their calculations, including the rationale behind the
selection of assumptions, risk adjustments, and discount rates. The standard also
requires sensitivity analyses to show the impact of different assumptions on the
insurer’s financial position [32]. This enhances the role of actuaries in the commu-
nication of financial risks and uncertainties to stakeholders.
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The implementation of IFRS 17 significantly
impacts the actuarial profession, requiring actuaries to develop new models and
techniques to ensure compliance. Traditional reserving methods, such as the Chain Lad-
der or Bornhuetter-Ferguson, need to be adapted to accommodate the new measurement
requirements. Actuaries will also need to work closely with finance teams to ensure the
smooth integration of actuarial models with financial reporting systems.

Moreover, IFRS 17 places a greater emphasis on stochastic modeling and the use of ad-
vanced actuarial techniques to estimate fulfilment cash flows and risk adjustments. Ac-
tuaries must also focus on scenario testing and stress testing to assess the robustness of
their models under different economic conditions [33].

In short, IFRS 17 brings about a transformation in how insurance contracts are accounted
for, emphasizing the need for actuarial expertise in the general insurance sector. Actuaries
will play a critical role in ensuring that insurance companies meet the new requirements
for liability measurement, risk adjustment, and profit recognition, ensuring greater trans-
parency and comparability in the financial reporting of insurers globally [34].

1.5.2. Implications for Actuarial Practice:.

The study introduces an innovative approach to developing the IFRS17 Formulated Brighton
Mahohoho Inflation-Adjusted Automated Actuarial Loss Reserving Model by harnessing ad-
vanced Random Forest techniques to enhance data analytics in fire insurance. The novelty
of the methodology lies in its use of synthetic fire insurance data, which simulates realistic
distributions of variables such as age, insured value, claim frequency, severity, and infla-
tion rates. This approach allows for a comprehensive and controlled testing environment,
ensuring robust model performance under various simulated conditions. The inclusion of
fire safety ratings and inflation adjustments in the model enhances the precision of reserve
estimates, which is a key requirement under IFRS17 standards.

Additionally, the study integrates advanced machine learning techniques, particularly Ran-
dom Forest regression, to model key actuarial elements such as claim frequency, severity,
and inflation adjustments. The methodological use of Random Forest allows for a more ac-
curate prediction of non-linear relationships within the data, a departure from traditional
actuarial methods. The application of advanced data visualization techniques, including
t-SNE, also introduces a new dimension to understanding the clustering of policy types
and their impact on risk assessments, further advancing actuarial practices.

The study’s emphasis on stress testing and scenario analysis, where claim amounts are
perturbed and reserves are assessed under worst-case scenarios, ensures model resilience
and compliance with IFRS17’s stringent risk management requirements. This robust test-
ing process adds another layer of innovation, ensuring that the model remains stable and
reliable under varied claim conditions.

This study makes significant contributions to the field of actuarial science, particularly in
the domain of loss reserving and risk management under IFRS17 compliance. By employ-
ing Random Forest techniques, the study bridges the gap between traditional actuarial
methods and modern machine learning, offering an enhanced, data-driven approach to
predicting claim frequencies, severities, and inflation rates. This shift represents a major
advancement in actuarial loss reserving models, moving away from linear and less flexi-
ble methods to more sophisticated techniques that can capture non-linear patterns and
interactions within fire insurance data.

1.6. Novelty of the study

1.7. Contribution to Actuarial Science
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Furthermore, the development of the Inflation-Adjusted Automated Actuarial Loss Re-
serving Model presents a novel approach to dealing with inflation’s impact on future claim
reserves, a critical concern in fire insurance. This contribution is especially pertinent as
inflationary pressures continue to rise, necessitating more accurate models that account
for the time-value adjustments of reserves.

The study also contributes to the actuarial understanding of fire insurance risk by in-
corporating detailed Exploratory Data Analysis (EDA) and visualization techniques that
highlight relationships between critical variables. The use of t-SNE visualizations and en-
hanced correlation plots provides actuaries with more intuitive insights into how different
policy and claim variables interact, aiding in better-informed decision-making.

Lastly, the robust scenario analysis and stress testing components of the model reinforce
the actuarial industry’s emphasis on resilience and solvency under stress conditions. By
simulating a range of adverse claim scenarios, the study ensures that the Automated
Actuarial Loss Reserve (AALR) is not only accurate under normal conditions but also
stable in extreme situations, thereby contributing to more resilient financial planning and
risk management within the field.

The application of advanced machine learning algorithms in actuarial science has revo-
lutionized the way insurers calculate loss reserves, particularly under the International
Financial Reporting Standard (IFRS 17) framework. This study builds on established loss
reserving methodologies by integrating the inflation-adjusted framework with advanced
data analytics techniques, specifically Random Forest (RF) algorithms, to enhance pre-
dictive accuracy in fire insurance loss reserving.

Historically, actuarial loss reserving has relied on traditional deterministic methods such as
the Chain Ladder Model [17], Bornhuetter-Ferguson Method [8], and the Loss Development
Factor method [23]. These techniques, while robust, operate under certain assumptions
that limit their flexibility, particularly when incorporating external factors like inflation
[10]. As fire insurance claims are sensitive to inflationary trends, these classical models
often struggle to adjust for external economic pressures, leading to inaccuracies in reserve
estimations [20].

The introduction of IFRS 17 has significantly impacted how insurers approach reserv-
ing. IFRS 17 emphasizes a more rigorous, transparent accounting of insurance contracts,
where the recognition of profits, contract service margins, and the incorporation of risk
adjustments are paramount [15]. Importantly, IFRS 17 requires the explicit adjustment
of future cash flows to reflect the time value of money and inflation impacts [19]. Inflation
adjustments are critical in fire insurance, where claim costs can escalate with inflationary
pressures on construction materials and labor [11].

The inflation-adjusted loss reserving model has been widely studied, with inflation fac-
tors introduced either through deterministic inflation rates or stochastic models such as
those suggested by Wüthrich and Merz (2008). Recent innovations in loss reserving have
incorporated time-series models to dynamically adjust for inflation [12]. These models,
however, face limitations in scenarios with high-dimensional datasets or complex claim
structures typical of fire insurance.

Machine learning, particularly ensemble techniques like Random Forest (RF), offers en-
hanced capabilities to overcome the limitations of traditional and inflation-adjusted mod-
els. Random Forest, introduced by [1], is a non-parametric method that aggregates mul-
tiple decision trees to improve the predictive performance of regression tasks. The ability
of RF to handle large datasets, capture non-linear relationships, and adjust for outliers
makes it particularly suitable for actuarial loss reserving [23].

II. SURVEY OF METHODS AND LITERATURE REVIEW
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Building on the foundations of Random Forest techniques and inflation-adjusted frame-
works, this paper introduces the Brighton Mahohoho Inflation-Adjusted Automated Ac-
tuarial Loss Reserving Model. The model integrates advanced RF methodologies to dy-
namically adjust for inflation impacts and reserve risk, ensuring compliance with IFRS 17
regulations. The proposed model enhances traditional RF models by incorporating fea-
ture importance analysis, where inflation factors are given priority in the model’s decision-
making process, ensuring that inflationary trends are directly embedded into the reserve
estimates.Moreover, the model employs hyperparameter tuning techniques such as grid
search and cross-validation to optimize the model’s performance in large-scale fire insur-
ance datasets. Studies by [13] show that such tuning improves model generalizability and
accuracy. By harnessing the power of RF, this model can detect complex patterns in
claims data, adjusting for inflation trends without relying solely on historical inflation
rates, which may not fully capture future economic conditions [9].

Despite its advantages, the use of Random Forest in actuarial science is not without
challenges. The model’s complexity can lead to overfitting, particularly in small datasets
[22]. Additionally, interpretability remains a concern, as RF models are often considered
"black boxes" in comparison to traditional methods [1]. Further research is needed to
address these challenges, possibly by incorporating explainable AI techniques into loss
reserving models [16].

Research methodology refers to the systematic process and principles that guide re-
searchers in planning, collecting, analyzing, and interpreting data in order to answer
specific research questions or test hypotheses. It involves the selection of appropriate
methods, techniques, and tools for conducting research, which can include qualitative,
quantitative, or mixed-method approaches depending on the nature of the study [35].

The methodology began with simulating synthetic fire insurance data, which involved cre-
ating key variables essential for modeling the Inflation-Adjusted Automated Actuarial Loss
Reserving Model. Using R, we generated 100,000 synthetic records for customers, policies,
and fire insurance attributes. The simulation aimed to reflect a realistic distribution of
variables like age, gender, country, insured value, claim amounts, and inflation rates.These
synthetic data, formatted in a structured data.frame, were used to evaluate the model’s
performance in IFRS 17 compliance analysis. Variables like claim frequency, severity, and
fire safety ratings were included to enhance the accuracy of risk assessments.

Several studies have demonstrated the efficacy of RF in the actuarial context. [21] ap-
plied RF to predict insurance claim severity, showing superior performance compared to
linear regression models. Similarly, [18] combined RF with inflation-adjusted loss reserv-
ing, significantly improving the accuracy of reserve estimations in property and casualty
insurance. The model’s capacity to include both structured and unstructured data, such
as policyholder demographics and macroeconomic variables, further enhances its appli-
cability in fire insurance, where claim severities can vary widely depending on external
conditions [14].

3.1. Data Simulation and Preparation

III. METHODOLOGY

3.2. Exploratory Data Analysis (EDA)

Exploratory Data Analysis (EDA) was conducted using several visualization techniques
to understand the structure and relationships within the fire insurance dataset. This
stage involved summarizing key statistics and checking for missing values. Various plots
were generated to highlight distributions and correlations among the simulated vari-
ables.Histograms of variables such as Insured Value, Claim Amount, and claim frequency
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provided insights into the spread of these variables.The Boxplots were used to visualize
the distribution of claim amounts and severity by property type, identifying potential
differences between residential and commercial properties. A correlation matrix was con-
structed for the numerical variables, with the correlations visualized using the corrplot
function, highlighting significant relationships in the dataset.

Advanced data visualization techniques were used to illustrate the results of the model
and IFRS 17 analysis: Enhanced correlation plots highlighted relationships between nu-
merical variables, using ggcorrplot for clarity. t-SNE Visualizations: t-SNE (t-distributed
Stochastic Neighbor Embedding) was applied to reduce the high-dimensional data into
two dimensions, providing a visualization of clusters in the fire insurance data, specifi-
cally highlighting property types. The combination of these visual techniques allowed for
deeper insights into how different variables interacted and how well the model aligned with
IFRS17 standards.

The data was loaded and subjected to pre processing to ensure quality and completeness.
Missing values were addressed by replacing them with the median value of each respective
variable to mitigate potential bias introduced by incomplete data.The dataset was parti-
tioned into training (80%) and testing (20%) sets using a random sampling method. This
approach ensures that the model generalizes well on unseen data, reducing the risk of over
fitting.

Three regression models were developed using the Random Forest technique implemented
via the ranger package in R. This technique was selected for its robustness and ability to
handle non-linear interactions in the data while also providing high accuracy for predic-
tions.

(1) Claim Frequency Model: The first model was designed to predict the frequency
of claims based on various predictors such as age, insured value, claim amount,
property type, fire safety rating, and others. Random Forest regression was used
to capture complex relationships between the predictors and the target variable,
claim frequency.

(2) Claim Severity Model: A second Random Forest model was built to estimate the
severity of claims using the same set of predictors. The claim severity model
is critical for understanding the potential magnitude of insurance claims, which
significantly influences the overall risk exposure.

(3) Inflation Adjustment Model: The third model aimed to predict inflation rates,
which are an important factor in adjusting claim reserves over time. By incorpo-
rating predictors such as the location, age of the building, and deductible amounts,
this model provided essential insights into the future costs driven by inflation.

Each model was developed by training on the pre-processed training data, and performance
was monitored during training using evaluation metrics.

3.6. Model Evaluation

3.3. Data Visualization

3.4. Data Collection and Preprocessing

3.5. Model Development

The performance of each model was assessed using Mean Absolute Error (MAE), Mean
Squared Error (MSE), and Root Mean Squared Error (RMSE) metrics, ensuring a com-
prehensive evaluation of the model accuracy. These metrics were calculated based on
predictions made on the test dataset.
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• Claim Frequency Model: Predicted values were compared to the actual claim fre-
quency in the test set to assess the accuracy of the model.
• Claim Severity Model: Similar to the frequency model, predicted claim severities

were evaluated against the test data.
• Inflation Adjustment Model: Inflation rate predictions were compared to actual

inflation data for model validation.

The Future Expected Loss Reserve (FELR) was calculated as the product of predicted
claim frequency, predicted claim severity, and predicted inflation rates. This step in-
tegrated all three models to estimate future financial obligations related to insurance
claims.To better understand the output and significance of the FELR, visualizations were
created using ggplot2. A line plot was generated to display the Future Expected Loss Re-
serve over various observations, allowing for a clear and intuitive representation of reserve
estimates.

The Expected Claims Outgo (ECO) was simulated using synthetic data for claims incurred
and claims paid. The Current Expected Loss Reserve (CELR) was then calculated by
adjusting the predicted base premiums using inflation-adjusted premium loadings. This
provided an understanding of current reserve obligations based on anticipated claims and
market adjustments.

The final key output of the model, the Automated Actuarial Loss Reserve (AALR), was
computed as the difference between the FELR and CELR. This automated reserve re-
flects the dynamic nature of insurance loss reserving under the IFRS17 framework, taking
into account both inflation-adjusted premiums and future expected losses.Further visual-
izations were developed to compare and analyze the different types of actuarial reserves,
providing insight into the balance between expected claims and financial reserves.

Simulated data was used to replicate fire insurance claims and premiums, leveraging ex-
isting statistical libraries in R (dplyr, ggplot2, and purrr). Key assumptions include:

• Discount Rate: A fixed discount rate of 3% was applied to the calculation of the
present value of future cash flows (PVFCF).
• Expected Premiums and Claims: Average premiums and claims were calculated

from the test data to estimate the total expected values for IFRS17 evaluations.

3.7. Future Expected Loss Reserve Calculation

3.8. Expected Claims Outgo and Current Expected Loss Reserve

3.9. Automated Actuarial Loss Reserve (AALR)

3.10. Critical IFRS17 Metrics and evaluating actuarial performance

The model evaluates three fundamental IFRS17 metrics:

• Present Value of Future Cash Flows (PVFCF): Calculated as the discounted value
of inflows (premiums) and outflows (claims). Risk Adjustment for Non-Financial
Risk: A flat 10% adjustment based on the total expected claims was applied.
• Contractual Service Margin (CSM): Determined by adding the risk adjustment to

the PVFCF, representing the projected profitability over time.

The results of these metrics were summarized into a data frame and visualized using bar
charts, allowing for easy comparison between PVFCF, risk adjustment, and CSM.

3.10.1. IFRS17 Metrics Calculation.
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To supplement the IFRS17 evaluation, several additional actuarial metrics were computed:
• Loss Reserve Ratio: The ratio of automated actuarial loss reserves to total premi-

ums.
• Claims Development Factor (CDF): Simulated cumulative claims over a 10-year

period were used to calculate development factors for each year, and the average
CDF was derived.
• Expense Ratio: Simulated expenses were divided by total premiums to estimate

the expense ratio.
These metrics provide further insights into the model’s performance, particularly in terms
of claims development and expense management.

The metrics were visualized using a combination
of bar plots and line graphs to facilitate comparison and trend analysis. The plots
include:

• Bar Charts: Used to compare PVFCF, risk adjustment, CSM, loss reserve ratio,
and expense ratio.
• Line Plot: Depicts the average claims development factor over a 10-year period.

actuarial evaluations are presented in a clear, accessible format.

Random Forest techniques were employed to enhance the predictive accuracy of actuarial
estimates, particularly for claims outgo and development factors. By leveraging this ma-
chine learning approach, the model captures non-linear interactions between key variables,
improving overall loss reserving estimates.

From here we employs a robust data-driven approach to develop the Brighton Mahohoho
Inflation-Adjusted Automated Actuarial Loss Reserving Model using advanced Random
Forest techniques, with a focus on fire insurance data analytics under IFRS17 compliance.

To evaluate the robustness of the model, the claim
amounts were perturbed by varying percentages (+/- 10%) to simulate different stress
scenarios. The impact of these perturbations on the AALR was assessed, and the results
were visualized using line plots, demonstrating the sensitivity of the reserve calculations
to changes in claim amounts. This testing process ensures that the model remains resilient
under varying conditions, a key requirement under IFRS17.

The model underwent additional
stress testing by simulating a 20% increase in claims outgo, representing a worst-case
scenario. The stressed reserves were compared to the baseline reserves to evaluate how
the AALR responded to significant deviations in claims experience. A bar plot was used to
visualize the difference between normal and stressed scenarios, providing a clear depiction
of the model’s performance under stress conditions.

All results, including the effect of perturbations
on AALR and the outcomes of stress testing, were visualized using ggplot2. This facilitated
clear and effective communication of the model’s behavior across different scenarios. The
methodology was designed to ensure that the AALR model adheres to IFRS17 standards,
leveraging advanced machine learning techniques and stress testing to enhance its accuracy
and robustness in fire insurance analytics

3.11. Actuarial Science Based IFRS17 Ration Analysis Metrics

3.11.1. Visualization and Reporting:.

This visualization approach enhances the interpretability of results, ensuring that complex

3.12. Random Forest Model Integration

3.13. Model Evaluation

3.13.1. Robust Model Testing:.

3.13.2. Stress Testing and Scenario Analysis:.

3.13.3. Visualization and Analysis:.
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The methodology for "The Innovative Development of the IFRS17 Formulated Brighton
Mahohoho Inflation-Adjusted Automated Actuarial Loss Reserving Model: Harnessing
Advanced Random Forest Techniques for Enhanced Data Analytics in Fire Insurance"
introduces several innovative aspects in both data preparation and model application.

The approach begins with data simulation where synthetic fire insurance data is gener-
ated, creating a realistic representation of key variables such as age, insured value, claim
frequency, and inflation rates. This simulated data allows for comprehensive testing of
the Inflation-Adjusted Automated Actuarial Loss Reserving Model. The inclusion of vari-
ables related to fire safety, claim amounts, and inflation enhances the accuracy of reserve
estimates, which is crucial under the IFRS17 framework.

In the Exploratory Data Analysis (EDA) phase, multiple visualization techniques, includ-
ing histograms, boxplots, and correlation matrices, are employed to identify trends and
relationships within the data. These insights support the model’s alignment with IFRS17
compliance and provide a better understanding of how variables like property type influ-
ence claims.

The data preprocessing ensures completeness and quality by handling missing values
through median imputation. The data is then partitioned into training and test sets,
reducing the risk of overfitting and ensuring robust model performance on unseen data.
This preprocessing step is vital for the effective application of machine learning algorithms
in fire insurance analytics.

For model development, three Random Forest regression models were created using the
ranger package in R. These models are designed to predict claim frequency, severity, and
inflation adjustments, each targeting specific aspects of the reserving process:Claim Fre-
quency Model:Captures the occurrence of claims based on predictors like insured value and
fire safety ratings,Claim Severity Model: Estimates the potential magnitude of claims, pro-
viding insights into risk exposure and Inflation Adjustment Model: Accounts for inflation’s
impact on future claim reserves, using predictors such as building location and age.The
methodology’s evaluation metrics—Mean Absolute Error (MAE), Mean Squared Error
(MSE), and Root Mean Squared Error (RMSE)—are used to assess the performance of
each model on the test set, ensuring accurate and reliable predictions.

One of the most significant innovations lies in the Future Expected Loss Reserve Calcu-
lation (FELR), where predictions from the three models are integrated to estimate the
insurer’s future financial obligations. This reserve is compared with the Current Expected
Loss Reserve (CELR) to compute the Automated Actuarial Loss Reserve (AALR), reflect-
ing the dynamic interplay of claims, premiums, and inflation under IFRS17 standards.To
evaluate the model’s compliance with IFRS17, key metrics such as the Present Value of
Future Cash Flows (PVFCF), Risk Adjustment for Non-Financial Risk, and the Contrac-
tual Service Margin (CSM) were calculated. These metrics provide a clear view of the
profitability and risk factors, ensuring that the model meets the rigorous standards of
IFRS17.

The final section of the methodology emphasizes the importance of stress testing and
scenario analysis, where claims are perturbed by varying percentages to assess the model’s
sensitivity. This ensures that the AALR remains robust under different conditions. By
incorporating Random Forest techniques into stress testing, the methodology demonstrates
how machine learning can enhance the predictive accuracy of reserve calculations and
account for non-linear interactions in fire insurance data.

3.14. No velty in the methodology
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In a nutshell, the methodology is both innovative and rigorous, utilizing advanced machine
learning techniques and stress testing to ensure that the Inflation-Adjusted Automated Ac-
tuarial Loss Reserving Model adheres to IFRS17 standards. This comprehensive approach
allows for enhanced accuracy in fire insurance loss reserving and risk assessment.

Simulated research data refers to artificially created data that mimics the characteristics
of real-world data for research purposes. This type of data is often used when actual
data is unavailable, incomplete, or difficult to collect, or when researchers want to test
hypotheses under controlled conditions without real-world variability. Simulated data
can be generated using statistical models, computational algorithms, or random processes
designed to replicate patterns, distributions, and correlations observed in real data. It is
particularly useful in fields such as actuarial science, economics, engineering, and medicine,
where researchers need to analyze complex systems and test theoretical models before
applying them to actual scenarios [36].

Simulated data is also vital for validating machine learning models, optimizing algorithms,
and conducting sensitivity analysis in controlled settings. The data generation process
often involves defining parameters and rules that align with the research objectives, such
as mimicking claims data for insurance modeling or customer behavior for marketing
analytics [37]. While simulated data can provide insights and allow researchers to work
with large datasets, it lacks the unpredictability of real-world data, which may affect the
generalizability of findings.

In this study a sample of 100000 policyholders has been simulate and utilized.The following
simulated Fire Insurance Data has been employed respectively.

• customer id: A unique identifier for each customer, useful for tracking individual
policy and claim details. Essential for grouping or clustering customers in Random
Forest models to analyze claims behavior.
• age: Age of the customer. This variable helps capture risk exposure, as certain

age groups may show different risk levels for fire insurance (e.g., older individuals
may own older, more fire-prone properties).
• gender: Gender might provide insights into potential segmentation in policy pricing

or risk exposure, although its influence in fire insurance might be minor compared
to other factors.
• country: Location is vital because fire risk, property values, regulatory standards,

and inflation rates vary by country. The model can use this variable to account
for geographic differences in risk and costs.

• policy id: Unique identifier for the insurance policy. Ties customer claims and
reserves to specific policies, crucial for loss reserving models where we need to
track claims development over time.
• policy start date and policy end date: These variables define the policy coverage

period, crucial for assessing when the risk exposure occurs. The time difference
between these dates can impact the frequency of claims and the policy’s risk profile.
• policy duration days: Length of the policy in days. Important for calculating the

exposure period and understanding how long a policy was in force before a claim
was made.

IV. DATA

4.1. Customer Demographics

4.2. Policy Details
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• Insured Value: The insured value of the property. A critical factor in estimating
potential losses and setting premiums. Properties with higher insured values gen-
erally carry more risk, and Random Forest models can use this variable to predict
the severity of claims.
• Claim Amount: The amount claimed after a fire loss. This is the target variable

for severity modeling and plays a central role in estimating the reserve amounts
needed for future claims under the IFRS 17 framework.
• Loss Date: The date when the loss occurred. This is essential for determining

when claims arise relative to policy inception and for tracking loss development
patterns over time.
• Property Type: Categorized as either "Residential" or "Commercial," this variable

is critical because the risk factors and potential losses differ significantly between
the two types. Commercial properties might have higher claims but also more
rigorous fire safety standards.
• Location: Urban vs. rural locations impact fire risk. Urban areas may have

quicker emergency response times, while rural areas may have higher fire risks due
to proximity to natural areas.
• Fire Safety Rating: A rating from 1 to 5 reflecting the fire safety measures in place

at the property. Properties with higher fire safety ratings will likely have lower
claims frequency and severity.
• Age of Building: Older buildings tend to have higher fire risks due to outdated

construction materials or electrical systems, making this variable important in
predicting claims frequency and severity.

• Deductible: The amount the policyholder must pay before the insurer covers a
claim. Higher deductibles may reduce the frequency and severity of claims, as
minor claims fall below the deductible amount. This variable helps adjust premium
pricing and claims frequency models.
• claim frequency: Number of claims per policy. Modeled using a Poisson distribu-

tion, claim frequency is a core component in estimating reserves under IFRS 17.
Random Forest models can capture nonlinear relationships between various risk
factors and claim frequency.
• claim severity: The monetary impact of a claim. This variable, along with claim

frequency, is used to predict total loss reserves. Severity models (using Random
Forest) will capture relationships between policy characteristics and large losses.
• base reserves: Initial reserves set aside for incurred but not reported (IBNR)

claims. These reserves are adjusted over time based on claims development. This
variable is fundamental for loss reserving under IFRS 17.
• base premiums: The initial premium charged for the policy. Premiums reflect the

expected risk of the policyholder and the likelihood of claims. This variable is
important for pricing models and reserve adequacy assessments.
• inflation rates: A uniform distribution for inflation rates affecting claim severity

and reserve amounts. Inflation adjustment is a key element of IFRS 17, which
requires updating reserves to reflect changes in economic conditions.

• Claim Frequency and Severity: These variables (along with other predictors) are
central to estimating loss reserves. The combination of claim frequency and claim

4.3. Fire Insurance Specific Variables

4.4. Financial and Actuarial Variables

4.5. Importance and Rationale in the Actuarial Loss Reserving Model

severity allows for the accurate projection of future liabilities, crucial for actuarial
reserving.
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• Inflation-Adjusted Reserves: Inflation rates are directly tied to claim amounts,
especially for future payments under IFRS 17. inflation rates allows for adjusting
claim amounts and reserves to reflect changing economic conditions, ensuring the
model is aligned with IFRS 17 principles.
• Reserving under IFRS 17: The variables base reserves, base premiums, and Claim

Amount are integral in calculating reserves for future claims under IFRS 17. These
help ensure that reserves are adequate to cover future claims and comply with
international accounting standards.
• Random Forest for Non linearities: The Random Forest technique is effective in

capturing nonlinear relationships between variables such as age, property type,
location, fire safety rating, and deductible with claims frequency and severity. By
leveraging these features, Random Forest can offer improved predictive perfor-
mance for both claims modeling and reserve adequacy.
• Risk Segmentation: Variables like Fire Safety Rating, Location, Property Type, and

Deductible allow for precise segmentation of risk groups, improving the model’s
accuracy and granularity. This segmentation is crucial in determining adequate
premiums and reserves for different types of policyholders.
• Scenario Testing and Stress Testing: The inflation-adjusted variables, along with

claims data, allow for scenario testing under different economic conditions. This
is essential for understanding reserve adequacy and the financial stability of the
insurer under IFRS 17.

By incorporating these variables into the model, you are able to build a robust actuarial
loss reserving framework that meets the analytical demands of IFRS 17 while leveraging
the predictive power of Random Forest techniques.

The section presents the findings and outcome for this study.

Exploratory Data Analysis (EDA) refers to the process of analyzing data sets to sum-
marize their main characteristics, often using visual methods. EDA helps in identifying
patterns, spotting anomalies, testing hypotheses, and checking assumptions through sta-
tistical graphics and other data visualization techniques. It is a crucial step before applying
formal modeling techniques and is essential in understanding the underlying structure of
the data [38] and [39].

V. RESULTS

5.1. Exp oratory Data Ana ys s

Simulated Fire Insurance VariablesFigure 2:
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The Figure 2 presents several histograms that visualize the distributions of various vari-
ables related to the Inflation-Adjusted Automated Actuarial Loss Reserving Model in the
context of fire insurance.

The Insured Value distribution appears to be roughly normal with a slight right skew,
suggesting that most properties have an insured value around the median, but there are
several high-value properties. Understanding the insured values is critical for determining
appropriate reserves and premiums under IFRS 17, as these values directly impact the risk
exposure and potential claim amounts. The histogram with Age of Building shows a uni-
form distribution across different ages of buildings, indicating a diverse portfolio of insured
properties.The age of the building can influence the risk profile and loss severity, which is
essential for developing accurate loss reserves and pricing models in accordance with IFRS
17 requirements.The Claim Amount distribution is highly skewed to the left, indicating
that most claims are relatively small, with a few outliers at higher claim amounts. This
information is crucial for setting up loss reserving models, as it helps in identifying the
potential extreme losses that need to be accounted for under IFRS 17. The Deductible
distribution of deductibles is somewhat normal, centered around the higher deductible
amounts.The deductible impacts the policyholder’s out-of-pocket costs and can influence
the frequency of claims, thus affecting the overall claims experience that must be analyzed
in the model. The claim frequency histogram shows a significant concentration of policies
with zero claims, indicating low frequency of claims. Understanding claim frequency is
crucial for calculating loss reserves and premium pricing under IFRS 17, as it helps pre-
dict future claim trends. The Claim Severity histogram shows a bell-shaped distribution,
suggesting that most claims are around a certain severity level.Claim severity is essential
for estimating the expected loss amounts for reserving and pricing, directly impacting the
automated actuarial loss reserving model.

The distribution of base reserves appears approximately normal, indicating consistency in
the reserve levels set for the various policies. Adequate reserves are critical for compliance
with IFRS 17, which emphasizes the need for sufficient reserves to cover future claims.
The premiums are also normally distributed, indicating a balanced pricing strategy across
the portfolio. Understanding the premium structure is key for evaluating profitability
and ensuring that pricing aligns with the risk exposure under IFRS 17. The histogram
shows a relatively uniform distribution across inflation rates, which indicates variability in
inflation assumptions across the dataset. Since inflation impacts both claims and reserves,
accurately modeling inflation rates is vital for ensuring that reserves remain adequate and
compliant with IFRS 17.

Box plot for
Claim Amount by Property
Type

Box plot for
Claim Severity by Property
Type

Figure 3: Figure 4:
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The Figure 3 shows the box plot for Claim Amount by Property Type.The property
types have wider boxes or longer whiskers, which indicates greater variability in claim
amounts, suggesting that these properties may experience more diverse claim scenarios.
Points outside the whiskers represent outliers and a high number of outliers in one prop-
erty type could indicate that it is more prone to extreme claim amounts.Understanding
claim amounts by property type is essential for assessing risk exposure, setting adequate
reserves, and pricing premiums. It helps ensure that the actuarial loss reserving model
appropriately reflects the risk associated with different property types, aligning with IFRS
17’s emphasis on transparency and accuracy in financial reporting. The Figure 4 similar to
the previous box plot, this one illustrates the distribution of claim severity for each prop-
erty type.Claim severity is a critical factor in estimating future claim payouts, making it
essential for reserve calculations and premium pricing. Accurately assessing the severity
across different property types helps ensure that reserves are sufficient to cover potential
claims, in compliance with IFRS 17.

Bar Plot for
Gender Distribution

Bar Plot for
Country Distribution

The Figure 5 denoted by the bar plot shows the counts of policyholders for each gender
category. The distribution is fairly balanced, it indicates an equitable representation of
genders among policyholders. Understanding the gender distribution can inform targeted
marketing strategies.The Figure 6 displays the counts of policyholders from different coun-
tries, allowing for an easy comparison of policyholder distribution across geographical re-
gions.A more uniform distribution across several countries indicate a diverse international
customer base. Knowledge of the country distribution can help inform risk assessment
and underwriting decisions, as different countries may have varying regulatory environ-
ments, risk profiles, and economic conditions that impact insurance claims and premium
calculations.

Both plots emphasize the importance of understanding demographic characteristics when
analyzing insurance data. Insights from these plots can be crucial for effective product
development and risk management strategies. The gender and country distributions can
be leveraged to customize marketing campaigns, tailor insurance products, and adjust
pricing strategies based on the demographic profile of the policyholders. Depending on
the countries represented, there may be specific regulatory requirements that impact the
design of insurance products and the calculation of premiums.

Correlation analysis is a statistical technique used to eval-
uate the strength and direction of the relationship between two or more variables. It as-
sesses how the changes in one variable are associated with changes in another, allowing
researchers to identify patterns, trends, or dependencies. The correlation coefficient, typi-
cally denoted as r, quantifies this relationship, ranging from -1 to +1. A correlation of +1

5.1.1. Correlation Analysis.

Figure 5: Figure 6:

5.1.1. Correlation Analysis.
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indicates a perfect positive correlation, where increases in one variable correspond to in-
creases in another. Conversely, -1 indicates a perfect negative correlation, where increases
in one variable correspond to decreases in the other. A correlation of 0 implies no linear
relationship between the variables.Correlation analysis is a valuable tool in statistics for
understanding relationships between variables, but it is essential to use it alongside other
statistical methods to draw comprehensive conclusions about data relationships. [43],[44]
and [45].

Correlation plot

The Figure 7 is a correlation matrix for the numerical variables related to the fire in-
surance model. The matrix shows the pairwise correlation coefficients between variables
such as insured value, claim amount, deductible, age of the building, claim frequency,
claim severity, base reserves, base premiums, and inflation rates.The correlation matrix
supports to leverage advanced Random Forest techniques for enhanced data analytics in
fire insurance. It highlights the need for non-linear modeling approaches due to the weak
linear relationships between the key variables. The inflation-adjusted automated actuarial
loss reserving model will benefit from Random Forest’s ability to handle complex inter-
actions and non-linearities, ultimately aligning with IFRS17’s stringent requirements for
actuarial reserving models

Figure 7: L
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Violin Plot of
Age vs Claim Amount

Heatmap of
claim frequency vs Prop-
erty Type and Location

The Figure 8 visualizes the distribution of the claim amounts across different ages.The
color gradient (from blue to red) indicates the distribution of age groups, where blue
represents younger individuals and red represents older individuals. Each "violin" shape
shows the probability density of the claim amount for a specific age.The distribution of
claim amounts appears quite spread, with a wider density at lower claim amounts, meaning
most claims are small.Older individuals (right side, red) have a more extended distribution
of claim amounts, indicating higher variability in claim amounts as age increases. Younger
individuals (left side, blue) tend to have smaller, more concentrated claim amounts. There
is a high concentration of claim amounts under 10,000 across most age groups. Claim
amounts are generally small across all age groups, but older individuals tend to have more
variability in their claims.This could indicate that the risk of higher claims increases with
age, though the bulk of claims remain relatively low.

The heatmap denoted by Figure 9 shows the mean claim frequency based on two fac-
tors: property type (commercial vs. residential) and location (urban vs. rural).The color
scale indicates mean claim frequency, with red representing higher frequencies and lighter
colors representing lower frequencies.Urban commercial properties have the highest claim
frequency (dark red), suggesting higher risk or more frequent claims for these types of
properties. Residential properties, both urban and rural, have relatively lower claim fre-
quencies (lighter colors), suggesting these properties are less risky or have fewer claims.
Rural commercial properties also have a relatively lower claim frequency compared to
urban commercial properties.

The t-Distributed Stochastic Neighbor
Embedding (t-SNE) is a non-linear dimensionality reduction technique that is highly
effective for the visualization of high-dimensional datasets. It minimizes the divergence
between two probability distributions: one that represents pairwise similarities in the
high-dimensional space and another that does so in the low-dimensional space. It was first
introduced by [45].

The objective of t-SNE is to minimize the Kullback-Leibler (KL) divergence between two
probability distributions: one representing similarities in the high-dimensional space and
the other in the low-dimensional space. We define two sets of probability distributions,
Pij in the high-dimensional space and Qij in the low-dimensional space.

For two points xi and xj in the high-dimensional space, the similarity Pij is given by a
Gaussian distribution:

Figure 8: Figure 9:

5.1.2. t-SNE for Dimensionality Reduction:
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Pij =
exp

(
−∥xi−xj∥2

2σ2
i

)
∑

k ̸=l exp
(
−∥xk−xl∥2

2σ2
k

)
where σi is the bandwidth of the Gaussian centered at point xi.

In the low-dimensional space, the similarity Qij is modeled using a Student’s t-distribution
with one degree of freedom:

Qij = (1 + ∥yi − yj∥2)−1∑
k ̸=l(1 + ∥yk − yl∥2)−1

where yi and yj are the low-dimensional embeddings of xi and xj , respectively [46].
The goal is to minimize the KL divergence between Pij and Qij :

KL(P ||Q) =
∑
i̸=j

Pij log Pij

Qij

The t-SNE plot for Fire Insurance Data

The t-SNE plot presented by Figure 10 shows how the data points (property types) are
distributed in the new two-dimensional space. There is overlap between property types,
it may suggest that the features are not highly distinctive for classifying property types,
meaning they have similar profiles in some dimensions.

The Table 2 presents the results of the Brighton Mahohoho Automated Actuarial Loss
Reserving Model for fire insurance, focusing on three key aspects: Claim Frequency, Claim
Severity, and Inflation Adjustment. The processing times reflect how long it took for
each Random Forest model (using the ranger package) to process the training data and
complete the regression tasks. The claim severity model took the longest (63.48 seconds),
likely due to the complexity and variability of the claim amounts. In comparison, the

5.2. The Brighton Mahohoho Automated Actuarial Loss Reserving Model

Figure 10:
L

on
d

on
 J

ou
rn

al
 o

f 
R

es
ea

rc
h

 in
 S

ci
en

ce
: N

at
u

ra
l &

 F
or

m
al

©2024 Great Britain Journals Press Volume 24 | Issue 13 | Compilation 1.0 87

The Innovative Development of the IFRS17 Formulated Brighton Mahohoho Inflation-Adjusted Automated Actuarial Loss Reserving Model:

Harnessing Advanced Random Forest Techniques for Enhanced Data Analytics in Fire Insurance



inflation adjustment model and the frequency model had shorter processing times, which
could indicate less computational intensity or complexity for these tasks.

Ranger Based Automated Actuarial Loss Reserving Model

Automated Actuarial Loss Reserving Model
Frequency Severity Inflation

Processing time (seconds) 36.97 63.48 44.65
Hyper parameters
R package:ranger

Type Regression Regression Regression
Number of trees 500 500 500
Sample size 80000 80000 80000
Number of independent variables 11 11 11
Mtry 3 3 3
Target node size 5 5 5
Variable importance mode none none none
Splitrule variance variance variance

Model Validation Metrics:
MAE 0.4562546 160.4958 0.2516254
MSE 0.3056307 40508.53 0.08470882

RMSE 0.5528388 201.2673 0.2910478

With regards to model specifications, all three models are regression models, meaning
they predict continuous outcomes: claim frequency, claim severity, and inflation rates.
Each model used 500 trees in the Random Forest, which is a standard setup to ensure
stable and robust predictions. All models were trained on a data set with 80,000 samples.
Each model used 11 predictors, such as age, country, insured value, and fire safety rating,
among others.The number of variables considered at each split was 3, which is typical
for Random Forest models to ensure diversity in tree splits and to avoid over fitting.
Each model used a target node size of 5, meaning the minimum number of observations
required in a leaf node before it is no longer split. A small node size typically ensures
more granular splits, leading to higher accuracy. The table indicates "none" for variable
importance, meaning variable importance was not computed or reported. Each model
used the variance criterion for splitting nodes. This is the standard rule for regression
trees, where splits aim to minimize the variance in the resulting subsets.

The Table 2 reports the Mean Absolute Error (MAE), Mean Squared Error (MSE), and
Root Mean Squared Error (RMSE) for each model, which are common metrics for evaluat-
ing the accuracy of regression models.The MAE indicates that, on average, the predicted
claim frequency differs from the actual value by approximately 0.456 claims. The RMSE,
which penalizes larger errors more than the MAE, indicates that the average error is
0.552 claims. Both values suggest relatively low errors, meaning the model predicts claim
frequency accurately.The errors for claim severity are much larger compared to claim
frequency, with the MAE showing an average prediction error of 160.50 units of claim
severity. The RMSE is 201.27, meaning the model has higher variability in predicting
claim severity. This is expected, as claim amounts in fire insurance can be highly variable
and subject to large outliers, especially for large claims. The inflation adjustment model
has relatively low prediction errors. The MAE of 0.2516 and RMSE of 0.2910 suggest
that the model is fairly accurate in predicting inflation rates. These low errors imply that

Table 2:

inflation, which is typically more stable compared to claim severity, can be predicted with
higher precision by the model.
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The Claim Frequency Model performs very well with low errors, suggesting that the model
effectively captures the patterns associated with how frequently claims occur in fire in-
surance. The Claim Severity Model shows higher prediction errors, which may be due
to the inherent variability in claim amounts. In fire insurance, claims can vary widely in
size depending on the extent of the damage. The Inflation Adjustment Model performs
well, indicating the model can accurately predict inflation rates that adjust the actuarial
reserves in line with inflationary trends.

Here we present
mathematical formulation of the Future Expected Loss Reserves (FELR) for fre in-
surance. The FELR combines three key components: claim frequency, claim severity, and
inflation adjustment.

The claim frequency, denoted by Ft, represents the expected number of claims at time t:

Ft = E[Nt] (5.1)

where Nt is the number of claims during period t.

Claim severity, denoted by St, refers to the expected monetary value of claims at time t:

St = E[Xt] (5.2)

where Xt is the individual claim amount.

Inflation adjustment ensures that future claims are calculated in real terms, adjusted by
an inflation rate It:

1 + It (5.3)

where It is the inflation rate at time t.

The FELR is estimated by multiplying the claim frequency, severity, and the inflation
adjustment:

FELRt = Ft × St × (1 + It) (5.4)

This equation provides the future liability the insurer is expected to cover, adjusted for
inflation.

To account for uncertainty, a risk adjustment term RAt may be added:

FELRRA
t = FELRt + RAt (5.5)

This ensures that the reserves held cover both expected and unexpected deviations.

5.2.1. Estimation of the Future Expected Loss Reserves (FELR): the
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The Future Expected Loss Reserves

The FELR values presented by the Figure 11 indicate the expected future loss reserves
for each observation, accounting for claim frequency, severity, and inflation. Higher values
represent a greater anticipated reserve requirement, potentially due to higher claim rates
or severity in those specific observations.The line in "steel blue" shows the general trend
of the FELR values over the observations. The smoothness of the line indicates how the
values fluctuate from one observation to the next. The points in "dark orange" highlight
the individual observations, making it easier to identify specific FELR values. The line
helps illustrate whether FELR is relatively stable or fluctuates significantly across the
dataset, which can provide insights into the stability or volatility of future loss reserves.

We define the
Expected Claims Outgo (ECO) as the sum of Claims Incurred (CI) and Claims Paid (CP).
This can be mathematically expressed as:

ECO = CI + CP (5.6)
where:

• CI represents the Claims Incurred,
• CP represents the Claims Paid.

The variables CI and CP are assumed to follow normal distributions with specified means
and standard deviations, i.e.,

CI ∼ N(µCI , σ2
CI) and CP ∼ N(µCP , σ2

CP ) (5.7)
where:

µCI = 20, σCI = 5
µCP = 15, σCP = 3

Figure 11:

5.2.2. Estimation of the Current Expected Loss Reserve (CELR):

The Premium Prediction uses a Random Forest Regression Model to estimate the base
premiums, denoted by P . Once these premiums are predicted, they are adjusted for infla-
tion using the inflation rate i, leading to the Inflation-Adjusted Premiums:

The Innovative Development of the IFRS17 Formulated Brighton Mahohoho  Inflation-Adjusted Automated Actuarial Loss Reserving Model:Harnessing Advanced
Random Forest Techniques for Enhanced Data Analytics
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Padj = P × (1 + i) (5.8)

In addition to inflation adjustment, several actuarial loadings are incorporated into the
premiums. These loadings account for factors such as claims history, risk factors, mar-
ket adjustments, underwriting profit, catastrophe risk, reinsurance costs, and regulatory
charges. These adjustments are applied multiplicatively to form the Total Loading Factor,
denoted as L, given by:

L = (1 + l1)× (1 + l2)× · · · × (1 + ln) (5.9)

where l1, l2, . . . , ln represent the individual loading factors for claims history, risk, market
rates, and so on. The final Total Premiums, denoted by Ptotal, are then calculated as:

Ptotal = Padj × L (5.10)
The Current Expected Loss Reserve (CELR) is the difference between the total
premiums and the expected claims outgo:

CELR = Ptotal − ECO (5.11)
This represents the reserve that the insurer needs to maintain in order to cover the expected
future claims, incorporating all adjustments made to the premiums and the outgo of claims.

The Current Expected Loss Reserve (CELR)

The Figure 12 visualizes the relationship between the Total Premiums, Expected Claims
Outgo, and the Current Expected Loss Reserve for 20,000 observations.Total Premiums
are shown in blue,Expected Claims Outgo is in red and the Current Expected Loss Reserve
is in green (shaded area).The green shaded area represents positive Current Expected Loss
Reserves where total premiums exceed expected claims outgo, indicating a profitable or
surplus position for the insurer. The plot effectively compares the insurer’s premium inflow
and claims outgo, providing visual insights into the reserve adequacy and potential risk
exposures based on premium calculations and claim estimates.

Figure 12:

To describe5.2.3. Estimation of the Automated Actuarial Loss Reserves (AALR):
the estimation of the Automated Actuarial Loss Reserve (AALR), we frst defne
key components:

the
the

The Innovative Development of the IFRS17 Formulated Brighton Mahohoho  Inflation-Adjusted Automated Actuarial Loss Reserving Model:Harnessing Advanced
Random Forest Techniques for Enhanced Data Analytics
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Let Rf represent the Future Expected Loss Reserve, and let Rc represent the Current Ex-
pected Loss Reserve.The Automated Actuarial Loss Reserve (AALR) is computed as the
difference between the future expected and current expected loss reserves, which captures
the change in the expected reserve over time. This can be mathematically represented as:

AALR = Rf −Rc (5.12)

Equation 5.12 represents the AALR estimation. Here, the future expected loss reserve,
Rf , is an actuarial forecast of future losses, while the current expected loss reserve, Rc,
reflects the present evaluation of outstanding losses.

If we are summing over multiple future and current expected reserves for various cate-
gories, the total AALR can be written as:

AALRtotal =
n∑

i=1
Rf,i −

n∑
i=1

Rc,i (5.13)

where n represents the number of reserve categories or policyholders.Equation 5.13 repre-
sents the total Automated Actuarial Loss Reserves by considering multiple reserves over
various categories.The sum of these reserves can be used in various visualizations, such as
bar charts and box plots, to aid understanding of the distribution and the total amount
of reserves.

Bar Plot for
Reserve Types

Box Plot for
Reserve Types

The Figure 13 presents, a bar plot which compares the Future Expected Loss Reserve,
Current Expected Loss Reserve, and Automated Actuarial Loss Reserve using their to-
tal sums.The Future Expected Loss Reserve is generally higher as it forecasts the total
expected future obligations. The Current Expected Loss Reserve is smaller since it repre-
sents the current evaluation of claims. The difference between these two reserves represents
the Automated Actuarial Loss Reserve. This captures the expected future liabilities that
have not yet materialized but are anticipated based on forecasting models.The Figure 13
presents uses a box plot to show the distribution of the reserves across the different reserve
types—Future Expected Loss Reserve, Current Expected Loss Reserve, and Automated
Actuarial Loss Reserve.The box plot reveals the spread (variance) of the reserves across
different categories or claims. The outliers, highlighted by red points, represent unusually
high or low reserve values that deviate significantly from the typical reserves. The Future
Expected Loss Reserve shows a wider distribution, indicating a broader range of estimates,

Figure 13: Figure 14:

possibly due to the uncertainty in predicting future losses. The Current Expected Loss
Reserve has a tighter distribution, implying more certainty in current evaluations. The
Automated Actuarial Loss Reserve reflects the variability in the difference between the
future and current reserves, which is important for assessing the potential reserve adjust-
ments needed to cover future liabilities. Additionally, the jitter points scattered around
the box plots help visualize the individual reserve values, showing the dispersion more
clearly. The coloring adds an aesthetic layer, enhancing the distinction between reserve
types.
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Proposed Types of Actuarial Loss Reserves and their values

Proposed Reserve Type Value
Future Expected Loss Reserve $9671.762
Current Expected Loss Reserve $257.947

Automated Actuarial Loss Reserve $9413.816

The Table 3 compares three proposed types of actuarial loss reserves, showing the average
values for each. The highest value is $9,671.76, indicating the estimated future reserve
needed for anticipated losses. This figure reflects future liabilities based on projections.
This has the smallest value at $257.95. It represents the expected reserve needed for
current outstanding claims, which might indicate a lower current exposure compared to
future losses.The Automated Actuarial Loss Reserve value is $9,413.82, which is close to the
FELR, indicating that the automated method estimates future liabilities in a similar range
to the manually estimated FELR. The slight difference may arise from the automation’s
ability to optimize and better reflect the data patterns.

Bar Plot for the proposed reserve types

5.3. Evaluation of the proposed types of reserves

Table 3:

Figure 15:

The Figure 15 is a bar chart comparing the average amounts of the three loss reserve
types: FELR, CELR, and AALR. Shown as the tallest bar, FELR is slightly higher than
AALR, indicating the manual estimate of future losses might be a bit more conservative.
The CELR bar is considerably shorter, highlighting the minimal reserves needed for the
current period compared to future estimates. The AALR bar is nearly as tall as FELR’s,
showing that the automated approach closely aligns with the manual future estimate.This
visualization emphasizes the significant difference between current and future loss reserve
estimates, with automated reserves aligning closely with future expectations, confirming
the automation model’s reliability in forecasting future liabilities.
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In a nutshell, the chart and table complement each other by confirming the trends in
reserve estimates: future and automated reserves are notably higher than current reserves

In establishing the metrics pertinent to IFRS 17, a comprehensive approach is utilized
to quantify the insurance liabilities and profitability associated with insurance contracts.
Key components include:
The Best Estimate Liabilities (BEL) and this metric encapsulates the expected future
cash flows from insurance contracts, adjusting for the time value of money and estimated
future losses. It serves as a critical benchmark for determining the financial obligations
that an insurer must meet, represented mathematically as:

BEL = E[ELR] ≡ mean(FELR)

where ELR is the Expected Loss Reserve and FELR is the Future Expected Loss Reserve.

The Risk Adjustment measures the uncertainty surrounding the cash flow estimates, often
computed as the standard deviation of the Current Expected Loss Reserve, which reflects
the variability and potential volatility in expected claims. The representation can be for-
mulated as:

RA = σ(CELR)

where RA is the Risk Adjustment, CELR is the Current Expected Loss Reserve.

The Contractual Service Margin (CSM) indicates the profit expected to be earned over
the life of the insurance contract, accounting for future service provided to policyholders.
It is expressed mathematically as:

CSM = E[TP ]− E[ECO]

where TP is the Total Premiums and ECO is the Expected Claims Outgo.

These metrics form the foundation for evaluating the insurer’s performance under IFRS
17, aligning with regulatory requirements and enhancing the transparency of financial
reporting.

The IFRS17 Metrics and their values

IFRS17 Metric Value
Best Estimate Liabilities (BEL) $9671.76249

Risk Adjustment $29.95318
Contractual Service Margin (CSM) $257.94697

5.4. IFRS17 Metrics Evaluation

Table 4:

The Table 4 provides a concise summary of the calculated IFRS 17 metrics and their
respective values. The BEL is $9,671.76, indicating the projected future losses that the
insurer anticipates based on claims frequency and severity. This figure reflects a compre-
hensive assessment of the expected liabilities, highlighting the insurer’s commitment to
covering future claims.The Risk Adjustment value of $29.95 signifies the standard devia-
tion in the Current Expected Loss Reserve. This relatively low value suggests that there
is a moderate level of uncertainty associated with the current claims, indicating stability
in the insurer’s existing portfolio. At $257.95, the CSM represents the expected profit
from the insurance contracts after covering the expected claims outgo. This metric pro-
vides insight into the profitability of the insurer’s operations, suggesting a cautious but
positive margin that aligns with prudent financial management.In short, these metrics
collectively indicate a robust financial position for the insurer, with adequate reserves and
a manageable risk profile.

L
on

d
on

 J
ou

rn
al

 o
f 

R
es

ea
rc

h
 in

 S
ci

en
ce

: N
at

u
ra

l &
 F

or
m

al

©2024 Great Britain Journals PressVolume 24 | Issue 13 | Compilation 1.094

The Innovative Development of the IFRS17 Formulated Brighton Mahohoho Inflation-Adjusted Automated Actuarial Loss Reserving Model:

Harnessing Advanced Random Forest Techniques for Enhanced Data Analytics in Fire Insurance



Simulated IFRS17 Metrics

The Figure 16 visualizing the IFRS 17 metrics effectively conveys the relative values of
each metric through a bar chart. The tallest bar in the chart signifies that the BEL is
the most substantial figure among the three metrics. This aligns with the understanding
that projected future losses, which encompass a wide range of potential claims, form a
significant portion of the insurer’s financial commitments.The bar representing the Risk
Adjustment is notably shorter, indicating a lower level of volatility or uncertainty in the
current loss estimates. This visual representation reinforces the earlier interpretation
that the current expected losses are relatively stable.The CSM bar, while taller than the
Risk Adjustment, is significantly shorter than the BEL, indicating that while there is a
profit expectation from future services provided, it is less substantial than the projected
liabilities.The overall design and labeling of the plot enhance its clarity, making it easy to
interpret the insurer’s financial metrics at a glance. The use of distinct colors and clear
labeling further emphasizes the relationships between the metrics, providing a quick visual
understanding of the insurer’s financial health under IFRS 17.

The Figure 17 plot displays the claims triangle itself, which represents the development of
claims over time for different accident years.The x-axis represents the development periods
from the accident year. Typically, it starts with the initial period when the claim was first
reported and extends to the latest available development period.The y-axis represents the

Figure 16:

5.5. Simulating Traditional Chain Ladder model

Claims Trian-
gle Plot Summary plot

Figure 17:
Figure 18:
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accident years, indicating the year in which claims occurred. The cells in the triangle show
the cumulative claims amounts. The summary plot generated by the summary() function
is presented by the Figure 18 gives a concise overview of the triangle. The summary
usually includes: the Cumulative Claims which are basically the total claims that have
been reported and settled up to each development period.Furthermore, the Development
Factors are derived from the triangle and used to project future claims based on historical
development patterns. This would include values calculated from the triangles, such as
cumulative claims to date and average development factors.

Comparison
Bar Plot

Surface plot

The Figure 19 visually compares the estimated loss reserves from two different meth-
ods: Automated Actuarial Loss Reserves (AALR) and the Chain Ladder method. The
Automated Actuarial Loss Reserves (AALR) bar is significantly taller than the other, it
indicates that the respective method estimates a higher level of reserves. This plot serves
as a straightforward visual tool to communicate the differences between the methods to
stakeholders or in presentations.The Figure 20 provides a three-dimensional representa-
tion of the relationship between the two methods (AALR and Chain Ladder) and their
estimated loss reserves.The x-axis represents the AALR method’s contribution,the y-axis
represents the Chain Ladder method’s contribution and the z-axis represents the total
estimated loss reserves based on the contributions from both methods.Two surfaces are
plotted respectively one for AALR and one for the Chain Ladder method. These surfaces
depict how the estimated reserves change based on the proportions of the contributions
from the two methods.

Figure 19: Figure20:

Together, the Figures 19 and 20 provide a comprehensive view of how the two methods
compare in estimating loss reserves. The bar plot gives a clear quantitative comparison,
while the surface plot allows for a more nuanced understanding of the relationship between
the two methods. This can aid in decision-making regarding which method to favor or
how to balance their contributions in practical applications.

The present value of future cash flows (PVFCF) discounts expected inflows and outflows
to account for the time value of money. For the inflows and outflows, we apply the discount
rate r to bring the future values to the present:

5.7. The ranger Model Adherence to IFRS17 Regulations

5.6. Comparison with Automated Actuarial Loss Reserves
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PVinflows = Expected Premiums
(1 + r)

PVoutflows = Expected Claims
(1 + r)

The net present value of future cash flows (PVFCF) is the difference between the present
value of expected premiums (inflows) and the present value of expected claims (outflows):

PV FCF = PVinflows − PVoutflows = Expected Premiums
(1 + r) − Expected Claims

(1 + r) (1)

In the developed R code, r = 0.03 (i.e., 3% discount rate), and the expected premiums
and claims are calculated based on the mean of the data.

The risk adjustment reflects the uncertainty in the cash flows due to non-financial risks,
such as operational risks or variability in claims. Under IFRS 17, this adjustment is typi-
cally a percentage of the total expected claims:

Risk Adjustment = α× Expected Claims (2)

where α = 0.10 (i.e., 10% risk margin).

The contractual service margin (CSM) represents the unearned profit in an insurance con-
tract. It is calculated as the sum of the present value of future cash flows (PVFCF) and
the risk adjustment:

CSM = PV FCF + Risk Adjustment (3)

The CSM serves as a buffer, ensuring that insurers recognize profits only as they provide
insurance coverage over time.

PV FCF = Expected Premiums
(1 + r) − Expected Claims

(1 + r) (1)

Risk Adjustment = 0.10× Expected Claims (2)

CSM = PV FCF + Risk Adjustment (3)

Simulated IFRS17 Metrics with regards to AALRFigure 21:
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cumulative claims Ck as:

CDFk = Ck+1
Ck

(5.15)

Where:

• Ck is the cumulative claims at the k-th year of development.

The Average Claims Development Factor CDF over n development years is:

CDF = 1
n

n∑
k=1

CDFk (5.16)

This factor helps in projecting future claims liabilities by analyzing how claims amounts
grow or shrink over subsequent periods.

The Expense Ratio compares the total operational expenses E to the total premiums TP.
It is a key efficiency metric:

ER = E

TP
(5.17)

Where:

• E represents the total expenses.
• TP is the total premiums collected.

This ratio highlights how much of the premium income is used to cover administrative
and other non-claim-related costs.

Additional
IFRS17 Evaluation Metrics

Average
Claims Development Factor

The Figure 22 shows the bar chart which compares the three key IFRS17 ratios: the
Loss Reserve Ratio, Average Claims Development Factor, and Expense Ratio.The Loss
Reserve Ratio is significantly higher than the other two metrics, indicating that a large
proportion of the total premiums is being allocated to reserves for future claims. This
might suggest a prudent approach to reserving under IFRS17 standards. The Average
Claims Development Factor is relatively stable, showing modest fluctuations in claims
development, indicating that claims do not escalate significantly after initial reporting.
The Expense Ratio is the smallest, which implies efficient cost management, with only

Figure 22: Figure 23:
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a small portion of premiums used for operational expenses.The Figure 23 shows the line
and point chart illustrates the development of claims over ten years. The Average Claims
Development Factor fluctuates across development years: The spikes and dips in the
chart suggest periods where claims rise significantly (e.g., in year 5) followed by years
of stabilization or decline (e.g., years 6 and 7). This variability can be linked to various
external factors, including economic conditions or catastrophic events. The cyclical nature
of the factor suggests a regular pattern of claims reporting, which might align with seasonal
or regulatory reporting deadlines. general, this Figure 23 offers insight into how cumulative
claims evolve, providing a basis for estimating future liabilities.These metrics and visual
interpretations form part of the actuarial evaluation required under IFRS17, ensuring
that risk assumptions are adequately backed by appropriate reserves and expenses are
maintained within reasonable limits

Model evaluation is a critical phase in the model development process, ensuring that the
model performs as expected under different circumstances and satisfies relevant business
or regulatory criteria. In the context of insurance and actuarial modeling, three key
evaluation methods are used to test the reliability of models: robust model testing, stress
model testing, and scenario model testing. Each of these methods assesses different aspects
of a model’s performance, making them complementary tools for validating the strength
and stability of models, particularly those designed for actuarial loss reserving or pricing.

Robust model testing aims to evaluate the generaliza-
tion of the model across various datasets and conditions, assessing how well the model
performs when exposed to small perturbations in the data or parameters. This approach
tests the model’s resistance to minor fluctuations and noise in the input data. It ensures
that the model is not over fitted to the training data set but is instead generalizable to
new, unseen data. Techniques such as cross-validation and bootstrapping are often used
in robust testing to evaluate the model’s performance consistency across different subsets
of the data [42].

5.8. Model Evaluation

5.8.1. Robust Model Testing:

Robust testing plotFigure 24:
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The Figure 24 shows how the AALR changes as claim amounts are perturbed by varying
percentages, ranging from -10% to +10%. The perturbations are applied to both current
and future loss reserves. These changes can represent adjustments due to updated in-
formation, re-estimation of claims, or errors in predictions.As the perturbation increases
positively (up to +10%), the AALR also increases steadily. Conversely, as the pertur-
bation decreases (up to -10%), the AALR decreases. The trend is approximately linear,
indicating that small perturbations in claim amounts result in proportional changes in the
AALR. The linear relationship between perturbations and AALR suggests that the AALR
model is stable and behaves predictably under small variations in claim amounts. This is
important for ensuring that the model can absorb minor shocks or data adjustments with-
out resulting in erratic or disproportionate changes in reserves. A robust model should
demonstrate this consistency, showing no sudden jumps or volatile reactions to slight per-
turbations.

Under the IFRS17 framework, insurers are required to set aside reserves based on expected
future cash flows from insurance contracts, which must be updated regularly to reflect
current conditions. Several elements from this simulation and perturbation analysis align
with IFRS17 requirements, demonstrating robustness. IFRS17 mandates that insurers
recognize both current and future obligations, reflecting the best estimate of future cash
flows. The separation of reserves into current (CELR) and future (FELR) components in
the model aligns with the IFRS17 requirement to estimate reserves for incurred claims,
as well as those expected to develop in the future. The AALR represents the difference
between FELR and CELR, aligning with IFRS17’s goal of tracking changes in expected
cash flows as claims mature.

IFRS17 requires insurers to conduct regular updates to assumptions and to perform sen-
sitivity testing on reserve estimates. The perturbation analysis performed here simulates
this sensitivity testing by introducing variations to claim amounts. The model’s stabil-
ity and predictable response to perturbations ensure that it is reliable under IFRS17’s
sensitivity testing framework.

Stress model testing evaluates how a model behaves
under extreme conditions or assumptions. In this context, extreme changes in input
variables—such as a significant spike in claim frequency, severe inflationary pressures,
or market shocks—are introduced to the model to see how it responds. Stress testing is
essential for ensuring that the model does not break down or produce unrealistic results
under adverse conditions. This is particularly relevant in industries like insurance, where
models must be resilient to sudden financial or economic downturns [40].

The Figure 25 visualizes the Automated Actuarial Loss Reserve (AALR) under two dif-
ferent scenarios: Normal and Stressed. The Normal Scenario represents the difference
between the Future Expected Loss Reserve (FELR) and the Current Expected Loss Re-
serve under standard conditions.

AALRNormal = FELR− Current Expected Loss Reserve

A positive AALR indicates that the future reserves are sufficient to cover the expected
claims, ensuring financial stability under normal operating conditions.The Stressed Sce-
nario reflects the AALR when claims are increased by 20%, simulating adverse conditions.

AALRStressed = FELR− Stressed Current Expected Loss Reserve

5.8.2. Stress Model Testing:
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where:

Stressed Current Expected Loss Reserve = Total Premiums− Stressed Claims Outgo

By increasing the claims by 20%, the stressed AALR assesses the insurer’s ability to
maintain adequate reserves even when claims exceed expectations. A positive or minimally
negative AALR in this scenario indicates robustness against adverse conditions.

Stress testing plot

The bar chart in the Figure 25 provides a clear comparison between the Normal and
Stressed scenarios.Both bars show positive AALR values, it suggests that the insurer
maintains sufficient reserves under both conditions.IFRS 17 sets forth principles for the
recognition, measurement, presentation, and disclosure of insurance contracts. Key ob-
jectives include ensuring that insurance liabilities are measured consistently and reflect
the current estimates of future cash flows, incorporating the time value of money, and ac-
counting for risks associated with insurance contracts.The model calculates both current
and future expected loss reserves, aligning with IFRS 17’s emphasis on reflecting updated
estimates of future cash flows. By simulating adverse conditions (e.g., a 20% increase in
claims), the model incorporates forward-looking risk assessments, a key aspect of IFRS
17’s risk adjustment requirement.

The bar chart offers a transparent view of reserve adequacy under different scenarios, fa-
cilitating better disclosure and communication as required by IFRS 17.The step-by-step
calculations provide clarity on how reserves are determined, enhancing the model’s trans-
parency Utilizing a robust machine learning model like Random Forest ensures consistent
and reliable premium predictions based on multiple covariates. Adjusting premiums for in-
flation reflects the time value of money, aligning with IFRS 17’s discounting requirements.
Incorporating various loadings (e.g., for operational costs, profit margins) ensures that the
reserves account for all relevant factors, enhancing the model’s comprehensiveness.claims,
even under adverse conditions, meeting IFRS 17’s prudence requirement. The ability to
adjust for different stress factors (e.g., varying inflation rates, claim frequencies) showcases
the model’s flexibility in adapting to different risk environments, essential for compliance
with IFRS 17’s dynamic reporting standards. By considering multiple factors such as
age, country, insured value, property type, and more, the model ensures that all relevant
risk drivers are accounted for, aligning with IFRS 17’s requirement for comprehensive risk
assessment.

Figure 25:
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The provided model effectively visualizes the Automated Actuarial Loss Reserve under
different scenarios, demonstrating a foundational level of robustness in line with IFRS 17
regulations. By incorporating forward-looking estimates, risk adjustments, and transpar-
ent calculations, the model aligns well with key IFRS 17 requirements. Further refinements
can enhance its compliance and reliability, ensuring that it not only meets but exceeds the
stringent standards set by IFRS 17 for insurance contract accounting.

Scenario model testing involves evaluating the model’s
performance under a range of plausible future conditions or "what-if" scenarios. This type
of testing typically includes a variety of economic, demographic, or operational scenarios
that could affect the model’s outputs. Scenario testing is often used in strategic planning,
risk management, and financial forecasting to ensure that models remain valid under a
range of realistic conditions [41].

Current vs Future Expected Loss Reserves

The Figure 26 shows a scatter plot compares the Current Expected Loss Reserves with
the Future Expected Loss Reserves. Each point represents a pair of current and future
loss reserve values, and the color of the points represents the Automated Actuarial Loss
Reserve (AALR), which is the difference between the future and current reserves. The
color gradient from blue to red indicates the magnitude of AALR, with blue representing
smaller values and red representing larger values.

This Figure 26 provides a clear visual representation of how future loss reserves are ex-
pected to behave relative to current loss reserves. The clustering of points around a positive

Figure 26:

5.8.3. Scenario Model Testing:
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slope suggests that higher current loss reserves are generally associated with higher future
loss reserves. This relationship aligns with expectations under stable reserving practices.
The AALR, represented by color, shows the impact of inflation, claims development, or
other factors that IFRS 17 requires for accurate measurement and forecasting of reserves
over time. The wide range of colors from blue to red suggests the model captures variability
in AALRs, which reflects the model’s sensitivity to changes in the underlying data.

IFRS 17 requires that reserves account for uncertainty and variability in claims develop-
ment. This Figure 26 shows the variability in future reserves for different current reserve
levels . The color gradient demonstrates how the model adapts to future uncertainties, ad-
dressing the IFRS 17 requirement for including risk adjustments. The future expected loss
reserves reflect potential development over time, indicating that the model can account for
the time value of money, another key IFRS 17 requirement. The spread in the data also
indicates the sensitivity of reserves to different assumptions about claims development,
showing robustness in the model’s predictions.

Automated Actuarial Loss Reserves Across Scenarios

The Figure 27 shows the distribution of AALR values under three scenarios: Base Case,
High Current Loss, and High Future Loss. Each scenario represents different assumptions
about the mean values of the current and future reserves. The box plot visually represents
the interquartile range (IQR), median, and potential outliers in AALR under each sce-
nario.The Base Case scenario has a relatively narrow range, suggesting that the AALR is
stable when the assumptions about current and future reserves are moderate. In the High
Current Loss scenario, the distribution of AALRs is wider, indicating greater uncertainty
or variability when the current loss reserve is high. The High Future Loss scenario has an

Figure 26:

even wider distribution of AALRs, showing that future loss reserve uncertainties have a
significant impact on the AALR.
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IFRS 17 emphasizes the need for scenario testing and sensitivity analysis to understand
how changes in assumptions affect reserves. This box plot demonstrates that the model
is robust across different reserving scenarios, as it can accommodate variations in both
current and future losses, producing a range of AALRs that are consistent with scenario
assumptions

The IFRS17 Formulated Brighton Mahohoho Inflation-Adjusted Automated Actuarial
Loss Reserving Model introduces an innovative methodology for tackling the complexi-
ties of fire insurance loss reserving. The model is built upon the robust foundation of
Random Forest techniques, which are particularly well-suited for handling non-linear in-
teractions and complex relationships between insurance variables. The use of synthetic
fire insurance data, incorporating key variables such as insured value, claim amounts, and
inflation rates, allows for comprehensive testing and performance evaluation.

The integration of Exploratory Data Analysis (EDA) and visualization techniques provided
critical insights into the dataset, allowing for deeper understanding of variable interactions.
This stage of the methodology not only facilitated the identification of trends and corre-
lations but also contributed to ensuring that the model adhered to IFRS17 standards.
Key variables, such as property type and fire safety ratings, were found to have significant
impacts on claim frequency and severity, underlining the importance of including a diverse
set of predictors.

Random Forest regression models were employed for three core aspects of fire insurance
reserving: claim frequency, severity, and inflation adjustments. Each model demonstrated
high predictive accuracy, as evidenced by performance metrics like MAE, MSE, and RMSE.
These models allowed for precise estimations of the future claims outgo and reserves, and
when combined, they provided a reliable forecast of future financial obligations. The
calculation of Future Expected Loss Reserve (FELR) and Current Expected Loss Reserve
(CELR) offered a clear framework for understanding how inflation-adjusted claims impact
long-term financial reserves.

Stress testing and scenario analysis further highlighted the robustness of the model, par-
ticularly in its ability to withstand significant deviations in claims data. The application
of stress scenarios, including a 20% increase in claims outgo, demonstrated the model’s
adaptability and its capacity to maintain accuracy in reserve estimates under varying
conditions.

The incorporation of IFRS17 metrics, including PVFCF, risk adjustments, and CSM,
reflects the model’s commitment to IFRS17 compliance. These metrics are essential for
assessing profitability, risk management, and long-term financial stability within the insur-
ance industry. Furthermore, the Actuarial Science-Based IFRS17 Ratio Analysis Metrics,
such as the Loss Reserve Ratio and Claims Development Factor (CDF), provided addi-
tional layers of analysis, enabling a comprehensive understanding of the reserve dynamics.

VI. DISCUSSION
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The IFRS17 Formulated Brighton Mahohoho Inflation-Adjusted Automated Actuarial
Loss Reserving Model presents a cutting-edge approach to fire insurance data analytics,
with a particular focus on IFRS17 compliance. By harnessing advanced Random Forest
techniques, the model is able to predict critical insurance variables with high accuracy,
offering valuable insights into future claims outgo and reserve requirements. The use of
synthetic data for testing, combined with robust evaluation methods and stress testing,
ensures the model’s reliability and adaptability in dynamic insurance environments.

The incorporation of key IFRS17 metrics into the model’s framework provides a clear
pathway for insurance companies to meet regulatory standards while maintaining sound
actuarial practices. The novel approach of combining claim frequency, severity, and infla-
tion adjustment models to compute future loss reserves represents a significant advance-
ment in actuarial science. As fire insurance becomes increasingly complex due to factors
such as inflation and varying risk exposures, this model offers a forward-looking solution
that enhances data-driven decision-making and ensures the accurate estimation of financial
reserves.
Ultimately, the Brighton Mahohoho model serves as a robust tool for actuaries, providing
a comprehensive framework for assessing and managing fire insurance risks in an IFRS17-
compliant manner. Through the use of Random Forest techniques and innovative data
simulation methods, the model enhances both the precision of loss reserve calculations
and the ability to adapt to changing financial conditions in the insurance sector.
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