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ABSTRACT

Two methods for construction of new stochastic processes with discrete time are presented. One of
the methods employs as the defining tool is'triangular (more specifically ‘pseudoaffine’)
transformations’ which are extended from the Euclidean R"to infinite dimension space. They
transform any well-known discrete time stochastic process into the constructed one. The other,
more flexible, method is the “method of parameter dependence”, extended to infinite dimension.
Properties of the obtained stochastic processes (by either method) indicate the possibility to apply
them for financial analysis, as an alternative for the classical time series models. The advantage of
the presented models over the existing ones first of all relies on expected better accuracy. This
follows from the fact that the typically held assumption on Markovianity in the existing models can
easily be relaxed. The defined processes may incorporate a quite long list including, among others,
the k-Markovian cases for k > 2. Regardless of the non-Markovianity of the models they still are
tractable in an analytical or numerical way.

The stochastic processes defined in this paper provide more flexible and more general tools than the
existing time series models for modeling financial problems. Among others, they make it possible to
incorporate the influence of environmental (explanatory) random variables on the underlying
stochastic models’ behavior. These additional features turn out to be describable by the method of
parameter dependence. Some suggestions for an associated preliminary statistical analysis are
included.
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parameter dependence method of construction, k-Markovianity.
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| INTRODUCTION

In this work a pattern for construction of new stochastic models is proposed. The models
modification and generalization of the classical time series frameworks for financial analysis (Tsay,
2005). As such they are considered a possible alternative to these known ones. They can be obtained
by two different methods.

One of the methods employs triangular transformations (Filus & Filus& Arnold, 2010), as the
defining tool and may therefore be more useful in a further statistical analysis and possible
simulation studies. This method is described in Section 2 and 3. The other, described in Section 4,
relies on application of the ‘parameter dependence method’ (Filus & Filus, 2012), (Filus & Filus,
2013), which is more flexible than the first method in the sense that it produces more models. The
models obtained by either of the two methods are stochastic processes whose terms have financial
meanings, especially the meaning of log returns for a single asset.
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All the stochastic processes obtained by the triangular transformations method may also be obtained
by the parameter dependence (not conversely), but the possibility of a nice statistical and simulation
analysis as provided by the transformations is sometimes lost. This was the reason both methods
were introduced. Any of the two is very general.

The patterns employed allow us to define wide classes of conditional probability distributions_of any
term X,, given realizations x,, ... ,X., of all past terms X,, ... ,X,_, of the defined stochastic processes.

Notice, that such conditional distributions are very seldom explicitly given in efficient forms in the
literature. The classical exception lies within the pattern of the multivariate normal case. The
obtained conditional distributions are then used for further construction of joint probability
distributions of all the random vectors (X,, ... ,X,), t = 2, 3, ... if an initial distribution of X, is given.

Perhaps the most amazing fact that follows is the easy possibility of defining non-Markovian (as well
as the Markovian) stochastic processes incorporating long pasts, and still analytically tractable.
Additionally, the method of parameter dependence allows us to include into the model, typically
occurring in practice, ‘state random variables’ that describe a “stochastic environment” in which the
processes evolve over time.

The generality of these new models (from a financial perspective) inclined us rather to concentrate on
the formulation of fundamental ideas as beginning to possibly new theories. Therefore, in order to
avoid unnecessary dissipation, the number of examples was purposefully limited. Statistical analysis
problems of the new stochastic models are only mentioned. Also references are limited, somewhat,
especially because the results presented are possibly at first in a financial setting. However, somewhat
similar, from a pure mathematical point of view, but generally different results were published in
(Filus & Filus, 2008).

Il DEFINING TRANSFORMATIONS

Consider a sequence of log returns R, of a single asset, t = 0, 1, ... ,T; (Tsay, 2005), as given by the
following sequence T = 1, 2, ... of transformations:

Ry,=,
R,= VI(RO)XI + BI(RO)
R,= Vz(Ro, Rl)Xz + Bz(Ro’ RI)

RT= VT (Rm Rv cee s RT-I)XT+ BT (Rm Rv cee s RT-1)7

T =1, 2, ..., (1) where the random variables X, ... ,X; are assumed to be independent and identically
distributed. This is then a general white noise pattern which is a source of randomness for the
considered log returns R,, ... ,Rq, ... . V, represents a nonnegative constant initial value, while the
functions V,, ... ,V; are arbitrary positive and piecewise continuous with respect to each argument. If
the variance of each random variable X, is 1, then V,, ... ,V; will have the “conditional volatilities”
interpretation conditioned on realizations of past returns R,, R,, ... prior to a given R,. Also
conditioned on the same realizations of the past returns are the conditional expectations

E[ Rt| Ro; Rn ) Rt—1] = Bt (Ro, Rv ceey Rt—1)

where B,, ... ,B; are arbitrary, piecewise continuous with respect to each argument, functions of
realizations of past returns.
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Example. The functions V() and B,() (t = 1, ... ,T) may be arbitrary continuous. However, in practical

applications one could choose, for example, the following simple functions: V,(r,, 1, ... , ) =1+
a,ry’+ ar+ ... + a.r.% B(r,, Iy, ..., Iw) = by + br,+ ... + b Iy,
where the coefficients a,, a,, ... ,a,, are real nonnegative and b,, b,, ... ,b., are arbitrary real. These

coefficients are to be statistically estimated.

Also, if appropriate, one can choose as model:
Vi(xo, Ty ooy ) = €Xp[ A L2+ A%+ ... + aI,*] and

B(r,, 1y, ..., Ty) = €xp[bor, + bir, + ... + b1 ]

with arbitrary real coefficients a,, a,, ... ,a,, and b,, b,, ... ,b.,. Other examples of such functions can
easily be given.

Returning to the main subject, notice that the sequence of the random vector transformations (X, ...,
Xp O R, ... ,Rp (T =1, 2, ...) defined by (1), is the pseudoaffine version of sequence of triangular
transformations R' [0 R”, (Filus & Filus & Arnold, 2010). Here it is proposed to apply them as a
general financial model_for values of log returns. This model can be seen as a slightly different
version of time series, and is proposed to be named “triangular model”. Realize that all the
transformations (1) are easily invertible, and their inverses are given as follows:

Ro=X,,
X,=[R;-B,(Ro) 1/ Vi(R,)
X,=[R.-By(Ro, R) 1/ V,(Ro, R)
Xr=[Rr-Br (R, Ry, oo s R 1/ Ve (R, Ry, oo, Rey)
T =1, 2,....(1%) For realizations x,, ... ,xrand r,, r,, ... ,I';y of the underlying random variables, denoted

by the corresponding capital letters, the jacobians, J;(r,, ... ,r1) = 9(X,, ... ,X) / 9(r,, ... ,I'1t), have the
simple form of the inverse of the volatilities’ products

JT (r07 Iy, ..., I‘T—l) = [Vl(r()) Vz(roa rl) VT (ro, Iy ey I‘T—l) ]_17 (2) fOI' eaCh T = 1’ 27 see e

One can see that if the sequence of probability densities (pdf) of the random vectors (X,, ... ,Xy) is
known (which is mostly the case), then from (1*) and (2) one immediately can derive the
corresponding sequence of joint pdfs of the random vectors of the returns (R,, ... ,Ry), T=1,2, ....

In such a way, one defines a wide class of stochastic processes {Ri}y - 4, », .. . (The Kolmogorov
consistency theorem easily applies to this case.)

Consider these processes as “modified time series” processes for log returns R,, R,, ... . Clearly, the
model given by (1) is heteroscedastic as the underlying conditional volatilities, V,(r,, 1y, ..., TI), t =1,
2, ... (conditioned on elementary events R,=V,=r,, R,=r1,, ..., R, =r1.,), are, in general, distinct.

It follows from (1) that the introduced model is, in general, not Markovian but still analytically
tractable.
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Actually, when using model (1) one can incorporate in each conditional pdf g.(r;| r,, ... ,rr,) (at
present time T) all the past information on the returns, and underlying calculations are still
performable.

However, this computational advantage is overshadowed by limitations of a statistical nature. As T
grows, the number of parameters to be estimated also grows without bounds, so some restrictions on
the past must be provided. For that one can apply the notion of k-Markovianity that limits the past
to the last k observations (k = 1, 2, ... ). The case k = 1 means the ordinary Markovianity.

The general k-Markovian version of model (1) can be defined as the following sequence of
transformations:

Ro=X,
R, =Vi(R)X, + B,(R,)
R, =V,(Ry, R)X, + By(R,, R)
Ri=V;(Ry, Ry, ..., RiDXi+ Bj(Ry, Ry, ..., R ifj-1 < k
Ri=V.(Ry - ReDXi+ Bi(Ryg, - s R ift-12 k
Ri=V:Rpy oo Re )X+ Br Ry, oo, Re) (3) k=1,2,...,T=1,2,...,k<T.
The k-Markovian conditional pdfs of R,| R, R,, ..., R, as derived from (3) are given by: g (v r,, ...,
ry,) if t-1 < k and g(r,| rey ... ,Iey) if t-1 2 k.

Thus, in this setting, the (conditional) distribution of the present asset log return R;only depends on
the last k moments (months, years) in the past. The earlier times are considered irrelevant and are
neglected.

Nevertheless, even in the case k = 2 ( bi-Markovian) the amount of information incorporated in the
stochastic model is significantly bigger than in the Markovian case, so one may expect more accurate
predictions.

3. Examples
The following examples are based on (1) and (3).

Example 1. Assume that, for each T, the random variables X, ... ,X;are independent, each having the
standard normal N(o, 1) pdf.

Using standard calculations based on the knowledge of (1*) and (2) one first obtains the
(unconditional) normal pdf g,(r) = N[ B,(R,), V.(R,) ] for R, and then for each t = 2, 3, ... ,T one

obtains the conditional pdf: g(r| ry, ... ,I,)

= [Vt (r07 rl) et rt—l)\/2:r[ ]_lexp [- (1/2) {(rt_ BT (ro’ r1> AR I‘t—1) ) /Vt (r07 rl) AR rt—l) }2] (4)

Realize that the latter conditional pdf is normal with respect to the single variable r,. The joint
probability density g.(r,, ... , r;) for each random vector (R,, ... , Ry), T = 2, 3, ..., is given by the
common formula: g:(r;, ... , ) = g,(r,) I, "1y 1, .. ,1), (5) where gi(ry| 1, ... 1) is given by (4).
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The so obtained T-dimensional pdf is the FF-normal (former name “pseudonormal”), (Kotz &
Balakrishnan & Johnson, 2000).

Example 2.

Consider the following “pseudolinear” part of the pseudoaffine transformation (1) which one obtains
by setting in (1) all the “pseudotranslation” coefficients B(R,, R,, ... ,R.,) to zero. One then has the
pseudolinear transformations:

R,=X,
R, =V,(R)X,
R,=V,(R,, R)X;
Re=V:(Ro, Ry, ..., Re )X (6) T=1, 2, ...

Investigate how the transformations (6) act on set of independent Pareto distributed random
variables X, (t=1,2,...,T; T =1, 2, ... ) so, in this case, the expected values of X, s are positive.

Recall that the Pareto density is given by

fix)=1/P 1 +x/Py)"", (7) where f and y are positive real parameters.
Using (6), for every t = 1, ..., T, express X, as

X = I‘t/ Vt—l(rm Iy, ... >rt-1) (assuming Vt-l(r07 Iy, ... 7rt-1) * O)'

Also realize, that the jacobian of inverse to (6) equals to the inverse product: J.(r,, 1y, ..., I'r.,) = [V.(1,)
V2(I'0, rl) VT (roa rn (L] I‘T-1) ]-1-

As the next step, one obtains (for each t = 1, 2, ... ,T) the conditional pdfs g ( r,| r,, 1}, ... ,I.,) of each rv
R,, given the past realizations r,, r,, ... ,r,,of the rvs Ry, R,, ... ,R,,, as follows:

gt( rtl ro’ rl’ 3rt—1) = f(Xt) | 8Xt /artl
= f( I't/ Vt—l(ru Iy, ... ,rt—1) ) | Vt—l(rv | CYIPS ?rt-l) |_1
=1 / { B | Vt-l(rI’ rza 7rt-1)| [ 1+ I't/ B | Vt-l(rn I'2, art—1)| Y] 1+Y}- (8)

So, the effect of each t™ line in transformation (6) on the rv X, is to change its Pareto density (7) for
the (conditional) Pareto density (8) of R,.

The two Pareto densities (7) and (8) only differ by the scale parameters, namely: [ in (7) was
transformed into the product B | Vi.,(r,, I, ... ,T,) | in (8).

Given the conditional densities (8) one obtains the joint density of each random vector (R,, R,, ...
,Rp), T =1, 2, ... using formula (5). In such a way the “Pareto stochastic process” {Rr}r_, , .. is well
defined.

Example 3.

In the same way as for the independently Pareto distributed random variables X,, ... X, (T =1, 2, ...),
one can apply transformation (6) to any sequence of independent identically, and exponentially
distributed random variables that will be denoted by the same symbols X/’s.
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If, for any t = 1, 2, ..., g(x,) is the exponential density of X, given by the expression (1/60) exp[ -x,/ 0 ]
then it can easily be verified that the corresponding conditional density of R,| R,, R,, ... ,R., will be
given as follows: h,( 1| ry, 1, ... ;1)) = (/0| Viu(ro, 1y o o1 | dexpl -1/ 0 | Vi (o, Ty oo 5re) | 10 Ttis
then clear that as in Example 2, the parameters 0 is multiplied by the “coefficient” | V_,(r,, 1y, ... ,T) |-

The same actually will happen with the parameter o in Example 1, if one would assume all the
random variables X, in (1) are normal N(0, 0 ). Also in this case, the parameter ¢ will be turned to the
conditional volatility of R: 0 | Vi.,(ro, T4, ... ;T |-

This regularity for the parameter transformations will be applied in the next section.

. PARAMETER DEPENDENCE MODELS

4.1 In all three examples in the previous section transformation (1) or (6) were used in order to obtain
the conditional densities, say, ¢(r,| r,, 14, ... ,I'.,) describing the stochastic dependence of the return R,
on the past.

Realize that in this derivation the underlying operations only result in changing the value of a
parameter of the given density of X,, into other value that depends on the past return values r,, r,, ...

Tige

This observation opens the way for the method of conditioning (on values r,, r,, ... ,r., ), which is
significantly more efficient than the method of triangular transformations (1) or (6). This method,
called the “parameter dependence”, is presented in (Filus & Filus, 2012) and (Filus & Filus, 2013).

In the considered framework one can describe this method as follows.

Suppose there is given a sequence of independent random variables (now, instead of X;, denoted by R
«t =1, 2, ...) all having the same arbitrary probability density f, (r;; @), a € A . In this situation any
past in this artificial “no memory process” has no influence on the current density f, (r;; a) of Rs,.

The density depends on a constant (original) scalar or vector parameter a . Instead of applying
transformation (1) or (6) to the random vectors (R, ... ,R¢r) one can “directly transform” each density
f, (r;; @) into a conditional density @(r| 1, 1, ... ;1) Of R{| 1o, T, ... ,T¢, just by setting the parameter a
of f; (r;; @) to “become” a function of the values r,, r,, ... ,I',.

In such a way one defines the sequence of conditional pdfs by the formula: ¢(r| r,, r,, ... ,r.) = fi (r;;
(1o, Ty ooe 5Ty) ), t =1, 2, ... (9) which, for an arbitrary function a(r,, ri, ... ,r.,), defines a legitimate
density with respect to r,if all the values a,(r,, r,, ... ,r..,) still belong to the set A of the parameters a of
f, (r;; a). Each sequence of the so obtained conditional densities {@,(r| o, I';; ... ;Te)}e =1, », ... defines a
corresponding stochastic process {R¢} 14, », ..

The parameter dependence method allows for relatively free choice for the functions a(r,, r,, ... ,re.,)
and therefore the class of the so obtained stochastic processes is much wider than that obtained by
the triangular transformation from the same sequence of independent random variables X;or Rg. On
the other hand, the factor that, in applications, often may limit the range of choices of the functions
a(To, Ty, ... ,Te,) is reality.

Every “educative guess” for such a function must be statistically verified. So, first of all, the chosen
function itself usually has its own parameters (parametric approach) that must be estimated by any
statistical method such as, for example, the maximum likelihood method. Then the properly
arranged parametric hypothesis should be verified. Finally the choice of the best fitting to data
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function ay(r,, r,, ... ,I,) should be based on statistical methods as to be the best one from several
candidates (the choices made in the beginning). This then should be declared as the final model.

4.2 It is common (Tsay, 2005), that the general stochastic model for log returns of a given single
asset from a portfolio is a joint probability distribution

P(R,<ry, ... ,Re<rr| Y, ., Vi) =Grlry, oo, 03 Yoy onn, Y3
= Gl(rl; Yls ccey Yk) Ht=2T Gt(rtl | PRPTI SR Yn eee Yk) (10)

where G,(r;; Y, ..., Y)) is the cdf of the random variable R, and, fort =2, 3, ..., T, G(r ry, ... ,;.i; Yo, -..
, Y}) is the conditional distribution function of R,, given realizations r,, ... ,r., of the random variables
R, ... ,R..

However, the above joint and conditional distributions also depend on the state random variables Y,,
..., Y; that summarize the “environment” in which asset return is determined, see (Tsay, 2005), page
13.

One can apply the parameter dependence method to define the conditional distribution functions
P(R,<r1, ..., Ry< 1|y, ... ,Vi), Wherey,, ... ,yyare (measured) realizations of the states Y,, ..., Y.

For that it is enough to set parameter a(r,, r,, ... ,I.;) (Which already determines the conditional
distribution G(r| r,, ... ,I'., ) ) to be additionally dependent on the valuesy,, ... ,y.. Thus, for a given t,
the conditional distribution of Ry| r,, ... ,I'.;; Vi, ... ,¥x Will be determined by a parameter(s) a,( ) of R;‘s
distribution as follows:

Gi(ry| Ty oo ST Vas oo 5V ) = Glry; 0 (T, -ov STy 5 Vs -oe 5¥3) ). (11) If the values (realizations) y,, ... ,yi are
measured then the joint distribution (10) is already determined. If not, one needs to have joint
probability density f(y,, ... , yi) of the random vector (Y,, ..., Yy,). It seems that often one may assume
stochastic independence of the components Y,, ..., Y, of this vector.

Finally, as typically, it may be needed to multiply the resulting G;’s distribution (10) conditioned on
Vi, -+ » Vi by the density f(y,, ... , yi)-
As an example of the parameter function o, (r,, ... ,I'.,; Vi, ... ,yi ) one may consider the following:

London Journal of Research in Science: Natural & Formal

O (T oo 5Ty s Vi oo 5¥) = @ (1 + @12+ .. + a1, ?) exp[ by, + ... + by,

where a is the constant original parameter of the density f; (r,; a) of the random variable Ry, ( Recall, {
R¢i }i- 1 o, .. is the original stochastic process with the independent terms). Furthermore, a,, ..., a,,and
b,, ... ,by are real coefficients. Obviously, when all the coefficients b, ... ,b,are small enough then the
impact of the states y,, ...,y on the parameter (so on the conditional distribution) is insignificant.

According to my knowledge, the above application of the parameter dependence method to
incorporate the random states Y,, ... , Y, impact on the returns’ distributions is not yet present in
literature.

Final Remark

The core achievement when employing either of the two methods, is opening the way for easy
constructions of the conditional probability distributions of X, X,, ... ,X,, , given in compact
analytical forms ready for the calculations. Underlying calculations can be analytical or, if necessary,
relatively simple numerical. Having the conditional distribution functions (11) in analytical forms
allows for extending many classical regression models, usually being in the form of conditional
expectation, say, E[ R| r,, ... ,I'.;; Vi, --- »¥i J, by replacing them with the full probability distribution
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(11). Notice that the latter regression is the expected value of (11) so it is only part of the wider model
considered here. In what is called “enforced regression” (Filus & Filus, 2014), the numerical
characteristics like conditional expectations or covariance coefficients can be replaced by richer
functional characteristics such as the conditional distributions or joint probability distributions
respectively. This idea is, apparently, different from that (nonparametric) considered by (Koenker &
Bassett, 1978), and followers. For a wider discussion of this subject, see (Filus & Filus, 2014).

REFERENCES

J. K. Filus & L. Z. Filus, Parameter Dependence as ‘Weak Transformation’; Method of Construction
of Multivariate Probability Densities, Biometrie und Medizinische Informatik Greifswalder
Seminarberichte, Heft 23 Statistical and Biometrical Challenges, Theory and Applications, 133 —

147, 2014.

. J. K. Filus & L. Z. Filus, A Method for Multivariate Probability Distributions Construction via

Parameter Dependence, Communications in Statistics: Theory and Methods, Vol. 42, Num. 4, 15,
716-721, 2013.

. J. K Filus & L. Z. Filus, Multivariate “Pseudodistributions” as Natural Extension of the

Multivariate Normal Density Pattern — Theory, American Institute of Physics Conference
Proceedings 1479, Numerical Analysis and Applied Mathematics, Vol. 1479, 1417-1420, 2012.

. J. K. Filus & L. Z. Filus, B. C. Arnold, Families of multivariate distributions involving “triangular”

transformations, Communications in Statistics - Theory and Methods, Volume 39, Issue 1, 107-116,
2010.

J. K. Filus & L. Z. Filus, Construction of New Continuous Stochastic Processes, Pak. J. Statistics,
Vol. 24(3), 227-251, 2008

R. Koenker & G. W. Bassett, Regression Quantiles, Econometrica, 46, pp 33-50, 1978.

S. Kotz & N. Balakrishnan & N. L. Johnson, Continuous Multivariate Distributions, Volume 1.
Second Edition. J. Wiley & Sons, Inc, New York, pp 217-218, 2000.

. R. S. Tsay, Analysis of Financial Time Series, Second Edition.
. J. Wiley & Sons, Inc, 2005.

An Alternative for Time Series Models

© 2024 Great Britain Journals Press



