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An Alternative for Time Series Models
Jerzy K. Filus

___________________________________________

ABSTRACT

Two methods for construction of new stochastic processes with discrete time are presented. One of

the methods employs as the defining tool is'triangular (more specifically ‘pseudoaffine’)

transformations’ which are extended from the Euclidean R
n
to infinite dimension space. They

transform any well-known discrete time stochastic process into the constructed one. The other,

more flexible, method is the “method of parameter dependence”, extended to infinite dimension.

Properties of the obtained stochastic processes (by either method) indicate the possibility to apply

them for financial analysis, as an alternative for the classical time series models. The advantage of

the presented models over the existing ones first of all relies on expected better accuracy. This

follows from the fact that the typically held assumption on Markovianity in the existing models can

easily be relaxed. The defined processes may incorporate a quite long list including, among others,

the k-Markovian cases for k ≥ 2. Regardless of the non-Markovianity of the models they still are

tractable in an analytical or numerical way.

The stochastic processes defined in this paper provide more flexible and more general tools than the

existing time series models for modeling financial problems. Among others, they make it possible to

incorporate the influence of environmental (explanatory) random variables on the underlying

stochastic models’ behavior. These additional features turn out to be describable by the method of

parameter dependence. Some suggestions for an associated preliminary statistical analysis are

included.

Keywords: stochastic dependence, stochastic processes, alternative for time series financial models,
parameter dependence method of construction, k-Markovianity.

Author: Department of Mathematics and Computer Science, Oakton Community College Des Plaines, IL
60016, USA.

I. INTRODUCTION

In this work a pattern for construction of new stochastic models is proposed. The models

modification and generalization of the classical time series frameworks for financial analysis (Tsay,

2005). As such they are considered a possible alternative to these known ones. They can be obtained

by two different methods.

One of the methods employs triangular transformations (Filus & Filus& Arnold, 2010), as the

defining tool and may therefore be more useful in a further statistical analysis and possible

simulation studies. This method is described in Section 2 and 3. The other, described in Section 4,

relies on application of the ‘parameter dependence method’ (Filus & Filus, 2012), (Filus & Filus,

2013), which is more flexible than the first method in the sense that it produces more models. The

models obtained by either of the two methods are stochastic processes whose terms have financial

meanings, especially the meaning of log returns for a single asset.
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All the stochastic processes obtained by the triangular transformations method may also be obtained

by the parameter dependence (not conversely), but the possibility of a nice statistical and simulation

analysis as provided by the transformations is sometimes lost. This was the reason both methods

were introduced. Any of the two is very general.

The patterns employed allow us to define wide classes of conditional probability distributions of any

term Xt, given realizations x1, … ,xt-1of all past terms X1, … ,Xt-1of the defined stochastic processes.

Notice, that such conditional distributions are very seldom explicitly given in efficient forms in the

literature. The classical exception lies within the pattern of the multivariate normal case. The

obtained conditional distributions are then used for further construction of joint probability

distributions of all the random vectors (X1, … ,Xt), t = 2, 3, … if an initial distribution of X1 is given.

Perhaps the most amazing fact that follows is the easy possibility of defining non-Markovian (as well

as the Markovian) stochastic processes incorporating long pasts, and still analytically tractable.

Additionally, the method of parameter dependence allows us to include into the model, typically

occurring in practice, ‘state random variables’ that describe a “stochastic environment” in which the

processes evolve over time.

The generality of these new models (from a financial perspective) inclined us rather to concentrate on

the formulation of fundamental ideas as beginning to possibly new theories. Therefore, in order to

avoid unnecessary dissipation, the number of examples was purposefully limited. Statistical analysis

problems of the new stochastic models are only mentioned. Also references are limited, somewhat,

especially because the results presented are possibly at first in a financial setting. However, somewhat

similar, from a pure mathematical point of view, but generally different results were published in

(Filus & Filus, 2008).

II. DEFINING TRANSFORMATIONS

Consider a sequence of log returns Rt of a single asset, t = 0, 1, … ,T; (Tsay, 2005), as given by the

following sequence T = 1, 2, … of transformations:

R0= 0

R1= V1(R0)X1 + B1(R0)

R2= V2(R0, R1)X2+ B2(R0, R1)

RT= VT (R0, R1, … , RT-1)XT+ BT (R0, R1, … , RT-1),

T = 1, 2, … , (1) where the random variables X1, … ,XT are assumed to be independent and identically

distributed. This is then a general white noise pattern which is a source of randomness for the

considered log returns R1, … ,RT, … . V0 represents a nonnegative constant initial value, while the

functions V1, … ,VT are arbitrary positive and piecewise continuous with respect to each argument. If

the variance of each random variable Xt is 1, then V1, … ,VT will have the “conditional volatilities”

interpretation conditioned on realizations of past returns R0, R1, … prior to a given Rt. Also

conditioned on the same realizations of the past returns are the conditional expectations

E[ Rt| R0, R1, … , Rt-1] = Bt (R0, R1, … , Rt-1)

where B1, … ,BT are arbitrary, piecewise continuous with respect to each argument, functions of

realizations of past returns.
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Example. The functions Vt( ) and Bt( ) (t = 1, … ,T) may be arbitrary continuous. However, in practical

applications one could choose, for example, the following simple functions: Vt (r0, r1, … , rt-1) = 1 +

a0r0
2
+ a1r1

2
+ … + at-1rt-1

2
, Bt(r0, r1, … , rt-1) = b0r0+ b1r1+ … + bt-1rt-1,

where the coefficients a0, a1, … ,at-1 are real nonnegative and b0, b1, … ,bt-1 are arbitrary real. These

coefficients are to be statistically estimated.

Also, if appropriate, one can choose as model:

Vt (r0, r1, … , rt-1) = exp[ a0r0
2
+ a1r1

2
+ … + at-1rt-1

2
] and

Bt(r0, r1, … , rt-1) = exp[b0r0+ b1r1+ … + bt-1rt-1]

with arbitrary real coefficients a0, a1, … ,at-1 and b0, b1, … ,bt-1 . Other examples of such functions can

easily be given.

Returning to the main subject, notice that the sequence of the random vector transformations (X1, … ,

XT) � (R1, … ,RT) (T = 1, 2, … ) defined by (1), is the pseudoaffine version of sequence of triangular

transformations R
T
� R

T
, (Filus & Filus & Arnold, 2010). Here it is proposed to apply them as a

general financial model for values of log returns. This model can be seen as a slightly different

version of time series, and is proposed to be named “triangular model”. Realize that all the

transformations (1) are easily invertible, and their inverses are given as follows:

R0= X0,

X1= [ R1 - B1(R0) ] / V1(R0)

X2= [ R2 - B2(R0, R1) ] / V2(R0, R1)

XT= [RT - BT (R0, R1, … , RT-1) ] / VT (R0, R1, … , RT-1)

T = 1, 2, … . (1*) For realizations x1, … ,xTand r0, r1, … ,rT of the underlying random variables, denoted

by the corresponding capital letters, the jacobians, JT (r1, … ,rT) = ∂(x1, … ,xT) / ∂(r1, … ,rT), have the

simple form of the inverse of the volatilities’ products

JT (r0, r1, … , rT-1) = [V1(r0) V2(r0, r1) … VT (r0, r1, … , rT-1) ]
-1
, (2) for each T = 1, 2, … .

One can see that if the sequence of probability densities (pdf) of the random vectors (X1, … ,XT) is

known (which is mostly the case), then from (1*) and (2) one immediately can derive the

corresponding sequence of joint pdfs of the random vectors of the returns (R1, … ,RT), T = 1, 2, … .

In such a way, one defines a wide class of stochastic processes {RT}T = 1, 2, … . (The Kolmogorov

consistency theorem easily applies to this case.)

Consider these processes as “modified time series” processes for log returns R1, R2, … . Clearly, the

model given by (1) is heteroscedastic as the underlying conditional volatilities, Vt (r0, r1, … , rt-1), t = 1,

2, … (conditioned on elementary events R0= V0= r0, R1= r1, … , Rt-1= rt-1), are, in general, distinct.

It follows from (1) that the introduced model is, in general, not Markovian but still analytically

tractable.

An Alternative for Time Series Models
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Actually, when using model (1) one can incorporate in each conditional pdf gT(rT | r1, … ,rT-1) (at

present time T) all the past information on the returns, and underlying calculations are still

performable.

However, this computational advantage is overshadowed by limitations of a statistical nature. As T

grows, the number of parameters to be estimated also grows without bounds, so some restrictions on

the past must be provided. For that one can apply the notion of k-Markovianity that limits the past

to the last k observations (k = 1, 2, … ). The case k = 1 means the ordinary Markovianity.

The general k-Markovian version of model (1) can be defined as the following sequence of

transformations:

R0= X0

R1= V1(R0)X1 + B1(R0)

R2= V2(R0, R1)X2+ B2(R0, R1)

Rj= Vj (R0, R1, … , Rj-1)Xj+ Bj (R0, R1, … , Rj-1) if j-1 ≤ k

Rt= Vt (Rt-k, … , Rt-1)Xt+ Bt (Rt-k, … , Rt-1) if t -1 ≥ k

RT= VT (RT-k, … , RT-1)XT+ BT (RT-k, … , RT-1) (3) k = 1, 2, … , T = 1, 2, … , k < T.

The k-Markovian conditional pdfs of Rt| R0, R1, … , Rt-1 as derived from (3) are given by: gt (rt| r1, …,

r t-1) if t-1 ≤ k and gt(rt| rt-k, … ,rt-1) if t-1 ≥ k.

Thus, in this setting, the (conditional) distribution of the present asset log return RTonly depends on

the last k moments (months, years) in the past. The earlier times are considered irrelevant and are

neglected.

Nevertheless, even in the case k = 2 ( bi-Markovian) the amount of information incorporated in the

stochastic model is significantly bigger than in the Markovian case, so one may expect more accurate

predictions.

3. Examples

The following examples are based on (1) and (3).

Example 1. Assume that, for each T, the random variables X1, … ,XTare independent, each having the

standard normal N(0, 1) pdf.

Using standard calculations based on the knowledge of (1*) and (2) one first obtains the

(unconditional) normal pdf g1(r1) = N[ B1(R0), V1(R0) ] for R1 and then for each t = 2, 3, … ,T one

obtains the conditional pdf: gt(rt| r1, … ,rt-1)

= [Vt (r0, r1, … , rt-1)√2π ]
-1
exp [- (1/2) {(rt - BT (r0, r1, … , rt-1) ) / Vt (r0, r1, … , rt-1) }

2
]. (4)

Realize that the latter conditional pdf is normal with respect to the single variable rt. The joint

probability density gT(r1, … , rT) for each random vector (R1, … , RT), T = 2, 3, … , is given by the

common formula: gT(r1, … , rT) = g1(r1) Πt=1

T
gt(rt| r1, … ,rt-1), (5) where gt(rt| r1, … ,rt-1) is given by (4).

An Alternative for Time Series Models
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The so obtained T-dimensional pdf is the FF-normal (former name “pseudonormal”), (Kotz &

Balakrishnan & Johnson, 2000).

Example 2.

Consider the following “pseudolinear” part of the pseudoaffine transformation (1) which one obtains

by setting in (1) all the “pseudotranslation” coefficients Bt(R0, R1, … ,Rt-1) to zero. One then has the

pseudolinear transformations:

R0= X0

R1= V1(R0)X1

R2= V2(R0, R1)X2

RT= VT (R0, R1, … , RT-1)XT (6) T = 1, 2, … .

Investigate how the transformations (6) act on set of independent Pareto distributed random

variables Xt ( t = 1, 2, … ,T; T = 1, 2, … ) so, in this case, the expected values of Xt’ s are positive.

Recall that the Pareto density is given by

ft (xt) = 1 / β (1 + xt / βγ )
1+γ
, (7) where β and γ are positive real parameters.

Using (6), for every t = 1, … ,T, express xt as

xt= rt / Vt-1(r0, r1, … ,rt-1) (assuming Vt-1(r0, r1, … ,rt-1) ≠ 0).

Also realize, that the jacobian of inverse to (6) equals to the inverse product: JT (r0, r1, … , rT-1) = [V1(r0)

V2(r0, r1) … VT (r0, r1, … , rT-1) ]
-1
.

As the next step, one obtains (for each t = 1, 2, … ,T) the conditional pdfs gt ( rt| r0, r1, … ,rt-1) of each rv

Rt, given the past realizations r0, r1, … ,rt-1of the rvs R0, R1, … ,Rt-1, as follows:

gt( rt| r0, r1, … ,rt-1) = f(xt) | ∂xt /∂rt|

= f( rt / Vt-1(r1, r2, … ,rt-1) ) | Vt-1(r1, r2, … ,rt-1) |
-1

= 1 / { β | Vt-1(r1, r2, … ,rt-1)| [ 1 + rt / β | Vt-1(r1, r2, … ,rt-1)| γ ]
1+γ
}. (8)

So, the effect of each t
-th
line in transformation (6) on the rv Xt is to change its Pareto density (7) for

the (conditional) Pareto density (8) of Rt.

The two Pareto densities (7) and (8) only differ by the scale parameters, namely: β in (7) was

transformed into the product β | Vt-1(r1, r2, … ,rt-1) | in (8).

Given the conditional densities (8) one obtains the joint density of each random vector (R0, R1, …

,RT), T = 1, 2, … using formula (5). In such a way the “Pareto stochastic process” {RT}T=1, 2, … is well

defined.

Example 3.

In the same way as for the independently Pareto distributed random variables X1, … ,XT, (T = 1, 2, …),

one can apply transformation (6) to any sequence of independent identically, and exponentially

distributed random variables that will be denoted by the same symbols Xt’s.
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If, for any t = 1, 2, … , gt(xt) is the exponential density of Xtgiven by the expression (1/θ) exp[ -xt / θ ]

then it can easily be verified that the corresponding conditional density of Rt| R0, R1, … ,Rt-1will be

given as follows: ht( rt| r0, r1, … ,rt-1) = (1 / θ | Vt-1(r0, r1, … ,rt-1) | )exp[ - rt / θ | Vt-1(r0, r1, … ,rt-1) | ]. It is

then clear that as in Example 2, the parameters θ is multiplied by the “coefficient” | Vt-1(r0, r1, … ,rt-1) |.

The same actually will happen with the parameter σ in Example 1, if one would assume all the

random variables Xt in (1) are normal N(0, σ ). Also in this case, the parameter σ will be turned to the

conditional volatility of Rt: σ | Vt-1(r0, r1, … ,rt-1) |.

This regularity for the parameter transformations will be applied in the next section.

III. PARAMETER DEPENDENCE MODELS

4.1 In all three examples in the previous section transformation (1) or (6) were used in order to obtain

the conditional densities, say, φt(rt| r0, r1, … ,rt-1) describing the stochastic dependence of the return Rt

on the past.

Realize that in this derivation the underlying operations only result in changing the value of a

parameter of the given density of Xt, into other value that depends on the past return values r0, r1, …

,rt-1.

This observation opens the way for the method of conditioning (on values r0, r1, … ,rt-1 ), which is

significantly more efficient than the method of triangular transformations (1) or (6). This method,

called the “parameter dependence”, is presented in (Filus & Filus, 2012) and (Filus & Filus, 2013).

In the considered framework one can describe this method as follows.

Suppose there is given a sequence of independent random variables (now, instead of Xt, denoted by Rf

t t = 1, 2, …) all having the same arbitrary probability density ft (rt ; α), α ∈ A . In this situation any

past in this artificial “no memory process” has no influence on the current density ft (rt ; α) of Rf t.

The density depends on a constant (original) scalar or vector parameter α . Instead of applying

transformation (1) or (6) to the random vectors (Rf1, … ,RfT) one can “directly transform” each density

ft (rt ; α) into a conditional density φt(rt| r0, r1, … ,rt-1) of Rt| r0, r1, … ,rt-1 just by setting the parameter α

of ft (rt ; α) to “become” a function of the values r0, r1, … ,rt-1.

In such a way one defines the sequence of conditional pdfs by the formula: φt(rt| r0, r1, … ,rt-1) = ft (rt ;

αt(r0, r1, … ,rt-1) ), t = 1, 2, … (9) which, for an arbitrary function αt(r0, r1, … ,rt-1), defines a legitimate

density with respect to rt if all the values αt(r0, r1, … ,rt-1) still belong to the set A of the parameters α of

ft (rt ; α). Each sequence of the so obtained conditional densities {φt(rt| r0, r1, … ,rt-1)}t = 1, 2, …defines a

corresponding stochastic process {Rt} t = 1, 2, … .

The parameter dependence method allows for relatively free choice for the functions αt(r0, r1, … ,rt-1)

and therefore the class of the so obtained stochastic processes is much wider than that obtained by

the triangular transformation from the same sequence of independent random variables Xtor Rft. On

the other hand, the factor that, in applications, often may limit the range of choices of the functions

αt(r0, r1, … ,rt-1) is reality.

Every “educative guess” for such a function must be statistically verified. So, first of all, the chosen

function itself usually has its own parameters (parametric approach) that must be estimated by any

statistical method such as, for example, the maximum likelihood method. Then the properly

arranged parametric hypothesis should be verified. Finally the choice of the best fitting to data
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function αt(r0, r1, … ,rt-1) should be based on statistical methods as to be the best one from several

candidates (the choices made in the beginning). This then should be declared as the final model.

4.2 It is common (Tsay, 2005), that the general stochastic model for log returns of a given single

asset from a portfolio is a joint probability distribution

P(R1< r1, … , RT< rT | Y1, … , Yk ) = GT(r1, … , rT ; Y1, … , Yk)

= G1(r1; Y1, … , Yk ) Πt=2

T
Gt(rt| r1, … ,rt-1 ; Y1, … , Yk) (10)

where G1(r1; Y1, … , Yk) is the cdf of the random variable R1and, for t = 2, 3, … , T, Gt(rt| r1, … ,rt-1; Y1, …

, Yk) is the conditional distribution function of Rt, given realizations r1, … ,rt-1 of the random variables

R1, … ,Rt-1.

However, the above joint and conditional distributions also depend on the state random variables Y1,

… , Yk that summarize the “environment” in which asset return is determined, see (Tsay, 2005), page

13.

One can apply the parameter dependence method to define the conditional distribution functions

P(R1< r1, … , RT< rT | y1, … ,yk), where y1, … ,ykare (measured) realizations of the states Y1, … , Yk .

For that it is enough to set parameter αt(r0, r1, … ,rt-1) (which already determines the conditional

distribution Gt(rt| r1, … ,rt-1 ) ) to be additionally dependent on the values y1, … ,yk. Thus, for a given t,

the conditional distribution of Rt| r1, … ,rt-1; y1, … ,yk will be determined by a parameter(s) αt ( ) of Rt ‘s

distribution as follows:

Gt(rt| r1, … ,rt-1 ; y1, … ,yk ) = Gt(rt ; αt (r1, … ,rt-1 ; y1, … ,yk ) ). (11) If the values (realizations) y1, … ,ykare

measured then the joint distribution (10) is already determined. If not, one needs to have joint

probability density f(y1, … , yk) of the random vector (Y1, … , Yk). It seems that often one may assume

stochastic independence of the components Y1, … , Yk of this vector.

Finally, as typically, it may be needed to multiply the resulting GT’s distribution (10) conditioned on

y1, … , yk by the density f(y1, … , yk).

As an example of the parameter function αt (r1, … ,rt-1 ; y1, … ,yk ) one may consider the following:

αt (r1, … ,rt-1 ; y1, … ,yk ) = α (1 + a1r1
2
+ … + at-1rt-1

2
) exp[ b1y1+ … + bkyk ],

where α is the constant original parameter of the density ft (rt ; α) of the random variable Rf t ( Recall, {

Rf t }t = 1, 2, … is the original stochastic process with the independent terms). Furthermore, a1, … , at-1and

b1, … ,bk are real coefficients. Obviously, when all the coefficients b1, … ,bkare small enough then the

impact of the states y1, … ,ykon the parameter (so on the conditional distribution) is insignificant.

According to my knowledge, the above application of the parameter dependence method to

incorporate the random states Y1, … , Yk impact on the returns’ distributions is not yet present in

literature.

Final Remark

The core achievement when employing either of the two methods, is opening the way for easy

constructions of the conditional probability distributions of Xt| X1, … ,Xt-1 , given in compact

analytical forms ready for the calculations. Underlying calculations can be analytical or, if necessary,

relatively simple numerical. Having the conditional distribution functions (11) in analytical forms

allows for extending many classical regression models, usually being in the form of conditional

expectation, say, E[ Rt| r1, … ,rt-1 ; y1, … ,yk ], by replacing them with the full probability distribution
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(11). Notice that the latter regression is the expected value of (11) so it is only part of the wider model

considered here. In what is called “enforced regression” (Filus & Filus, 2014), the numerical

characteristics like conditional expectations or covariance coefficients can be replaced by richer

functional characteristics such as the conditional distributions or joint probability distributions

respectively. This idea is, apparently, different from that (nonparametric) considered by (Koenker &

Bassett, 1978), and followers. For a wider discussion of this subject, see (Filus & Filus, 2014).
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