

Scan to know paper details and
author's profile

Ancient Vedic Mathematics: Rare Methods of Indian Mathematics

Dr Prof Avinash Challewar

INTRODUCTION

Ancient Vedic Mathematics offers several techniques and principles that can be applied to geometry, particularly in the context of geometric constructions, measurements, and calculations. While it may not have a separate branch dedicated solely to geometry, many of its sutras (aphorisms) and methods can be used to solve geometric problems efficiently. Here are some key aspects of Vedic Mathematics about geometry:

Geometric Constructions: Vedic Mathematics provides techniques for geometric constructions, particularly those described in the Sulba Sutras, ancient Indian texts related to Vedic rituals and ceremonies. Techniques like Urdhva-Tiryagbhyam (Vertically and Crosswise) and Yavadunam Tavadunikritya Vargaancha Yojayet (Whatever the Deficiency, That Many Times the Deficiency) can be used to construct geometric shapes and structures with precision.

Keywords: NA

Classification: LCC Code: QA21

Language: English

Great Britain
Journals Press

LJP Copyright ID: 925622
Print ISSN: 2631-8490
Online ISSN: 2631-8504

London Journal of Research in Science: Natural & Formal

Volume 24 | Issue 11 | Compilation 1.0

Ancient Vedic Mathematics: Rare Methods of Indian Mathematics

Dr Prof Avinash Challewar

Author: M Sc/Ph D/D Sc/Hon D Litt/D Div Mathematics, Researcher/Professor/Guide.

I. INTRODUCTION

Ancient Vedic Mathematics offers several techniques and principles that can be applied to geometry, particularly in the context of geometric constructions, measurements, and calculations. While it may not have a separate branch dedicated solely to geometry, many of its sutras (aphorisms) and methods can be used to solve geometric problems efficiently. Here are some key aspects of Vedic Mathematics about geometry:

Geometric Constructions: Vedic Mathematics provides techniques for geometric constructions, particularly those described in the Sulba Sutras, ancient Indian texts related to Vedic rituals and ceremonies. Techniques like Urdhva-Tiryagbhyam (Vertically and Crosswise) and Yavadunam Tavadunikritya Vargaancha Yojayet (Whatever the Deficiency, That Many Times the Deficiency) can be used to construct geometric shapes and structures with precision.

Measurement and Calculation: Vedic Mathematics offers methods for geometric measurement and calculation, such as finding areas, perimeters, and volumes of geometric figures. Techniques like the Paravartya Yojayet (Transpose and Apply) sutra can be applied to calculate measurements and solve geometric problems involving triangles, quadrilaterals, circles, and other shapes.

Geometric Proportions: Proportional reasoning is a key aspect of Vedic Mathematics that can be applied to geometry. Principles like Anurupyena (Proportionately) and Shesanyankena Charamena (The Last Digit from the Last) can be used to establish and solve geometric proportions in various contexts.

Geometric Patterns and Symmetry: Vedic Mathematics emphasizes the recognition of patterns and symmetry, which are essential in geometry. Techniques like Nikhilam Navatashcaramam Dashatah (All from 9 and the Last from 10) and Shunyam Saamya Samuccaye (When the Sum is the same that Sum is Zero) can be applied to identify and exploit geometric patterns and symmetries in problem-solving.

Geometric Transformations: Methods for geometric transformations, such as translations, rotations, reflections, and dilations, can be facilitated using Vedic Mathematics principles. Techniques like the Ekanyunena Purvena (One More Than the Previous One) sutra can be employed to perform transformations and manipulations on geometric figures.

Application to Three-Dimensional Geometry: Vedic Mathematics techniques can also be applied to three-dimensional geometry, including solid figures and spatial reasoning. Principles such as Gunita Samuchchaye (Factors the Sum) and Shunyam (Zero) can be used to solve problems involving volumes, surface areas, and other properties of three-dimensional shapes. By leveraging pattern recognition, proportional reasoning, and simplified algorithms, Vedic Mathematics provides alternative approaches to geometry that can complement conventional methods and enhance problem-solving skills in geometric contexts. The number system in Vedic Mathematics is based on a decimal system, similar to

the modern decimal system used worldwide. However, Vedic Mathematics offers unique insights and techniques for performing arithmetic operations and calculations within this number system. Here are some key aspects of the Vedic Mathematics number system.

Geometric Constructions: Vedic Mathematics techniques, such as the Urdhva-Tiryagbhyam Sutra (Vertically and Crosswise), can be applied to construct geometric shapes and structures with precision. These techniques can help in laying out foundations, determining angles, and creating symmetrical designs in architectural plans.

Measurement and Calculation: Vedic Mathematics offers methods for geometric measurement and calculation, which can be useful in construction projects. Techniques for calculating areas, perimeters, and volumes of geometric figures can aid in estimating material quantities, determining spatial requirements, and optimizing space utilization.

Proportional Reasoning: Proportional reasoning, a key aspect of Vedic Mathematics, can be applied to establish and maintain harmonious proportions in architectural design. Principles like Anurupyena (Proportionately) can guide the scaling of architectural elements and ensure visual balance and coherence in construction projects.

Geometric Patterns and Symmetry: Vedic Mathematics emphasizes the recognition of patterns and symmetry, which can enhance the aesthetic appeal and structural integrity of buildings. Techniques for identifying and exploiting geometric patterns and symmetries can inform design decisions and contribute to the artistic and functional aspects of construction projects.

Calculation of Structural Parameters: Vedic Mathematics calculations can be used to determine structural parameters such as load-bearing capacities, stress distributions, and material strengths in construction. Techniques for solving linear and quadratic equations, as well as manipulation of algebraic expressions, can aid in analysing structural elements and optimizing structural designs.

Optimization and Efficiency: By leveraging Vedic Mathematics techniques for mental calculation and rapid computation, construction professionals can streamline planning, design, and execution processes. Efficient use of resources, optimal spatial arrangements, and effective problem-solving can be facilitated by applying Vedic Mathematics principles to construction projects. Integrating Vedic Mathematics calculations with modern construction practices can foster creativity, innovation, and precision in building projects.

Vedic Mathematics can be applied in various engineering disciplines due to its efficient problem solving techniques, mental calculation methods, and emphasis on pattern recognition. While it may not replace conventional engineering methodologies, it can complement them and offer alternative approaches to problem-solving. Here are some ways Vedic Mathematics can be useful in engineering:

Quick Calculations: Vedic Mathematics offers mental calculation techniques that enable engineers to perform arithmetic operations rapidly without relying on calculators or computers. Engineers can use Vedic Mathematics methods for quick estimations, feasibility studies, and initial design calculations, saving time and effort.

Optimization Problems: Vedic Mathematics principles, such as proportionality and optimization techniques, can be applied to solve engineering optimization problems. Engineers can use Vedic Mathematics to optimize parameters such as cost, efficiency, energy consumption, and resource utilization in engineering designs and processes.

Numerical Analysis: Vedic Mathematics techniques can enhance numerical analysis methods used in engineering simulations and computational modelling. Engineers can apply Vedic Mathematics principles to improve numerical stability, convergence, and accuracy in solving differential equations, linear algebra problems, and optimization algorithms.

Structural Engineering: Vedic Mathematics calculations can aid structural engineers in analyzing and designing various structural elements such as beams, columns, and trusses. Techniques for solving linear and quadratic equations, as well as manipulation of algebraic expressions, can be applied to determine structural loads, stresses, and deformations.

Electrical Engineering: Vedic Mathematics can be useful in electrical engineering for calculations involving circuits, signals, and systems. Engineers can apply Vedic Mathematics techniques to analyze electrical networks, solve circuit equations, and optimize system performance in terms of power consumption, signal processing, and communication.

Mechanical Engineering: In mechanical engineering, Vedic Mathematics can assist in solving problems related to kinematics, dynamics, and fluid mechanics. Techniques for solving equations of motion, analysing mechanical systems, and optimizing design parameters can benefit from Vedic Mathematics principles.

Civil Engineering: Vedic Mathematics calculations can be applied in civil engineering for tasks such as surveying, transportation planning, and environmental analysis. Engineers can use Vedic Mathematics techniques to perform geometric calculations, estimate quantities of construction materials, and optimize infrastructure designs.

Innovation and Creativity: By incorporating Vedic Mathematics principles into engineering education and practice, engineers can foster innovation, creativity, and critical thinking skills. Alternative problem-solving approaches inspired by Vedic Mathematics can lead to novel solutions, improved design methodologies, and more efficient engineering practices. Vedic Mathematics can play a role in research across various fields due to its unique problem-solving techniques, mental calculation methods, and emphasis on pattern recognition. While it may not be the primary focus of research endeavours, Vedic Mathematics principles and methods can complement conventional research methodologies and offer alternative approaches to problem-solving. Here are some ways Vedic Mathematics can be applied in research.

Data Analysis: Vedic Mathematics techniques can be applied in data analysis and statistical research to perform calculations, analyze trends, and derive insights from datasets. Researchers can use Vedic Mathematics methods for quick estimations, hypothesis testing, and exploratory data analysis, particularly in fields such as economics, finance, and social sciences.

Algorithm Development: Vedic Mathematics principles can inspire development of computational algorithms and optimization techniques for solving complex problems in various domains. Researchers can explore the application of Vedic Mathematics concepts in algorithm design, machine learning, and artificial intelligence to improve efficiency and accuracy in computations.

Mathematical Modelling: In mathematical research, Vedic Mathematics can offer alternative methods for solving equations, optimizing functions, and analysing mathematical structures. Researchers can investigate the applicability of Vedic Mathematics techniques in mathematical modelling, numerical analysis, and mathematical physics to address research questions and theoretical problems.

Educational Research: Education research can explore the effectiveness of integrating Vedic Mathematics principles into educational curricula and pedagogical practices. Researchers can investigate the impact of Vedic Mathematics instruction on student learning outcomes, cognitive development, and problem-solving skills in mathematics education.

Interdisciplinary Studies: Vedic Mathematics principles can be applied in interdisciplinary research projects that require mathematical reasoning, computational skills, and analytical thinking. Researchers from different disciplines can collaborate to explore the integration of Vedic Mathematics with fields such as engineering, biology, medicine, and environmental science to address complex research challenges.

Historical and Cultural Studies: Research in history and cultural studies can examine the historical development, cultural significance, and philosophical foundations of Vedic Mathematics. Researchers can investigate the historical context of Vedic Mathematics, its role in ancient Indian civilization, and its influence on mathematical thought and education.

Innovation and Problem-Solving: Vedic Mathematics can inspire innovation and creativity in research by offering alternative problem-solving approaches and mathematical techniques. Researchers can explore the application of Vedic Mathematics principles in addressing real-world problems, fostering interdisciplinary collaborations, and advancing knowledge in diverse research fields. Integrating Vedic Mathematics into research endeavours can broaden perspectives, stimulate interdisciplinary thinking, and contribute to advancements in scientific knowledge and scholarship.

The history of Vedic Mathematics traces back to ancient India, where mathematical concepts and techniques were documented in various ancient texts known as the Vedas. Here's an overview of the past and historical context of Vedic Mathematics.

Origins in Vedic Literature: Vedic Mathematics finds its roots in the Vedas, the oldest sacred texts of Hinduism, composed in ancient India between 1500 BCE and 500 BCE. Mathematical concepts and techniques are mentioned in several Vedas, including the Rigveda, Samaveda, Yajurveda, and Atharvaveda, reflecting the significance of mathematics in Vedic culture.

Sulba Sutras: The Sulba Sutras, a collection of ancient Indian texts dating from around 800 BCE to 500 BCE, contain mathematical and geometric principles related to ritualistic and architectural practices. These texts provide instructions for constructing altars and fire pits with precise geometric proportions, showcasing advanced mathematical knowledge and techniques of ancient Indian mathematicians.

Ancient Indian Mathematicians: Ancient Indian mathematicians, known as "Rishis" or sages, made significant contributions to the development of mathematical knowledge and techniques. Scholars such as Baudhayana, Apastamba, Katyayana, and others authored mathematical texts containing geometric, algebraic, and arithmetic principles used in various practical applications.

Mathematical Treatises: Mathematical treatises & texts from ancient India, such as "Brahmasphutasiddhanta" by Brahmagupta & "Lilavati" by Bhaskaracharya, further expanded on mathematical concepts & techniques. These texts covered topics such as arithmetic operations, algebraic equations, geometry, trigonometry, and numerical calculations, demonstrating the depth of mathematical knowledge in ancient India.

Transmission and Preservation: Mathematical knowledge in ancient India was transmitted orally and through written texts, ensuring its preservation and continuity over generations. Gurukuls, traditional schools of learning, played a crucial role in disseminating mathematical knowledge to students through direct instruction from gurus.

Cultural and Religious Context: Mathematics in ancient India was intertwined with religious, cultural, and practical aspects of daily life, influencing ritualistic practices, architectural designs, astronomical observations, and trade activities. The application of mathematical principles in various domains reflected the holistic worldview and intellectual pursuits of ancient Indian society. The past of Vedic Mathematics is deeply rooted in the intellectual and cultural heritage of ancient India, where mathematical knowledge flourished as an integral part of Vedic literature, religious rituals, and practical applications. Through the contributions of ancient Indian mathematicians and scholars, Vedic Mathematics laid the foundation for the development of mathematical sciences and continues to inspire inquiry, exploration, and appreciation in the modern world. In the present day, Vedic Mathematics continues to be relevant and influential, impacting various aspects of education, research, and practical applications. Here's a glimpse into the present state of Vedic Mathematics.

Education: Vedic Mathematics is taught in schools, educational institutions, and through online platforms worldwide, offering alternative approaches to learning mathematics. Educators integrate Vedic Mathematics principles into curricula, textbooks & teaching methodologies to enhance students' mathematical proficiency, problem-solving skills, and cognitive abilities.

Research: Scholars and researchers explore the mathematical concepts and techniques found in Vedic texts, studying their historical context, mathematical rigor, and practical applications. Interdisciplinary research combines insights from Vedic Mathematics with modern mathematical theories, computational methods, and scientific inquiry, leading to discoveries and innovations.

Practical Applications: Vedic Mathematics principles find applications in various fields such as engineering, computer science, finance, architecture, and decision-making. Algorithms inspired by Vedic Mathematics techniques are developed for optimization, cryptography, data analysis, artificial intelligence, and other computational tasks, contributing to advancements in technology and innovation.

Educational Outreach: Workshops, seminars, and online courses on Vedic Mathematics are conducted to raise awareness, promote learning, and foster interest in mathematical traditions and cultural heritage. Educational initiatives focus on making Vedic Mathematics accessible to diverse audiences, including students, teachers, parents & enthusiasts, through outreach programs and community engagement.

Cultural Revival: Efforts are made to preserve and revive ancient mathematical traditions and cultural heritage associated with Vedic Mathematics. Cultural organizations, institutions, and scholars promote the study and appreciation of Vedic Mathematics as part of India's rich intellectual legacy and global heritage.

Cross-Cultural Exchange: Vedic Mathematics transcends cultural and geographical boundaries, attracting interest & participation from individuals & communities worldwide. Cross-cultural exchange programs, collaborations & academic exchanges facilitate the sharing of knowledge, experiences, and insights related to Vedic Mathematics across different cultures & societies.

Innovation and Entrepreneurship: Entrepreneurs and innovators develop products, services, and applications based on Vedic Mathematics principles, catering to diverse market needs and consumer preferences. Start-ups and businesses leverage Vedic Mathematics techniques for problem-solving, decision-making, and optimization, driving economic growth and social impact. In the present era, Vedic Mathematics continues to thrive as a source of inspiration, exploration, and learning, shaping educational practices, fostering interdisciplinary research, and contributing to practical solutions and innovations in various fields. The future of Vedic Mathematics holds promise in several areas, driven

by advancements in education, technology, and interdisciplinary research. Here are some potential directions for Vedic Mathematics in the future.

Integration into Educational Systems: Vedic Mathematics can be integrated into mainstream educational systems worldwide, offering alternative approaches to teaching and learning mathematics. Educators may incorporate Vedic Mathematics principles into school curricula, textbooks, and teaching methodologies, catering to diverse learning styles and fostering mathematical proficiency among students.

Technological Applications: Vedic Mathematics principles can inspire the development of algorithms and computational techniques in various technological domains. Researchers may explore applications of Vedic Mathematics in artificial intelligence, machine learning, optimization algorithms, and other computational fields, leading to innovative solutions and advancements in technology.

Cross-Disciplinary Collaboration: Vedic Mathematics can serve as a bridge between different academic disciplines, fostering interdisciplinary collaboration and research. Mathematicians, scientists, engineers, educators, and practitioners from diverse fields may collaborate to explore the intersections between Vedic Mathematics principles and their respective domains, leading to new insights, methodologies, and applications.

Cognitive Enhancement: Vedic Mathematics techniques can be leveraged for cognitive enhancement and mental agility, benefiting individuals of all ages. Programs and workshops focusing on Vedic Mathematics may be developed to promote cognitive skills, problem-solving abilities, and lifelong learning, contributing to personal development and professional success.

Cultural Preservation and Revival: Vedic Mathematics can play a role in preserving and reviving ancient mathematical traditions and cultural heritage. Efforts to study, document, and disseminate Vedic Mathematics teachings may be undertaken to preserve India's mathematical legacy and promote cross-cultural understanding and appreciation.

Global Outreach and Awareness: Vedic Mathematics can reach a wider audience through global outreach initiatives, educational platforms, and digital media.

Innovation and Entrepreneurship: Vedic Mathematics principles can inspire innovation and entrepreneurship in various sectors, including education, technology, finance, and healthcare. Entrepreneurs and innovators may develop products, services, and applications based on Vedic Mathematics principles, addressing societal challenges and creating new opportunities for economic growth and social impact. The future of Vedic Mathematics holds immense potential for education, technology, interdisciplinary collaboration, cognitive enhancement, cultural preservation, global outreach, and innovation. By embracing and exploring the rich heritage of Vedic Mathematics, individuals and communities can unlock new avenues for intellectual inquiry, creativity, and progress in the years to come. Vedic mathematics is a system of mathematical techniques that originated in ancient India, primarily found in ancient Hindu scriptures called the Vedas. These techniques cover a wide range of mathematical operations and concepts, including arithmetic, algebra, geometry & calculus. The direct application of Vedic mathematics to the golden ratio isn't explicitly discussed in classical Vedic texts.

The golden ratio, often denoted by the Greek letter phi (ϕ) is an irrational number approximately equal to 1.618033988749895 . It has unique mathematical properties such as being the solution to the equation $1 + \sqrt{5}$ and having a significant presence in various natural phenomena and art forms due to its aesthetic appeal. While Vedic mathematics provides numerous shortcuts and techniques for performing calculations efficiently, it doesn't offer specific methods for directly dealing with the golden

ratio. However, one can certainly use Vedic mathematics techniques in conjunction with principles related to the golden ratio in mathematical problem-solving or exploration. Vedic multiplication techniques could be applied to calculate products involving the golden ratio or its powers more efficiently. Additionally, Vedic square techniques might be utilized in geometric constructions or manipulations involving shapes related to the golden ratio.