

1 Adapting Education to the Development of Post-Industrial
2 Processes in an Economy: Extra-Curricular Project-based
3 Learning for Developing the Innovative Abilities of High School
4 and University Students

5

6

Received: 1 January 1970 Accepted: 1 January 1970 Published: 1 January 1970

7

8 Abstract

9 The post-industrial orientation of an economy towards professionals capable of developing and
10 implementing innovative solutions determines the need for rethinking the goals of education
11 and changing educational technologies. Based on the analysis of the distributions of statistical
12 indicators characterizing changes in national education systems in connection with the
13 development of the economy, steady trends in the growth of the population's level of
14 education and the duration of the higher education cycle, which goes beyond competitive
15 expediency, are shown. At the same time, the trends of increasing educational loads and
16 informational saturation of education can be alleviated by modern opportunities for
17 extra-curricular forms of education that are compatible with business activity and career
18 development of a specialist. A critical solution is the development of interdisciplinary
19 integration skills in project-based activity within the framework of extra-curricular education
20 that corresponds to the tasks of developing innovative directions in the economy.

21

22 *Index terms*—

23 The post-industrial orientation of an economy towards professionals capable of developing and implementing
24 innovative solutions determines the need for rethinking and changing educational technologies.

Based on the analysis of the distributions of statistical indicators characterizing changes in national education systems in connection with the development of the economy, steady trends in the growth of the population's level of education and the duration of the higher education cycle, which goes beyond competitive expediency, are shown.

1 AT THE SAME TIME, THE TRENDS OF INCREASING ACADEMIC
2 LOADS AND INFORMATION SATURATION OF EDUCATION CAN BE
3 ALLEVIATED BY MODERN OPPORTUNITIES FOR EXTRACURRICULAR
4 FORMS OF EDUCATION THAT ARE COMPATIBLE WITH BUSINESS loads
5 and information saturation of education can be alleviated by
6 CRITICAL SOLUTION IS THE DEVELOPMENT OF INTERDISCIPLINARY
7 modern opportunities for extracurricular forms of education
8 INTEGRATION SKILLS IN PROJECT-BASED ACTIVITY WITHIN THE
9 FRAMEWORK OF EXTRACURRICULAR BUSINESS ACTIVITY and the career
10 corresponds to the tasks of developing innovative
11 development of a specialist. A critical solution is the develop-
12 DIRECTIONS IN THE ECONOMY.
13 development of interdisciplinary integration skills in project-based
14 activity within the framework of extra-curricular education
15 that corresponds to the tasks of developing innovative direc-
16 tions in the economy.

17 The stability of the functioning of the developed system of extra-curricular education for high school and university
18 students, which has undergone a period of interregional scaling, is determined by several methodological principles
19 oriented towards the psychology of the youth audience, including: the personalized nature of learning using
20 individual educational cells; the use of emotional competitive elements related to academic support of project-
21 based activities; the inclusion of hybrid forms of digital information and communication technologies in the
22 educational process and the testing of the results of project-based learning.

23 Practical results make it possible to identify the effectiveness of the system's methodological complex for the
24 entire period of academic advancement. In addition, it allows for using proven innovations for educational support
25 at an early stage of a professional career.

26 During the systematic transition to an innovative economy in the post-industrial stage, the significance of
27 scientific achievements and technological and organizational innovations have increased and have become the
28 main tools for economic development. These tools replace the resource contribution to the economy (i.e., the use
29 of natural resources, including fossil fuels, as the previous economic driver). They are associated with a consistent
30 increase in the education level of society and an increase in time spent on education. In the new economy, human
31 potential creates innovations, and they ensure economic growth. During the transition period to the post-
32 industrial stage, the development of the intellectual level and the improvement of professional opportunities take
33 the leading positions in the public assessment of careers. The priority of modernizing education during the
34 transitional period in the economy is the formation and development of a class of highly qualified specialists
35 (Toffler 2004) capable of initiating and ensuring the implementation of post-industrial innovative changes in
36 socio-economic development.

37 The innovative orientation of development in the post-industrial economy is associated with functional
38 corrections to the main links of the educational system and an expansion of the range of knowledge and skills
39 acquired through the learning process. Both factors are necessary for organizing and implementing the prompt
40 transfer of breakthrough scientific research results into the real economy.

41 However, the possibilities of the educational strategy that ensures the correspondence of the qualification
42 obtained during the learning process to the conditions of the post-industrial stage of economic development are
43 limited.

44 Firstly, the consistent strengthening of the increase in the informational saturation of educational programs in
45 the traditional hierarchy of basic education is limited by the acceptable duration of the learning period. Therefore,
46 the importance of extracurricular programs that allow for the combination of learning with practical activity and
47 the implementation of career goals is intensified in the configuration of the education system towards the goals
48 and dynamics of post-industrial development.

49 One of the key tasks also becomes the practical use of the potential of modern distance information and
50 communication technologies (ICT) in providing educational support for business activity. The use of the
51 contemporary potential of ICT in project-oriented extra-curricular education allows for the individualization of
52 learning, methodologically ensuring adaptation to the post-industrial dynamics of the implementation of scientific
53 results at the early stages of acquiring basic knowledge: during the completion of school education and transition
54 to the next stage of professional training. In other words, the start of a professional career during the extended
55 education period should not be delayed, as competitive advantages may be lost. It is necessary to combine career
56 and education, and this becomes a stimulus for the development of extra-curricular education.

57 In this article, we will analyze the experience of a distributed network for the extra-curricular project-based
58 education system of high school students that we have created (Kosarikov, Davydova 2021).

59 This system is designed in a multi-sectoral format of public-state partnership (PSP) and is currently operational
60 in all regions of the Russian Federation. 20-years of experience in this field allows us to evaluate the practical
61 impact of the main methodological approaches, that were laid down on the basis of the system development, on
62 the sustainability and effectiveness of learning. These approaches have undergone lengthy testing in regions that
63 differ in levels of development and sectoral features of the economy. Hybrid options for extra-curricular education,
64 combining classroom and distance learning, have been incorporated into the technology of the educational process.
65 The possibilities of modern ICT have been utilized both for territorial distribution and for transferring developed

87 methods of London Journal of Research in Management and Business non-formal extra-curricular education in
88 schools to the next level of academic advancement in the university environment. Extra-curricular project-based
89 education accompanies the period of basic qualification training when high school and university students receive
90 interdisciplinary training simultaneously with the standard course of study. This allows for the prompt correction
91 of acquired skills in view of the high dynamics of the changes in technology and management during the learning
92 process. The system is based on the rules of mastering interdisciplinary integration methods. In the process of
93 project-oriented interdisciplinary education, connections are created between the learner and the teacher. These
94 are the elements of professional socialization. They make it possible to use the stability of non-formal educational
95 interaction to organize horizontal, peer-to-peer (p2p) expert-educational support schemes for business activity at
96 the early stages of career development. In other words, the developed system moves from "education for all" to
97 individual education in a peer-to-peer format, where the student and the teacher become colleagues and exchange
98 opinions, ideas, and project solutions, ultimately contributing to the development of the post-industrial economy.

99 **2 II. THE INFLUENCE OF POST-INDUSTRIAL ECO- 100 NOMIC DEVELOPMENT ON MODERNIZING EDUCA- 101 TIONAL PROCESSES**

102 The transition to the post-industrial stage is associated with several processes, including replacing natural
103 resources involvement as the main driver of economic development and the increased importance of transferring
104 scientific achievements to the economy.

105 At the same time, the scope and volume of technological and organizational innovation implementations are
106 expanding. The growth of the innovative component of the economy during the transition to post-industrial
107 development is related to the processes of modernizing education. These processes are aimed at expanding and
108 strengthening the influence of a class of highly qualified specialists whose qualification corresponds to the tasks of
109 developing innovative solutions and operational transferring scientific results to the technological sphere. Positive
110 feedback loops are formed between the modernization of the economy and the requirements for the specialists'
111 qualification level. Thus, through the sequential strengthening of the innovation component of the economy,
112 economic growth drives an "educational spiral": people, who have received new education, change the economy,
113 and then the new economy demands even more educated people.

114 Within the framework of the post-industrial economy, a closed cycle of events is being formed: economic growth
115 through the development of innovations determines the need for specialists with a wide range of knowledge and
116 integrative interdisciplinary skills that are necessary for the development and operation of new technologies. At
117 the same time, the sequential expansion of the influence and growth of the scientific potential of specialists sets
118 the direction for a new round of innovative renewal of technologies and the next level of qualification requirements.

119 The dynamics of economic growth during the transition to the post-industrial stage of development is associated
120 with the constant strengthening of investment support for the education sector (Figure 1). The tendency to
121 increase the overall level of education in post-industrial countries corresponds to the tasks of mitigating the
122 consequences of intellectual inequality for the sustainability of post-industrial development. Such group elitism
123 arises as a result of the increased leading role of highly qualified specialists. Society, in turn, seeks to maintain
124 stability and avoid educational inequality by responding with an increase in the duration of education. reaches
125 50% of GDP and ends when the economic equilibrium level of industries that form the gross internal product
126 is reached up to a GDP level of about 15...17 thousand USD/person/year). Here, equilibrium means achieving
127 equal labor productivity in the leading sectors of the economy: there is a leveling of the average contribution to
128 GDP of those employed in the service sector and those engaged in other sectors of the economy.

129 The relationship between the growth of average education duration and the economy's pace during the transition
130 period is close to exponential (Figure 1, ??) and is characterized by positive feedback. Upon completion of the
131 transitional economic period, the indicators of the average duration of study/education of society in developed
132 countries acquire a stable value for post-industrial development, which is approximately 70-75% of the duration
133 of the entire cycle of study for higher education: 17 ... 17.5 years.

134 The level of education (as measured by the average duration of education) in developed countries largely
135 corresponds to the post-industrial employment landscape, where over 70% of jobs in developed post-industrial
136 countries are linked to innovative development in the service sector and oriented towards highly skilled specialists.

137 The modernization processes in education, the implementation of methodological innovations, the use of
138 advanced information and communication technologies, and the growth of academic workload and duration are
139 reflected in global trends of educational investment policy. The distribution of statistical indicators of education
140 expenditure (Fig. 1, ??) shows a characteristic step in the transition of financing to a level close to 5.2-5.3% of
141 GDP within a narrow range of economic development (approximately from 13 to 15 thousand USD/person/year).

3 III. ON THE PRACTICE OF EXTRA-CURRICULAR EDUCATION IN THE TRANSITION PERIOD

147 is necessary to introduce a mechanism that allows a person to adapt to rapidly occurring processes in technology
148 and management.

149 3 III. ON THE PRACTICE OF EXTRA-CURRICULAR ED- 150 UCATION IN THE TRANSITION PERIOD

151 The system of extra-curricular education developed in our organization (Kosarikov, Davydova 2022) is not
152 formalized by institutional regulations and it is aimed at training the project abilities of high school and university
153 students. The system is focused on using integrative methods into the practice of applying scientific results in
154 real economic sectors. The system's replication in the regions of the Russian Federation has led to the creation
155 of a network structure of extra-curricular education distributed throughout the country, which is combined with
156 a contest of school and university students' projects.

157 The organizational basis of the system is a multi-sectoral educational cooperation in the format of a public-state
158 partnership (PSP). The members of the partnership are educational organizations, public organizations, municipal
159 and state authorities in the field of education, as well as universities and scientific institutes. The territorial
160 distribution of our regional network centers follows the administrative division of the country. Management of
161 the system combines the vertical cycle of annual project contest organization -from planning to standardization of
162 final procedures (Deming 2018) -with a focus on modern decentralization trends (Laloux 2014) in regional center
163 management. The elements of regional decentralization are technologically efficient in solving the problems
164 of network expansion and ensuring the sustainability of the functioning of regional centers of extra-curricular
165 education.

166 The organizational and methodological integrity of the non-formal education system is ensured by an innovative
167 combination of learning with the stages of a vertically organized students' projects contest. The inclusion of
168 competitive elements in the educational process corresponds to the ambition and initiative of the school and
169 university age periods and opens up opportunities for initial training in competitiveness in the field of intellectual
170 activity. Within the system, we practice public projects' presentation and defense of the project's results with
171 the remote participation of external audiences.

172 Students go through several stages of municipal, regional, and all-federal competitive events. After completing
173 each stage, a list of leaders is formed.

174 Through the practice of the system's functioning, it is demonstrated that basic school education provides the
175 opportunity for transitioning from the traditional vertical study of basic disciplines to the comprehensive mastery
176 of integration methods, including STEM competencies (The extra-curricular format of the education system,
177 combined with a national contest of the students' projects, and the openness of the teaching methodology for the
178 broad use of digital information and communication technologies, enable the leveling of the influence of differences
179 associated with the specific features of schools (Brunner, Keller, Wenger, Fischbach, Lüdtke 2012) including
180 differences in the students' basic education due to geographical location, including remoteness from leading
181 scientific and educational centers of the country. Decentralization of the system management also leads to a shift
182 in the thematic focus of the projects carried out during extra-curricular education toward local problem-solving.
183 The themes of student projects are associated mainly with the tasks of active monitoring of local territories
184 (EPCI 2019-2022). Thus, our system promotes the principle of "Think globally, act locally" simultaneously in
185 the spheres of environmental protection and sustainable development and education for sustainable development.
186 We note the general trend of applying integration approaches to problem formulating and solving within the
187 research activities of high school and university students in the form of an increasing share of interdisciplinary
188 projects:

189 -Using mathematical modeling, -Applying digital technologies to adapt remote sensing data to the tasks
190 of monitoring and predicting changes in local ecosystems and water bodies, -Developing software elements of
191 artificial intelligence that enable the forecasting of technogenic changes, -Creating virtual reality reflecting the
192 consequences of economic decisions for sustainable development.

193 The range of thematic areas in project-oriented learning reflects the possibilities of the system of extra-
194 curricular education going beyond narrowly specialized learning. High school and university students choose
195 project directions focusing on a wide range of educationally relevant issues for London Journal of Research in
196 Management and Business sustainable development (Kopnina 2012;Rushton & Batchelder 2012). In the 2021-
197 2022 academic year, a number of projects were identified as the most advanced based on competitive testing,
198 with potential for technological implementation and use in professional scientific research, including:

199 -adaptation of remote space sensing results to assess the transformation of glaciers in the Central Siberian
200 Plateau (Krasnoyarsk region), -digital modeling of greenhouse gas emissions from bottom sediments in the Volga
201 Basin (Republic of Tatarstan), -use of magnetohydrodynamic effects for co-generation of electricity in tidal power
202 plants in the Barents Sea (Murmansk region), -modeling of adsorption-magnetic filtration of wastewater from

208 ICT learning removes geographic limitations in the interaction of system participants and creates feedback with
209 leading specialists and scientific teams within the framework of PSP, which has a significant impact on the level
210 of students' projects development.

211 The main burden of mastering integration STEM skills in project-oriented learning falls on individual
212 educational cells, which include the project author, consultant specialists, and the learning organizer-teacher.

213 These individual cells are combined in the system into a horizontal peer-to-peer structure (Ahn, Weng, Butler
214 2013), which provides educational support throughout the entire period of extra-curricular education. The
215 potential for the stability of feedback loops in the "student-consultant-teacher" chain, which is characteristic of
216 individual learning (Henderson, Phillips, Ryan, Boud, Dawson, Molloy, Mahoney 2019; Azbel, Ilyushin, Morozova
217 2021), is projected onto the sustainability of the functioning of the p2p-network, formed from educational cells,
218 at all levels of academic advancement: from high school students to university students.

219 4 Trajectories of Information Exchange and Clusters of Inten- 220 sive Creative Interaction in P2P

221 Networks.

222 Information exchange trajectories and clusters of intensive creative interaction within the framework of the
223 p2p network are chosen by the participants-authors of projects independently, guided by the thematic focus of
224 the project. The participants also use hybrid ones: remote and direct contacts, in the process of educational
225 conferences and centralized workshops.

226 The closed/auditory format of discussions during the learning process and competitive procedures supports the
227 majority of participants, around 80%, including project authors, experts, and pedagogical organizers of education,
228 as per survey results. At the same time, remote interactive forms of discussions meet the conditions for expanding
229 the interested audience and utilizing elements of peer-to-peer exchange. The external audience for interactive
230 educational events, transmitted in real-time, usually exceeds the number of direct participants, ranging from
231 100-150 people to 5-6 thousand viewers.

232 The study reveals that the maximum level of using distance technologies is limited by the need to preserve
233 the emotional component of horizontal connections and by the conditions for group professional socialization of
234 participants in the educational process. However, restrictions limiting the use of remote ICT are significantly
235 mitigated by organizing event broadcasts in a mixed format. A group of direct learning participants, including
236 project authors and experts in thematic directions/nominations, are present in the venue, while interested parties
237 participate in discussions remotely.

238 The study shows that the solution to the problem of objective testing of the success of education (Paulsen,
239 Valdivia 2022; Wang, Shute, Moore 2015; Sun, Shute, Stewart, Yonehiro, Duran, D'Mello 2020) in the format
240 of educational support for the projects contest, is organically combined with the development of practicing
241 skills for a public demonstration of knowledge, professional competencies and promotion of the project results
242 in a competitive environment. The autonomy of project authors in choosing directions and in implementing
243 project developments, demonstrating personal competence during competitive presentation and promotion of the
244 project, elements of socialization, and belonging to a professional community that are typical for project activities,
245 correspond to the age ambitions of the target audience. The methodological orientation towards the psychological
246 needs of the students (Deci, Ryan 2012) enhances the attractiveness and sustainability of the developed system
247 of extra-curricular education.

248 5 IV. CONCLUSION

249 The increase in the level of education in society during the transition to the post-industrial stage of development
250 has a significant impact on changes in consumption priorities and demands for organizational and technological
251 modernization. The level of education becomes a leading factor in the post-industrial transformation of the
252 economy and employment structure.

253 During the transitional period, with per capita GDP values ranging from 5 to 17 thousand USD/year, the
254 average duration of education increases from 7 to 13 years, and the requirements for the educational level of
255 highly qualified professionals reflect a 40% increase in the average period of the educational cycle, estimated to
256 be around 17...17.5 years. The emerging trend in post-industrial countries towards an increase in the average
257 duration of education, which characterizes the level of education in society, up to 70...75%, meets the challenges
258 of mitigating the socio-economic consequences of educational stratification.

259 Maintaining competitive advantages of an early experience of professional activity in the context of post-
260 industrial growth of the duration of basic education highlights the importance of additional forms of education
261 that are open to using modern digital ICT, and allowing for an effective combination of the educational process

6 LONDON JOURNAL OF RESEARCH IN MANAGEMENT AND BUSINESS

267 Developed for a youth audience of high school and university students, the system of extra-curricular project-based education relies on the organizational potential of the multi-sectoral public-state partnership.

268 The main element of the learning process is individual educational cells, the format of which allows for the support of the participants' own project developments. An educational cell includes the student, who is the author of the project, a specialist-expert in the chosen project area, who is involved in the learning process within the framework of the public-state partnership, and a teacher-organizer of the training.

273 6 London Journal of Research in Management and Business

274 The individual cells that personalize learning are combined into a horizontal network of peer-to-peer educational cooperation. The stability of the educational cells and horizontal network connections is methodologically ensured by hybrid -face-to-face and distance learning formats -and by the use of modern digital information and communication technologies.

275 The methodology for transitioning from subject-based basic education to intellectual and expanded versions of STEM education includes a range of positions oriented towards meeting the primary psychological needs of the young audience, such as:

276 -The autonomy of choosing research and project directions, -The competitiveness of the results of project-based learning and public demonstration of competence during competitive advancement (contest) of the author's project developments, -The formation of elements of professional belonging-group socialization in the network of the individual educational cells.

277 The integrity of the educational system is maintained by combining learning with the vertical of preparation and conducting of a national contest of the students' projects and by the general thematic direction of projecting for the implementation of sustainable development provisions.

278 Personalization of learning using individual educational cells and the main set of organizational and methodological provisions of the project-based integrated education maintains effectiveness for the entire period: from completing high school to obtaining higher education. As our practice in applying educational innovations has shown, it can be used to support education in the early stages of a professional career. ^{1 2}

1

Figure 1: Figure 1 -

- 291 [London Journal of Research in Management and Business] , *London Journal of Research in Management and*
292 *Business*
- 293 [Wang et al. ()] 'Best Practices and Lessons Learned of Stealth Assessment' L Wang , V J Shute , G R Moore
294 . 10.4018/IJGCMS.2015100104. *International Journal of Gaming and Computer-Mediated Simulations* 2015.
295 7 p. .
- 296 [Brunner et al. ()] 'Between-School Variation in Students' Achievement, Motivation, Affect, and Learning
297 Strategies: Results from 81 Countries for Planning Group-Randomized Trials in Education' M Brunner ,
298 U Keller , M Wenger , A Fischbach , O Lüdtke . *Journal of Research on Educational Effectiveness* 2018. 11
299 (3) p. .
- 300 [Henderson et al. ()] 'Conditions that enable effective feedback' M Henderson , M Phillips , T Ryan , D Boud
301 , P Dawson , E Molloy , P Mahoney . 10.1080/07294360.2019.1657807. *Higher Education Research &*
302 *Development*, 2019. 38 p. .
- 303 [Deming] W E Deming . *The New Economics for Industry, Government, Education.-2nd edition -2018*, The MIT
304 Press.
- 305 [Kopnina ()] 'Education for sustainable development' H Kopnina . 10.1080/13504622.2012.658028. <https://doi.org/10.1080/13504622.2012.658028> *Environmental Education Research* 2012. 18 (5) p. .
- 306 [Rushton and Batchelder ()] *Education for Sustainable Development Through Extra-curricular or Non-curricular*
307 *Contexts. Encyclopedia of the UN Sustainable Development Goals*, E Rushton , M Batchelder . 10.1007/978-
309 3-319-95870-5_19. https://doi.org/10.1007/978-3-319-95870-5_19 2012. Springer.
- 310 [Paulsen and Valdivia] 'Examining cognitive diagnostic modeling in classroom assessment conditions (2022)' J
311 Paulsen , D S Valdivia . 10.1080/00220973.2021.1891008. <https://doi.org/10.1080/00220973.2021.1891008> *The Journal of Experimental Education* 90 p. .
- 312 [Kosarikov and Davydova ()] 'Extracurricular activities programs as a resource for sustainable development' A
313 N Kosarikov , N G Davydova . 10.1007/s11125-021-09583-5. *Prospects UNESCO* 2021.
- 314 [Vainikainen et al. ()] 'General and specific thinking skills and schooling: Preparing the mind to new learning'.
315 M-P Vainikainen , J Hautamaki , R Hotulainen , S Kupiainen . 10.1016/j.tsc.2015.04.006. <https://doi.org/10.1016/j.tsc.2015.04.006> *Thinking Skills and Creativity* 2015. 18 p. .
- 316 [Kosarikov and Davydova] 'Innovative Practice and Management Extracurricular Education System: Dis-
317 tance Technologies in Non-Formal Project-Based Learning (2022)' A N Kosarikov , N G Davydova .
318 10.5296/ijmis.v7i1.20529. *Int'l Journal of Management Innovation Systems* 7 (1) p. 51.
- 319 [McDonald ()] C V McDonald . *STEM Education: A Review of the Contribution of the Disciplines of Science,*
320 *Technology, Engineering and Mathematics*, 2016. 27 p. .
- 321 [Online document GDP by economic sectors ()] *Online document GDP by economic sectors*, https://www.yestravel.ru/world/economy/gdp_composition_by_sector/ 2018.
- 322 [Online document share of employed in the service sector ()] *Online document share of employed in the*
323 *service sector*, https://economicdata.ru/economics.php?menamacroeconomics&data_type=economics&data_ticker=ServicesEmploy 2019. 2020.
- 324 [Azbel et al. ()] 'Perceptions of Feedback among Russian Adolescents' A Azbel , L Ilyushin , P Morozova .
325 10.17323/1814-9545-2021-1-195-212. *Educational Studies Moscow* 2021. 1 p. . National Research University
326 Higher School of Economics
- 327 [Watkins et al. ()] 'Psychometric intelligence and achievement: A cross-lagged panel analysis' M W Watkins ,
328 P.-W Lei , G L Canivez . 10.1016/j.intell.2006.04.005. *Intelligence* 2007. 35 p. .
- 329 [Ranking of countries by duration of study (2018)] *Ranking of countries by duration of study*, <https://nonews.co/directory/lists/countries/years-schooling> 2018. 10 June 2020.
- 330 [Ranking of countries in terms of spending on education The World Bank Development indicators ()]
331 *Ranking of countries in terms of spending on education The World Bank Development indicators*,
332 <https://gtmarket.ru/ratings/global-education-expenditure> 2016.
- 333 [Laloux ()] *Reinventing Organization. A Guide to Creating Organizations inspired by the Next Stage of Human*
334 *Consciousness*, F Laloux . 2016. 2016. Moscow: MIF. (Russian translation)
- 335 [Russian National Junior Water Prize. M. EPCI ()] *Russian National Junior Water Prize. M. EPCI*, 2019, 2020,
336 2021, 2022. (Finalists Catalog)
- 337 [Russian National Junior Water Prize. M. EPCI 18 ()] <http://www.eco-project.org/data/upload/>

6 LONDON JOURNAL OF RESEARCH IN MANAGEMENT AND BUSINESS

- 347 [Asghar et al. ()] 'Supporting STEM Education in Secondary Science Contexts'. A Asghar , R Ellington , E
348 Rice , F Johnson , G M Prime . 10.7771/1541-5015.1349. <https://doi.org/10.7771/1541-5015.1349>
349 *Interdisciplinary Journal of Problem-Based Learning* 2012. 6 (2) .
- 350 [Ahn et al. ()] 'The Dynamics of Open, Peer-to-Peer Learning: What Factors Influence Participation in the P2P
351 University?'. June & Ahn , Cindy & Weng , Brian Butler . 10.1109/HICSS.2013.515. *Proceedings of the*
352 *Annual Hawaii International Conference on System Sciences*, (the Annual Hawaii International Conference
353 on System Sciences) 2013. p. .
- 354 [Toffler et al. ()] A Toffler , K Burmistrova , Yu . *The Third Wave*, (Trans.) Moscow: ACT) 2004.
- 355 [Sun et al.] *Towards a Generalized Competency Model of Collaborative Problem Solving (2020) Computers and*
356 *Education. V 143 ? 1 Avt 103672*, C Sun , V J Shute , A Stewart , J Yonehiro , N Duran , D' Mello , S .
357 10.1016/J.COMPEDU.2019.103672.