

CrossRef DOI of original article:

1 Scan to know paper details and author's profile

2

3 Received: 1 January 1970 Accepted: 1 January 1970 Published: 1 January 1970

4

5 **Abstract**

6 Methodology: A double log model was used in this study to analyze government expenditure's
7 impact on development projects or schemes. Health-wise, less advanced states, viz. Bihar and
8 Odisha are chosen for this purpose. The study uses the actual data on government
9 expenditure in the social sector, mainly on health. The data on a per capita basis is used for
10 each state to analyze the impact of the per capita government's expenditure on select social
11 indicators. The analysis is done separately for both states. Finding: It was found an inverse
12 relationship between per capita government health expenditure and health indicators i.e.,
13 IMR, Birth Rate, Death Rate and TFR in all selected states.

14

15 *Index terms—*

16 **1 Language: English**

17 Purpose of Study: Regional disparities and inequality continue to be a feature of Indian economy even after seven
18 decades of independence. Many of its social indicators need much improvement. Some states are particularly more
19 backward with large proportions of their population being officially poor while some others are comparatively
20 in better position. Such inter-regional disparities have compounded policy challenges of the governments in the
21 poorer states. Against this background, the present study aims to study the dimension of inter-regional disparity
22 for select less advanced states in India.

23 Methodology: A double log model was used in this study to analyze government expenditure's impact on
24 development projects or schemes. Health-wise, less advanced states, viz. Bihar and Odisha are chosen for this
25 purpose. The study uses the actual data on government expenditure in the social sector, mainly on health. The
26 data on a per capita basis is used for each state to analyze the impact of the per capita government's expenditure
27 on select social indicators. The analysis is done separately for both states.

28 **2 INTRODUCTION**

29 In a developing country like India where significant part of population are poorer and living under miserable
30 conditions and have to struggle daily for their livelihood, so it is not possible for them to access health care,
31 education and other social services at their own. So, it becomes the duty of the government to provide effective
32 social services at a very reasonable cost. According to (Gupta, 2002), "Health care services have high level of
33 externalities rather than curative services, a minimum package of these services provided by the government
34 would reduce mortality rates". Since, governments in developing countries always have scarcity of funds, so it
35 is necessary to ensure that the funds are used effectively and the desired results are attained at social front.
36 So, it is also important to check the effectiveness of government expenditure on the improvement of social
37 indicators. Further, government's spending is also important to uplift the living standards of the poorer people
38 in the society. As Gera, in her studies also found that government investments in education, health and in the
39 provision of infrastructure can have direct effect on moving household out of poverty (Gera, 2007). Further,
40 Ranjan and Sharma (2008) examined the effect of government development expenditure on economic growth and
41 they discovered a significant positive of government expenditure on economic growth. A study found, educational
42 attainment at basic levels (secondary level) and low infant mortality rates have been shown to have a positive
43 effect on economic growth also (Barro and Lee, 1993). Studies on both developed and developing countries have
44 indicated that sufficient amount of government spending on education and health improves human development

5 III. METHODOLOGY

45 and lessens poverty burden as well (Barro and Lee, 1997; Swaroop, 1996). However, it is also necessary to mention
46 that the solely the increase in public spending is not sufficient but the quality of expenditure with good public
47 policies also required. As stated, a government could increase the public spending by a large amount but this
48 does not ensure that it would have desired result on economic and social development as the quality of this
49 spending also matters (Bussato and Brunori, 2011).

50 Despite the importance of government spending and its role on improvement of social sector, there are not
51 sufficient number of studies have been done in India to evaluate the impact of government spending on social
52 indicators. Thus, present study is an attempt to evaluate the impact of government spending on some selected
53 social indicators and further it will also make a significant contribution to the present literature. As the number
54 of social indicators are very large, so it is not feasible to assess every indicator given the time and data constraint.
55 Hence, the study has selected four indicators i.e., Infant Mortality Rate (IMR), death rate, birth rate and total
56 fertility rate as indicators of health. The study has chosen Bihar and Odisha states.

57 The following social indicators have been selected for the present study. ??nderson al.et (2000), revealed that
58 the USA spent more on health care as compare to other countries. USA spent 14% of GDP on health care in 1998
59 while OECD median was8% of GDP and results also suggested that Americans enjoys better health care system
60 than other OECD countries. Shenggen ??an et al. (2002) ??012 revealed that government expenditure on health
61 has a significant positive effect on health status while, expenditure on education has no significant impact on
62 either primary or secondary school enrolment. Maitra, B., and C.K. Mukhopadhyay (2012) shown that impact of
63 education and health spending on growth is not an instantaneous but with gestation lags. Initially, expenditure
64 on education and health improves human capital which manifests itself in the form of economic growth. Further,
65 it is found that the gestation lag of education spending was longer than that of health-care spending. Sava?
66 Çevik, M. & Okan Ta?ar (2013) found that government health spending has significant impact on under-5
67 child mortality rate and on infant mortality rate. Study also concludes that composition of government health
68 expenditure also matters not only the size of expenditure. Tae Kuen Kim and Shannon R. Lane (2013) shown a
69 negative relationship between public the health expenditure and the infant mortality rate (IMR), while positive
70 association between public health expenditure and life expectancy is found. Thus, the study concludes that
71 expanding public health expenditure improves overall health condition. Bhakta, R. (2014) shown that public
72 expenditure on Supplementary Nutritional Program has positive impact on health status of children which also
73 has indirect positive impact on education. Study also concludes that public expenditure on elementary education
74 has direct impact on the enrolment rate. Virupakshappa D Mulagund (2015) suggested that public health
75 expenditure in India have increasing trend during this period. Further, study concludes that public health
76 expenditure has positive impact on health indicators i.e., it resulted in fall in maternal mortality rate (MMR),
77 infant mortality rate (IMR), fall in total fertility rate (TFR) and improves life expectancy. Wong Sing Yun and
78 Remali Yusoff (2015) indicated there is a unidirectional causal relationship from GDP to education expenditure
79 and from GDP to health care expenditure. Thus, study concludes that GDP affect both the education and health
80 care expenditure. However, reverse causal relationship is not found between them. K. P. K. S.

81 3 Infant Mortality Rate (IMR):

82 II. LIT E R AT U R E R E V IE W Gerard F.

83 4 III. OBJECTIVE(S) OF STUDY

84 1. To evaluate the impact of government expenditure on selected social indicators in less advanced Indian states.
85 2. To suggest policy implications for better utilization of public expenditure on social sectors.

86 5 III. METHODOLOGY

87 For the purpose of determining the impact of government's expenditure on social indicators, the study has applied
88 log-log or double-log model. In case of Log-log models, the coefficients are used to determine the relative impact
89 of independent variable(s) on relative impact of dependent variable. Here, the independent variable is government
90 expenditure and the social indicator(s) chosen are the dependent variables. The coefficients in a log-log model
91 represent the elasticity of dependent variable with respect to independent variable. Therefore, log-log model
92 presents the empirical interpretation in elasticity term i.e., percentage change in dependent variable due to one
93 percent change in explanatory variable.

94 Log-log model is represented as:

95 $\ln Y_i = \ln \gamma_1 + \gamma_2 \ln X_i + u_i$

96 (1) Where $\ln =$ Natural log (i.e., log to the base e, and where $e = 2.718$)

97 Equation (??) is thus: $\ln Y_i = \gamma_1 + \gamma_2 \ln X_i + u_i$

98 The coefficients are estimated by OLS regression. Six equations will be fitted/estimated for each selected state.

99 The if the value of explanatory variable is increased by 1 percent, then the value of dependent variable decreases
100 by 0.10 per cent. From the analysis table we can see the R-squared value is 0.9556 which tells 95.56 percent of
101 variation in dependent variable birth rate is explained by independent variable. The p-value is 0.0000 being less
102 than the significant level of 5% percent which shows that the explanatory variable is statistically significant and,
103 therefore, the null hypothesis that the coefficient of explanatory variable is zero will be rejected. It means we

can say that the per capita public health expenditure on health has impact on birth rate. Table 3 provides the results regarding the impact of government's expenditure on health on infant mortality rate (IMR). Here, infant mortality rate is a dependent variable. The squared-R is 0.97 which tells that around 97 percent of the variation in dependent variable is explained by the independent variable. As we can see that the p-value is 0.0000 being less than the significant level of 5% percent which shows that the explanatory variable is statistically significant and, therefore, the null hypothesis that the coefficient of explanatory variable is zero will be rejected. Apart from this, the negative symbol with explanatory variable shows that there is negative relationship between the dependent variable and explanatory one. The explanatory coefficient value is -0.336 which indicates that 1 percent increase in per capita may lead to 0.336 percent fall in IMR. 4.8d provides the results of analysis between per capita health expenditure and total fertility rate (TFR). Here, the total fertility rate is dependent variable while the per capita expenditure on health is independent variable. From the table we can see that the coefficient has a negative sign with value of -0.14 which tells there is an inverse relationship between health expenditure and the TFR i.e., an increase in per capita health expenditure results in 0.14 percent fall in TFR. The R-squared value is 0.911 which tells 91.1 percent of variation in dependent variable TFR is explained by independent variable per capita expenditure on health. The p-value is 0.0000 which is appearing against the explanatory variable is statistically significant because the p-value being less than the significance level of 5 percent (0.05), hence the null hypothesis of that, the explanatory variable is statistically insignificant and being rejected. Table 6 gives the results relating to the impact of government's expenditure on health on death rate in Bihar. Here the death rate is dependent variable. From the table we can see that the per capita health expenditure coefficient has a negative sign which tells there is an inverse relationship between health expenditure and the death rate i.e., an increase in government expenditure on health causes fall in death rate. The coefficient has -0.081 value which means 1 percent increase in per capita health expenditure causes 0.081 percent fall in death rate. The R-squared value is 0.6031 which tells 60.31 percent of variation in dependent variable death rate is explained by independent variable. Further, we can see that the p-value is 0.0007 which is appearing against the explanatory variable is statistically significant because the p-value is being less than the significance level of 5 percent (0.05), hence the null hypothesis of that the explanatory variable is statistically insignificant and being rejected here also. The results of this study are consistent across all variables considered for the study. Our principal conclusion can be summarized as per capita government expenditure on health helps to reduce infant mortality rate, birth rate, death rate and total fertility rate in Bihar and Odisha states. These results indicate that the government should increase its budgetary allocations on health and family welfare as well. These results are also important in considering the fact that there should be the commitment of more funds health. Although only commitment of funds to social sector is not sufficient, better utilization of funds right direction in effective manner is most important. Thus, it is also essential for the government to look after the efficiency and transparency of its budgetary allocations to ensure that these funds are fully utilized (Yun and Yusoff, 2015). Thus, analysis of this study can pave way in determining the optimal mix of It indicates that increase in government spending results in fall in IMR, Birth Rate, Death Rate and TFR. Therefore, the government should further increase its expenditure in health and family welfare. However, merely increasing the allocation of funds to the social sector is not sufficient, effective utilization of funds also necessary. Thus, it is also essential for the government to look after the efficiency and transparency of its budgetary allocations to ensure that these funds are fully utilized. Therefore, policy-makers should address other important factors also apart from allocating public expenditure like the effectiveness of the government schemes in health and family welfare, and proper implementation of such schemes.

6 VI. DATA ANALYSIS AND RESULTS INTERPRETATION

7 VIII. CONCLUSION

From various studies, it can be intuitively explained by the fact that because of extreme poverty and deprivation in India the welfare of the society can be increased by greater involvement of government. At the policy level, the present study recommends that public expenditure should increase further to have a balanced and improved human development of the concerned states. So, an increase in social sector expenditure should also be considered as one of the priorities to promote efficiency in growth and development. Hence, sufficient amount of government funds is recommended to provide support to policies and programs necessary to achieve welfare, growth and development of these states in particular, and the country in general. Therefore, the study is an attempt to analyze the relationship between the public spending on health sector and the selected health indicators in Bihar and Odisha. The study has used the state -level data for the selected states to estimate the direct and indirect effects of government's expenditure on social indicators. The findings clearly indicate that government expenditure does have impact on selected social indicators. The results of the study shows that per capita expenditure on health is inversely related with all the four selected health indicators i.e., increase in per capita expenditure leads to fall in Birth Rate, Death Rate, Infant Mortality Rate (IMR) and Total Fertility Rate (TFR) in both states, however, the amount of decrease will depend on their respective coefficient values.

¹ © 2023 Great] Britain Journals Press

² Impact of Government Expenditure on Selected Health Indicators: A Study on Bihar and Odisha

Total Fertility Rate (TFR): It is defined as average number of children that would be born to a woman if she experiences the current fertility pattern throughout her reproductive span (15-49 years). In 2021, TFR was 2.3 in India i.e., 2.3 births per woman.

Death Rate: The average annual number of deaths during a year per 1,000 Population at midyear; also known as crude death rate. Death rate in 2021 was 7.3 deaths/ 1000 Population in India.

Birth Rate: The average annual number of births during a year per 1,000 persons in the population. In 2021, birth rate was 19 births/ 1000 population at midyear; also known as crude birth rate.

Figure 1:

covered
this
draw-
back
by
con-
sid-
ering
NER
which
is
the
net
of
Gross
En-
rol-
ment
Ra-
tio
(GER)

and Study further concludes that there is a dropout rates.

unidirectional causality from economic growth to government expenditure to economic growth. Sineviciene, L. (2015), Results show that there is an inverse relationship between economic development and government's expenditure safety, and economic affairs. While, positive relationship is found between economic development and government's expenditure on social protection and health. Study further concludes that government should pay more attention to the needs which ensure sustainable development in the long-run. Mittal, P. (2016), shown that there is a direct relationship between the social sector spending and human development index (HDI) of the Indian states. So, study recommends that the public expenditure should increase further to achieve balanced and improved human development in India. Solihin, A., et al. (2017), shown that government spending in education sector is relatively inefficient.

Further, it states that government's expenditure for education has no significant impact on education index. This implies government expenditure for education sector is not effective in improving education index. Jiranyakul, K. (2007) results of Granger causality test reveal the unidirectional causality between government expenditure and economic growth. Similarly, the results of least square method with lagged variables also show that there is a positive impact of government expenditure on economic growth.

expenditure government

on public order and

causality government

Figure 3:

1

Variable	Coefficient	Std. Error	t-Statistic	Prob.
Constant	2.486159	0.034363	72.35068	0.0000
ln_Per Capita Health	-0.100182	0.005986-		0.0000
			16.73666	
Expenditure				
R-squared	0.955649			
Adjusted R-squared	0.952237			
S.E. of regression	0.014214			
Sum squared residual	0.002627			
Log likelihood	43.59160			
F-statistic	280.1159			
Prob(F-statistic)	0.000000			

Figure 4: Table 1 :

1

provides the results of analysis showing impact of per capita health expenditure on birth rate for state of Odisha for the period 2001 to 2022. Here, the birth rate is dependent variable while the per capita expenditure on health is independent variable. From the table we can see that the explanatory variable's coefficient has a negative sign which tells there is an inverse relationship between health expenditure and the birth rate i.e., an increase in government expenditure on health causes fall in birth rate. Further, coefficient has -0.10 values which mean London Journal of Research in Management and Business

Figure 5: Table 1

2

Variable	Coefficie	Std. Error	t-Statistic	Prob.
Constant	1.5261880	0.048452	31.49869	0.0000
ln_Per Capita Health	-	0.008440	-13.90293	0.0000
	0.117343			
Expenditure				
R-squared	0.936982			
Adjusted R-squared	0.932135			
S.E. of regression	0.020043			
Sum squared residual	0.005222			
Log likelihood	38.43740			
F-statistic	193.2915			
Prob(F-statistic)	0.000000			

Table 2 provides the results of analysis between per capita health expenditure and the death rate. Here, the death rate is dependent variable while the per capita expenditure on health is independent variable. From the table we can see that the coefficient has a negative sign which tells there is an inverse relationship between health expenditure and the death rate. The explanatory coefficient value is -0.11 which means an increase in per capita health expenditure causes 0.11

percent fall in death rate. The R-squared value is 0.936 which tells 93.6 percent of variation in dependent variable is explained by independent variable. As we can see that the p-value is 0.0000 which is appearing against the explanatory variable is statistically significant because the p-value being less than the significance level of 5 percent (0.05), hence the null hypothesis of that, the explanatory variable is statistically insignificant and being rejected.

Figure 6: Table 2 :

3

Variable	Coefficient	Std. Er-	t- Statistic	Prob.
Constant	2.267239	0.077929	29.09365	0.0000
ln_Per Capita Health	-0.336219	0.013575		0.0000
			24.76789	
Expenditure				
R-squared	0.979248			
Adjusted R-squared	0.977652			
S.E. of regression	0.032236			
Sum squared residual	0.013509			
Log likelihood	31.30917			
F-statistic	613.4486			
Prob(F-statistic)	0.000000			

Figure 7: Table 3 :

7 VIII. CONCLUSION

4

Variable	Coefficient	Std. Error	t-Statistic	Prob.
Constant	0.020812	0.072761	0.286029	0.7794
ln_Per Capita Health	-0.147003	0.012675-		0.0000
				11.59828
Expenditure				
R-squared	0.911876			
Adjusted R-squared	0.905098			
S.E. of regression	0.030098			
Sum squared residual	0.011777			
Log likelihood	32.33842			
F-statistic	134.5201			
Prob(F-statistic)	0.000000			
Table				

Figure 8: Table 4 :

5

Variable	Coefficient	Std. Error	t-Statistic	Prob.
Constant	3.066362	0.060341	50.81755	0.0000
ln_Per Capita Health	-0.047210	0.009447-		0.0002
				4.997567
Expenditure				
R-squared	0.657676			
Adjusted R-squared	0.631343			
S.E. of regression	0.031945			
Sum squared residual	0.013266			
Log likelihood	31.44520			
F-statistic	24.97568			
Prob(F-statistic)	0.000244			

Figure 9: Table 5 :

6

Variable	Coefficient	Std. Error	t-Statistic	Prob.
Constant	1.466497	0.116643	12.57247	0.0000
ln_Per Capita Health	-0.081164	0.018261-		0.0007
				4.444628
Expenditure				
R-squared	0.603111			
Adjusted R-squared	0.572581			
S.E. of regression	0.061753			
Sum squared residual	0.049574			
Log likelihood	21.55844			
F-statistic	19.75472			
Prob(F-statistic)	0.000661			

Figure 10: Table 6 :

7

Variable	Coefficient	Std. Error	t-Statistic	Prob.
Constant	3.117815	0.217910	14.30779	0.0000
ln_Per Capita Health	-0.132202	0.034115	-3.875217	0.0019
Expenditure				
R-squared	0.536001			
Adjusted R-squared	0.500309			
S.E. of regression	0.115365			
Sum squared residual	0.173018			
© 2023 Great] Britain Journals Press				
			Volume	Compilatio
			23 Issue	1.0 33

Figure 11: Table 7 :

Variable	Coefficient	Std. t-	Prob.
Constant	0.7693320.1423403400		
ln_Per Capita Health	-0.091269	0.0222900.00	4.094599
Expenditure			
R-squared	0.563256		
Adjusted R-squared	0.529661		
S.E. of regression	0.075377		
Sum squared residual	0.073863		
Log likelihood	18.56790		
F-statistic	16.76574		
Prob(F-statistic)	0.001266		

Table 8 provides the results of analysis between per capita health expenditure and total fertility rate (TFR) in Bihar. Here, the total fertility rate is dependent variable while the per capita expenditure on health is independent variable. From the table we can see that the coefficient has a negative sign with value of -0.091 which tells there is an inverse relationship between health expenditure and the TFR i.e., an increase in per capita health expenditure results in 0.091 percent fall in TFR. The R-squared value is 0.5632 which tells 56.32 percent of variation in dependent variable TFR is explained by independent variable expenditure on health. The p-value is 0.0013 which is appearing against the explanatory variable is statistically significant because the p-value being less than the significance level of 5 percent (0.05), hence the null hypothesis of that the insignificant and being rejected.

explanatory variable is statistically

Figure 12: Table 8 :

VII.

FINDINGS AND SUGGESTIONS

- ? One percent increase in per capita government health expenditure decreases IMR by 0.13 percent, Death Rate by 0.08 percent, Birth Rate by 0.047 percent and TFR by 0.09 percent in Bihar state.
- ? And, in Odisha, one percent increase in per capita government health expenditure decreases IMR by 0.33 percent, Death Rate by 0.11 percent, Birth Rate by 0.10 percent and TFR by 0.14 percent.
- ? At 5 percent level of significance, p-values indicate that government expenditure has significant impact on the selected social indicators.

government's
ex-
pen-
diture
and
good
gover-
nance.

Impact of Government Expenditure on Selected Health Indicators: A Study on Bihar and Odisha

Figure 13:

161 .1 Expenditure and Economic Growth A Case

162 Impact of Government Expenditure on Selected Health Indicators: A Study on Bihar and Odisha

163 [London Journal of Research in Management and Business] , *London Journal of Research in Management and*
164 *Business*

165 [Gujrati and Sangeetha ()] , D Gujrati , Sangeetha . 2010. Basic Econometrics.

166 [Britain Journals Press Management and Development Studies ()] , *Britain Journals Press Management and*
167 *Development Studies (Online):* 2320-0685. 2015. 4 (2) p. . (Print) (© 2023 Great)

168 [Lopes (2002)] *A Comparative Analysis of Government Social Spending Indicators and Their Correlation with*
169 *Social Outcomes in Sub-Saharan Africa*, S P Lopes . WP/02. 2002. 176 October-2002. (IMF Working Paper)

170 [Jha et al.] *An Empirical Analysis of the Impact of Public Expenditures on Education and Health on Poverty in*
171 *Indian States*, R Jha , B Biswal , U D Biswal .

172 [Yun and Yusoff ()] ‘An Empirical Study of Education Expenditure, Health Care Expenditure and Economic
173 Growth in Malaysia using Granger Causality Approach’ W S Yun , R Yusoff . *Malaysian Journal of Business*
174 *and Economics* 2289-6856. 2015. 2015. 2 (2) p. . (Print) (Online)

175 [Choudhury and Amar Nath] *An Estimate of Public Expenditure on Health in India*, M Choudhury , H K Amar
176 Nath . National Institute of Public Finance and Policy (NIPFP).

177 [Ghara ()] ‘Analysis of Higher Education GER -A Study for West Bengal and Orissa’ T K Ghara . 10.9790/0837-
178 2207013235. <https://doi.org/10.9790/0837-2207013235> *IOSR Journal of Humanities and Social*
179 *Science* 2017. 22 (07) p. .

180 [Mohanty and Bhanumurthy ()] ‘Assessing Public Expenditure Efficiency at Indian States’ R Mohanty , N R
181 Bhanumurthy . WP No. 225. *NIPFP Working paper series* 2018.

182 [Benoit ()] K Benoit . *Linear Regression Models with Logarithmic Transformations. Methodology Institute,*
183 *LSE. logmodels2.pdf* (kenbenoit.net), 2011.

184 [Besley and Burgess ()] ‘Can Labor Regulation Hinder Economic Performance? Evidence from India’ T Besley
185 , R Burgess . 10.7275/7946415. *The Quarterly Journal* 2004. 15 p. 35.

186 [Datt and Ravallion ()] G Datt , M Ravallion . *Is India’s Economic Growth Leaving the Poor Behind? Policy*
187 *research working paper 2846*, 2002. The World Bank.

188 [Solihin et al. ()] ‘Efficiency and Effectiveness of Government Expenditure on Education at Districts/Cities Level
189 in East Java Indonesia’ A Solihin , D Mursinto , L Sugiharti . *Asian Social Science* 1911-2017 E- 1911-2025.
190 2017. 2017. 13 (8) . (Published by Canadian Centre of Science and Education)

191 [Nurudeen and Usman ()] ‘Government Expenditure and Economic Growth in Nigeria, 1970-2008: A Disaggregated
192 Analysis’ A Nurudeen , A Usman . *Business and Economics Journal* 2010. 2010 p. 4.

193 [Saez et al. ()] ‘Government Expenditure and Economic Growth in the European Union Countries: New
194 Evidence’ M P Saez , S Alvarez-Garcia , D C Rodriguez . *Bulletin of Geography. Socio-Economic Series*
195 2017. 2017. 36 p. .

196 [Ranjan and Sharma ()] ‘Government Expenditure and Economic Growth: Evidence from India’ K D Ranjan ,
197 C Sharma . *The ICFAI University Journal of Public Finance* 2008. 6 (3) p. .

198 [Kim and Lane (2013)] ‘Government Health Expenditure and Public Health Outcomes: A Comparative Study
199 Among 17 Countries and Implications for US Health Care Reform’ T K Kim , S R Lane . *American*
200 *International Journal of Contemporary Research* 2013. September 2013. (3) .

201 [Fan et al. (2000)] ‘Government spending, Growth and Poverty in Rural India’ S Fan , P Hazell , S Thorat .
202 *American Journal of Agricultural Economics* 2000. November 2000. 82 (4) p. .

203 [Gujrati ()] D Gujrati . *Econometrics by Example*, 2012. (Indian ed. Paperback)

204 [Maria-Carmen and Exposito ()] ‘Health Expenditure, Education, Government Effectiveness and Quality of Life
205 in Africa and Asia’ Guisan Maria-Carmen , Pilar Exposito . 10.9790/0837-2207013235. *Regional and Sectoral*
206 *Economic Studies* 2010. 2010. 10 (1) .

207 [Anderson et al. ()] ‘Health Spending and Outcomes: Trends In OECD Countries’ G F Anderson , J Hurst ,
208 P S Hussey , M Jee-Hughes . 10.1377/hlthaff.19.3.150. <https://doi.org/10.1377/hlthaff.19.3.150>
209 *Health Affairs* 2000. 1960-1998. 19 (3) p. .

210 [Jumare et al.] *Impact of Government Expenditure on Economic Growth in Nigeria*, B Jumare , H A Yusuf ,
211 R Mohammed . <http://www.unimaid.edu.ng/oer/Journals-oer/Social/General/Paper%20D%204.pdf>

213 [Impact of Government Expenditure on Selected Health Indicators: A Study on Bihar and Odisha of Economics]
214 *Impact of Government Expenditure on Selected Health Indicators: A Study on Bihar and Odisha of Economics*,
215 <http://www.jstor.org/stable/25098678> 119 p. .

7 VIII. CONCLUSION

216 [Bhakta (2014)] *Impact of Public Spending on Health and Education of Children in India: A Panel Data*
217 *Simultaneous Equation Model*, R Bhakta . WP-2014-049.pdf. 2014. December-2014. Indira Gandhi Institute
218 of Development Research (igidr)

219 [Desai ()] 'Importance of Literacy in India's Economic Growth'. V Desai . *International Journal in Economics*
220 *and Research* 2012. 3 (2) p. . (Ijer20120301 MA (10).pdf (ijeronline.com)

221 [Lee and Barro ()] 'International Comparisons of Education Attainment'. Lee , J Barro . *Journal of Monetary*
222 *Economics* 1993. 32 (3) p. .

223 [Diwakar (2009)] 'Intra-Regional Disparities, Inequality and Poverty in Uttar Pradesh'. M D Diwakar . *Economic*
224 *and Political Weekly* 2009. Jun. 27 -Jul. 10, 2009. 44 (26/27) p. .

225 [Intra-Regional Disparities, Inequality and Poverty in Uttar Pradesh: | Economic and Political Weekly] *Intra-*
226 *Regional Disparities, Inequality and Poverty in Uttar Pradesh: | Economic and Political Weekly*,

227 [Sineviciene ()] 'Investigation of the Relationship between Government Expenditure and Country's Economic
228 Development in the Context of Sustainable Development'. L Sineviciene . *World Academy of Science,*
229 *Engineering and Technology International Journal of Economics and Management Engineering* 2015. 2015. 9
230 (3) .

231 [Baldacci et al. ()] 'More on the effectiveness of public spending on health care and education: a covariance
232 structure model'. E Baldacci , M T Guin-Siu , L Mello , De . 10.1377/hlthaff.19.3.150. <https://doi.org/10.1002/jid.1025> *Journal of International Development* 2003. 15 (6) p. .

234 [Chandra ()] 'Nexus between Government Expenditure on Education and Economic Growth: Empirical
235 Evidences from India (English version)'. A Chandra . https://www.researchgate.net/publication/227452770_Nexus_between_Government_Expenditure_on_Education_and_Economic_Growth_Empirical_Evidences_from_India_English_version, 2010. 6 p. . (Revista romaneasca pentru educatie multidimensionala)

239 [Thorn ()] 'Per Capita Income as a Measure of Economic Development'. Richard Thorn . *Zeitschrift für Nationalökonomie* 1968. 1968. 28 p. .

241 [Sonwani and Bharadwaj (2014)] 'Poor Public Expenditure on Health in Credible Cahrattisgarh and Shining
242 India'. F K Sonwani , J L Bharadwaj . ISSN: 2348-3164. *International Journal of Social Science and*
243 *Humanities Research* 2348-3156. 2014. April 2014-June 2014. 2 (2) p. . (Print) (Online))

244 [Bose et al. ()] 'Public Expenditure and Economic Growth: A Disaggregated Analysis for Developing Countries
245 | Mariyam sattar'. N Bose , M E Haque , D R Osborn . 10.1002/hec.1260. *The Manchester School* 2003.
246 Academia. 75 (5) p. . (Public expenditure and economic growth: a disaggregated analysis for developing
247 countries)

248 [Nalraj (2014)] 'Public Expenditure on Health and Economic Growth in Selected Indian States'. P Nalraj .
249 *International Journal of Science and Research (IJSR) ISSN* 2014. March 2014. 3 (3) p. . (Online)

250 [Mulagund ()] 'Public Expenditure on Health and its impact on Health care Indicators in India'. V D Mulagund
251 . *International Journal* 2015. p. 15.

252 [Gangal and Gupta ()] 'Public London Journal of Research in Management and Business Study of India'. V
253 Gangal , H Gupta . *Global Journal of Management and Business Studies* 2248-9878. 2013. 2013. 3 (2) p. .

254 [Yasin] *Public Spending and Economic Growth: Empirical Investigation of Sub-Saharan Africa. Southern-western*
255 *Economic Review*, M Yasin .

256 [Maitra and Mukhopadhyay (2012)] 'Public Spending on Education, Health Care and Economic Growth in
257 Selected Countries of Asia and The Pacific'. B Maitra , C K Mukhopadhyay . *Asia-Pacific Development*
258 *Journal* 2012. December 2012. 19 (2) .

259 [Kumar et al. (2013)] 'Public Spending on Health and Childhood Mortality in India'. K Kumar , Ram , A Singh
260 . Munich Personal RePEc Archive MPRA Paper 2013. 29 July 2013. 48680.

261 [Cevik and Ta?ar ()] 'Public Spending on Health Care and Health Outcomes: A Cross-Country Comparison'. S
262 Cevik , M Ta?ar . 10.26417/ejser.v2i1.p242-253. *Journal of Business Economics and Finance* 2013.

263 [Rajasekar ()] Philominathan Rajasekar , Chinnathambi . *Paper on Research Methodology*, 2013.

264 [Lee and Barro (1997)] 'Schooling Quality in a Cross section of Countries'. Lee , J Barro . NBER Working Paper
265 1997. September 1997. 6198.

266 [Mittal (2016)] 'Social Sector Expenditure and Human Development of Indian States'. P Mittal . Munich Personal
267 RePEc Archive MPRA Paper 2016. 25 December 2016. 75804.

268 [Gera ()] 'SOCIAL SECTOR EXPENDITURES AND OUTCOMES: A Case Study of the Punjab in the 1990s'.
269 N Gera . <http://www.jstor.org/stable/25825303> *Pakistan Economic and Social Review* 2007. 45 (1)
270 p. .

271 [Bhalotra ()] 'Spending to save? State health expenditure and infant mortality in India'. S Bhalotra .
272 10.1002/hec.1260. <https://doi.org/10.1002/hec.1260> *Health Economics* 2007. 16 (9) p. .

273 [Çakerri et al. ()] 'The Effect of Government Expenditures on Economic Growth. the Case of Albania'. L Çakerri
274 , M Petanaj , O Muharremi . 10.26417/ejser.v2i1.p242-25. <https://doi.org/10.26417/ejser.v2i1.p242-25> *European Journal of Social Sciences Education and Research* 2014. 2 (1) p. 242.

275 [Barenberg et al. ()] *The Effect of Public Health Expenditure on Infant Mortality: Evidence from a Panel of Indian States*, A Barenberg , Basu , C Soylu . 10.1002/jid.1025. <https://doi.org/10.7275/7946415> 2015. p. .

276 [De Mello and Pisu ()] 'The Effectiveness of Education and Health Spending among Brazilian Municipalities'. L De Mello , M Pisu . *OECD Economics Department Working Papers* 2009. Paris: OECD Publishing. 712.

277 [Craigwell et al. (2012)] 'The effectiveness of government expenditure on education and health care in the Caribbean'. R Craigwell , S Lowe , D Bynoe . *Emrald: International Journal of Development Issues* 2012. August 2012. (40935) p. 29.

278 [Gupta et al. ()] 'The Effectiveness of Government Spending on Education and Health Care in Developing and Transition Economies'. S Gupta , M Verhoven , E R Tiengson . *European Journal of Political Economy* 2002. 2002. 18 p. .

279 [Hasnul (2015)] 'The Effects of Government Expenditure on Economic Growth: The Case of Malaysia'. A G Hasnul . Munich Personal RePEc Archive MPRA Paper 2015. May, 2016. 71254.

280 [Lahirushan and Gunasekara ()] 'The impact of government expenditure on economic growth: A study of Asian countries'. K P K S Lahirushan , W G Gunasekara . *World Academy of Science, Engineering and Technology International Journal of Humanities and Social Sciences* 2015. 2015. 9 (9) .

281 [Swaroop ()] *The Public Sector in the Caribbean: issues and reform options*, V Swaroop . 1996. World Bank Policy Research Working Paper. p. .

282 [Busatto ()] *The quality of public expenditure and its influence on economic growth: evidences from the State of Rio Grande do Sul (RS)*. [PDF] *The quality of public expenditure and its influence on economic growth: evidences from the State of Rio Grande do Sul (RS)* / Semantic Scholar, L M Busatto . 2011.

283 [Jiranyakul (2007)] *The Relation between Government Expenditures and Economic Growth in Thailand*, K Jiranyakul . <http://ssrn.com/abstract=2260035> 2007. January 2007. (Working Paper) (Electronic copy available at)

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299