

CrossRef DOI of original article:

1 A Blockchain Technology to Secure Electronic Health Records in 2 Healthcare System

3

4 *Received: 1 January 1970 Accepted: 1 January 1970 Published: 1 January 1970*

5

6 **Abstract**

8 **Index terms—**

9 **1 I. INTRODUCTION**

10 The SARS-CoV-2 virus, responsible for the greatest epidemic in millennia, has posed a serious threat to healthcare
11 systems throughout the world. In addition to the immediate problems caused by the virus, the pandemic has
12 revealed flaws in even the most modern healthcare systems, such as the inability to keep track of individuals
13 with pre-existing diseases. Although industrialized nations like the United States were better equipped than
14 others in responding to the epidemic, nearly one million Americans lost their lives as a result of the virus.
15 Pre-pandemic research revealed flaws in the world's top healthcare systems, which impeded the most effective
16 response to SARS-CoV-2. While wealthy countries' healthcare systems have their flaws, those in underdeveloped
17 or underprivileged areas, such as India, are far more at risk. Long-term needs for hospital facilities, support
18 personnel, and manpower are created by this sort of viral pandemic, all of which are often in limited supply in
19 developing nations [1]. For us to meet this challenge, we'll need to manage our resources efficiently.

20 The potential effect of SARS-CoV-2 on the Indian Subcontinent, and India in particular, has been recognized
21 ever since the breakout of the virus [2]. Big data is the capability to manage a huge volume of disparate data, at
22 the right speed, and within the right time frame to allow real-time analysis and reaction. Big data is an evolving
23 term that describes any amount of structured, semi-structured and unstructured data that has the potential to
24 be mined for information [3].

25 **2 II. LITERATURE SURVEY**

26 With a population of close to 1.4 billion, India is one of the most populous countries on Earth. Before the
27 epidemic, India's healthcare system already had significant challenges that were wreaking havoc on the country.
28 Major public health issues include HIV/AIDS, malaria, and TB. As the income gap widens between the affluent
29 and poor, another key worry is the availability and cost of decent healthcare. This problem has been exacerbated
30 by statewide lockdowns. Recent studies have shown that the immediate effects of the lockdown would be a
31 decrease in healthcare availability and an adverse effect on the population's physical and mental health and
32 social well-being.

33 The widespread use of handwritten prescriptions especially in rural areas without computer systems and the
34 almost complete lack of integration between healthcare and insurance systems are just a few of the widespread
35 problems that have arisen as a result of the fragmented nature of the healthcare industry's information,
36 communication, and tracking infrastructure [4].

37 Poor healthcare professional accountability is exacerbated by inadequate facilities, further straining doctor-
38 patient ties. Paper records are more prone to human errors, such as illegibility or the loss of the physical object,
39 which may lead to delays in treatment and perhaps preventable deaths.

40 Prescriptions and insurance coverage data are just two examples of the kinds of critical information that
41 healthcare and insurance providers may share with pharmacies to expedite the delivery of pharmaceuticals to
42 patients. It is difficult to achieve large-scale coordinated performance using paper-based information, but this
43 is made possible by integrated healthcare system synchronization, which allows for patient-oriented monitoring
44 capabilities and refill requests.

6 BLOCKCHAIN TECHNOLOGY: FROM CENTRALIZED TO DECENTRALIZED SYSTEM

45 Any healthcare system that lacks the modern infrastructure essential to facilitating effective communication
46 between healthcare practitioners, insurance providers, and patients would benefit greatly from implementing an
47 Electronic Health Record (EHR) system. The influence of EHR will grow as the worldwide effort to disseminate
48 and administer the Coronavirus vaccination continues [5].

49 Electronic health record systems will be crucial in managing the massive amounts of information sharing and
50 monitoring that will be necessary to accomplish this massive task. [6].

51 3 Healthcare Records Security Breaches

52 Between 2009 and 2020, the HHS Office for Civil Rights received 3,705 allegations of healthcare data breaches
53 involving 500 or more records. 268,189,693 healthcare records have been lost, stolen, leaked, or unlawfully
54 released. 81.72 percent of the US population. In 2018, one breach involving 500 or more records was recorded
55 each day. The rate doubled by 2020. In 2020, 1.76 breaches occurred daily. Figure 1 shows 500+ Healthcare Data
56 breaches from 2009 to 2020. As our digital infrastructure develops, privacy concerns rise. Due to the sensitivity
57 of healthcare information, a system breach might endanger a patient's identity and the providers' reputation.
58 Statistically, scammers value patient data.

59 4 Electronic Health Record (EHR) Benefits

60 Electronic Health Record (EHR) is a computerized compilation of medical information and other data that can be
61 readily shared. EHR has numerous promises, including lowering morbidity and mortality, enhancing continuity of
62 care, boosting efficiency, and minimizing adverse medication reactions. Electronic health records (EHR) provide
63 real-time data that can be accessed and shared securely [7].

64 Transmitting information swiftly helps healthcare personnel to effectively support patients based on their
65 individual medical requirements while dealing with the unpredictable Coronavirus, which disproportionately
66 affects persons with underlying health concerns. EHR enabled patients and providers with major advances [8].

67 5 Figure 2: Typical Features of an Ideal EHR System

68 EHRs have been used in industrialized countries for over 50 years. Since the early 2000s, more U.S. doctors have
69 joined HER incentive schemes. The dramatic increase of EHR utilization during this era is not surprising given
70 EHR competitive benefits and the government's drive to strengthen EHR usage in healthcare IT infrastructure.
71 The loss of life during the Coronavirus pandemic would have been substantially greater without EHR technologies
72 to support healthcare services [9]. Even in industrialized countries, the need to enhance healthcare is evident.
73 Before the epidemic, EHR implementation faced difficult hurdles.

74 People may complicate EHR systems; skepticism and disillusionment with technology are common, and EHR
75 systems are no exception. Older medical workers and patients may resist change, particularly new technology.
76 Minor EHR system glitches might demotivate hesitant participants. When we consider challenges new users may
77 encounter while completing crucial jobs, including external communications, the situation becomes frustrating.
78 Developed nations have several EHR service providers for offices, hospitals, clinics, and pharmacies. Without a
79 proper referral, healthcare providers may overlook vital patient medical history information. Introducing a new
80 workflow may be stressful for all workers, regardless of tech familiarity. HER systems must be adapted to user
81 needs [10]. It's impractical to assume ideal efficiency in the early phases of EHR deployment, although training
82 may boost user competency.

83 6 Blockchain Technology: From Centralized to Decentralized 84 System

85 Blockchain technology generates a transparent, immutable, append-only record of network transactions. Digitally
86 signed and broadcast transactions are organized and timestamp into blocks. A Block contains hashed and encoded
87 valid transactions in a Merkle tree. The preceding block's hash is included. The Blockchain's Genesis Block may
88 be found using the previous hash. The blockchain seeks maximal length. Changing one block's hash makes the
89 next block invalid and reduces the blockchain's size. Due to the blockchain's purpose of maintaining the longest
90 chain possible, it is immutable [11].

91 Each blockchain member has Public and Private keys. Public key is users shared identification. Only the user
92 knows the private key. Digital signatures deterministically verify a message's origin and content. The 15 user
93 signs the message using his private key, and others may verify it with his public key. Blockchain adds a new
94 block using the consensus process. Consensus protocols distribute requests across nodes so each runs the identical
95 sequence on its service instance. Popular consensus protocols include PoW and PoS. Digitalized technology has
96 widely changed today's world. Depending upon this technology, starting from the day-to-day workings to the
97 financial transactions, all can be controlled through the fingertip. By following the same fashion, the transition
98 of the stock market is directly switching to the online platform and hence, the rate of the randomized investment
99 rate in the stock is getting higher [12].

100 **7 Permissionless or Public Blockchain**

101 Anyone may submit and confirm transactions on a permissionless blockchain. Transactions may be submitted
102 by anybody who can pay fees. Anyone may be a validator by verifying transactions. This must be available to
103 anybody who practices reasonably. Everyone who submits properly signed transactions to the network should
104 expect it to execute them without fear of a group or firms banning them [13]. Blockchain technology is currently
105 generating a lot of buzz among banks, businesses, and government agencies. Nearly every day, new initiatives and
106 various collaboration agreements on Blockchain applications are announced in the economic press. This includes
107 projects run by governments and central banks as well as banks and private enterprises [14].

108 **8 Permissioned or private Blockchain**

109 Permissioned or private Blockchains don't allow open involvement in submitting or verifying transactions, thus
110 participants can't trust the network to withstand censorship. This means not all participants have a realistic
111 assurance that their transactions won't be discriminated against.

112 Permissioned blockchain uses a membership structure to admit users. In permissioned Blockchains [15], nodes
113 verify transactions using the originator's credentials. Permissioned blockchain technology's architectural design
114 assures privacy and security. The Sybil Attack, 51% attack, and blockchain endpoint vulnerability affect public
115 or permissionless Blockchains. We exclusively explore permissioned blockchain because we believe it can handle
116 sensitive healthcare data [16].

117 **9 Electronic Health Record (EHR) Is a Social Need**

118 An electronic health record (EHR) is a collection of electronically controlled health information that many users
119 may access. A patient's record traditionally documented their medical care. Smart care services urge doctors to
120 consider the full patient, including wellness, sickness, and rehabilitation [17].

121 The main important risks and critical issues in a conventional healthcare system include a single point of failure,
122 data modification, high chances of different malicious cyber attacks, centralized authority, high data management,
123 keeping storage as well as cost, and databases that are not transparent. To address these issues, researchers have
124 proposed numerous blockchain-based solutions. [18] The record must include health and illness information from
125 multiple doctors in different locations. Data should be kept so that hospitals, pharmacies, insurance companies,
126 and academics may get different views. EHR systems offer clinical reminders and alerts, information assets for
127 healthcare decision support, and aggregate data analysis for care administration and research. To extract clinical
128 information from a paper medical record, the reader must edit data mentally or on paper. EHR systems give
129 computer-based capabilities to organize, analyze, and respond to data [19].

130 **10 III. RESEARCH METHODOLOGIES**

131 Health concerns that are common in India were the focus of the research. Below is a key point of the main
132 healthcare concerns:

133 ? The absence of a comprehensive end-to-end electronic health record (EHR) system interlinking among
134 separate, stand-alone hospital record systems, as well as the lack of just-in-time record updating ? Because of
135 the prevalence of handwritten prescriptions, an abundance of fake medications have entered the market.

136 ? Unauthorized hospital administrators may access and change patients' information stored in insecure hospital
137 databases, and caregivers aren't held accountable for any harm that may result.

138 ? A lack of a secure, immutable, auditable, and traceable health infrastructure system

139 The potential of an electronic health record system built on the Blockchain to resolve these problems is also
140 highlighted. This study suggests a Blockchain-based HER system that can reliably identify users by their national
141 ID, allows users access to and control over their health records, prevents malicious data manipulation, and can be
142 easily scaled. As a result of the synergy, massive data like CT scans and X-ray reports may be kept in the cloud
143 for easy access. A patient-centric electronic health record (EHR) system will need unique identifiers in order to
144 accurately identify patients. When it comes to government-issued IDs like Aadhar and PAN, there is presently
145 no comprehensive EHR system (Permanent Account Number).

146 It is also essential that the proposed system include unique identifiers such as national IDs for patients to
147 ensure accurate identification. Users need to be able to exercise control over their health information, such as
148 authorizing updates, and this can only be achieved with secure identification.

149 Blockchain's cutting-edge safety features prevent unauthorized changes to medical records. With the suggested
150 scalable system, previous paper-based medical records may be migrated into the new system while also benefiting
151 from useful features such as a mobile app-based interface for translating paper prescriptions to text using Natural
152 Language Processing (NLP) algorithms. Therefore, the purpose of this thesis is to suggest a patient-centered
153 EHR design that can communicate with other, separate healthcare systems and parse out information from paper
154 prescriptions. The issues addressed by the suggested architecture are as follows:

155 ? Health records should be readily available at the point of service and updated in real time to help medical
156 professionals make more educated choices.

157 ? Paper prescriptions are a common source of human mistake, but digitizing them and incorporating them
158 into an existing system has many benefits.

159 ? Data manipulation is impossible with secure, immutable, auditable, and traceable health infrastructure
160 solutions.

161 11 ? Integrated Health Record (EHR) Systems and Local 162 Hospitals

163 ? A patient-centered framework that protects sensitive information and gives individuals control over their own
164 health records.

165 12 IV. RESULTS AND ANALYSIS

166 The study's goals were strictly adhered to throughout every step of the process, from framework execution
167 through data collecting and analysis to system design. In this section, we also use benchmarks and other forms
168 of evaluation to figure out how well the suggested architectural framework works. Hyperledger caliper is an
169 instrument for measuring the efficiency of blockchain systems. This works with many different hyperledger
170 frameworks. The performance of the system and its many metrics, including latency and throughput, may be
171 tested and operated with the use of caliper.

172 System evaluation measures including latency, throughput, CPU utilization, memory, disc write/read, and
173 network I/O are also checked and executed. The experiment was run with both read-and write-transaction
174 modes, as well as with blocks of varied sizes and durations.

175 13 Experiment With Varying Transaction

176 14 Measurements with varying transaction: Write modes:

177 In simulation, we employed 3 firms with 3 peers each and 1 Orderer. The experiment uses 1000 writing
178 transactions at 50, 100, 150, 200, and 250 per second. 1 Firm 1 Peer, 2 Firm 2 Peer, and 3 Firm 3 Peer
179 are tested for transaction performance. Each round consists of 1000 transactions at different per-second speeds
180 (tps).

181 Table 1 shows the time needed to perform transactions in the atypical network arrangement. 1 firm 1 peer's
182 5005th transaction takes 240 seconds. 2firm2peer completes 4509 transactions in 240 seconds, but 3 firm 3 peer
183 completes just 4001. Latency in a Blockchain network is the time between submitting a transaction and receiving
184 network confirmation. Equation (1) measures blockchain write transaction delay.

185 15 ??? (1)

186 Where W_1 : Write transaction latency, C_t : confirmation time, N_t : Network threshold, S_t : Submission Time.

187 Table 2 illustrates 1 and 2 show that delay increased with additional firms and peers. Table 3 shows throughput
188 for different transaction rates and the number of transactions per minute for three network types. 1 Firm and 1
189 Peer had the lowest average latency, fastest throughput per transaction rate, and most jobs per minute. The 3
190 Firm and 3 Peer network architecture had the greatest average latency, lowest throughput per transaction rate,
191 and completed the fewest jobs per minute. The 2 Firm/2 Peer network concepts were in between. 1 firm 1 peer
192 throughput is 190; however it decreases with more firms and peers. Table 3 showed 182 for 2 firm 2 peer and 180
193 for 3 firm 3 peers. Write transaction throughput on a block chain network is given by:???????. (2)

194 Where W_t : Write transaction throughput, W_{ct} : transaction committed on the entire network, T_{ts} : Total
195 transaction time, N_{cn} : committed node.

196 16 Measurements with varying transaction-Read modes:

197 Five hyperledger caliper measurements were collected. The configuration file sets read mode to 50,100,150,200,250
198 tps. The delay for reading from a blockchain network may be calculated using equation (3). $R_1 = R_t - S_t$?
199 ??????. (3)

200 Where Volume 23 | Issue 1 | Compilation 1.0

201 17 London Journal of Research in Computer Science and Tech- 202 nology

203 A Blockchain Technology to Secure Electronic Health Records in Healthcare System R_1 : Read transaction
204 latency, R_t : Response time, S_t = Submission time Equation (4) measures read transaction throughput from a
205 blockchain network. $R_t = R_o / T_t$?????? (4)

206 Where R_t : Read transaction throughput, R_o : Total number of reading operations, T_t = total time in sec.
207 Reading or querying is quicker than writing a transaction, as seen in tables 4 and 5. Table 2 shows that 3 firm 3
208 peer's maximum write latency was 78.009 seconds, while its greatest read latency was 12.099 seconds. Maximum
209 read throughput for 1 firm 1 peer was 280, while write throughput was 180. The greatest read throughput with
210 changing transaction rate was 240 for 3 firm 3 peer, compared to 180 for writes. Experiment with Varying block
211 time

212 **18 Measurements with varying block time: Write modes:**

213 This experiment tries to assess network latency and throughput. Hyperledger caliper's EHR system block
214 formation time was modified between 250ms and 2s with variable outcomes. To reduce 3 firm 3 peer transaction
215 latency, optimization metrics were used. Caliper defaults to block time after rising endorse policy block creation
216 time. Switching from 250ms to 2s reduces latency by 35-50%.

217 Minimum latency for 50 tps is 40s, down from 80s. Table 6 shows that 250 tps has 60s latency, down from 89s.
218 Changing hyperledger's default network setup improves performance. Latency is inversely related to throughput;
219 changing the block time and policy increases read throughput. Table 9 shows that 50 tps transaction throughput
220 is 49 and 250 tps is 77. Read throughput has risen 1.3 times. Experiment with Varying block size A blockchain's
221 block size affects its performance. Changing block size improves performance. We analyzed 20 and 40-block sizes.
222 Table 10 shows completed transactions for block sizes 20 and 40 over time. Table 10 shows those bigger blocks
223 with a block size of 40 indicate more completed transactions, meaning a negligibly greater number of transactions
224 per second. Our second experiment measured delay and block size as tps changed. We're using 50, 100, 150,
225 200, or 250 transactions per second. The assessment uses 20-by-40-blocks. Table 11 shows those 20-byte blocks
226 have 50% less latency than 40-byte blocks. Reducing block size will reduce network latency, which may improve
227 performance. Transaction per second for an individual node

228 Transactions per second measures transaction volume (TPS). It may be approximated based on the number
229 of test transactions and then recalculated.

230 Transactions per Second of peer u can be calculated by the following equation (??) ????????? (??)

231 Where Tx : Number of transactions, t_i, t_j are initial and final time, respectively Average TPS of N peers, we
232 can take the calculated by: CPU utilization CPU use is another key metric. It's the most essential OS number
233 during tweaking. Almost all operating systems display user and system CPU use. These supplementary stats
234 help determine CPU activity.

235 Caliper estimates CPU use, RAM, incoming/outgoing traffic, and disc read/write. Table 12 shows four rounds
236 of transactions into our hypothetical blockchain network with a 1000-transaction ledger.

237 Table 12 shows CPU use by network model. The network models' CPU utilization varied with transaction
238 rates.

239 **19 V. RESULT AND DISCUSSION ABOUT EXPERIMENTAL ANALYSIS**

240 ? The simulation phase used a network model with three companies and three peers. As the number of firms,
241 block size, and block duration rose, throughput and latency were assessed. ? Adding more firms and peers
242 increases network latency. Read/query latency is lower than write latency.

243 ? Increasing block time decreases latency, boosting network efficiency and throughput. When write block
244 duration is raised from 250 ms to 2s, 250 tps throughput improves by 4x.

245 ? Block size 20 is 50% faster than block size 40, improving network performance.

246 ? Since the network model's CPU utilization has remained steady over time, a drop in block size and an
247 increase in block time will lead to a considerable decrease in network latency, boosting network performance.

249 **20 VI. CONCLUSION**

250 Blockchain is vital in today's healthcare systems. It may lead to automated data collection and verification
251 procedures, accurate and aggregated data from varied sources, and a lesser risk of cyberattacks. Distributed
252 data, redundancy, and failure tolerance are also possible. Blockchain might be an alternative to documenting
253 transactions and sending data via a trusted third party. Blockchain may ease transparency and security concerns,
254 such as third-party trust, at every level of a transaction, eliminating intermediaries or third parties. This book
255 addresses contemporary healthcare business challenges, focusing on the Indian subcontinent. We propose system
256 architecture and methodology for permission EHR that communicates with local freestanding EHR systems,
257 checks users against national citizen databases like UIDAI, and collects data from handwritten prescriptions.
258 The suggested framework's performance findings are impressive and might transform EHR systems throughout
259 the Indian subcontinent.

¹ © 2023 London Journals Press

Figure 1: Figure 1 :

Figure 2: © 2023 London Journals Press 4

20 VI. CONCLUSION

1

Time in min ->	1	2	3	4
1 Firm 1 Peer	801	1909	3901	5005
2 Firm 2 Peer	701	1600	3500	4509
3 Firm 3 Peer	601	1452	3303	4001

© 2023 London Journals Press 6 Volume 23 | Issue 1 | Compilation 1.0 A Blockchain Technology to Secure Electronic Health Records in Healthcare System

Figure 4: Table 1 :

2

TPS->	50	100	150	200	250
1 Firm 1 Peer	20.0098	34.0098	40.09	50.08	55.09
2 Firm 2 Peer	35.009	44.0087	49.009	68.09	70.1
3 Firm 3 Peer	46.1	55.1	60.009	75.09	78.009

Figure 5: Table 2 :

3

TPS->	50	100	150	200	250
1 Firm 1 Peer	40	90	150	175	190
2 Firm 2 Peer	35	82	140	170	182
3 Firm 3 Peer	33	77	135	165	180

Figure 6: Table 3 :

4

TPS->	50	100	150	200	250
1 Firm 1 Peer	2.02	3.01	3.0002	4.0008	5.129
2 Firm 2 Peer	6.0021	7.0032	8.0098	10.0087	11.021
3 Firm 3 Peer	7.0098	8.0087	10.0098	11.098	12.099

Figure 7: Table 4 :

5

TPS->	50	100	150	200	250
1 Firm 1 Peer	80	150	200	250	280
2 Firm 2 Peer	60	130	180	230	250
3 Firm 3 Peer	50	110	170	220	240

Figure 8: Table 5 :

6

TPS->	50	100	150	200	250
250ms Block time	40.001	45.02	50.02	49.03	60.05
2s Block time	80.007	90.9	85.008	90.06	89.6

Figure 9: Table 6 :

7

© 2023 London Journals Press 8 Volume 23 | Issue 1 | Compilation 1.0 A Blockchain Technology to Secure Electronic Health Records in Healthcare System

Figure 10: Table 7

7

TPS->	50	100	150	200	250
250ms Block time	20	25	22	25	15
2s Block time	50	70	55	60	65
Measurements with varying block time: Read modes					

Figure 11: Table 7 :

8

TPS->	50	100	150	200	250
250 ms Block time	20.09	25.02	30.03	31.01	38.1
2s Block time	9.1	14.2	20.1	25.1	30.4

Figure 12: Table 8 :

9

TPS->	50	100	150	200	250
250ms Block time	50	55	55	60	57
2s Block time	70	72	78	80	76

Figure 13: Table 9 :

10

Time->	00:15	00:30	00:45	01:00	01:15	01:30	01:45	02:00
Block Size:40	70	100	150	225	250	400	600	725
Block Size:20	60	90	140	210	245	390	590	710

Figure 14: Table 10 :

11

TPS->	50	100	150	200	250
Block Size:40	80	90	85	90	89
Block Size:20	40	45	50	49	60

Figure 15: Table 11 :

12

Round-1

Figure 16: Table 12 :

13

TPS->	50	100	150	200	250
peer0.firm1.example.com	40	32	33	38	40
peer1.firm1.example.com	35	40	39	45	42
peer2.firm1.example.com	33	35	36	40	44
orderer.example.com	18	20	19	21	22

Figure 17: Table 13 :

13

Figure 18: Table 13

260 [Xu et al. (2017)] 'A taxonomy of blockchain-based systems for architecture design'. X Xu , I Weber , M Staples
261 , L Zhu , J Bosch , L Bass . *Proceedings of 2017 IEEE International Conference on Software Architecture*,
262 (2017 IEEE International Conference on Software Architecture Gothenburg, Sweden) 2017 Apr 3-7. p. .

263 [Shaikh and Hannan (2022)] 'An Examination of the Blockchain Technology: Challenges and Future Opportunities'. Abdul Shaikh , Hannan . *International Journal of Engineering and Computer Science* 09 November 2022.
264 11 p. .

265 [Shaikh and Hannan (2016)] 'An Overview of Big Data and Hadoop'. Abdul Shaikh , Hannan . *International
266 Journal of Computer Application* -0975-887. November 2016. New York, USA. 154 (10) .

267 [Dagher et al. ()] *Ancile: privacy-preserving framework for access control and interoperability of electronic health
268 records using blockchain technology*, G G Dagher , J Mohler , M Milojkovic , P B Marella . 2018. Sustain
269 Cities Soc. 39 p. .

270 [Minoli and Occhiogrosso (2018)] *Blockchain mechanisms for IoT security*. *Internet of Things*, D Minoli , B
271 Occhiogrosso . 2018 Sep. 1 p. .

272 [Shaikh and Hannan (2023)] 'Challenges of Blockchain Technology using Artificial Intelligence in Healthcare
273 System'. Abdul Shaikh , Hannan . *International Journal of Innovative Research in Science, Engineering and
274 Technology (IJIRSET)* Jan 2023. 12 p. . (Issue 01)

275 [Shaikh and Hannan (2023)] 'Challenges of Blockchain Technology using Artificial Intelligence in Healthcare
276 System'. Abdul Shaikh , Hannan . *International Journal of Innovative Research in Science, Engineering and
277 Technology (IJIRSET)* Jan 2023. 12 p. . (Issue 01)

278 [Neal (2011)] 'Choosing an electronic health records system: professional liability considerations'. D Neal . *Innov
279 Clin Neurosci* 2011 Jun. 8 (6) p. .

280 [Xhafa et al. (2014)] 'Designing cloud-based electronic health record system with attribute-based encryption'. F
281 Xhafa , J Li , G Zhao , J Li , X Chen , D S Wong . *Multimed Tools Appl* 2014 Feb 11. 74 (10) p. .

282 [Prasad et al.] 'Detailed Investigation of the role of Artificial Intelligence in stock market predictions'. Arun
283 Prasad , Shaikh Abdul Hannan , Kavita Panjwani , Muthe Ramu , Kawaender Singh Sidhu , Nagabhusanam
284 Tida . *British Journal of Administrative Management UK*. 58. (Issue 06, 6 th Sept 2022)

285 [Mcmullen et al. (2014)] 'Electronic Medical Records and Electronic Health Records: Overview for Nurse
286 Practitioners'. P C McMullen , W O Howie , N Philipsen , V C Bryant , P D Setlow , M Calhoun , Z
287 D Green . *The Journal for Nurse Practitioners* 2014 Oct. 10 (9) p. .

288 [Nugent et al. ()] 'Improving data transparency in clinical trials using blockchain smart contracts'. T Nugent ,
289 D Upton , M Cimpoesu . *F1000Res* 2016. 5 p. 2541.

290 [Van Der Linden et al. ()] 'Interorganizational future proof EHR systems: a review of the security and privacy
291 related issues'. H Van Der Linden , D Kalra , A Hasman , J Talmon . *Int J Med Inform* 2009. 78 (3) p. .

292 [Kierkegaard (2012)] *Medical data breaches: Notification delayed is notification denied*. *Computer Law & Security
293 Review*, P Kierkegaard . 2012 Apr. 28 p. .

294 [Dubovitskaya et al. ()] 'Secure and Trustable Electronic Medical Records Sharing using Blockchain'. A Dubovitskaya , Z Xu , S Ryu , M Schumacher , F Wang . *AMIA Annu Symp Proc* 2017. 2017 p. .

295 [Dubovitskaya et al. ()] 'Secure and trustable electronic medical records sharing using Blockchain'. A Dubovitskaya , Z Xu , S Ryu , M Schumacher , F Wang . *AMIA Annu Symp Proc* 2018. 2017 p. .

296 [Ichikawa et al. (2017)] *Tamper-Resistant Mobile Health Using Blockchain Technology*. *JMIR Mhealth Uhealth*,
297 D Ichikawa , M Kashiyama , T Ueno . 2017 Jul 26. 5 p. 111.

298 [Rifi et al. ()] 'Towards using blockchain technology for eHealth data access management'. N Rifi , E Rachkidi , N
299 Agoulmine , N C Taher . *Fourth International Conference on Advances in Biomedical Engineering (ICABME)*;
300 October 19-21, (Beirut, Lebanon) 2017. 2017.

301 [Azaria et al. ()] 'Using Blockchain for Medical Data Access and Permission Management'. A Azaria , A Ekblaw
302 , T Vieira , Medrec . *nd International Conference on Open and Big Data (OBD)*, (Vienna, Austria) August
303 22-24, 2016. 2016. p. .