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ABSTRACT 

Modern composite materials promise superior 

performance and load-bearing capabilities, yet 

evaluating their structural integrity remains 

challenging. Current testing methods, such as 

visual, thermographic, ultrasonic, optical, 

electromagnetic, terahertz, shearography, X-ray, 

and neutron imaging, are hampered by long 

scan durations, limited field of view, suboptimal 

accuracy, and high costs, particularly when 

applied to large structures. 

This paper addresses these issues by introducing 

a novel robotic multimodal imaging system that 

overcomes the limitations of traditional methods. 

This system dynamically captures both static and 

dynamic properties of materials using advanced 

motion compensation techniques. By integrating 

multiple radiographic modalities into a 

coordinated robotic platform, it provides rapid, 

high-resolution imaging of composite materials 

of large structures without the need for 

disassembly. 

The system was validated through simulations of 

a four-robot radiograph setup, treated as two 

single-plane systems. The 3D position and 

orientation of a cube phantom were determined 

by generating computer-based digitally 

reconstructed radiographs from a computed 

tomography model and applying a 3D line 

intersection method based on known imaging 

geometries. Comparisons between marker-based 

and markerless kinematics tracking methods 

yielded differences of only 0.03 mm in 

translation and 0.06° in rotation. 

These findings demonstrate that the proposed 

system significantly reduces scan times and 

enhances accuracy, offering a robust, scalable 

solution for dynamic inspection in diverse fields 

such as aerospace and medical device 

manufacturing. 

Keywords: robotics-driven imaging; motion 

correction; multimodal; porosity analysis; 

materials testing, computer-based metrology; 

non-destructive testing. 
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Abbreviation Definition 

a-Si Amorphous Silicon 

CAD Computer-Aided Design 

CMOS Complementary Metal-Oxide Semiconductor 

CT Computed Tomography 

DLT Direct Linear Transformation 

DT Destructive Testing 

DR Digital Radiography 

DRR Digitally Reconstructed Radiograph 

ECT Eddy Current Testing 

EDR Extreme Dynamic Range 

EoAT End-of-Arm Tool 

FoV Field of View 

GD&T Geometric Dimensioning and Tolerancing 

HMI Human Machine Interface 

IGZO Indium Gallium Zinc Oxide 

kVp Kilovolt Peak 

MBT Marker-Based Tracking 

MeV Mega Electron Volts 

mA Milliampere 

MRI Magnetic Resonance Imaging 

NDT Non-Destructive Testing 

OID Object-to-Imager Distance 

PAN Panoramic 

SNR Signal-to-Noise Ratio 

SOD Source-to-Object Distance 

TIC Testing, Inspection, and Certification 

DOF Degrees of Freedom 

PVC Polyvinyl Chloride 

FPS Frames per second 

 

 
I.​ INTRODUCTION 

 

Testing, inspection, and certification (TIC) 

techniques play a crucial role in developing 

effective material modification treatments, [1], 

[2], [3], [4], [5], [6], [7], [8], [9], [10]. These 

methods cover a wide range of evaluations, such 

as fatigue, impact, composition, shear, 

thermomechanical, or liquid flow testing, that are 

essential for ensuring the performance and safety 

of modern composite materials. Modern 

structures, such as aerospace components, 

rehabilitation devices, and vehicle parts, often 

consist of heterogeneous, anisotropic composites 

(e.g., metals, carbon fiber, resins, and 

thermoplastics), which present unique challenges 

in terms of detection and evaluation to maintain 

structural integrity. 

A variety of destructive and non-destructive 

testing (DT/NDT) methods have been developed 

for these materials. Techniques include visual 

testing [8], thermographic testing, and several 

ultrasonic methods (Pulse Echo, Phased Array, 

and Thru-transmission) [2], [9], [10], [11], all 

designed to locate defects in single and 

multi-layer materials. Shearography [12] detects 

flaws in solid laminates and bonded surfaces 

through interferometric imaging under stressed 

and unstressed conditions. Other techniques, such 

as magnetic particle, liquid penetrant, optical, and 

eddy current testing (ECT) [13], are used to 

identify defects on and beneath surfaces in 
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conductive materials. Radiographic testing, 

encompassing both 2D X-ray inspection and 3D 

computed tomography (CT) [2], [3], [4], [11], [12], 

[13], [14], [15] further enhances the ability to 

detect internal density variations indicative of 

flaws. Moreover, advanced synchrotron 

techniques using free electron lasers have begun 

to overcome some X-ray penetration limitations, 

producing intense and tunable beams for superior 

resolution [4], [7], [16], [17], [18], [19].  

Despite these advances, all these methods share 

several limitations and unresolved challenges. 

Processing and analyzing data remain 

time-consuming and requires considerable 

expertise, particularly when overlapping signal 

amplitudes make it difficult to associate them 

with specific damage mechanisms. Many tools 

employ small gantries, limiting their field of view 

(FoV) and hindering their application on large, 

non-axisymmetric structures. Surface and shallow 

scanning techniques often face occlusion issues, 

rendering deep scanning in multilayered and 

complex geometries unreliable. Signal noise and 

diffractive scattering from grain and pore 

boundaries further complicate image analysis. 

Techniques like wet magnetic particle testing rely 

heavily on subjective visual feedback, while 

assumptions in ultrasonic testing regarding 

constant reflection coefficients can lead to 

inaccuracies [2], [9], [10], [11], [12]. Additional 

imaging challenges include issues with 

figure-to-ground relationships, background 

luminance, line dimensions, viewing distance, 

orientation, frequency-dependent attenuation, 

spatial resolution, contrast, density, radiographic 

mottle, distortion, metal artifacts, and non-linear 

signal responses—all of which can affect the 

detection of subsurface discontinuities, 

recrystallization states, and grain sizes [9], [10], 

[11], [12], [13], [14], [15], [16], [17], [18], [19]. 

Traditional industrial CT scanners are also limited 

by their relatively small or inflexible gantries, 

their inability to dynamically adjust the focal spot, 

and their lack of automatic control over image 

magnification related to amplitude and exposure. 

These scanners typically require the target to be 

motionless, and even state-of-the-art micro- and 

nanotomography systems, which are confined to 

very small gantries, can only be used on 

extensively prepared, in-situ small samples, 

thereby limiting their application for on-site 

inspections. 

A major common challenge is the motion artifact 

(blurriness) that occurs when inspecting moving 

objects. Direct measurement of internal 

kinematics, strain, and shear under high-speed 

motion has proven elusive. Although some studies 

have employed texture-mapped 2D models or 

manually segmented geometric models with 

template matching [14], [19], [20], [21], [22], [23], 

[24], [25], these approaches lack the accuracy 

required for comprehensive kinematics analysis, 

particularly in the presence of soft tissue or 

composite structures with variable material 

distribution. While 3D techniques like CT and 

magnetic resonance imaging (MRI) allow for 

direct observation of underlying structures, they 

do not yet achieve the high frame rates necessary 

for dynamic function estimation, and their 

confined imaging environments hinder 

full-motion kinematics measurement. 

Furthermore, none of these techniques has been 

standardized to date in terms of homologating 

dynamic inspection methods into a unified 

framework. There is a need to integrate these 

methods under a common reference system, both 

in terms of coordinate systems for data expression 

and normalization of kinematics data obtained 

from both marker-based and markerless tracking. 

All the above conventional testing techniques can 

last from several hours, to days or even months, 

as in the case of Maintenance, Repair, and 

Overhaul (MRO) A, B, C, D airplane checks [23], 

[26], depending on the size and complexity of the 

target and the laborious task of disassembling its 

parts to scan in the laboratory. 

The proposed robotics-driven multimodal 

imaging system with real-time motion 

compensation uniquely addresses these 

longstanding limitations. Unlike traditional 

systems, this platform is designed to inspect 

moving objects by dynamically compensating for 

motion artifacts, ensuring high-resolution 

imaging even during operation. Moreover, by 

unifying multiple imaging modalities under a 
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common reference system, our system bridges the 

gap between disparate inspection methods, 

eliminating data inconsistencies and errors. This 

comprehensive approach not only enhances the 

detection of defects and internal anomalies in 

composite materials but also paves the way for 

more accurate and efficient on-site inspections 

across a variety of engineering fields.  

II.​ METHODS 

2.1 System Overview and Data Acquisition 

Τhe research leading to current state of the art of 

the device presented here can be summarized in 

the following references: [6], [14], [27], [28], [29], 

[30], [31], [32], [33], [34]. The Logimagine Helios 

System (KINEMAGINE/ATLAS Inc., [35]) used 

here employs several six to twelve-axis 

coordinated robotic systems. Configurations 

range from two to six robots (or cobots), 

programmed to carry combinations of X-ray 

housing units, dynamic flat panels, multicamera 

vision systems, intensifiers with high-speed 

radiography cameras, and densitometry detectors 

(fig. 1). The figure 1 presents the “One 

device-multiple modalities” principle and data 

fusion in the robotic scanner where the large 

robotic arm tool (far left) connects the end-of-arm 

tool (EoAT) with several multifunctionality 

connectors with a “female” component. Many 

male components of the device are attached to 

different detectors and emitters. These include 

intensifiers with high-speed X-Ray cameras, flat 

panels of different properties, large DEXA panels, 

perovskites panels, scintillation panels, different 

emitter and collimator combinations etc. This in 

turn, enables scanning an object in the same field 

of view with different emitter-detector 

combinations i.e., scan it with multiple 

modalities. These modalities (1-8) are digital 

radiography (DR), Panoramic and 360 DR, 

high-definition Micro CT, CT, 2D and 3D high 

speed stereovideoradiography with two (or more) 

planes, 2D and 3D tomosynthesis 

(Tomosynthesis, is a modality similar to, but 

distinct from CT which uses a more limited angle 

in image acquisition. Rather than a 360-degree 

acquisition of a structure, tomosynthesis, via an 

x-ray tube 'arcing' method over a stationary 

detector, can capture an arc sweep of a single part 

of the structure [28], [30], [32], [36]. This 

technique reduces the burden of overlapping 

structures/composites when assessing for single 

entities such as composite materials and layered 

objects. One of the primary advantages of 

tomosynthesis is its very high-resolution 

capabilities (as it functions as a magnification 

method); Tomosynthesis, if combined with optical 

magnification it can reach 10 μm resolution. The 

far-right column of images in figure 1 shows 

different types of imaging of various size objects 

(machine parts, jet turbines fuselage support 

structure etc.) that resulted from the 

aforementioned modalities. 
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Figure 1:  Robotic scanner architecture illustrating the “One Device–Multiple Modalities” principle, 

where coordinated robotic arms integrate various emitter–detector combinations (e.g., DR, CT, 

tomosynthesis, stereovideoradiography) to capture multimodal images in a single field of view.  

 

Several robots of different additional robotic arm types can be utilized interchangeably in the device. 

The system is manipulated via a computer and a human machine interface (HMI) device that stores a 

plethora of TIC imaging protocols. End-of-arm toolkits at the robots can exchange different emitters 

and detectors therefore employing different imaging modalities in the same calibration space. A 

collection of rails, pedestals and mobile trailers can extend the system’s functional scanning envelop to 

reach targets up to 160 feet tall and of “unlimited” width and breadth (fig. 1, 2).  
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Figure 2:  (a) Large size robotic scanner mobilized by a huge base on a rail system with multiple degrees 

of freedom to approach the inside of a plane fuselage (with 160 feet high and up to 120 foot reach 

capacity so it can approach the full length of large long and non-axisymmetric objects (plane wings, jet 

engines, fuselages, large vehicle components, pipes etc.); (b)-(e) show the leading scanning robots 

carrying emitters and detectors as they approach the part in the fuselage to actually scan i.e., a deep 

layered joint of the connection of the cockpit to the fuselage as shown in (f). 

 

The “one-system-many-(potential) modalities” 

options ensure error free fusion of all the imaging 

modalities and co-registration of all the data in 

one unique robotic coordinate system (fig. 3), 

[27], [31], [32], [33], [34], [37], [38]. The last 

large-scale imaging modality for huge structures 
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is very important as the scanning logistics with 

large objects that normally do not fit in the 

gantries of traditional scanners can be extremely 

laborious and most of the times impossible. These 

modalities can be tuned to provide industrial CT 

and microCT damage inspection, porosity 

analysis, dimensionality analysis, failure analysis, 

reverse engineering, 2D radiography with 

panoramic large format and automatically 

stitched imaging for huge and non-axisymmetric 

objects, densitometry of composites and 

stereofluoroscopy in 3D. The last option is 

extensively tested here as it relates to dynamic 

imaging for characterizing the deformation of 

materials under linear and shear strain. 

 

 

 

  

Figure 3:  Top: The global reference coordinate system 
ref

XYZ for the biplane system and two local 

coordinate systems (right single plane 
r
XYZ and left single plane 

l
XYZ) for normalizing the kinematics 

information; Bottom: close-up view of the actual leading “scanning head” of robotic system with two 

emitters and two intensifiers positioned by the robots to scan a composite structure;  
 

2.2 Imaging Protocols-Variable Source to Object 
Distances (SOD) and Object to Imager Distances 
(OID) 

The system adapts to meet the requirements of 

the scanning object, eliminating the need for 

extensive sample preparation. Programmable 

adaptable collimators control the exposure and 

manipulate the field of view (FoV) leading to an 

overall controlled and optimized emission, 

suitable for each application based on specially 

performed calibrations (fig. 4). Figure 4a 
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illustrates the overall setup of the robotic 

radiographic system, including the X-ray emitter, 

detector, and a third robot dedicated to 

positioning calibration grids and phantoms. 



Figure 4b shows the multi-marker 3D calibration 

cubic phantom that contains a 1145-marker 3D 

micromachined grid made of polyvinyl chloride 

(PVC) with accurately (and orthonormally) 

embedded tantalum markers having diameters 

raging from 0.02 to 2 mm. This cubic phantom is 

used to determine the imaging geometry of the 

robotic radiographic system. This cube is also 

used to correct distortion introduced by the image 

intensifiers and associated optics [33], [34]. 

Figure 4c shows the head of one of the rods 

carrying two calibration markers; the micro-CT 

image in the background demonstrates the 

scanner’s 10 µm resolution capabilities. In Figure 

4d, each tantalum marker’s position is calculated 

to determine the system’s setup for 3D volumetric 

reconstructions, while Figure 4e provides a 

close-up view of a single-plane projection 

highlighting a tantalum marker’s X-ray signature. 

The system employs geometric and optical 

magnification techniques with fixed, clearly 

defined coordinate systems to enhance imaging 

resolution (fig. 3). 

 

 

 

Figure 4: Overall controlled and optimized emission/detection approach using multiple robots and 

specialized phantoms: (a,b) System overview with programmable collimators; (c) Head of a rod 

carrying two calibration markers-beads, shown with a micro-CT background (10 µm resolution); (d) 3D 

reconstruction of the calibration cube with embedded tantalum markers; (e) Single-plane projection 

revealing the X-ray signature of a tantalum marker. 

 

2.3  Emitters and Detectors 

A selection of different emitters is available, 

ranging from low power systems to powerful 

X-ray generation grids for deep layer imaging. For 

reference we cite here the X-Ray generators that 

were mostly used in the present work but many 

more are part of the device options [35]: Max. 

Voltage 1-160kV with Max Power 300-1.2kW, Max 

mA 600. Note that a wide variety of focal spots 

are implemented (ranging for 0.063 to 7.5 mm 

and micro level applications with the microfocus 

focal spot sizes reaching 16 μm). In the 

high-energy X-ray CT production option up to 9 

MeV, a fine energy bin width of less than 100keV 

is required with an optimized signal-to-noise ratio 

(SNR) when inspecting with appropriately tuned 

focal spot, large and dense parts in deep 

structures such as those associated with aerospace 
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or automotive inspection work. Detectors include 

amorphous silicon (a-Si), indium gallium zinc 

oxide (IGZO), and CMOS sensor type panels, 

among others. Binning and automatic stitching of 



images enhance appropriately the resolution and 

field of view (fig. 3). For reference we cite here 

detectors that were mostly used in the present 

work but many more were employed [38]: a) 

16x16 to 43x43 cm, Pixel matrix 1536x1536 to 

4288x4288, pixel size 45 to 200 μm resolution, 

Max frame rate 40 to 160 fps, 2x2 binning 280fps, 

PAN option 600 fps, active area; b) DC-TDI 

Photon counting, 102/78 mm- 1030/412 mm x 6, 

Pixel size 100 μm, Max frame rate 333-6000 fps, 

both single and dual Energy; [35]); c) Halide 

perovskites [39] were also employed due to their 

strong X-ray absorption and excellent 

optoelectronic properties (high spatial resolution 

of 12 lp mm
−1

 and excellent X-ray imaging 

properties under a remarkably low X-ray dose of 

∼50 μGyair, which is just half of the X-ray dose 

typically used in the traditional flat panel 

equipment. Coupled with the image intensifiers 

configuration are specially customized (CMOS) 

back side illuminated (BSI) camera sensors with 

9.27 µm pixel size, 2560 x 1664 resolution and 

capacity for 9,350 fps data acquisition rate. A 

global electronic shutter with an extreme dynamic 

range (EDR) make these unique for dynamic 

imaging.  

2.4 Motion Compensation Techniques 

Resolving image artifacts (blurriness), motion 

detection and compensation has been always a 

huge challenge for both 2D and 3D imaging 

protocols, from the early days to the most recent 

stereovideoradiography research [40], [41], [42], 

[43], [44], [45], [46]. External fiducial markers 

attached on the surface of the object to be scanned 

were used in many stereovideoradiography 

approaches [30], [37], [47] to correct these 

motion artifacts. The present system employs 

motion compensation techniques to acquire 

high-quality images while the object is in motion, 

i.e., while the object is performing a high-speed 

load bearing task and is undergoing deformation. 

This is achieved here, through the accurate 

(robot’s accuracy is 10 µm) positional-geometrical 

X-ray source-detector trajectory recording during 

the scan procedure [28], [29], [30], [34], [36], 

[37]. The relationships between all X-ray 

components, therefore, are also known with high 

precision (0.005mm is the robot’s precision), 

allowing for an almost error-free fusion of all 

imaging modalities. Note that the accuracy and 

repeatability of the robots reported here is 

relevant to high speeds of operation at the 

manufacturing environment. Contrary to these 

speeds the operational envelop of speed for the 

robots used here never exceeds 10% of their 

maximum capacity. This was expected to improve 

their stabilization and repeatability parameters. 

The open gantry mechanical architecture of the 

system allows 360° visibility so that the 

high-speed vision system produces highly 

accurate relationships between the moving object 

and the detector/emitter combinations i.e., the 

robotic arms. Practically, what this means is that 

unlimited trajectories in space between the 

emitter and the detector are feasible for the first 

time in tomography. Once the motion is known, 

the motion compensation is applied at the 

back-projection step. To minimize motion blur 

during rapid target movement, the system is also 

capable of synchronously acquiring 10000 fps 

from two cameras fixed at the two different 

robotic arms during movement of the object 

scanned. This configuration provides a large, open 

area suitable for either rail-assisted scanning of 

large sized objects by following them for part of 

their trajectory or scanning of free moving objects 

that cross the field of view.  

The marker-based and markerless motion 

tracking techniques have been documented 

elsewhere, [23], [28], [29], [30], [31], [32], [33], 

[34], [36], [37], [47], [48], [49], [50], [51], but 

detailed TIC-related calibration and accuracy 

analyses for both techniques are given here. 

Experience with this system during these past 

different-size composite parts studies has shown 

that adequate data can usually be obtained with a 

minimum of 1 min X-ray duration, generating 

estimated entrance exposure of approximately 

880 mR/test (times two for the stereotactic 

biplane mode of the device) for a typical aircraft 

engine part (turbine blade) study. Such study 

usually consists of three trials each of two 
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different movement activities resulting in a total 

entrance exposure of approximately 4-5 R and up 



to 10 times that magnitude if the blade is scanned 

through its entire cover, without disassembling. 

The system, however, can run for more than an 

hour to scan deep structures and allow for 

high-resolution, high-density data, depending on 

the composite structure and depth of the part in 

question. Although the radiation exposure can be 

monitored, it was not the case in the present 

study. A series of studies in the past have enabled 

for multiple assessments to minimize the total 

number of trials and Xray generation required for 

a specific target (type of material, size/dimensions 

of parts, composite structure, and distribution of 

material). This comprehensive imaging approach 

allows for accurate calibration and assessment of 

different target sizes and materials, while the 

system’s flexibility supports varying scan 

durations and exposures based on the complexity 

of each component. The device’s KINEDOSE 

manual, provides the user with numerous 

protocols (see sample image in fig. 8b) specifying 

parameters (FoV, dose, exposure etc.) multi-trial 

testing for several materials [35]. 

 

 

Figure 5: (a) Phantom cube showing embedded markers and rods; (b) Radiographic view of the cube; 

(c) Tantalum marker 3D surface plot illustrating intensity distribution; (d) 3D model overlay 

emphasizing internal geometry. 

 

In addition, biplane radiographic high-resolution 

image sequences of a fixator from an aircraft wing 

component and from a phantom calibration cube 

of known geometry (fig. 5) were collected using 

the 3D CT modality to be used for calibration, 

development and testing. The calibration object 

(fig. 5a) is a Plexiglas cube with 30mm side and 

0.6mm diameter tantalum spheres placed flush in 

the middle of the top surface of the three 

orthonormal cubic sides. In addition, tantalum 

cylindrical rods (0.3mm in diameter) placed flush 

and parallel to the surface of the three 

orthonormal sides at 8x8mm from the corners 

were used for geometric reference; Figure 5b 

illustrates a biplane radiographic image sequence 

of this phantom cube of known geometry, 
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acquired via the 3D CT modality for calibration 

and testing of marker-based and markerless 

tracking. Fig. 5b highlights how the cube’s 

internal features appear under X-ray during 

high-speed movement while the cube is 

suspended from a spring; Fig. 5c provides a 3D 

surface plot derived from the scan, from a 

detector with 2304x2304 pixels resolution, 

demonstrating the gray level intensity distribution 

of a selected region with a tantalum marker. Fig. 

5d shows a 3D surface model overlay, here 

visualized with a spherical mesh, to further 

emphasize the shape and positioning of key 

internal elements. The ANSA BETA CAE systems 

software [52] reconstruction of the volumetric 

cube using tetrahedra can clearly depict the 

tantalum market structure and can perform 

different type of volume and geometry 

measurements. These one-to-one voxel-to- 

element correlations are used by the 

meta-analysis to differentiate between composite 

layers. The distances between the tetrahedra 

centroids are also used to quantify geometrically 

the 3D micro level damages in the structure of the 

object in question (dimensionality) [33], [51]. 

The front part of the component and the cube had 

at least four radiopaque markers (1.6-mm 

tantalum markers-beads) glued to different areas 

(internal and external). This allows determination 

of six DOF motion parameters with high accuracy 

(errors of 0.01 mm for translation and 0.12 for 

rotation) using the previously developed 

marker-based method [27] A comparison was 

performed between the marker-based method and 

the 3D model-based markerless method for 

evaluation of accuracy on predefined known 

motion of the cube test. Initially, a CT scan of the 

target fixator within the aircraft wing structure 

and the phantom cube were obtained to generate 

their volumetric model. One thousand and four 

hounded 0.001-mm-thick transverse-plane slices 

(2560x1664 pixels resolution, capacity for 9,350 

fps, and in different binning resolution could 

reach 4096x2304 at 1000fps) were acquired from 

the surface of the part and up to 55 cm below the 

wing part surface.  

Segmentation of the CT-scanned target was 

performed by thresholding the slices to isolate the 

aircraft fixator from remaining structures. 

Radiopaque tantalum marker signatures were 

identified automatically by the software and an 

operator confirmed their selection (fig. 5, 7, 9). 

The software replaced voxel values with the mean 

values from surrounding voxels to eliminate 

influences of the markers (masking). The 

volumetric model was resampled using a bilinear 

interpolation function to the same resolution as 

radiographic images acquired with the biplane 

robotics system. The same process was repeated 

for the phantom cube. 

The markerless motion tracking technique, i.e., 

the 3D model-based method assumes that a 

properly oriented projection through a 3D 

volumetric model will produce an image similar to 

the radiographic images. First, imaging geometry 

of the biplane radiograph system was determined 

based on a reference coordinate system (fig. 3) 

[43], [53]. The biplane system was simulated as 

two single-plane radiograph systems based on 

these parameters. 

An overview of the tracking process for the 

single-plane radiograph system is provided in fig. 

6. The algorithm consists of four major 

components: volume visualization (model 

projection), image preprocessing, similarity 

measurement, and optimization. In the volume 

visualization step, a 3D texture-mapping 

technique is used to project through the 3D target 

part volumetric model and generate a digitally 

reconstructed radiograph (DRR) (adopted from 

[44], [45]). During the preprocessing step, a set of 

image processing algorithms (edge extraction, 

image enhancement) is applied to extract the 

coarse edge of the target if necessary (fig. 7).  

In other words, the 3D CT volumetric model 

collected with the CT modality of the robotic 

scanner is translated and rotated by 6 motion 

parameters (3 translations and 3 rotations) using 

an initial guess and projected to 2D image by the 

volume visualization method. The produced 

projected DDR requires some pre-processing (fig. 

7) to be roughly segmented the component to be 

tracked from other parts.  
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Fig. 7a presents (a single X-ray image (out of 

thousands) from the dynamic stereovideo- 

radiography sequence showing internal structure 

undergoing strain; Fig 7b shows a Gaussian filter 

to identify the major object markers or landmarks 

to be assessed whereas fig. 7c is identifying the 

relative object localized strain by assessing the 

elongation/deformation (Δl) of the various object 

markers or object landmarks forming a mesh at 

different time instants; Figures 7d–7e illustrate a 

similar estimation of relative engineering shear 

strain by assessing the 3D skewness (departure 

from orthonormality in (e) or initial geometry in 

(d) of the object mesh; Fig. 7f illustrates how 

image processing of the grey signature of a 

cross-like structure at the object mesh in terms of 

grey level distribution, assists in identifying shear 

by comparing the mesh at rest (unloaded object, 

top) and the skewed mesh (loaded object, bottom) 

[33]; Fig. 7g indicates how the CT model 

projection is performed. The CT model is 

resampled with equally spaced planes along the 

viewing direction and a DRR is generated by 

summing pixel values along projected rays from 

the X-ray source to the image plane. 

Similarity between the DRR and the radiographic 

image is determined with a correlation. An 

optimization algorithm iterates motion 

parameters until the maximum similarity is 

obtained. Once six DOF of the center point of the 

target model are estimated from each single-plane 

system, the absolute 3D position and orientation 

of the target part in the reference coordinate 

system are determined using a 3D line 

intersection method (fig. 10) and the known 

imaging geometry of the robotic system. Note that 

the correlation process between two images 

continues until this iterative optimization finds 

the optimal similarity.  

 

 

Figure 6:  Overview of the process for measuring the object position and orientation from the 

single-plane radiograph system.  
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Figure 7: (a) A single X-ray image (one of thousands) from the dynamic stereovideoradiography 

sequence, showing the internal structure of a target under strain or shear; (b to f) show different image 

processing techniques to detect major markers or landmarks on the target so the resulting relative 

localized strain and shear can be calculated; (g) CT model projection, where the CT data is resampled 

into equally spaced planes along the viewing direction, generating a digitally reconstructed radiograph 

(DRR) by summing pixel values along projected rays from the X-ray source to the image plane. 

 

2.5  Determination of Imaging Geometry  

Imaging geometry was determined using the 

multi-marker 3D calibration cube presented 

earlier (fig. 5). The calibration cube was put in the 

view area of the biplane system, and biplane 

radiographs were acquired. Positions of each 

marker were calculated to determine the 

configuration of the robotic system relative to the 

global reference coordinate system using the 

direct linear transformation (DLT) method [43]. 

Each single-plane system, right and left (denoted 

by “r” and “l,” respectively), of the robotic system 

was described with its extrinsic and intrinsic 

parameters. Extrinsic parameters consist of the 

position and rotation of the X-ray source of the 

single-plane system in the global reference 

coordinate system. For the right_(left) system, a 

position vector, 
ref

Prs (
ref

Pls), a rotation matrix, 

ref
R

r
(

ref
R

l
), were determined from the DLT method. 

Intrinsic parameters include the principal point 

and the principal distance of the single-plane 

system (fig. 8a).  
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Figure 8:  (a) Imaging geometry of the single-plane radiograph system (one of the two subsystems in the 

stereotactic configuration (b) Geometric magnification by adjusting the SOD and OID. 

 

Principal distance (rPD), is from the X-ray source 

(rS) to the principal point (rPP) in the image 

plane and the principal point is the origin of the 

image plane. X axis and Z axis of the image plane 

are parallel to those of the X-ray source; Notice 

the projection of the 3D object at the image plane 

is expressed in an appropriate coordinate system. 

Geometric magnification is achieved by adjusting 

the SOD and OID (fig. 8b), while optical 

magnification uses specialty lenses to achieve 

different levels of magnification before the signal 

is recorded at the detector side imaging Protocol 

example 1: SOD = OID, concentric circular 

trajectories of source and detector about the 

object (for Cone and Fan-beam configurations). In 

blue and green solid line, the detector's and 

source's pathway are depicted respectively. The 

magnification factor is double and the FOV 

restricted; when SOD>OID, the concentric 

circular trajectories have different radii resulting 

in significant controlled magnification reduction 

(1<M<2) and increased FOV with larger volume 

captured and reconstructed; Collimators (Col) are 

used to limit beam size to the specific area of the 

object. 

The principal point, 
r
PP(

l
PP), is the location in the 

image plane of the right_(left) system, 

perpendicular to the center of the X-ray beam. 

The principal distance,
 r

PD(
x
PD) is the distance 

from the X-ray source to the principal point of the 

right_(left) system. The intrinsic parameters, 

along with the size and resolution of the 

radiographic image, were sufficient to accurately 

simulate two single-plane radiograph systems. 

The extrinsic parameters were used to reconstruct 

the biplane system for determining the absolute 

3D pose of the target in the global reference 

coordinate system of the robots.  

2.6 Volume Visualization 

With the geometry of the imaging system known, 

DRRs can be generated from the 3D target model 

using volume visualization methods [22], [23], 

[35], [43], [45], [46], [48], [54], [55], [56]. 

Perspective (rather than parallel, fig. 7g) 

projection rendering is required to accurately 

represent the cone-beam X-ray image formation 

process. Additive reprojection [54] or ray-casting 

methods [44], [48] are commonly used for this 

purpose. However, these methods are 

computationally intensive, particularly for 

iterative methods. Restriction of the CT target 

model to specific regions [22], [24] and/or 

precomputing a library of ray integral values have 

been proposed to accelerate the rendering process 

[23]. However, for tracking arbitrary orientations 

of large composite parts moving through 

significant volumes, the computational cost of 

precomputing the required number of rays 

approaches that of ray-casting. To significantly 
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reduce rendering time, perspective projections 

were generated using a hardware-accelerated 3D 

texture-mapped volume rendering method, 

implemented using the OpenGL graphics library 

[35]. The entire 3D model volume data was 

downloaded into texture memory once. To 

simulate a desired 3D orientation, the volume was 

rotated to orient the target properly and 

re-sampled in memory to create equally spaced 

planes perpendicular to the principal axis of the 

X-ray beam. Each pixel of the DRR was calculated 

by summing re-sliced pixels along a ray 

constructed from the X-ray source to the image 

plane (fig. 7g). This reduces rendering time by a 

factor of about 60, at the cost of a slight reduction 

in the quality of the resulting DRR (relative to 

traditional ray-casting). 

2.7  Image Preprocessing 

The data acquisition rate varies from 1 to 10,000 

frames per second (fps), with angular speeds of 

the robotic arms ranging from 1 to 20 degrees per 

second. The system processes 450 to 12,000 2D 

projections in real-time, depending on the 

application and mode, providing 3D 

reconstructions within seconds. Using the pulsing 

X-Ray capabilities, the accumulative exposure 

time can be less than a second (<1s) and up to 

several minutes in prolonged scans [32], [33], 

[38], [53]. The highest accuracy is obtained with 

the highest repeatability option of the robots 

tuned to 0.005 mm for translation of the robotic 

arms at less than 1 degree per second rotational 

speed. Relative to conventional fluoroscopic 

images commonly used for 2-D/3D image 

registration [22], [24], radiographic images 

obtained from high-speed video cameras are less 

noisy, but still the feature-extraction process can 

be complicated. This situation can be worsened by 

the inherent inhomogeneity and anisotropic 

nature of composite materials. Thus, it is 

desirable to extract a feature set using all available 

information on the target composite structure, 

rather than only external edges or intensity 

information. This was accomplished by using a 

combination of edge and intensity information 

(texture information projected through 3D 

volume of target model- see fig. 7) based on the 

assumption that even “imperfect” (i.e., highly or 

less irregular) edge data can serve as useful 

features for improving matching between the 

DRR and actual radiographic images. Changing 

the robotic pathways during image acquisition 

alters the projection shapes which helps this 

matching step when dealing with composites.  

Both the DRR and the radiographic images are 

preprocessed prior to matching, to maximize 

similarity. First, the DRR is inverted and 

contrast-enhanced using a histogram-equalization 

algorithm [55], [56] (see fig. 6). Then a simple 

edge algorithm (Sobel edge detector [55], [56] is 

applied to extract edges from both DRR and 

radiographic images. The edge information is then 

added back to the original images (see fig. 7), 

combining both edge and texture information. 

The edge information helps to drive the 

optimization toward the correct solution, 

improving initial algorithm convergence [57]. The 

addition of the intensity/texture information 

leads to more accurate matching than is possible 

with edge information alone. 

2.8  Similarity Measurement for the marker-less 
tracking algorithm 

To determine optimal position matching, a metric 

for similarity between two images is required. 

Pattern intensity [24], [58] and gradient 

difference methods [59] have been suggested for 

the DRR and fluoroscopic images. These studies 

assumed that image quality is high, and that 

composites structures have a relatively small role 

in the intensity distribution in fluoroscopic 

images. Because high-speed radiographs can be 

noisy and at areas contrast-limited, and there is a 

great deal of composite deformation during 

dynamic studies, detectable edges and features in 

the actual radiographs differ from those in the 

DRRs. Thus, these assumptions are no longer 

valid, and a different approach was required. 

Evaluation of several different correlation 

strategies suggested that general normalized 

correlation [55], [56], applied to summed 

edge/intensity images, is robust even in the 

presence of these differences between actual 

radiographs and DRRs. The correlation equation 

used for this study is  
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𝑉 𝑥, 𝑦( ) = 𝑥,𝑦
∑ 𝑟 𝑥,𝑦( )−𝑟

𝑢,𝑣
⎡⎢⎣

⎤⎥⎦ 𝑚 𝑥−𝑢),𝑦−𝑣)−𝑚( )[ ]

𝑥,𝑦
∑ 𝑟 𝑥,𝑦( )−𝑟

𝑢,𝑣
⎡⎢⎣

⎤⎥⎦

2

𝑥,𝑦
∑ 𝑚 𝑥−𝑢,𝑦−𝑣)−𝑚( )[ ]

2⎰
⎱

⎱
⎰

1
2

​ ​           ​

                                                     (1) 

 

r(x,y) radiographic image; 

m(x,y) DRR generated from the 3D CT 

model;  

m mean of the DRR; 

ru,v mean of radiographic image in the 

region under the DRR. 

 

However, this is computationally intensive, 

especially if the size of images to be compared is 

large (as is often the case with images of large 

composite materials). A new Quadtree-based 

normalized correlation method was employed to 

reduce search iterations and improve 

optimization efficiency. A predefined search space 

of the radiographic image is divided into four 

quadrants (fig. 9). Note how resolution affects the 

size of the acquired tantalum marker X-ray 

signature. Steps one to six of the process of 

isolating the high-resolution marker (shown in 

subgraphs 1-6): 1-2-3: Masking of the marker 

signature, 4-6: The 5x5 Laplacian filter applied on 

a small area around the marker’s region to 

enhance the contrast and remove the useless 

information (background noise) close to the 

marker. Quadtree-based correlation is also shown. 

Correlation space is divided into four regions. The 

region with the best match is subdivided again. 

This process is repeated until the region size is 

reduced from thousands to 4 X 4 pixels.  
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Figure 9: Top: Tantalum marker X-ray signature surface plots at 576 × 576 and 2304 × 2304 pixels, 

with subgraphs 1–6 showing the masking and Laplacian filtering steps. Bottom: The quadtree-based 

correlation, where the search space is repeatedly subdivided until a 4 × 4 pixel region remains. 

 

The average correlation value (ATq1, ATq2, ATq3, ATq4) of each quadrant (Q1, Q2, Q3, Q4) is calculated 

from correlation values of four corner points of the corresponding quadrant (equation 2). The quadrant 

with the best correlation is further divided for the next step (equation 3). For example, if ATq1 is the 

optimal, ATq11, ATq12, ATq13, and ATq14 are calculated. This procedure continues until the size of a 

quadrant reduces to 4x4 pixels. In the final step, all pixels of the optimal quadrant of the radiographic 

image are correlated with the DRR. The coordinate of the pixel with the best match is chosen as the 

location of the target center in the image plane (
ref

Prm and 

ref
Plm see fig. 10).  

 

 

Figure 10:  Determination of 3D target part position. refPrs(refPls) is the position of the X-ray source of 

the right_(left) system relative to the reference coordinate system. refPrm(refPlm) is the best-matching 

location in the right_ (left) image plane expressed in the reference coordinate system. The mid-point of 

the line segment “C” is chosen as the optimal 3D position. 
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The value of the correlation function at this point 

is used as an indicator of the quality of match for 

the optimization process described below. For a 

maximum expected frame-to-frame translation of 

200 pixels (400x400 pixel search region), the 

efficiency of the Quadtree algorithm is clearly 

illustrated. Conventional sequential correlation 

would require 16000 image multiplications to 

find the best matching position, whereas the 

Quadtree-based correlation method requires only 

400 multiplications. This is a significant detail 

when thousands of frames need to be tracked.  

At the first iteration: 

 

 𝐴𝑇𝑞1 = 𝑇1+𝑇2+𝑇4+𝑇5
4  𝑓𝑜𝑟 𝑞𝑢𝑎𝑑𝑟𝑎𝑛𝑡 𝑄1

 𝐴𝑇𝑞2 = 𝑇2+𝑇3+𝑇5+𝑇6
4  𝑓𝑜𝑟 𝑞𝑢𝑎𝑑𝑟𝑎𝑛𝑡 𝑄2

 𝐴𝑇𝑞3 = 𝑇4+𝑇5+𝑇7+𝑇8
4  𝑓𝑜𝑟 𝑞𝑢𝑎𝑑𝑟𝑎𝑛𝑡 𝑄3

 𝐴𝑇𝑞4 = 𝑇5+𝑇6+𝑇8+𝑇9
4  𝑓𝑜𝑟 𝑞𝑢𝑎𝑑𝑟𝑎𝑛𝑡 𝑄4            (2)

At the second iteration 

 𝐴𝑇𝑞11 = 𝑇1+𝑇12+𝑇14+𝑇15
4  𝑓𝑜𝑟 𝑞𝑢𝑎𝑑𝑟𝑎𝑛𝑡 𝑄11

 𝐴𝑇𝑞12 = 𝑇12+𝑇2+𝑇15+𝑇25
4  𝑓𝑜𝑟 𝑞𝑢𝑎𝑑𝑟𝑎𝑛𝑡 𝑄12

 𝐴𝑇𝑞13 = 𝑇14+𝑇15+𝑇4+𝑇45
4  𝑓𝑜𝑟 𝑞𝑢𝑎𝑑𝑟𝑎𝑛𝑡 𝑄13

 
𝐴𝑇𝑞14 = 𝑇15+𝑇25+𝑇45+𝑇5

4

 𝑓𝑜𝑟 𝑞𝑢𝑎𝑑𝑟𝑎𝑛𝑡 𝑄14      (3)

2.9 Optimization 

The downhill Simplex method [57], [60] is used to 

adjust estimated target part position and 

orientation until optimal similarity is obtained. 

The Simplex method requires N+1 points as 

starting points, where N is the number of DOFs of 

the function being optimized. Then the simplex 

method travels through the parameter space by 

reflection and contraction. Estimating 3D 

kinematics would typically require simultaneous 

optimization of all six motion parameters (three 

positions and three rotations).  

The optimization routine began with six 

predefined vertices (as required for Simplex) as 

the starting points. An initial guess was 

determined manually for the first frame or 

selected as the optimal position of the previous 

motion frame. The remaining five vertices were 

selected to span the range of valid target 

orientations. DRRs for each vertex were generated 

from the 3D model using the known imaging 

geometry of a single-plane system and five DOF 

parameters controlled by the optimization 

process. Then two in-plane position parameters 

were determined from correlation between the 

DRRs and the radiographic images. Each 

reflection or contraction continued to update the 

three rotation parameters and the distance 

perpendicular to the image plane, based on the 

previous similarity calculations. The optimization 

routine was terminated when the distance of 

points moved in that step was fractionally smaller 

in magnitude than some tolerance. 

To check for local minima, the Simplex routine 

then restarted from the optimized point and was 

allowed to converge again. If the new solution 

differed from the previous solution by more than 

a specified tolerance (typically, 1 for rotation), the 

original solution was rejected as a local 

(nonglobal) minimum, and the routine was 

restarted from the new optimum point. 

2.10 Three-Dimensional Determination of Position 
and Orientation 

Six motion parameters can be estimated from a 

single-plane system for each frame. However, the 

assessment of out-of-plane translations is 

unreliable with a single-plane system and the 

accuracy for measuring out-of-plane translations 

is poor relative to the accuracy for measuring 

in-plane translations [37], [59], [61]. Thus, only a 

projection ray passing from the X-ray source, 

through the center of the target model, to the 

best-matching location in the image plane was 

constructed from each single-plane system. This 

projection ray was represented as a line segment 

connecting the X-ray source (the origin of a 

single-plane system) and the best-matching 

location in the image plane (
r
Prm), for the right 

system and 
l
Plm for the left system). 

For simulating the biplane system, line segments 

(actually, two end points) estimated from each 

single-plane system were transformed to the 

global reference coordinate system based on the 

information of the position and orientation of 

single-plane systems relative to the global 

reference system as follows. 
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•​The position of the X-ray source is the origin of 

the single-plane system. Its location relative to 

the global reference coordinate system, 

ref
Prs(

ref
Pls) for the right_(left) system, was 

already determined from the DLT method.  

•​ r
Prm(

l
Plm) was transformed to the reference 

coordinate system by a rotation and a 

translation (equation 4): 

ref
Prm= 

ref
R

r
 
r
Prm + 

ref
Prs (for the right system) 

 ref
Plm= 

ref
R

l
 
l
Plm + 

ref
Pls (for the left system)                     

​
  

(4) 

where 
ref

R
r
 (

ref
R

l
) is a 3x3 direction cosine matrix 

expressing the orientation of the right (left) 

system with respect to the reference coordinate 

system.
 ref

Prm(
ref

Plm) is the best-matching location 

in the image plane of the right (left) system 

transformed to the reference coordinate system. 

For example, two line segments within the 

reference coordinate system (“A” from 
ref

Prs to 

ref
Prm and “B” from 

ref
Pls to (

ref
Plm) were 

constructed, as shown in fig. 10. 

Ideally, the two line segments “A” and “B” should 

intersect at a point because they pass through the 

same point of the target model. However, these 

lines generally do not intersect due to errors such 

as camera calibration, image noise, matching 

error, etc. To solve this problem, the 3D position 

of the target part was determined by finding the 

midpoint of the shortest line, “C”, between these 

two-line segments using a 3D line intersection 

method [62], [63] (fig. 10). 

Orientation of the target part (α, β, γ) could be 

determined from the estimated orientation 
ct
Rb of 

the target model estimated in each single-plane 

system assuming body-fixed X-Y-Z rotations [64], 

[65], [66] 

ref
Rrb= 

ref
R

r
 
r
R

ct
 
ct
Rb for the right system or 

ref
Prb= 

ref
R

l
 
l
R

ct ct
Rb for the left system 

​

  

(5) 

where 

ct
Rb constant 3x3 direction cosine matrix of the 

orientation of the anatomical target part relative 

to the CT model; 

r
R

ct
(

l
R

ct
) 3x3 direction cosine matrix representing 

the orientation of the CT model with respect to 

the right (left) system, determined from 

single-plane optimization; 

ref
Rrb(

ref
Rlb) 3x3 direction cosine matrix of the 

target part expressed in the reference coordinate 

system. 

Final 3D orientation of the target part was 

determined by averaging the rotation angles 

obtained from the two single-plane views 

 = 𝑟𝑚+𝑙𝑚
2

 = 𝑟𝑚+𝑙𝑚
2

 γ = γ𝑟𝑚+γ𝑙𝑚
2 ​

(6) 

2.11 Similarity Measurement for the 
landmark-based or marker-based tracking 
algorithm 

The new MBT algorithm employs 

image-processing routines (Laplacian filter, 

Canny edge Detection [27], [44], [45], [55] and 

homegrown routines to the marker’s geometry 

properties (shape and diameter) (fig. 9). A 5x5 

Laplacian filter was applied on a small area 

around the marker’s region in order to enhance 

the contrast (fig. 9) and remove the useless 

information (background) close to the marker 

(fig. 11).  
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Figure 11: The 5x5 Laplacian mask (left) applied on the input image and the output image of the 

destructive compression granular composite asphalt test (two different views- stereo). The tracking 

kinematics procedure shows the results from the failed sample shown (right). The snapshot is during 

the marker tracking and synchronous displacement history of the selected grains from their respective 

images projected in real time. The plot diagram shown on the right is a collection of points from this 

tracking. There are approximately 1334 consecutive points during this entire catastrophic event that lie 

between the points shown here.  

 

Figure 9 shows the Laplacian mask applied on an 

input image and how it manipulates each pixel in 

order to enhance the contrast. The output image 

is a result of summarized multiplications among 

the 5x5 mask values and the input image (Eq. 7). 

 

Output (Bij) = Σ(input Aij)*mask (mij)   

​
(7) 

 

Figure 11 shows the mask applied over the top left 

portion of the input image. The center of the mask 

is placed by the operator over the pixel that will be 

manipulated. For example the pixel m33 of the 

mask is applied on the a33 pixel of the input 

image and the b33 will be finally the new value of 

the pixel given by Equation (8). 

 

b33= a11 * m11 + … + a33 * m33 + agg * mgg   

​

(8) 

 

This software also employs distortion correction 

and gray scale weighted centroid calculations to 

improve accuracy and provide sub-pixel 

resolution [27]. Three-dimensional reconstruction 

of the 2D biplane displacement history of the 

tantalum markers is performed with the help of 

3D reconstruction software from Motion Analysis 

(Motion Analysis Corporation, Santa Rosa, CA 

USA). The algorithm tracks the sequences of 

images automatically and is an integrated part of 

the pre-processing toolkit of the robotic system. 

Static and Dynamic performance of the biplane 

robotic radiographic system was assessed using 

the calibration plexiglas with 30mm side (fig. 5) 

presented earlier. Static precision (a function of 

system noise) was assessed with the cube 

positioned stationary in the center of the field of 

view. Dynamic errors were also assessed by 

suspending the objects from a spring and then 

dropping them (increased rotational motion) 

while allowing them to move freely throughout 

the field of view. A range of tests was performed 

using different combinations of acquisition rates, 
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resolution, exposure i.e. 125-1900 images 

acquired at 400-5000 fps with exposure (shutter) 

times ranging from 50 to 3000 μs. X-ray system 



protocols ranged from 90 to 320 kVp, 40 to 190 

mA, 1-30s with low (1152x1152) and high 

resolution (4608x4608) tests. In the industrial 

objects tests 3D coordinates of markers were 

determined for high-speed compression tests 

using a materials testing machine. 

III.​ RESULTS 

Dynamic tests were performed with a phantom 

target of known geometry (cube). Four tantalum 

spheres (0.6-mm diameter, fig. 4e)  were 

accurately implanted in the cube to enable 

marker-based tracking. The texture and cube 

shape (with implanted parallel rods) were first 

used for the markerless tracking system. The 

cube was initially suspended by a spring and 

randomly moved in the field of view. 

Alternatively, it was held with a fixed vice 

attached to a computer-controlled stepper motor 

driven positioning system capable of two-and 

three axis linear movement and multi-axis 

rotation (0.006 35 mm/step, 0.02°/step). Three 

types of specific tests were performed: simple 

translation, simple rotation, and different 

combinations of translations and rotations. In 

the translation experiment, the cube phantom 

was positioned vertically (with one of its 

implanted rod long axis perpendicular to the 

ground) and controlled to move parallel to the 

ground (in the X-Y plane) in diagonal directions 

along a 100 mm square (smaller squares of 10x10 

mm were sampled also). For the rotation 

experiment, the target was rotated ±10° 

internally/externally about its long Z axis 

(smaller rotations of ±2° were sampled also). In 

an example of combined translation and 

rotation, the target was moved diagonally in the 

X-Y plane with simultaneous ±10° rotation about 

the flexion/extension Y axis. From each 

experiment, a sequence of radiographic images 

(1000-2000) was acquired from the biplane 

robotic radiograph system. 

For the first frame of each sequence, the six 

motion parameters were estimated using a 

window-based user interface to produce DRR that 

appeared similar to the actual radiographic image. 

These parameters were used as an initial guess to 

start the optimization. The optimization routine 

took on average about 320 iterations for the initial 

guess and about 560 iterations for tracking the 

target from frame to frame. The average time 

taken by an iteration, is a few milliseconds with 

the biplane image sequences being tracked using 

the marker-based method described in methods. 

Our past human arthrokinematics studies have 

shown the accuracy of this marker tracking 

method to be 0.01 mm [27], [51], but we had 

never tested it with industrial applications. This 

marker-based tracking used the same calibration 

cube and distortion correction images as the 3D 

model-based method, providing a common global 

coordinate system for comparison. For three tests, 

the root mean square (rms) differences between 

methods in the cube experiment averaged 0.023 

mm for translation and 0.06 for rotation. In 

detail, the room mean square errors for the cube 

experiment between the 3D Model-based 

(markerless) and the marker based method were 

in translation (mm): (XY translation: 0.013 in 

X-axis, 0.03 in Y-axis, 0.02 in Z-axis), (Z-axis 

rotation: 0.07 in X-axis, 0.13 in Y-axis, 0.06 in 

Z-axis), (XY translation and Y-rotation: 0.06 in 

X-axis, 0.05 in Y-axis, 0.12 in Z-axis); and in 

Rotation (degrees): (XY translation: 0.02 in 

X-axis, 0.1 in Y-axis, 0.05 in Z-axis), (Z-axis 

rotation: 0.05 in X-axis, 0.06 in Y-axis, 0.03 in 

Z-axis), (XY translation and Y-rotation: 0.02 in 

X-axis, 0.07 in Y-axis, 0.08 in Z-axis).  

In the dynamic cube study, the calibration cube 

was randomly perturbed by a spring, causing 

marker movement through a 1500 cm³ volume 

(Fig. 5). During low-resolution imaging, each 0.6 

mm marker covered at least 64 × 64 pixels, 

corresponding to a pixel size of approximately 

0.086 mm/pixel. In the high-resolution setup, 

each marker spanned at least 200 × 200 pixels, 

reducing the pixel size to about 0.021 mm/pixel. 

For both static and dynamic tests, the 3D vector 

distances between pairs of markers were 

calculated in each frame. In the static 

high-resolution experiment, the mean measured 

distance was 29,992 µm, while under dynamic 

conditions, it was 29,988 µm (the true distance is 
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30,000 µm). Typical standard deviations (SD) 

from the mean distance were ±0.02 mm (static) 

and ±0.04 mm (dynamic). These results remained 

consistent across the field of view, although both 

low- and high-frequency noise components were 

observed in the raw error plots. Fig. 12 illustrates 

how unfiltered (total) errors, low-pass filtered 

errors (20 Hz cutoff), and residual high-frequency 

errors compare. The consistency of the mean 

distance between static and dynamic datasets 

suggests uniform error behavior, while the larger 

dynamic errors stem from factors such as motion 

blur, background gradients, and finite pixel-size 

effects. 

 

 

Figure 12: 3D errors in the dynamic cube study, shown as the difference between the inter-marker 

distance for each frame and the mean distance. Top: Unfiltered (total) errors; Middle: Errors after 20 

Hz low-pass filtering; Bottom: Residual high-frequency errors. 

 

Dynamic errors from all tests averaged ±0.015 

mm (1/40th of the marker size), demonstrating 

the benefits of gray-scale centroids for finding 

marker centers with sub-pixel accuracy. 3D 

calibration and distortion correction were not 

significant factors, based on the uniformity of the 

errors across the field of view. Static errors 

(noise-dependent) were in the order of 0.01mm. 

Dynamic errors were higher than static errors. 

Motion blur, background effects and quantization 

errors due to the finite pixel size are the three 

most likely causes for this. Blur, caused by motion 

of the markers during the sampling interval, could 

shift the marker centroid positions. The 2D 

component of the error is a function of the relative 

velocity of the two markers parallel to the image 

plane – if they are moving at the same speed and 

direction in this plane, both marker centroids 

would be shifted by the same amount. The 3D 

distance between two of the test object markers 

was calculated for every frame in the movement 

sequence. Low frequency (LF) errors were 

determined by optimal low pass filtering (approx. 

20 Hz) the raw errors. High frequency errors are 

the residual left after subtracting LF errors from 

the raw errors. The inter-marker distance would 

be zero. To estimate the error contribution from 

blur, the Z (vertical) component of the relative 

velocities of the two markers was calculated. This 

axis had the largest velocity component and is 

also parallel to both camera/intensifier image 

planes (maximizing the blur effect). The average 
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absolute difference in the Z component of velocity 

between the markers was 70 mm/s, causing a 

mean shift in the relative centroid positions of 

only 0.017 mm (at the 500 μs sample period). 

Dynamic error was also estimated for the 

compression testing described in figures 11, 13, 14. 

In this case dynamic error was expressed as gray 

level percentage difference of each marker’s 

centroid gray level from frame to frame; this 

difference was found to be 2%. Centroid errors 

can also occur if the materials surrounding the 

marker are non-uniform in radiodensity. Each 

radiographic pixel represents the combined 

density of all objects along the path between the 

X-ray source and corresponding point on the 

image intensifier or panel. Thus, the surrounding 

composite materials will affect the intensity of 

each marker pixel. A background gradient (due to 

a curved composite surface or an oblique view of 

the cube) will shift the calculate ed centroid away 

from the true marker center. If the marker crosses 

a high-contrast object (metals or cube edge), the 

effect is greater. The low frequency (LF) errors 

appear to be due to this phenomenon. The 

frequency and timing of the spikes are similar to 

those seen in rotational movement plots – for 

example, the large “dip” in the LF error 

corresponds almost exactly in time with a sudden 

180° rotation about the Z axis, which then reverts 

to its previous angle in 0.3 s. Subtracting the LF 

errors from the total error produces a residual 

that resembles Gaussian noise. The magnitude of 

this noise is slightly higher than observed in the 

static test, due most likely to the finite pixel-size 

effects that cause small centroid shifts as the 

marker signature crosses pixel boundaries. The 

cube study represents the worst-case scenario, 

with a sharp-edged measurement object 

undergoing large rotations in all 3 axes and 

approaching the edges of the calibrated field. 

Even so, typical errors were in the order of 1/40th 

of the tantalum marker size. Errors appear to be 

dominated by the effects of changes in the 

radiographic background surrounding the 

marker. Thus, correction for background 

nonuniformity would appear to offer significant 

potential for improving accuracy. The other 

sources of error (noise and finite pixel size) were 

significantly improved by reducing the pixel size 

when we acquired higher-resolution images (fig. 

13). The average marker area was apparently 

always greater in the high-resolution tests (fig. 

13). 

 

 

Figure 13: Comparison of average marker area between high-resolution (4608x4608-top) and 

low-resolution (1152x1152-bottom) tests, demonstrating improved centroid accuracy with smaller pixel 

sizes. 
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Dynamic imaging tests were conducted on various 

composite materials, ranging from small 

components to large, multipart assemblies, under 

destructive (DT) and non-destructive (NDT) 

conditions involving compression, tensile shocks, 

and strain experiments. Using the dynamic 

stereovideoradiography robotic tool, real-time 

deformation, strain, and shear behaviors were 

captured. Figures 7, 11, 14, and 15 illustrate these 

dynamic strain analyses, focusing particularly on 

the linear velocities and accelerations of 

individual grains in porous materials during DT 

and NDT compression (Figure 14). To 

complement these tests, 3D tomography was 

performed both before and after loading (Figure 

15) to visualize any internal structural changes. In 

Figure 14, acceleration profiles of various grain 

structures (positions 1, 2, and 3 in blue, red, and 

green, respectively) demonstrate how impactful 

axial loading can produce initial high acceleration 

peaks (circled regions), which serve as early 

indicators of potential microcrack formation. A 

magnified view (middle) highlights these spikes in 

acceleration, pinpointing the region’s most 

susceptible to crack initiation. 

In the high-speed robotic dynamic imaging 

stereovideography destructive setup of fig. 14 a 

porous cement sample (approximately 70 × 30 × 

10 mm) is placed under compression using an 

MTS 858 Bionix II testing device. By capturing 

stereo views of the sample, the system tracks 

individual grain movements and calculates 3D 

displacements with an accuracy of about 20 μm. 

This “4D” analysis combines real-time kinematic 

data with 3D tomography, enabling the 

measurement of localized strains, shear 

deformations, and potential microcrack initiation. 

High acceleration events (up to 500 cm/s²) are 

recorded, and initial acceleration peaks often 

signal areas prone to microcracking. Moreover, 

marker-based and markerless tracking methods 

can pinpoint the motion of tantalum (or lead) 

markers or distinct grain landmarks at speeds up 

to 20 m/s, achieving ±0.02 mm translational and 

±0.18° rotational precision. These capabilities 

offer insights into how load magnitude, rate, and 

material composition collectively influence 

damage progression and structural integrity in 

composite systems [14], [27], [32], [53].  
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Figure 14:  (A) High-speed robotic stereovideography imaging setup for DT/NDT compression testing 

(using an MTS 858 Bionix II device) on a porous cement sample (7 × 3 × 3 cm). (B) Close-up of the 

sample’s grain structure, illustrating the variety of grain sizes. (C) and (D) Stereo-views of the sample, 

where individual grains can be tracked and their 3D displacements measured with approximately 20 

μm accuracy. 

 

 

Figure 15:  Left: Acceleration profiles identifying potential microcrack initiation sites; Right: 

color-coded map of internal microcrack formation in a composite sample. 

Fig. 15 compares the acceleration profiles of 

various grain structures (left) with a color-coded 

map of microcrack initiation (right) in a 

composite sample subjected to impactful axial 

loading. The circled peaks in the acceleration 

signals highlight high-risk zones where 

microcracks are more likely to form. By fusing 3D 

CT data of the sample with the 3D kinematics of 

these high-acceleration regions, following the 

method presented in [21], [37], it becomes 
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possible to generate an accurate map of internal 

microcrack initiation. The grains, represented as 

colored tetrahedra, correspond to areas of 

elevated acceleration and serve as indicators of 

potential microcrack nucleation sites. This 

integrated approach provides valuable insights 

into how loading parameters (magnitude, rate), 

part geometry, and material composition 

influence the onset and propagation of 

microcracks. 

Fig. 16 illustrates a large-structure inspection and 

part-to-CAD comparison imaging approach 

applied to the outer exhaust duct of a jet 

engine—a component composed of synthetic 

fibers bound by resin. Because this large structure 

does not fit into conventional scanners, it must 

typically be disassembled and inspected part by 

part. The proposed method analyzes fiber 

anisotropy in high-strain regions, categorizing 

fibers according to their spatial orientation. In the 

left part of the figure, a plot shows the distribution 

of fiber orientations by angle (in degrees), 

indicating the proportion of fibers aligned at each 

angle. The middle part employs color-coding to 

highlight groups of fibers with different 

orientation angles, revealing areas where 

anisotropic behavior is most pronounced, and 

aiding in the detection of porosity, resin voids, or 

potential delamination. Finally, the right part 

focuses on the middle layer of fibers, 

demonstrating a perfectly aligned orientation. 

This analysis can be used in repetitive stress 

(fatigue/endurance) tests for these types of 

materials.  

 

 

 

Figure 16:  Fiber orientation distribution (left), color-coded orientations (middle), and magnified view 

(right) in a jet engine exhaust duct composite structure. 

The Part-to-CAD (actual-to-nominal) comparison 

imaging mode was used to inspect large structures 

also without disassembling them. This enables the 

3D CT scan data of a part to be overlaid with the 

original CAD model of the same part, allowing for 

detailed micro-comparisons. Fig. 17 provides a 

comprehensive illustration of the proposed 

non-destructive evaluation process. In fig. 17 (a), a 

single projection captured from a top view can be 

observed, which clearly shows the distribution of 

the fixators embedded within the airplane wing 

structure. Fig. 17 (b) presents a side projection of 

the same series of fixators, offering additional 

insight into their spatial arrangement and depth 

within the structure. The key advantage of this 

technique is that the 3D tomography scan can be 

conducted without disassembling the entire 

structure, meaning that each fixator can be 

evaluated in situ without the need to remove it for 

laboratory analysis. This enables to obtain 

detailed, accurate Geometric Dimensioning and 

Tolerancing (GD&T) reports that are critical for 

quality control and assurance. Fig. 17 (c) displays 

the 3D reconstructed geometry of each fixator, 

providing a precise model for further analysis. In 

fig. 17 (d), a close-up view highlights the 

differences at the edges between the nominal 

design and the actual manufactured parts, 

particularly at the threaded areas, with various 

colors used to indicate discrepancies. Finally, fig. 

17 (e) demonstrates a dimensionality analysis 

where a specific option is exercised to compare 

the nominal dimensions to the actual measured 

values along the edges of the fixator. This analysis 

Advanced Robotic Multimodal Imaging with Real-Time Motion Compensation for Dynamic Structural Health Monitoring 

L
on

d
on

 J
ou

rn
al

 o
f 

R
es

ea
rc

h
 in

 C
om

p
u

te
r 

Sc
ie

n
ce

 &
 T

ec
h

n
ol

og
y

©2025 Great Britain Journals PressVolume 25 | Issue 2 | Compilation 1.034



is carried out with micro-tolerance precision (as 

fine as 10 μm), and the variability of these 

differences is presented as a plot along the edge of 

the material, offering a clear visual representation 

of the deviation profile. 

 

 

 

 

Figure 17: (a) Top view and (b) side view projections of a fixator deeply embedded in an airplane wing 

structure. (c) 3D reconstructed geometry of the fixator; (d) Close-up showing edge differences between 

nominal and actual parts (thread) with color indications; (e) Dimensionality analysis comparing 

nominal and actual edge dimensions with micro-tolerance (10 μm) precision, plotted along the edge. 

 

Data acquisition was completed in approximately 

30 seconds for objects within a 2 m³ field of view, 

with 3D reconstructions processed almost in 

real-time (5-8 seconds including raw data 

processing and storage). The logged time of 

previous handling and disassembly labor for that 

plane part (fig. 17) can take as much as ten days 

[23]. This initial robotic method for inspection 

dropped the time to less than half a day including 

handling and positioning of the robotic scanner 

around the target. It should be noted that for 

larger objects, such as a jet engine exhaust duct, 

inspection durations ranged from 30 minutes to 

three hours given the need for higher -out of plane 

resolution i.e., “data density”-, and the need for 

repeating the tests with alternative trajectories of 

the emitters/detectors to avoid missing parts of 

the object. These alternative trajectories were 

need for calculations for occlusion scenarios and 

exposure trial and error for optimization of SNR 

so there was the minimum trade-off and no 

reduction of spatial resolution. This significant 

multifold reduction in scan time, comparing to 

current procedures, is primarily due to the 

elimination of extensive sample preparation and 

disassembly. These procedures in conventional 

imaging techniques can last from several hours, to 

days or even months, as in the case of 

Maintenance, Repair, and Overhaul (MRO) A, B, 

C, D airplane checks [23], depending on the size 

and complexity of the target. 

The perovskite detector option presented here has 

been reported to exhibit the lowest detectable 

dose rate of 13 nGyair s
−1

 in previous studies, 

which is over 400-times lower than the medical 

diagnostic baseline without deterioration in the 

image quality [39]. Detection efficiency of 88% 

and noise-equivalent dose of 90 pGy air were also 

obtained with up to 18 keV X-rays, allowing 

single-photon-sensitive, low-dose and energy- 

resolved X-ray imaging. Array detectors like this 

demonstrate high spatial resolution up to 11 lp 

mm
−1

 [60], [67]. Although we did not test these 

performance characteristics, we note that the 

detectors were used here in the same 

configurations and in additional configurations 

that the radiology dose was tripled or even 

quadrupled. However, we need to stress that we 

did not do radiographic dose calibration in the 

present study. 
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IV.​ DISCUSSION 

CT is finding an increasing acceptance in the TIC 

landscape, largely due to the evolution of its 

components associated with resolution, focal 

point sizes, detector quality, all of which are need 

in advanced inspection processes. However 

certain problems still prohibit its widespread use 

in inspection related processes, including dynamic 

accuracy, workflow, gantry size as they translate 

in the inability to scan large sized assembled 

targets comprised of composite materials. 

Robotics-driven multimodal imaging is an 

alternative to traditional industrial CT scanning 

that can help resolve some these challenges. It can 

combine a series of different imaging modes in 

one device offering the opportunity to accurately 

fuse static 3D images (morphology) with 

deformation and strain data obtained during DT 

and ND imaging-based testing. This level of 

automation can help shine light on an actual part, 

even if it is of large size, resolving internal 

structures that can be viewed digitally. These 

internal parts can be visualized and measured 

with high accuracy, without sectioning or 

disassembling the actual part from the larger 

structure that contains it. 

Inspection of aerospace components, welds in 

pipes, airplane engines, wings, landing gear and 

containers can be a demanding imaging task 

dealing with thick deep layered and/or very dense 

materials. Typically, hard-to-handle high-energy 

isotope sources are needed to produce sufficient 

image quality in reasonable time. Conventional 

X-ray imagers rely on thicker or specialized high 

energy scintillators. The trade-off is typically loss 

of spatial resolution and very laborious 

time-consuming processes to gather the images. 

The method presented here offers novel direct 

conversion technology that preserves spatial 

resolution even when using a thicker converter 

layer for improved efficiency in high energy 

inspection. The necessary geometric trajectory 

(placement) of this kind of panel detection, 

however, and its proximity to these highly 

irregularly shaped structures has been a challenge 

in the TIC industry. Other challenges include huge 

scanning times, inability to scan with load bearing 

and motion, accurate dynamic control of 

exposure/magnification, and laborious logistics to 

coordinate disassembly of large components so 

they can be brought into the laboratory. Even at 

the laboratory, conventional CT scanners have 

small-sized gantries for most of these structures. 

Some structures must also be studied under 

realistic working conditions. This means impact, 

vibration or motion at high speeds and load 

bearing conditions that alter the morphology of 

the object based on the rate and magnitude of 

loading, that eventually cause motion artifacts, 

blurry images, and exposure challenges during 

imaging.  

The method presented here can inspect thicker or 

denser structures with high throughput and a 

multifold reduction in the scanning time) using 

the photon counting detectors and specialized 

emitting systems with optimized relationships 

between focal spot, exposure, detector binning 

and absorption. The most important solution 

however, is mainly the ability to control the 

dosage and compensate for the motion artifacts. 

Our future studies ought to investigate the 

interplay of these parameters so that this tool can 

be fully characterized for a variety of scanning 

protocols. Automation can help resolve this 

multiparametric characterization challenge. 

Robotics-driven imaging can offer combinations 

of different emitters and detectors in a unique 

“one-system-many-modalities” imager. The 

system, therefore, has the potential to unite all 

these old and new inspection methods in a 

common reference, both in terms of coordinate 

systems representing and normalizing the data 

(fig. 1, 3) and in terms of a hybrid comprehensive 

inspection platform. The X-Ray data acquisition 

rate varies, depending on the target and the 

modality, from 1 to 10000 fps and the angular 

speed of the robotic system may vary from 1 and 

up to 30 degrees per second. If we add the robotic 

arms positioning time that can take from a few 

minutes and up to an hour (based on target size) 

the total inspection time can be less than two 

hours with the actual scan duration ranging from 

6 seconds to 30 minutes. In a worst-case scenario 

that multiple trajectories need to be employed for 

a complicated composite part like an aircraft 

structure, the total scanning duration can be half 
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a day including handling and positioning of the 

robotic scanner around the target. These 

durations, however, remove from the overall 

inspection logistics the many hours, and in some 

cases days, even months required for 

disassembling of large non-axisymmetric 

structures so that scanning is possible in 

conventional small gantry scanners. When 

imaging occlusion becomes a problem in the 

presented set-up, a different robotic arm 

trajectory is selected, and the occluded viewpoint 

can be bypassed. Fitting a system like this on a 

mobile robotic imaging station trailer in the future 

can make this system a mobile TIC facility with 

flexible open scanning architecture that can 

approach large structures (planes, pipelines etc.), 

significantly improving their inspection tasks.  

A 3D model-based kinematics tracking method 

was presented in detail as it can help assess the 

kinematics of a composite target in motion with 

microlevel accuracy. The method can work for the 

deep layers of structures as they are visualized 

with high-speed sequences of biplane radiographs 

from specialty detectors. The method is based 

upon optimizing similarity between the 

radiographic image pairs and digitally 

reconstructed radiographs (DRRs) generated by 

projections through a 3D target (generated from 

CT). However, the matching between DRRs and 

actual radiographic images can never be exact. 

The radiographic images result from a 

combination of the extent of absorption of the 

different layers of the composite structures, and 

some the level of obstruction of some internal 

structure on the outmost edges of the target. In 

contrast, the exact outmost edges of the target can 

be obtained from the CT volume data, from which 

certain parts of the composite can be removed. 

This causes an apparent difference in size between 

real radiographic images and DRRs (the projected 

target looked bigger than the target in the 

radiographic images). This difference varies by 

frame and is difficult to correct unless we collect 

radiographic sequences using alternative 

trajectories which in turn is only possible with an 

alternative pathway taken by the robotic arms. 

The high-resolution capacity of the detector has a 

significant effect on the reduction of these 

differences and need to be investigated more in a 

future study. Single-plane implementation of the 

algorithm resulted in target position estimates 

farther away from the X-ray source than the 

absolute position determined using stereo 

information or marker-based tracking (fig. 10). 

Thus, assessment of movement perpendicular to 

the image detector was unreliable with a 

single-plane system. In figure 10, the target was 

estimated 2 mm farther away from the X-ray 

source of the left system, causing 0.9 mm errors 

for X axis and 1.9 mm errors for Y axis in the 

reference coordinate system. By combining results 

from the two views or even more that two 

trajectories, errors in the beam axis direction are 

reduced to a level similar to those in the image 

plane. 

The two-line segments connecting each projection 

source and the coordinates of its projections onto 

the corresponding image plane should 

theoretically intersect at a point. But these vectors 

can some times not cross, due to small errors 

from various sources (see fig. 10). During the 

controlled experiments with the cube described 

above, these two lines typically missed crossing by 

only about 0.01 mm in each axis. Single-plane 

systems may be somewhat better for estimating 

target rotation, since 3D rotations calculated 

separately for each system typically differed by 

only about 0.03° (after the estimated orientation 

from each single-plane system was transformed to 

the common reference coordinate system). 

When information from both views was 

combined, the relative differences between 

model-based tracking and marker-based tracking 

data were approximately 0.02 mm for the cube 

experiment for all axes. These errors are similar 

in magnitude to the effective pixel size of the 

radiographic images. This suggests that 

radiographic image resolution may be a limiting 

factor for accuracy, and higher resolution cameras 

and/or the addition of subpixel matching 

techniques can improve performance. 

It should be noted that this open system 

architecture enables also dynamic binning 

options, which in turn allow the same detectors to 

be used for different imaging modalities with 
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higher resolution results. Binning eventually 

improves the signal to noise ratio and provides 

better total image contrast resolution, with the 

trade-off being reduced spatial resolution. The 

two magnification modes however (geometrical 

and optical) can be applied with a tomosynthesis 

scan of the object in question at the exact same 

testing set up adding only 30s to 5 minutes of 

extra imaging time depending on the size of the 

target. Tomosynthesis provides however, the 

high-spatial microCT level resolution data that the 

previous scanning options could not deliver 

without having to disassemble the part, and/or 

move it to another scanner in a different 

laboratory site. More work in the future is 

required to demonstrate the effects of binning, 

optical magnification and tomosynthesis in 

industrial imaging. 

The blur-motion artifact solution i.e., the capacity 

to directly measure the 3D morphology of a 

structure under loading/movement conditions 

(up to 20 m/s speeds) opens a new chapter in the 

hypotheses underlying the material 

characterization instrumentation. We believe that 

much more work is required to reach a golden 

standard of this methodologies for the plurality of 

objects and conditions that it can be applied to. 

An enormous calibration task lies ahead with 

regards to thickness of specific materials and their 

composition. Another advantage of controlling the 

exposure during different stages of the trajectory 

of the emitter/detector couple is that it offers an 

indirect way to control the frequency dependence 

on attenuation. Controlling dynamically the focal 

spot- combined with optical magnification with 

special lensing systems that in turn have 

dynamically controlled amplitude, delivers 

micro-CT capabilities for the first time outside the 

laboratory and for on-site inspection. More work 

ought to be performed to demonstrate this 

capability in detail in a separate study. The spatial 

resolution (sharpness) alternative is offered where 

contrast conditions are not ideal. Image “density” 

(out of plane resolution) can be drastically 

improved and several times greater than in a 

conventional system. This is possible because the 

robotic arms and data acquisition speed can be 

altered to collect hundreds of thousands of 

projections if needed. In the metanalysis only the 

projections need for proper reconstruction are 

selected, potentially removing the inappropriate 

motion error projections. The radiographic 

quantum mottle effects or noise can be tackled by 

having the grid system, tubes, and collimators of 

each emitter fire not in synchronicity but with 

time latencies so the signals from the two 

different tubes in the stereo system do not cross 

and do not collide [51]. Its assessment needs also 

quantification in a dedicated study. 

A new challenge, however, is associated with the 

capacity for continuous, autonomous, and 

excessive use of the detectors and significant need 

for cooling structures on the tubes. The system 

literally “burns” very fast through detectors as it is 

using them at the top of their capacity all the time. 

That introduces panel disadvantages (as 

compared to image intensifiers -IIs) that include 

defective image elements, higher costs and lower 

spatial resolution if they do not get replaced on 

time (at least twice annually for a constantly 

scanning device).  

The present alternative tool for non-destructive 

inspection, composition analysis and analysis of 

carbon fiber parts helps locate the exact axis and 

point of porosity, resin voids and delamination 

within complex geometries inside of carbon fiber. 

Alternatively, it offers reverse engineering and 

tolerance mapping methods when the CAD model 

of the part is not known and needs to be 

approximated from existing geometry. The new 

robotic imaging system demonstrated an 

alternative way to study fatigue, impact and any 

associated deformation, linear expansion or phase 

change that a material experiences due to the 

application of different forces at different loading 

rates using image-based NDT. The time savings of 

these new methods described here contribute to 

drastically lower labor requirements and can 

increase the capacity of a single system, so more 

parts could be inspected.  

V.​ CONCLUSION  
In conclusion, the proposed robotic multimodal 

imaging system presented in this study offers a 

transformative approach for inspecting large 
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aerospace structures and complex-shaped objects. 

By integrating advanced motion compensation 

and dynamic kinematics tracking, the system 

significantly reduces scan times, improves 

workflow efficiency, and lowers inspection costs 

while delivering high-resolution analyses of key 

material properties such as porosity, 

dimensionality, and failure modes. 

The ability to automatically stitch 2D/3D 

radiographic images into panoramic views of 

large, non-axisymmetric objects further enhances 

its utility for reverse engineering and 

comprehensive quality control. Comparative 

evaluations between marker-based and 

markerless motion tracking methods indicate that 

the markerless approach achieves comparable 

accuracy, demonstrating its potential for more 

streamlined and less invasive inspections. 

These findings have broad implications, with 

applications extending beyond aerospace to fields 

like defense, cargo safety, petrochemical logistics, 

and medical device manufacturing. Future studies 

will focus on validating the system using a library 

of standardized target models tailored to specific 

density and absorption characteristics. This effort 

aims to establish a simplified, expedited, and 

cost-efficient standard for dynamic inspection 

protocols in both laboratory and on-site 

environments. 
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