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ABSTRACT

Modern composite materials promise superior
performance and load-bearing capabilities, yet
evaluating their structural integrity remains
challenging. Current testing methods, such as
visual, thermographic, ultrasonic, optical,
electromagnetic, terahertz, shearography, X-ray,
and neutron imaging, are hampered by long
scan durations, limited field of view, suboptimal
accuracy, and high costs, particularly when
applied to large structures.

This paper addresses these issues by introducing
a novel robotic multimodal imaging system that
overcomes the limitations of traditional methods.
This system dynamically captures both static and
dynamic properties of materials using advanced
motion compensation techniques. By integrating
multiple radiographic modalities into a
coordinated robotic platform, it provides rapid,
high-resolution imaging of composite materials
of large structures without the need for
disassembly.

The system was validated through simulations of
a four-robot radiograph setup, treated as two
single-plane systems. The 3D position and
orientation of a cube phantom were determined
by generating computer-based  digitally
reconstructed radiographs from a computed
tomography model and applying a 3D line
intersection method based on known imaging
geometries. Comparisons between marker-based
and markerless kinematics tracking methods
yielded differences of only 0.03 mm in
translation and 0.06° in rotation.
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These findings demonstrate that the proposed
system significantly reduces scan times and
enhances accuracy, offering a robust, scalable
solution for dynamic inspection in diverse fields

such as aerospace and medical device
manufacturing.

Keywords:  robotics-driven imaging; motion
correction; multimodal; porosity analysis;

materials testing, computer-based metrology;
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Abbreviation Definition
a-Si Amorphous Silicon
CAD Computer-Aided Design
CMOS Complementary Metal-Oxide Semiconductor
CT Computed Tomography
DLT Direct Linear Transformation
DT Destructive Testing
DR Digital Radiography
DRR Digitally Reconstructed Radiograph
ECT Eddy Current Testing
EDR Extreme Dynamic Range
EoAT End-of-Arm Tool
FoV Field of View
GD&T Geometric Dimensioning and Tolerancing
HMI Human Machine Interface
IGZO Indium Gallium Zinc Oxide
kvp Kilovolt Peak
MBT Marker-Based Tracking
MeV Mega Electron Volts
mA Milliampere
MRI Magnetic Resonance Imaging
NDT Non-Destructive Testing
OID Object-to-Imager Distance
PAN Panoramic
SNR Signal-to-Noise Ratio
SOD Source-to-Object Distance
TIC Testing, Inspection, and Certification
DOF Degrees of Freedom
PVC Polyvinyl Chloride
FPS Frames per second
. INTRODUCTION in terms of detection and evaluation to maintain

structural integrity.

Testing, inspection, and certification (TIC)
techniques play a crucial role in developing
effective material modification treatments, [1],
[2], [3], [4], [5], [6], [7], [8], [9], [10]. These
methods cover a wide range of evaluations, such
as fatigue, 1impact, composition, shear,
thermomechanical, or liquid flow testing, that are
essential for ensuring the performance and safety
of modern composite materials. Modern
structures, such as aerospace components,
rehabilitation devices, and vehicle parts, often
consist of heterogeneous, anisotropic composites
(e.g., metals, carbon fiber, resins, and
thermoplastics), which present unique challenges

A variety of destructive and non-destructive
testing (DT/NDT) methods have been developed
for these materials. Techniques include visual
testing [8], thermographic testing, and several
ultrasonic methods (Pulse Echo, Phased Array,
and Thru-transmission) [2], [9], [10], [11], all
designed to locate defects in single and
multi-layer materials. Shearography [12] detects
flaws in solid laminates and bonded surfaces
through interferometric imaging under stressed
and unstressed conditions. Other techniques, such
as magnetic particle, liquid penetrant, optical, and
eddy current testing (ECT) [13], are used to
identify defects on and beneath surfaces in
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conductive materials. Radiographic testing,
encompassing both 2D X-ray inspection and 3D
computed tomography (CT) [2], [3], [4], [11], [12],
[13], [14], [15] further enhances the ability to
detect internal density variations indicative of
flaws. Moreover, advanced  synchrotron
techniques using free electron lasers have begun
to overcome some X-ray penetration limitations,
producing intense and tunable beams for superior

resolution [4], [7], [16], [17], [18], [19].

Despite these advances, all these methods share
several limitations and unresolved challenges.
Processing and analyzing data remain
time-consuming and requires considerable
expertise, particularly when overlapping signal
amplitudes make it difficult to associate them
with specific damage mechanisms. Many tools
employ small gantries, limiting their field of view
(FoV) and hindering their application on large,
non-axisymmetric structures. Surface and shallow
scanning techniques often face occlusion issues,
rendering deep scanning in multilayered and
complex geometries unreliable. Signal noise and
diffractive scattering from grain and pore
boundaries further complicate image analysis.
Techniques like wet magnetic particle testing rely
heavily on subjective visual feedback, while
assumptions in ultrasonic testing regarding
constant reflection coefficients can lead to
inaccuracies [2], [9], [10], [11], [12]. Additional
imaging challenges include issues with
figure-to-ground  relationships, = background
luminance, line dimensions, viewing distance,
orientation, frequency-dependent attenuation,
spatial resolution, contrast, density, radiographic
mottle, distortion, metal artifacts, and non-linear
signal responses—all of which can affect the
detection of subsurface discontinuities,
recrystallization states, and grain sizes [9], [10],
[11], [12], [13], [14], [15], [16], [17], [18], [19].

Traditional industrial CT scanners are also limited
by their relatively small or inflexible gantries,
their inability to dynamically adjust the focal spot,
and their lack of automatic control over image
magnification related to amplitude and exposure.
These scanners typically require the target to be
motionless, and even state-of-the-art micro- and
nanotomography systems, which are confined to

very small gantries, can only be used on
extensively prepared, in-situ small samples,
thereby limiting their application for on-site
inspections.

A major common challenge is the motion artifact
(blurriness) that occurs when inspecting moving
objects. Direct measurement of internal
kinematics, strain, and shear under high-speed
motion has proven elusive. Although some studies
have employed texture-mapped 2D models or
manually segmented geometric models with
template matching [14], [19], [20], [21], [22], [23],
[24], [25], these approaches lack the accuracy
required for comprehensive kinematics analysis,
particularly in the presence of soft tissue or
composite structures with variable material
distribution. While 3D techniques like CT and
magnetic resonance imaging (MRI) allow for
direct observation of underlying structures, they
do not yet achieve the high frame rates necessary
for dynamic function estimation, and their
confined imaging environments  hinder
full-motion kinematics measurement.

Furthermore, none of these techniques has been
standardized to date in terms of homologating
dynamic inspection methods into a unified
framework. There is a need to integrate these
methods under a common reference system, both
in terms of coordinate systems for data expression
and normalization of kinematics data obtained
from both marker-based and markerless tracking.
All the above conventional testing techniques can
last from several hours, to days or even months,
as in the case of Maintenance, Repair, and
Overhaul (MRO) A, B, C, D airplane checks [23],
[26], depending on the size and complexity of the
target and the laborious task of disassembling its
parts to scan in the laboratory.

The proposed robotics-driven  multimodal
imaging system with real-time motion
compensation  uniquely  addresses  these
longstanding limitations. Unlike traditional

systems, this platform is designed to inspect
moving objects by dynamically compensating for
motion artifacts, ensuring high-resolution
imaging even during operation. Moreover, by
unifying multiple imaging modalities under a
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common reference system, our system bridges the
gap between disparate inspection methods,
eliminating data inconsistencies and errors. This
comprehensive approach not only enhances the
detection of defects and internal anomalies in
composite materials but also paves the way for
more accurate and efficient on-site inspections
across a variety of engineering fields.

ll.  METHODS

2.1 System Overview and Data Acquisition

The research leading to current state of the art of
the device presented here can be summarized in
the following references: [6], [14], [27], [28], [29],
[30], [31], [32], [33], [34]. The Logimagine Helios
System (KINEMAGINE/ATLAS Inc., [35]) used
here employs several six to twelve-axis
coordinated robotic systems. Configurations
range from two to six robots (or cobots),
programmed to carry combinations of X-ray
housing units, dynamic flat panels, multicamera
vision systems, intensifiers with high-speed
radiography cameras, and densitometry detectors
(fig. 1). The figure 1 presents the “One
device-multiple modalities” principle and data
fusion in the robotic scanner where the large
robotic arm tool (far left) connects the end-of-arm
tool (EoAT) with several multifunctionality
connectors with a “female” component. Many
male components of the device are attached to
different detectors and emitters. These include
intensifiers with high-speed X-Ray cameras, flat
panels of different properties, large DEXA panels,
perovskites panels, scintillation panels, different
emitter and collimator combinations etc. This in
turn, enables scanning an object in the same field
of view with different emitter-detector
combinations i.e., scan it with multiple
modalities. These modalities (1-8) are digital
radiography (DR), Panoramic and 360 DR,
high-definition Micro CT, CT, 2D and 3D high
speed stereovideoradiography with two (or more)
planes, 2D and 3D tomosynthesis
(Tomosynthesis, is a modality similar to, but
distinct from CT which uses a more limited angle
in image acquisition. Rather than a 360-degree
acquisition of a structure, tomosynthesis, via an

x-ray tube 'arcing' method over a stationary
detector, can capture an arc sweep of a single part
of the structure [28], [30], [32], [36]. This
technique reduces the burden of overlapping
structures/composites when assessing for single
entities such as composite materials and layered
objects. One of the primary advantages of
tomosynthesis is its very high-resolution
capabilities (as it functions as a magnification
method); Tomosynthesis, if combined with optical
magnification it can reach 10 pm resolution. The
far-right column of images in figure 1 shows
different types of imaging of various size objects
(machine parts, jet turbines fuselage support
structure etc.) that resulted from the
aforementioned modalities.
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Figure 1: Robotic scanner architecture illustrating the “One Device—Multiple Modalities” principle,
where coordinated robotic arms integrate various emitter—detector combinations (e.g., DR, CT,
tomosynthesis, stereovideoradiography) to capture multimodal images in a single field of view.

Several robots of different additional robotic arm types can be utilized interchangeably in the device.
The system is manipulated via a computer and a human machine interface (HMI) device that stores a
plethora of TIC imaging protocols. End-of-arm toolkits at the robots can exchange different emitters
and detectors therefore employing different imaging modalities in the same calibration space. A
collection of rails, pedestals and mobile trailers can extend the system’s functional scanning envelop to
reach targets up to 160 feet tall and of “unlimited” width and breadth (fig. 1, 2).

London Journal of Research in Computer Science & Technology

Advanced Robotic Multimodal Imaging with Real-Time Motion Compensation for Dynamic Structural Health Monitoring

(© 2025 Great Britain Journals Press Volume 25 | Issue 2 | Compilation 1.0



London Journal of Research in Computer Science & Technology

Volume 25 | Issue 2 | Compilation 1.0

Figure 2: (a) Large size robotic scanner mobilized by a huge base on a rail system with multiple degrees
of freedom to approach the inside of a plane fuselage (with 160 feet high and up to 120 foot reach
capacity so it can approach the full length of large long and non-axisymmetric objects (plane wings, jet
engines, fuselages, large vehicle components, pipes etc.); (b)-(e) show the leading scanning robots
carrying emitters and detectors as they approach the part in the fuselage to actually scan i.e., a deep
layered joint of the connection of the cockpit to the fuselage as shown in (f).

The “one-system-many-(potential) modalities” one unique robotic coordinate system (fig. 3),
options ensure error free fusion of all the imaging [27], [31], [32], [33], [34], [37], [38]. The last
modalities and co-registration of all the data in large-scale imaging modality for huge structures
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is very important as the scanning logistics with
large objects that normally do not fit in the
gantries of traditional scanners can be extremely
laborious and most of the times impossible. These
modalities can be tuned to provide industrial CT
and microCT damage inspection, porosity

analysis, dimensionality analysis, failure analysis,
radiography

reverse engineering, 2D with

refx =
h. fu

panoramic large format and automatically
stitched imaging for huge and non-axisymmetric
objects, densitometry of composites and
stereofluoroscopy in 3D. The last option is
extensively tested here as it relates to dynamic
imaging for characterizing the deformation of
materials under linear and shear strain.

Cameras and Detectors

Figure 3: Top: The global reference coordinate system ™XYZ for the biplane system and two local
coordinate systems (right single plane "XYZ and left single plane 'XYZ) for normalizing the kinematics
information; Bottom: close-up view of the actual leading “scanning head” of robotic system with two
emitters and two intensifiers positioned by the robots to scan a composite structure;

2.2 Imaging Protocols-Variable Source to Object
Distances (SOD) and Object to Imager Distances
(OID)

The system adapts to meet the requirements of

the scanning object, eliminating the need for
extensive sample preparation. Programmable

adaptable collimators control the exposure and

manipulate the field of view (FoV) leading to an
overall controlled and optimized emission,
suitable for each application based on specially
performed calibrations (fig. 4). Figure 4a
illustrates the overall setup of the robotic
radiographic system, including the X-ray emitter,
detector, and a third robot dedicated to
positioning calibration grids and phantoms.
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Figure 4b shows the multi-marker 3D calibration
cubic phantom that contains a 1145-marker 3D
micromachined grid made of polyvinyl chloride
(PVC) with accurately (and orthonormally)
embedded tantalum markers having diameters
raging from 0.02 to 2 mm. This cubic phantom is
used to determine the imaging geometry of the
robotic radiographic system. This cube is also
used to correct distortion introduced by the image
intensifiers and associated optics [33], [34].
Figure 4c shows the head of one of the rods
carrying two calibration markers; the micro-CT

image in the background demonstrates the
scanner’s 10 pm resolution capabilities. In Figure
4d, each tantalum marker’s position is calculated
to determine the system’s setup for 3D volumetric
reconstructions, while Figure 4e provides a
close-up view of a single-plane projection
highlighting a tantalum marker’s X-ray signature.
The system employs geometric and optical
magnification techniques with fixed, -clearly

defined coordinate systems to enhance imaging
resolution (fig. 3).

Figure 4: Overall controlled and optimized emission/detection approach using multiple robots and
specialized phantoms: (a,b) System overview with programmable collimators; (c) Head of a rod
carrying two calibration markers-beads, shown with a micro-CT background (10 um resolution); (d) 3D
reconstruction of the calibration cube with embedded tantalum markers; (e) Single-plane projection

revealing the X-ray signature of a tantalum marker.

2.3 Emitters and Detectors

A selection of different emitters is available,
ranging from low power systems to powerful
X-ray generation grids for deep layer imaging. For
reference we cite here the X-Ray generators that
were mostly used in the present work but many
more are part of the device options [35]: Max.
Voltage 1-160kV with Max Power 300-1.2kW, Max
mA 600. Note that a wide variety of focal spots
are implemented (ranging for 0.063 to 7.5 mm
and micro level applications with the microfocus

focal spot sizes reaching 16 pm). In the
high-energy X-ray CT production option up to 9
MeV, a fine energy bin width of less than 100keV
is required with an optimized signal-to-noise ratio
(SNR) when inspecting with appropriately tuned
focal spot, large and dense parts in deep
structures such as those associated with aerospace
or automotive inspection work. Detectors include
amorphous silicon (a-Si), indium gallium zinc
oxide (IGZO), and CMOS sensor type panels,
among others. Binning and automatic stitching of
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images enhance appropriately the resolution and
field of view (fig. 3). For reference we cite here
detectors that were mostly used in the present
work but many more were employed [38]: a)
16x16 to 43x43 cm, Pixel matrix 1536x1536 to
4288x4288, pixel size 45 to 200 pum resolution,
Max frame rate 40 to 160 fps, 2x2 binning 280f1ps,
PAN option 600 fps, active area; b) DC-TDI
Photon counting, 102/78 mm- 1030/412 mm X 6,
Pixel size 100 um, Max frame rate 333-6000 fps,
both single and dual Energy; [35]); ¢) Halide
perovskites [39] were also employed due to their
strong X-ray absorption and excellent
optoelectronic properties (high spatial resolution
of 12 lp mm™ and excellent X-ray imaging
properties under a remarkably low X-ray dose of
~50 uGyair, which is just half of the X-ray dose
typically used in the traditional flat panel
equipment. Coupled with the image intensifiers
configuration are specially customized (CMOS)
back side illuminated (BSI) camera sensors with
9.27 um pixel size, 2560 x 1664 resolution and
capacity for 9,350 fps data acquisition rate. A
global electronic shutter with an extreme dynamic
range (EDR) make these unique for dynamic
imaging.

2.4 Motion Compensation Techniques

Resolving image artifacts (blurriness), motion
detection and compensation has been always a
huge challenge for both 2D and 3D imaging
protocols, from the early days to the most recent
stereovideoradiography research [40], [41], [42],
[43], [44], [45], [46]. External fiducial markers
attached on the surface of the object to be scanned
were used in many stereovideoradiography
approaches [30], [37], [47] to correct these
motion artifacts. The present system employs
motion compensation techniques to acquire
high-quality images while the object is in motion,
i.e., while the object is performing a high-speed
load bearing task and is undergoing deformation.
This is achieved here, through the accurate
(robot’s accuracy is 10 um) positional-geometrical
X-ray source-detector trajectory recording during
the scan procedure [28], [29], [30], [34], [36],
[37]. The relationships between all X-ray
components, therefore, are also known with high

precision (0.005mm is the robot’s precision),
allowing for an almost error-free fusion of all
imaging modalities. Note that the accuracy and
repeatability of the robots reported here is
relevant to high speeds of operation at the
manufacturing environment. Contrary to these
speeds the operational envelop of speed for the
robots used here never exceeds 10% of their
maximum capacity. This was expected to improve
their stabilization and repeatability parameters.

The open gantry mechanical architecture of the
system allows 360° visibility so that the
high-speed vision system produces highly
accurate relationships between the moving object
and the detector/emitter combinations i.e., the
robotic arms. Practically, what this means is that
unlimited trajectories in space between the
emitter and the detector are feasible for the first
time in tomography. Once the motion is known,
the motion compensation is applied at the
back-projection step. To minimize motion blur
during rapid target movement, the system is also
capable of synchronously acquiring 10000 fps
from two cameras fixed at the two different
robotic arms during movement of the object
scanned. This configuration provides a large, open
area suitable for either rail-assisted scanning of
large sized objects by following them for part of
their trajectory or scanning of free moving objects
that cross the field of view.

The marker-based and markerless motion
tracking techniques have been documented
elsewhere, [23], [28], [29], [30], [31], [32], [33],

[34], [36], [37], [47], [48], [49], [50], [51], but
detailed TIC-related -calibration and accuracy

analyses for both techniques are given here.
Experience with this system during these past
different-size composite parts studies has shown
that adequate data can usually be obtained with a
minimum of 1 min X-ray duration, generating
estimated entrance exposure of approximately
880 mR/test (times two for the stereotactic
biplane mode of the device) for a typical aircraft
engine part (turbine blade) study. Such study
usually consists of three trials each of two
different movement activities resulting in a total
entrance exposure of approximately 4-5 R and up
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to 10 times that magnitude if the blade is scanned
through its entire cover, without disassembling.
The system, however, can run for more than an
hour to scan deep structures and allow for
high-resolution, high-density data, depending on
the composite structure and depth of the part in
question. Although the radiation exposure can be
monitored, it was not the case in the present
study. A series of studies in the past have enabled

for multiple assessments to minimize the total
number of trials and Xray generation required for
a specific target (type of material, size/dimensions

of parts, composite structure, and distribution of
material). This comprehensive imaging approach
allows for accurate calibration and assessment of
different target sizes and materials, while the
system’s flexibility —supports varying scan
durations and exposures based on the complexity
of each component. The device’s KINEDOSE
manual, provides the user with numerous
protocols (see sample image in fig. 8b) specifying
parameters (FoV, dose, exposure etc.) multi-trial
testing for several materials [35].

A

Figure 5. (a) Phantom cube showing embedded markers and rods; (b) Radiographic view of the cube;
(c) Tantalum marker 3D surface plot illustrating intensity distribution; (d) 3D model overlay

emphasizing internal geometry.

In addition, biplane radiographic high-resolution
image sequences of a fixator from an aircraft wing
component and from a phantom calibration cube
of known geometry (fig. 5) were collected using
the 3D CT modality to be used for calibration,
development and testing. The calibration object
(fig. 5a) is a Plexiglas cube with 3omm side and
0.6mm diameter tantalum spheres placed flush in

the middle of the top surface of the three
orthonormal cubic sides. In addition, tantalum
cylindrical rods (0.3mm in diameter) placed flush
and parallel to the surface of the three
orthonormal sides at 8x8mm from the corners
were used for geometric reference; Figure 5b
illustrates a biplane radiographic image sequence
of this phantom cube of known geometry,
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acquired via the 3D CT modality for calibration
and testing of marker-based and markerless
tracking. Fig. 5b highlights how the cube’s
internal features appear under X-ray during
high-speed movement while the cube is
suspended from a spring; Fig. 5¢ provides a 3D
surface plot derived from the scan, from a
detector with 2304x2304 pixels resolution,
demonstrating the gray level intensity distribution
of a selected region with a tantalum marker. Fig.
5d shows a 3D surface model overlay, here
visualized with a spherical mesh, to further
emphasize the shape and positioning of key
internal elements. The ANSA BETA CAE systems
software [52] reconstruction of the volumetric
cube using tetrahedra can clearly depict the
tantalum market structure and can perform

different type of volume and geometry
measurements. These one-to-one voxel-to-
element correlations are wused by the

meta-analysis to differentiate between composite
layers. The distances between the tetrahedra
centroids are also used to quantify geometrically
the 3D micro level damages in the structure of the
object in question (dimensionality) [33], [51].

The front part of the component and the cube had
at least four radiopaque markers (1.6-mm
tantalum markers-beads) glued to different areas
(internal and external). This allows determination
of six DOF motion parameters with high accuracy
(errors of 0.01 mm for translation and o0.12 for
rotation) wusing the previously developed
marker-based method [27] A comparison was
performed between the marker-based method and
the 3D model-based markerless method for
evaluation of accuracy on predefined known
motion of the cube test. Initially, a CT scan of the
target fixator within the aircraft wing structure
and the phantom cube were obtained to generate
their volumetric model. One thousand and four
hounded 0.001-mm-thick transverse-plane slices
(2560x1664 pixels resolution, capacity for 9,350
fps, and in different binning resolution could
reach 4096x2304 at 1000fps) were acquired from
the surface of the part and up to 55 cm below the
wing part surface.

Segmentation of the CT-scanned target was
performed by thresholding the slices to isolate the

aircraft fixator from remaining structures.
Radiopaque tantalum marker signatures were
identified automatically by the software and an
operator confirmed their selection (fig. 5, 7, 9).
The software replaced voxel values with the mean
values from surrounding voxels to eliminate
influences of the markers (masking). The
volumetric model was resampled using a bilinear
interpolation function to the same resolution as
radiographic images acquired with the biplane
robotics system. The same process was repeated
for the phantom cube.

The markerless motion tracking technique, i.e.,
the 3D model-based method assumes that a
properly oriented projection through a 3D
volumetric model will produce an image similar to
the radiographic images. First, imaging geometry
of the biplane radiograph system was determined
based on a reference coordinate system (fig. 3)
[43], [53]. The biplane system was simulated as
two single-plane radiograph systems based on
these parameters.

An overview of the tracking process for the
single-plane radiograph system is provided in fig.

6. The algorithm consists of four major
components:  volume visualization (model
projection), image preprocessing, similarity

measurement, and optimization. In the volume
visualization step, a 3D texture-mapping
technique is used to project through the 3D target
part volumetric model and generate a digitally
reconstructed radiograph (DRR) (adopted from
[44], [45]). During the preprocessing step, a set of
image processing algorithms (edge extraction,
image enhancement) is applied to extract the
coarse edge of the target if necessary (fig. 7).

In other words, the 3D CT volumetric model
collected with the CT modality of the robotic
scanner is translated and rotated by 6 motion
parameters (3 translations and 3 rotations) using
an initial guess and projected to 2D image by the
volume visualization method. The produced
projected DDR requires some pre-processing (fig.
7) to be roughly segmented the component to be
tracked from other parts.
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Fig. 7a presents (a single X-ray image (out of
thousands) from the dynamic stereovideo-
radiography sequence showing internal structure
undergoing strain; Fig 7b shows a Gaussian filter
to identify the major object markers or landmarks
to be assessed whereas fig. 7c is identifying the
relative object localized strain by assessing the
elongation/deformation (Al) of the various object
markers or object landmarks forming a mesh at
different time instants; Figures 7d—7e illustrate a
similar estimation of relative engineering shear
strain by assessing the 3D skewness (departure
from orthonormality in (e) or initial geometry in
(d) of the object mesh; Fig. 7f illustrates how
image processing of the grey signature of a
cross-like structure at the object mesh in terms of
grey level distribution, assists in identifying shear
by comparing the mesh at rest (unloaded object,
top) and the skewed mesh (loaded object, bottom)

projection is performed. The CT model is
resampled with equally spaced planes along the
viewing direction and a DRR is generated by
summing pixel values along projected rays from
the X-ray source to the image plane.

Similarity between the DRR and the radiographic
image is determined with a correlation. An
optimization algorithm  iterates = motion
parameters until the maximum similarity is
obtained. Once six DOF of the center point of the
target model are estimated from each single-plane
system, the absolute 3D position and orientation
of the target part in the reference coordinate
system are determined wusing a 3D line
intersection method (fig. 10) and the known
imaging geometry of the robotic system. Note that
the correlation process between two images
continues until this iterative optimization finds
the optimal similarity.

[33]; Fig. 7g indicates how the CT model
. Estimated
> _"":ezi;j Motion
g+ parameters
|4 8
" “'=| 1 ves
Radlographlc 3D Object Image

CAD =d||= Optimized ?
Motion _ J‘l Similarity
parameters: =) @ = =) Matching No
o | 2D images
Initial Volume  Image eoftelation
Guess visualization preprocessing

Adjust motion

parameters

Figure 6: Overview of the process for measuring the object position and orientation from the
single-plane radiograph system.
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Figure 7: (a) A single X-ray image (one of thousands) from the dynamic stereovideoradiography
sequence, showing the internal structure of a target under strain or shear; (b to f) show different image
processing techniques to detect major markers or landmarks on the target so the resulting relative
localized strain and shear can be calculated; (g) CT model projection, where the CT data is resampled
into equally spaced planes along the viewing direction, generating a digitally reconstructed radiograph
(DRR) by summing pixel values along projected rays from the X-ray source to the image plane.

2.5 Determination of Imaging Geometry

Imaging geometry was determined using the
multi-marker 3D calibration cube presented
earlier (fig. 5). The calibration cube was put in the
view area of the biplane system, and biplane
radiographs were acquired. Positions of each
marker were calculated to determine the
configuration of the robotic system relative to the
global reference coordinate system using the
direct linear transformation (DLT) method [43].
Each single-plane system, right and left (denoted
by “r” and “1,” respectively), of the robotic system
was described with its extrinsic and intrinsic
parameters. Extrinsic parameters consist of the
position and rotation of the X-ray source of the
single-plane system in the global reference
coordinate system. For the right_(left) system, a
position vector, ™P, (*'P,), a rotation matrix,
refRr(*fR!), were determined from the DLT method.
Intrinsic parameters include the principal point
and the principal distance of the single-plane

system (fig. 8a).
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Figure 8: (a) Imaging geometry of the single-plane radiograph system (one of the two subsystems in the
stereotactic configuration (b) Geometric magnification by adjusting the SOD and OID.

Principal distance (rPD), is from the X-ray source
(rS) to the principal point (rPP) in the image
plane and the principal point is the origin of the
image plane. X axis and Z axis of the image plane
are parallel to those of the X-ray source; Notice
the projection of the 3D object at the image plane
is expressed in an appropriate coordinate system.
Geometric magnification is achieved by adjusting
the SOD and OID (fig. 8b), while optical
magnification uses specialty lenses to achieve
different levels of magnification before the signal
is recorded at the detector side imaging Protocol
example 1: SOD = OID, concentric circular
trajectories of source and detector about the
object (for Cone and Fan-beam configurations). In
blue and green solid line, the detector's and
source's pathway are depicted respectively. The
magnification factor is double and the FOV
restricted; when SOD>OID, the concentric
circular trajectories have different radii resulting
in significant controlled magnification reduction
(1<M<2) and increased FOV with larger volume
captured and reconstructed; Collimators (Col) are
used to limit beam size to the specific area of the
object.

The principal point, "PP('PP), is the location in the
image plane of the right_(left) system,
perpendicular to the center of the X-ray beam.
The principal distance, "PD(*PD) is the distance
from the X-ray source to the principal point of the

right_(left) system. The intrinsic parameters,
along with the size and resolution of the
radiographic image, were sufficient to accurately
simulate two single-plane radiograph systems.
The extrinsic parameters were used to reconstruct
the biplane system for determining the absolute
3D pose of the target in the global reference
coordinate system of the robots.

2.6 Volume Visualization

With the geometry of the imaging system known,
DRRs can be generated from the 3D target model
using volume visualization methods [22], [23],
[35], [43], [45], [46], [48], [54], [55], [56].
Perspective (rather than parallel, fig. 7g)
projection rendering is required to accurately
represent the cone-beam X-ray image formation
process. Additive reprojection [54] or ray-casting
methods [44], [48] are commonly used for this
purpose. However, these methods are
computationally intensive, particularly for
iterative methods. Restriction of the CT target
model to specific regions [22], [24] and/or
precomputing a library of ray integral values have
been proposed to accelerate the rendering process
[23]. However, for tracking arbitrary orientations
of large composite parts moving through
significant volumes, the computational cost of
precomputing the required number of rays
approaches that of ray-casting. To significantly
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reduce rendering time, perspective projections
were generated using a hardware-accelerated 3D
texture-mapped volume rendering method,
implemented using the OpenGL graphics library
[35]. The entire 3D model volume data was
downloaded into texture memory once. To
simulate a desired 3D orientation, the volume was
rotated to orient the target properly and
re-sampled in memory to create equally spaced
planes perpendicular to the principal axis of the
X-ray beam. Each pixel of the DRR was calculated
by summing re-sliced pixels along a ray
constructed from the X-ray source to the image
plane (fig. 7g). This reduces rendering time by a
factor of about 60, at the cost of a slight reduction
in the quality of the resulting DRR (relative to
traditional ray-casting).

2.7 Image Preprocessing

The data acquisition rate varies from 1 to 10,000
frames per second (fps), with angular speeds of
the robotic arms ranging from 1 to 20 degrees per
second. The system processes 450 to 12,000 2D
projections in real-time, depending on the
application = and mode, providing 3D
reconstructions within seconds. Using the pulsing
X-Ray capabilities, the accumulative exposure
time can be less than a second (<1s) and up to
several minutes in prolonged scans [32], [33],
[38], [53]. The highest accuracy is obtained with
the highest repeatability option of the robots
tuned to 0.005 mm for translation of the robotic
arms at less than 1 degree per second rotational
speed. Relative to conventional fluoroscopic
images commonly used for 2-D/3D image
registration [22], [24], radiographic images
obtained from high-speed video cameras are less
noisy, but still the feature-extraction process can
be complicated. This situation can be worsened by
the inherent inhomogeneity and anisotropic
nature of composite materials. Thus, it is
desirable to extract a feature set using all available
information on the target composite structure,
rather than only external edges or intensity
information. This was accomplished by using a
combination of edge and intensity information
(texture information projected through 3D
volume of target model- see fig. 7) based on the
assumption that even “imperfect” (i.e., highly or

less irregular) edge data can serve as useful
features for improving matching between the
DRR and actual radiographic images. Changing
the robotic pathways during image acquisition
alters the projection shapes which helps this
matching step when dealing with composites.

Both the DRR and the radiographic images are
preprocessed prior to matching, to maximize
similarity. First, the DRR is inverted and
contrast-enhanced using a histogram-equalization
algorithm [55], [56] (see fig. 6). Then a simple
edge algorithm (Sobel edge detector [55], [56] is
applied to extract edges from both DRR and
radiographic images. The edge information is then
added back to the original images (see fig. 7),
combining both edge and texture information.
The edge information helps to drive the
optimization toward the correct solution,
improving initial algorithm convergence [57]. The
addition of the intensity/texture information
leads to more accurate matching than is possible
with edge information alone.

2.8 Similarity Measurement for the marker-less
tracking algorithm

To determine optimal position matching, a metric
for similarity between two images is required.
Pattern intensity [24], [58] and gradient
difference methods [59] have been suggested for
the DRR and fluoroscopic images. These studies
assumed that image quality is high, and that
composites structures have a relatively small role
in the intensity distribution in fluoroscopic
images. Because high-speed radiographs can be
noisy and at areas contrast-limited, and there is a
great deal of composite deformation during
dynamic studies, detectable edges and features in
the actual radiographs differ from those in the
DRRs. Thus, these assumptions are no longer
valid, and a different approach was required.

Evaluation of several different correlation
strategies suggested that general normalized
correlation [55], [56], applied to summed
edge/intensity images, is robust even in the
presence of these differences between actual
radiographs and DRRs. The correlation equation
used for this study is
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r(x,y) radiographic image;

m(x,y) DRR generated from the 3D CT
model;

m mean of the DRR;

r,, mean of radiographic image in the
region under the DRR.

this is intensive,

However, computationally

especially if the size of images to be compared is
large (as is often the case with images of large
composite materials). A new Quadtree-based
normalized correlation method was employed to
improve

reduce search  iterations and

optimization efficiency. A predefined search space
of the radiographic image is divided into four
quadrants (fig. 9). Note how resolution affects the
size of the acquired tantalum marker X-ray
signature. Steps one to six of the process of
isolating the high-resolution marker (shown in
subgraphs 1-6): 1-2-3: Masking of the marker
signature, 4-6: The 5x5 Laplacian filter applied on
a small area around the marker’s region to
enhance the contrast and remove the useless
information (background noise) close to the
marker. Quadtree-based correlation is also shown.
Correlation space is divided into four regions. The
region with the best match is subdivided again.
This process is repeated until the region size is
reduced from thousands to 4 X 4 pixels.
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Figure 9: Top: Tantalum marker X-ray signature surface plots at 576 x 576 and 2304 x 2304 pixels,
with subgraphs 1—6 showing the masking and Laplacian filtering steps. Bottom: The quadtree-based
correlation, where the search space is repeatedly subdivided until a 4 x 4 pixel region remains.

T

The average correlation value (AT, AT,,, AT,;, AT

from correlation values of four corner points of the corresponding quadrant (equation 2). The quadrant
with the best correlation is further divided for the next step (equation 3). For example, if AT, is the
optimal, AT,,, AT, ATy, and AT, are calculated. This procedure continues until the size of a
quadrant reduces to 4x4 pixels. In the final step, all pixels of the optimal quadrant of the radiographic
image are correlated with the DRR. The coordinate of the pixel with the best match is chosen as the
location of the target center in the image plane (*P,,, and **'P,,, see fig. 10).

IMAGE DETECTOR LEFT

8 Ty

) of each quadrant (Q1, Q2, Q3, Q4) is calculated

X-RAY SOURCE RIGHT
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Figure 10: Determination of 3D target part position. refPrs(refPls) is the position of the X-ray source of
the right_(left) system relative to the reference coordinate system. refPrm(refPlm) is the best-matching
location in the right_ (left) image plane expressed in the reference coordinate system. The mid-point of
the line segment “C” is chosen as the optimal 3D position.
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The value of the correlation function at this point
is used as an indicator of the quality of match for
the optimization process described below. For a
maximum expected frame-to-frame translation of
200 pixels (400x400 pixel search region), the
efficiency of the Quadtree algorithm is clearly
illustrated. Conventional sequential correlation
would require 16000 image multiplications to
find the best matching position, whereas the
Quadtree-based correlation method requires only
400 multiplications. This is a significant detail
when thousands of frames need to be tracked.

At the first iteration:

T1+T2+T4+T5

ATql = . for quadrant Q1
ATq2 = w for quadrant Q2
ATq3 = w for quadrant Q3
ATq4 = Lo TOATBATD. for quadrant Q4 (2)

4
At the second iteration

T1+T12+T14+T15

ATql1l = 2 for quadrant Q11
ATql12 = %““5”25 for quadrant Q12
ATql3 = w for quadrant Q13
ATq14 = rissr2sirasers JOT quadrant Q14 (3)

4
2.9 Optimization

The downhill Simplex method [57], [60] is used to
adjust estimated target part position and
orientation until optimal similarity is obtained.
The Simplex method requires N+1 points as
starting points, where N is the number of DOFs of
the function being optimized. Then the simplex
method travels through the parameter space by
reflection and contraction. Estimating 3D
kinematics would typically require simultaneous
optimization of all six motion parameters (three
positions and three rotations).

The optimization routine began with six
predefined vertices (as required for Simplex) as
the starting points. An initial guess was
determined manually for the first frame or
selected as the optimal position of the previous
motion frame. The remaining five vertices were
selected to span the range of wvalid target
orientations. DRRs for each vertex were generated

from the 3D model using the known imaging
geometry of a single-plane system and five DOF
parameters controlled by the optimization
process. Then two in-plane position parameters
were determined from correlation between the
DRRs and the radiographic images. Each
reflection or contraction continued to update the
three rotation parameters and the distance
perpendicular to the image plane, based on the
previous similarity calculations. The optimization
routine was terminated when the distance of
points moved in that step was fractionally smaller
in magnitude than some tolerance.

To check for local minima, the Simplex routine
then restarted from the optimized point and was
allowed to converge again. If the new solution
differed from the previous solution by more than
a specified tolerance (typically, 1 for rotation), the
original solution was rejected as a local
(nonglobal) minimum, and the routine was
restarted from the new optimum point.

2.10 Three-Dimensional Determination of Position
and Orientation

Six motion parameters can be estimated from a
single-plane system for each frame. However, the
assessment of out-of-plane translations is
unreliable with a single-plane system and the
accuracy for measuring out-of-plane translations
is poor relative to the accuracy for measuring
in-plane translations [37], [59], [61]. Thus, only a
projection ray passing from the X-ray source,
through the center of the target model, to the
best-matching location in the image plane was
constructed from each single-plane system. This
projection ray was represented as a line segment
connecting the X-ray source (the origin of a
single-plane system) and the best-matching
location in the image plane (‘P,,), for the right
system and 'P,,, for the left system).

For simulating the biplane system, line segments
(actually, two end points) estimated from each
single-plane system were transformed to the
global reference coordinate system based on the
information of the position and orientation of
single-plane systems relative to the global
reference system as follows.
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« The position of the X-ray source is the origin of
the single-plane system. Its location relative to
the global reference coordinate system,
efp (*'P) for the right (left) system, was
already determined from the DLT method.

« P..(P,,) was transformed to the reference
coordinate system by a rotation and a
translation (equation 4):

refp _fRUTP + P (for the right system)
refp, _rRUP,+ P (for the left system) (4)

where ™R (“R)) is a 3x3 direction cosine matrix
expressing the orientation of the right (left)
system with respect to the reference coordinate
system. P, (*P,,) is the best-matching location
in the image plane of the right (left) system
transformed to the reference coordinate system.

For example, two line segments within the
reference coordinate system (“A” from ™P, to
efp ~ and “B” from ™P, to (*P,,) were
constructed, as shown in fig. 10.

Ideally, the two line segments “A” and “B” should
intersect at a point because they pass through the
same point of the target model. However, these
lines generally do not intersect due to errors such
as camera calibration, image noise, matching
error, etc. To solve this problem, the 3D position
of the target part was determined by finding the
midpoint of the shortest line, “C”, between these
two-line segments using a 3D line intersection
method [62], [63] (fig. 10).

Orientation of the target part (a, B, y) could be
determined from the estimated orientation “R,, of
the target model estimated in each single-plane
system assuming body-fixed X-Y-Z rotations [64],

[65], [66]

refR - RT 'R Ry, for the right system or
refp _TRUR R, for the left system

(5)

where

‘R, constant 3x3 direction cosine matrix of the
orientation of the anatomical target part relative
to the CT model;

'RY('R®) 3x3 direction cosine matrix representing
the orientation of the CT model with respect to
the right (left) system, determined from
single-plane optimization;

R, (*Ry,) 3x3 direction cosine matrix of the
target part expressed in the reference coordinate
system.

Final 3D orientation of the target part was
determined by averaging the rotation angles
obtained from the two single-plane views

_ rm+im

-2

rm+Im

== ()

__ yrm+ylm

- 2
211 Similarity Measurement for the
landmark-based or marker-based  tracking
algorithm
The new MBT algorithm employs
image-processing routines (Laplacian filter,

Canny edge Detection [27], [44], [45], [55] and
homegrown routines to the marker’s geometry
properties (shape and diameter) (fig. 9). A 5x5
Laplacian filter was applied on a small area
around the marker’s region in order to enhance
the contrast (fig. 9) and remove the useless
information (background) close to the marker

(fig. 11).
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Figure 11: The 5x5 Laplacian mask (left) applied on the input image and the output image of the
destructive compression granular composite asphalt test (two different views- stereo). The tracking
kinematics procedure shows the results from the failed sample shown (right). The snapshot is during
the marker tracking and synchronous displacement history of the selected grains from their respective
images projected in real time. The plot diagram shown on the right is a collection of points from this
tracking. There are approximately 1334 consecutive points during this entire catastrophic event that lie

between the points shown here.

Figure 9 shows the Laplacian mask applied on an
input image and how it manipulates each pixel in
order to enhance the contrast. The output image
is a result of summarized multiplications among
the 5x5 mask values and the input image (Eq. 7).

Output (B;) = X(input A;)*mask (m;) (7)

Figure 11 shows the mask applied over the top left
portion of the input image. The center of the mask
is placed by the operator over the pixel that will be
manipulated. For example the pixel m33 of the
mask is applied on the a33 pixel of the input
image and the b33 will be finally the new value of
the pixel given by Equation (8).

b33=a11* mi11 + ... + a33 * m33 + agg * mgg  (8)
This software also employs distortion correction

and gray scale weighted centroid calculations to
improve accuracy and provide sub-pixel

resolution [27]. Three-dimensional reconstruction
of the 2D biplane displacement history of the

tantalum markers is performed with the help of
3D reconstruction software from Motion Analysis
(Motion Analysis Corporation, Santa Rosa, CA
USA). The algorithm tracks the sequences of
images automatically and is an integrated part of
the pre-processing toolkit of the robotic system.

Static and Dynamic performance of the biplane
robotic radiographic system was assessed using
the calibration plexiglas with 3omm side (fig. 5)
presented earlier. Static precision (a function of
system noise) was assessed with the cube
positioned stationary in the center of the field of
view. Dynamic errors were also assessed by
suspending the objects from a spring and then
dropping them (increased rotational motion)
while allowing them to move freely throughout
the field of view. A range of tests was performed
using different combinations of acquisition rates,
resolution, exposure i.e. 125-1900 images
acquired at 400-5000 fps with exposure (shutter)
times ranging from 50 to 3000 us. X-ray system
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protocols ranged from 90 to 320 kVp, 40 to 190
mA, 1-30s with low (1152x1152) and high
resolution (4608x4608) tests. In the industrial
objects tests 3D coordinates of markers were
determined for high-speed compression tests
using a materials testing machine.

. RESULTS

Dynamic tests were performed with a phantom
target of known geometry (cube). Four tantalum
spheres (0.6-mm diameter, fig. 4e) were
accurately implanted in the cube to enable
marker-based tracking. The texture and cube
shape (with implanted parallel rods) were first
used for the markerless tracking system. The
cube was initially suspended by a spring and
randomly moved in the field of view.
Alternatively, it was held with a fixed vice
attached to a computer-controlled stepper motor
driven positioning system capable of two-and
three axis linear movement and multi-axis
rotation (0.006 35 mm/step, 0.02°/step). Three
types of specific tests were performed: simple
translation, simple rotation, and different
combinations of translations and rotations. In
the translation experiment, the cube phantom
was positioned vertically (with one of its
implanted rod long axis perpendicular to the
ground) and controlled to move parallel to the
ground (in the X-Y plane) in diagonal directions
along a 100 mm square (smaller squares of 10x10
mm were sampled also). For the rotation
experiment, the target was rotated <+10°
internally/externally about its long Z axis
(smaller rotations of +2° were sampled also). In
an example of combined translation and
rotation, the target was moved diagonally in the
X-Y plane with simultaneous +10° rotation about
the flexion/extension Y axis. From each
experiment, a sequence of radiographic images
(1000-2000) was acquired from the biplane
robotic radiograph system.

For the first frame of each sequence, the six
motion parameters were estimated using a
window-based user interface to produce DRR that
appeared similar to the actual radiographic image.

These parameters were used as an initial guess to
start the optimization. The optimization routine
took on average about 320 iterations for the initial
guess and about 560 iterations for tracking the
target from frame to frame. The average time
taken by an iteration, is a few milliseconds with
the biplane image sequences being tracked using
the marker-based method described in methods.
Our past human arthrokinematics studies have
shown the accuracy of this marker tracking
method to be 0.01 mm [27], [51], but we had
never tested it with industrial applications. This
marker-based tracking used the same calibration
cube and distortion correction images as the 3D
model-based method, providing a common global
coordinate system for comparison. For three tests,
the root mean square (rms) differences between
methods in the cube experiment averaged 0.023
mm for translation and 0.06 for rotation. In
detail, the room mean square errors for the cube
experiment between the 3D Model-based
(markerless) and the marker based method were
in translation (mm): (XY translation: 0.013 in
X-axis, 0.03 in Y-axis, 0.02 in Z-axis), (Z-axis
rotation: 0.07 in X-axis, 0.13 in Y-axis, 0.06 in
Z-axis), (XY translation and Y-rotation: 0.06 in
X-axis, 0.05 in Y-axis, 0.12 in Z-axis); and in
Rotation (degrees): (XY translation: 0.02 in
X-axis, 0.1 in Y-axis, 0.05 in Z-axis), (Z-axis
rotation: 0.05 in X-axis, 0.06 in Y-axis, 0.03 in
Z-axis), (XY translation and Y-rotation: 0.02 in
X-axis, 0.07 in Y-axis, 0.08 in Z-axis).

London Journal of Research in Computer Science & Technology

In the dynamic cube study, the calibration cube
was randomly perturbed by a spring, causing
marker movement through a 1500 ¢cm3 volume
(Fig. 5). During low-resolution imaging, each 0.6
mm marker covered at least 64 x 64 pixels,
corresponding to a pixel size of approximately
0.086 mm/pixel. In the high-resolution setup,
each marker spanned at least 200 x 200 pixels,
reducing the pixel size to about 0.021 mm/pixel.
For both static and dynamic tests, the 3D vector
distances between pairs of markers were
calculated in each frame. In the static
high-resolution experiment, the mean measured
distance was 29,992 um, while under dynamic
conditions, it was 29,988 um (the true distance is
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30,000 um). Typical standard deviations (SD)
from the mean distance were +0.02 mm (static)
and +0.04 mm (dynamic). These results remained
consistent across the field of view, although both
low- and high-frequency noise components were
observed in the raw error plots. Fig. 12 illustrates
how unfiltered (total) errors, low-pass filtered

20 UNFILTERED

ERROR (um)
(=]

errors (20 Hz cutoff), and residual high-frequency
errors compare. The consistency of the mean
distance between static and dynamic datasets
suggests uniform error behavior, while the larger
dynamic errors stem from factors such as motion
blur, background gradients, and finite pixel-size
effects.
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Figure 12: 3D errors in the dynamic cube study, shown as the difference between the inter-marker
distance for each frame and the mean distance. Top: Unfiltered (total) errors; Middle: Errors after 20
Hz low-pass filtering; Bottom: Residual high-frequency errors.

Dynamic errors from all tests averaged +0.015
mm (1/40th of the marker size), demonstrating
the benefits of gray-scale centroids for finding
marker centers with sub-pixel accuracy. 3D
calibration and distortion correction were not
significant factors, based on the uniformity of the
errors across the field of view. Static errors
(noise-dependent) were in the order of 0.01mm.
Dynamic errors were higher than static errors.
Motion blur, background effects and quantization
errors due to the finite pixel size are the three
most likely causes for this. Blur, caused by motion
of the markers during the sampling interval, could
shift the marker centroid positions. The 2D
component of the error is a function of the relative
velocity of the two markers parallel to the image

plane — if they are moving at the same speed and
direction in this plane, both marker centroids
would be shifted by the same amount. The 3D
distance between two of the test object markers
was calculated for every frame in the movement
sequence. Low frequency (LF) errors were
determined by optimal low pass filtering (approx.
20 Hz) the raw errors. High frequency errors are
the residual left after subtracting LF errors from
the raw errors. The inter-marker distance would
be zero. To estimate the error contribution from
blur, the Z (vertical) component of the relative
velocities of the two markers was calculated. This
axis had the largest velocity component and is
also parallel to both camera/intensifier image
planes (maximizing the blur effect). The average
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absolute difference in the Z component of velocity
between the markers was 70 mm/s, causing a
mean shift in the relative centroid positions of
only 0.017 mm (at the 500 ps sample period).
Dynamic error was also estimated for the
compression testing described in figures 11, 13, 14.
In this case dynamic error was expressed as gray
level percentage difference of each marker’s
centroid gray level from frame to frame; this
difference was found to be 2%. Centroid errors
can also occur if the materials surrounding the
marker are non-uniform in radiodensity. Each
radiographic pixel represents the combined
density of all objects along the path between the
X-ray source and corresponding point on the
image intensifier or panel. Thus, the surrounding
composite materials will affect the intensity of
each marker pixel. A background gradient (due to
a curved composite surface or an oblique view of
the cube) will shift the calculate ed centroid away
from the true marker center. If the marker crosses
a high-contrast object (metals or cube edge), the
effect is greater. The low frequency (LF) errors
appear to be due to this phenomenon. The
frequency and timing of the spikes are similar to
those seen in rotational movement plots — for
example, the large “dip” in the LF error
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corresponds almost exactly in time with a sudden
180° rotation about the Z axis, which then reverts
to its previous angle in 0.3 s. Subtracting the LF
errors from the total error produces a residual
that resembles Gaussian noise. The magnitude of
this noise is slightly higher than observed in the
static test, due most likely to the finite pixel-size
effects that cause small centroid shifts as the
marker signature crosses pixel boundaries. The
cube study represents the worst-case scenario,
with a sharp-edged measurement object
undergoing large rotations in all 3 axes and
approaching the edges of the calibrated field.
Even so, typical errors were in the order of 1/40th
of the tantalum marker size. Errors appear to be
dominated by the effects of changes in the
radiographic  background surrounding the
marker. Thus, correction for background
nonuniformity would appear to offer significant
potential for improving accuracy. The other
sources of error (noise and finite pixel size) were
significantly improved by reducing the pixel size
when we acquired higher-resolution images (fig.
13). The average marker area was apparently
always greater in the high-resolution tests (fig.

13).
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Figure 13- Comparison of average marker area between high-resolution (4608x4608-top) and

low-resolution (1152x1152-bottom) tests, demonstrating improved centroid accuracy with smaller pixel

sizes.
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Dynamic imaging tests were conducted on various
composite materials, ranging from small
components to large, multipart assemblies, under
destructive (DT) and non-destructive (NDT)
conditions involving compression, tensile shocks,
and strain experiments. Using the dynamic
stereovideoradiography robotic tool, real-time
deformation, strain, and shear behaviors were
captured. Figures 7, 11, 14, and 15 illustrate these
dynamic strain analyses, focusing particularly on
the linear velocities and accelerations of
individual grains in porous materials during DT
and NDT compression (Figure 14). To
complement these tests, 3D tomography was
performed both before and after loading (Figure
15) to visualize any internal structural changes. In
Figure 14, acceleration profiles of various grain
structures (positions 1, 2, and 3 in blue, red, and
green, respectively) demonstrate how impactful
axial loading can produce initial high acceleration
peaks (circled regions), which serve as early
indicators of potential microcrack formation. A
magnified view (middle) highlights these spikes in
acceleration, pinpointing the region’s most
susceptible to crack initiation.

In the high-speed robotic dynamic imaging
stereovideography destructive setup of fig. 14 a
porous cement sample (approximately 70 x 30 x
10 mm) is placed under compression using an
MTS 858 Bionix II testing device. By capturing
stereo views of the sample, the system tracks
individual grain movements and calculates 3D
displacements with an accuracy of about 20 um.
This “4D” analysis combines real-time kinematic
data with 3D tomography, enabling the
measurement of localized strains, shear
deformations, and potential microcrack initiation.
High acceleration events (up to 500 cm/s2) are
recorded, and initial acceleration peaks often
signal areas prone to microcracking. Moreover,
marker-based and markerless tracking methods
can pinpoint the motion of tantalum (or lead)
markers or distinct grain landmarks at speeds up
to 20 m/s, achieving +0.02 mm translational and
+0.18° rotational precision. These capabilities
offer insights into how load magnitude, rate, and
material composition collectively influence

damage progression and structural integrity in
composite systems [14], [27], [32], [53].
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Figure 14: (A) High-speed robotic stereovideography imaging setup for DT/NDT compression testing
(using an MTS 858 Bionix II device) on a porous cement sample (7 x 3 x 3 cm). (B) Close-up of the
sample’s grain structure, illustrating the variety of grain sizes. (C) and (D) Stereo-views of the sample,
where individual grains can be tracked and their 3D displacements measured with approximately 20

um accuracy.
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Figure 15: Left: Acceleration profiles identifying potential microcrack initiation sites; Right:
color-coded map of internal microcrack formation in a composite sample.

Fig. 15 compares the acceleration profiles of
various grain structures (left) with a color-coded
map of microcrack initiation (right) in a
composite sample subjected to impactful axial
loading. The circled peaks in the acceleration

signals  highlight high-risk zones where
microcracks are more likely to form. By fusing 3D
CT data of the sample with the 3D kinematics of
these high-acceleration regions, following the
method presented in [21], [37], it becomes
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possible to generate an accurate map of internal
microcrack initiation. The grains, represented as
colored tetrahedra, correspond to areas of
elevated acceleration and serve as indicators of
potential microcrack nucleation sites. This
integrated approach provides valuable insights
into how loading parameters (magnitude, rate),

part geometry, and material composition
influence the onset and propagation of
microcracks.

Fig. 16 illustrates a large-structure inspection and
part-to-CAD comparison imaging approach
applied to the outer exhaust duct of a jet
engine—a component composed of synthetic
fibers bound by resin. Because this large structure
does not fit into conventional scanners, it must
typically be disassembled and inspected part by
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part. The proposed method analyzes fiber
anisotropy in high-strain regions, categorizing
fibers according to their spatial orientation. In the
left part of the figure, a plot shows the distribution
of fiber orientations by angle (in degrees),
indicating the proportion of fibers aligned at each
angle. The middle part employs color-coding to
highlight groups of fibers with different
orientation angles, revealing areas where
anisotropic behavior is most pronounced, and
aiding in the detection of porosity, resin voids, or
potential delamination. Finally, the right part
focuses on the middle layer of fibers,
demonstrating a perfectly aligned orientation.
This analysis can be used in repetitive stress
(fatigue/endurance) tests for these types of
materials.

Figure 16: Fiber orientation distribution (left), color-coded orientations (middle), and magnified view
(right) in a jet engine exhaust duct composite structure.

The Part-to-CAD (actual-to-nominal) comparison
imaging mode was used to inspect large structures
also without disassembling them. This enables the
3D CT scan data of a part to be overlaid with the
original CAD model of the same part, allowing for
detailed micro-comparisons. Fig. 17 provides a
comprehensive illustration of the proposed
non-destructive evaluation process. In fig. 17 (a), a
single projection captured from a top view can be
observed, which clearly shows the distribution of
the fixators embedded within the airplane wing
structure. Fig. 17 (b) presents a side projection of
the same series of fixators, offering additional
insight into their spatial arrangement and depth
within the structure. The key advantage of this
technique is that the 3D tomography scan can be
conducted without disassembling the entire

structure, meaning that each fixator can be
evaluated in situ without the need to remove it for
laboratory analysis. This enables to obtain
detailed, accurate Geometric Dimensioning and
Tolerancing (GD&T) reports that are critical for
quality control and assurance. Fig. 17 (c) displays
the 3D reconstructed geometry of each fixator,
providing a precise model for further analysis. In
fig. 17 (d), a close-up view highlights the
differences at the edges between the nominal
design and the actual manufactured parts,
particularly at the threaded areas, with various
colors used to indicate discrepancies. Finally, fig.
17 (e) demonstrates a dimensionality analysis
where a specific option is exercised to compare
the nominal dimensions to the actual measured
values along the edges of the fixator. This analysis
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is carried out with micro-tolerance precision (as
fine as 10 pm), and the variability of these
differences is presented as a plot along the edge of

the material, offering a clear visual representation
of the deviation profile.

E W—

Figure 17: (a) Top view and (b) side view projections of a fixator deeply embedded in an airplane wing
structure. (c) 3D reconstructed geometry of the fixator; (d) Close-up showing edge differences between
nominal and actual parts (thread) with color indications; (e) Dimensionality analysis comparing
nominal and actual edge dimensions with micro-tolerance (10 um) precision, plotted along the edge.

Data acquisition was completed in approximately
30 seconds for objects within a 2 m3 field of view,
with 3D reconstructions processed almost in
real-time (5-8 seconds including raw data
processing and storage). The logged time of
previous handling and disassembly labor for that
plane part (fig. 17) can take as much as ten days
[23]. This initial robotic method for inspection
dropped the time to less than half a day including
handling and positioning of the robotic scanner
around the target. It should be noted that for
larger objects, such as a jet engine exhaust duct,
inspection durations ranged from 30 minutes to
three hours given the need for higher -out of plane
resolution i.e., “data density”-, and the need for
repeating the tests with alternative trajectories of
the emitters/detectors to avoid missing parts of
the object. These alternative trajectories were
need for calculations for occlusion scenarios and
exposure trial and error for optimization of SNR
so there was the minimum trade-off and no
reduction of spatial resolution. This significant
multifold reduction in scan time, comparing to
current procedures, is primarily due to the
elimination of extensive sample preparation and
disassembly. These procedures in conventional

imaging techniques can last from several hours, to
days or even months, as in the case of
Maintenance, Repair, and Overhaul (MRO) A, B,
C, D airplane checks [23], depending on the size
and complexity of the target.

The perovskite detector option presented here has
been reported to exhibit the lowest detectable
dose rate of 13 nGyair s™ in previous studies,
which is over 400-times lower than the medical
diagnostic baseline without deterioration in the
image quality [39]. Detection efficiency of 88%
and noise-equivalent dose of 90 pGy air were also
obtained with up to 18 keV X-rays, allowing
single-photon-sensitive, low-dose and energy-
resolved X-ray imaging. Array detectors like this
demonstrate high spatial resolution up to 11 lp
mm™ [60], [67]. Although we did not test these
performance characteristics, we note that the
detectors were wused here in the same
configurations and in additional configurations
that the radiology dose was tripled or even
quadrupled. However, we need to stress that we
did not do radiographic dose calibration in the
present study.
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V. DISCUSSION

CT is finding an increasing acceptance in the TIC
landscape, largely due to the evolution of its
components associated with resolution, focal
point sizes, detector quality, all of which are need
in advanced inspection processes. However
certain problems still prohibit its widespread use
in inspection related processes, including dynamic
accuracy, workflow, gantry size as they translate
in the inability to scan large sized assembled
targets comprised of composite materials.
Robotics-driven multimodal imaging is an
alternative to traditional industrial CT scanning
that can help resolve some these challenges. It can
combine a series of different imaging modes in
one device offering the opportunity to accurately
fuse static 3D images (morphology) with
deformation and strain data obtained during DT
and ND imaging-based testing. This level of
automation can help shine light on an actual part,
even if it is of large size, resolving internal
structures that can be viewed digitally. These
internal parts can be visualized and measured
with high accuracy, without sectioning or
disassembling the actual part from the larger
structure that contains it.

Inspection of aerospace components, welds in
pipes, airplane engines, wings, landing gear and
containers can be a demanding imaging task
dealing with thick deep layered and/or very dense
materials. Typically, hard-to-handle high-energy
isotope sources are needed to produce sufficient
image quality in reasonable time. Conventional
X-ray imagers rely on thicker or specialized high
energy scintillators. The trade-off is typically loss
of spatial resolution and very laborious
time-consuming processes to gather the images.
The method presented here offers novel direct
conversion technology that preserves spatial
resolution even when using a thicker converter
layer for improved efficiency in high energy
inspection. The necessary geometric trajectory
(placement) of this kind of panel detection,
however, and its proximity to these highly
irregularly shaped structures has been a challenge
in the TIC industry. Other challenges include huge
scanning times, inability to scan with load bearing
and motion, accurate dynamic control of

exposure/magnification, and laborious logistics to
coordinate disassembly of large components so
they can be brought into the laboratory. Even at
the laboratory, conventional CT scanners have
small-sized gantries for most of these structures.
Some structures must also be studied under
realistic working conditions. This means impact,
vibration or motion at high speeds and load
bearing conditions that alter the morphology of
the object based on the rate and magnitude of
loading, that eventually cause motion artifacts,
blurry images, and exposure challenges during
imaging.

The method presented here can inspect thicker or
denser structures with high throughput and a
multifold reduction in the scanning time) using
the photon counting detectors and specialized
emitting systems with optimized relationships
between focal spot, exposure, detector binning
and absorption. The most important solution
however, is mainly the ability to control the
dosage and compensate for the motion artifacts.
Our future studies ought to investigate the
interplay of these parameters so that this tool can
be fully characterized for a variety of scanning
protocols. Automation can help resolve this
multiparametric ~ characterization  challenge.
Robotics-driven imaging can offer combinations
of different emitters and detectors in a unique
“one-system-many-modalities” imager.  The
system, therefore, has the potential to unite all
these old and new inspection methods in a
common reference, both in terms of coordinate
systems representing and normalizing the data
(fig. 1, 3) and in terms of a hybrid comprehensive
inspection platform. The X-Ray data acquisition
rate varies, depending on the target and the
modality, from 1 to 10000 fps and the angular
speed of the robotic system may vary from 1 and
up to 30 degrees per second. If we add the robotic
arms positioning time that can take from a few
minutes and up to an hour (based on target size)
the total inspection time can be less than two
hours with the actual scan duration ranging from
6 seconds to 30 minutes. In a worst-case scenario
that multiple trajectories need to be employed for
a complicated composite part like an aircraft
structure, the total scanning duration can be half
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a day including handling and positioning of the
robotic scanner around the target. These
durations, however, remove from the overall
inspection logistics the many hours, and in some
cases days, even months required for
disassembling of large non-axisymmetric
structures so that scanning is possible in
conventional small gantry scanners. When
imaging occlusion becomes a problem in the
presented set-up, a different robotic arm
trajectory is selected, and the occluded viewpoint
can be bypassed. Fitting a system like this on a
mobile robotic imaging station trailer in the future
can make this system a mobile TIC facility with
flexible open scanning architecture that can
approach large structures (planes, pipelines etc.),
significantly improving their inspection tasks.

A 3D model-based kinematics tracking method
was presented in detail as it can help assess the
kinematics of a composite target in motion with
microlevel accuracy. The method can work for the
deep layers of structures as they are visualized
with high-speed sequences of biplane radiographs
from specialty detectors. The method is based
upon optimizing similarity between the
radiographic image pairs and digitally
reconstructed radiographs (DRRs) generated by
projections through a 3D target (generated from
CT). However, the matching between DRRs and
actual radiographic images can never be exact.
The radiographic images result from a
combination of the extent of absorption of the
different layers of the composite structures, and
some the level of obstruction of some internal
structure on the outmost edges of the target. In
contrast, the exact outmost edges of the target can
be obtained from the CT volume data, from which
certain parts of the composite can be removed.
This causes an apparent difference in size between
real radiographic images and DRRs (the projected
target looked bigger than the target in the
radiographic images). This difference varies by
frame and is difficult to correct unless we collect
radiographic = sequences using alternative
trajectories which in turn is only possible with an
alternative pathway taken by the robotic arms.
The high-resolution capacity of the detector has a
significant effect on the reduction of these

differences and need to be investigated more in a
future study. Single-plane implementation of the
algorithm resulted in target position estimates
farther away from the X-ray source than the
absolute position determined using stereo
information or marker-based tracking (fig. 10).
Thus, assessment of movement perpendicular to
the image detector was unreliable with a
single-plane system. In figure 10, the target was
estimated 2 mm farther away from the X-ray
source of the left system, causing 0.9 mm errors
for X axis and 1.9 mm errors for Y axis in the
reference coordinate system. By combining results
from the two views or even more that two
trajectories, errors in the beam axis direction are
reduced to a level similar to those in the image
plane.

The two-line segments connecting each projection
source and the coordinates of its projections onto
the corresponding image plane should
theoretically intersect at a point. But these vectors
can some times not cross, due to small errors
from various sources (see fig. 10). During the
controlled experiments with the cube described
above, these two lines typically missed crossing by
only about 0.01 mm in each axis. Single-plane
systems may be somewhat better for estimating
target rotation, since 3D rotations calculated
separately for each system typically differed by
only about 0.03° (after the estimated orientation
from each single-plane system was transformed to
the common reference coordinate system).

When information from both views was
combined, the relative differences between
model-based tracking and marker-based tracking
data were approximately 0.02 mm for the cube
experiment for all axes. These errors are similar
in magnitude to the effective pixel size of the
radiographic images. This suggests that
radiographic image resolution may be a limiting
factor for accuracy, and higher resolution cameras
and/or the addition of subpixel matching
techniques can improve performance.

It should be noted that this open system
architecture enables also dynamic binning
options, which in turn allow the same detectors to
be used for different imaging modalities with
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higher resolution results. Binning eventually
improves the signal to noise ratio and provides
better total image contrast resolution, with the
trade-off being reduced spatial resolution. The
two magnification modes however (geometrical
and optical) can be applied with a tomosynthesis
scan of the object in question at the exact same
testing set up adding only 30s to 5 minutes of
extra imaging time depending on the size of the
target. Tomosynthesis provides however, the
high-spatial microCT level resolution data that the
previous scanning options could not deliver
without having to disassemble the part, and/or
move it to another scanner in a different
laboratory site. More work in the future is
required to demonstrate the effects of binning,
optical magnification and tomosynthesis in
industrial imaging.

The blur-motion artifact solution i.e., the capacity
to directly measure the 3D morphology of a
structure under loading/movement conditions
(up to 20 m/s speeds) opens a new chapter in the
hypotheses underlying the material
characterization instrumentation. We believe that
much more work is required to reach a golden
standard of this methodologies for the plurality of
objects and conditions that it can be applied to.
An enormous calibration task lies ahead with
regards to thickness of specific materials and their
composition. Another advantage of controlling the
exposure during different stages of the trajectory
of the emitter/detector couple is that it offers an
indirect way to control the frequency dependence
on attenuation. Controlling dynamically the focal
spot- combined with optical magnification with
special lensing systems that in turn have
dynamically controlled amplitude, delivers
micro-CT capabilities for the first time outside the
laboratory and for on-site inspection. More work
ought to be performed to demonstrate this
capability in detail in a separate study. The spatial
resolution (sharpness) alternative is offered where
contrast conditions are not ideal. Image “density”
(out of plane resolution) can be drastically
improved and several times greater than in a
conventional system. This is possible because the
robotic arms and data acquisition speed can be
altered to collect hundreds of thousands of

projections if needed. In the metanalysis only the
projections need for proper reconstruction are
selected, potentially removing the inappropriate
motion error projections. The radiographic
quantum mottle effects or noise can be tackled by
having the grid system, tubes, and collimators of
each emitter fire not in synchronicity but with
time latencies so the signals from the two
different tubes in the stereo system do not cross
and do not collide [51]. Its assessment needs also
quantification in a dedicated study.

A new challenge, however, is associated with the
capacity for continuous, autonomous, and
excessive use of the detectors and significant need
for cooling structures on the tubes. The system
literally “burns” very fast through detectors as it is
using them at the top of their capacity all the time.
That introduces panel disadvantages (as
compared to image intensifiers -IIs) that include
defective image elements, higher costs and lower
spatial resolution if they do not get replaced on
time (at least twice annually for a constantly
scanning device).

The present alternative tool for non-destructive
inspection, composition analysis and analysis of
carbon fiber parts helps locate the exact axis and
point of porosity, resin voids and delamination
within complex geometries inside of carbon fiber.
Alternatively, it offers reverse engineering and
tolerance mapping methods when the CAD model
of the part is not known and needs to be
approximated from existing geometry. The new
robotic imaging system demonstrated an
alternative way to study fatigue, impact and any
associated deformation, linear expansion or phase
change that a material experiences due to the
application of different forces at different loading
rates using image-based NDT. The time savings of
these new methods described here contribute to
drastically lower labor requirements and can
increase the capacity of a single system, so more
parts could be inspected.

V.  CONCLUSION

In conclusion, the proposed robotic multimodal
imaging system presented in this study offers a
transformative approach for inspecting large
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aerospace structures and complex-shaped objects.
By integrating advanced motion compensation
and dynamic kinematics tracking, the system
significantly reduces scan times, improves
workflow efficiency, and lowers inspection costs
while delivering high-resolution analyses of key
material  properties such as  porosity,
dimensionality, and failure modes.

The ability to automatically stitch 2D/3D
radiographic images into panoramic views of
large, non-axisymmetric objects further enhances

its utility for reverse engineering and
comprehensive quality control. Comparative
evaluations  between  marker-based and

markerless motion tracking methods indicate that
the markerless approach achieves comparable
accuracy, demonstrating its potential for more
streamlined and less invasive inspections.

These findings have broad implications, with
applications extending beyond aerospace to fields
like defense, cargo safety, petrochemical logistics,
and medical device manufacturing. Future studies
will focus on validating the system using a library
of standardized target models tailored to specific
density and absorption characteristics. This effort
aims to establish a simplified, expedited, and
cost-efficient standard for dynamic inspection

protocols in both laboratory and on-site
environments.
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