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ABSTRACT  

Bees are essential to global ecosystems, 

particularly for pollinating crops, yet in recent 

years their  populations have faced significant 

decline. One critical aspect of bee colony health is 

the ability to detect  negative in-hive events such 

as a queen leaving the hive. Traditionally, 

beekeepers rely on manual  inspections to assess 

hive conditions, a labor-intensive and 

time-consuming process. However, recent  

advances in machine learning offer new 

approaches to automating this task. Since 2016, 

there have been  attempts to classify bee sounds 

using machine learning, employing the power of 

different machine  learning methods, including 

deep learning architectures.  

In this research, we explore the use of acoustic 

labeled data for in-hive event classification,  

focusing specifically on detecting when a queen 

leaves the hive. We utilize 12-hour recordings 

from  different locations, with the data 

preprocessed and transformed to be suitable for 

input into a transformer based neural network. 

Our goal is to demonstrate that transformer 

models yield superior results in this  task 

compared to previous approaches. The study is 

organized into several key sections: we first 

highlight  the ecological importance of bees, 

followed by a literature review on the state of bee 

sound classification  research. We then delve into 

the data preparation process, model design, and 

present our findings. Our  results underscore the 

potential of transformer models in automating 

hive monitoring, offering a scalable  solution for 

beekeepers to protect and preserve bee 

populations.  

Author: Department of Mathematics and Informatics, 

Shumen University “Bishop Konstantin Preslavski”. 

I.​ THE IMPORTANCE OF BEES  

Bees play an essential role in global agriculture, 

serving as primary pollinators for a wide variety  

of crops. [1] Without bee pollination, the 

agricultural sector would suffer significant 

setbacks, leading to  decreased crop quantity and 

reduced quality. In fact, numerous studies dating 

back to the 1990s have  emphasized the critical 

impact of bees on crop health, particularly in crops 

like strawberries, where  successful pollination 

directly correlates with higher quality and yield. 

[2] [3] [4] The deepening decline in  bee 

populations threatens the ecological and economic 

stability of every country, underscoring the vital  

need to protect and sustain bee pollination 

services.  

In recent years, there has been a noticeable and 

alarming decline in bee populations, which is  

attributable to a variety of factors. [5] These 

factors can be classified into two main categories: 

external,  or outside-the-hive events, and internal, 

or in-hive events. External factors include the 

widespread use of  pesticides and the aggressive 

spread of African killer bees, both of which pose a 

significant threat to local  bee populations. [6] [7] 

In-hive events, such as swarming and the 

departure of the queen bee, also present  

challenges. Swarming can be triggered by various 

conditions, such as the emergence of a new queen, 

and can lead to the collapse of the hive if not 

properly managed. Such occurrences are 

particularly devastating  for beekeepers as the 

entire colony may be lost. [8]  

To address these challenges, this paper focuses on 

leveraging data-driven techniques to aid in  

precision beekeeping. By developing an algorithm 

capable of identifying harmful in-hive events,  

beekeepers can proactively monitor the state of 

their colonies and prevent destructive outcomes, 
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such as  swarming or queen loss. Recent research 

shows that bees communicate not only through 

physical  movements, such as the famous “waggle 

dance,” but also through subtle vibrations and 

acoustic signals.  [9] [8] Different in-hive events 

are associated with specific sound frequencies, 

many of which fall outside  the range of human 

hearing. Therefore, sound-based monitoring 

systems, particularly those that can  detect these 

lower-frequency vibrations, hold great potential 

for beekeepers.  

In this paper, we focus specifically on using 

labeled acoustic data to identify and prevent 

harmful  in-hive events. By accurately recognizing 

sound patterns associated with swarming or the 

hive entering a  queenless state, we aim to assist 

beekeepers in maintaining healthy colonies. This 

proactive approach to  hive management not only 

supports the agricultural sector by ensuring 

consistent pollination but also  contributes to 

broader ecological stability by helping sustain bee 

populations. Without a data-driven  approach, 

manual inspections disturb the bees, potentially 

leading to negative consequences for their  health 

and behavior, especially by inexperienced 

beekeepers.  

The classification of bee sounds using machine 

learning (ML) has garnered significant attention,  

particularly in recent years, with most of the 

research occurring after 2022. This section 

reviews relevant  studies focused on the use of 

acoustic data for classifying in-hive events, 

highlighting key methodologies  and results that 

inform our current research.  

One of the earlier works in this domain was 

conducted by Zgank in 2017, who explored the  

classification of bee sounds, particularly in the 

context of swarming. [10] Zgank utilized data from 

the  Open-Source Beehives Project and applied 

feature engineering techniques such as 

Mel-Frequency  Cepstral Coefficients (MFCC) and 

Linear Predictive Coding (LPC). The study 

employed Gaussian Mixture  Models (GMM) and 

Hidden Markov Models (HMM) for classification. 

The best model is HMM with a 15- state using 

MFCC features achieving a notable F1 score of 

90% for the binary prediction of a swarming  

event.  

In 2018, Cejrowski attempted to model active bee 

days and identify patterns associated with the  

removal of the queen from the hive. [11] However, 

the study did not achieve satisfactory results in  

classifying these events using the clustering 

algorithm t-SNE (t-distributed stochastic neighbor  

embedding), which was explored as a potential 

classification tool.  

Howard’s 2013 research focused on predicting the 

queenless state of a hive using sound data. [12] 

The study transformed acoustic data into 

spectrograms and applied Fast Fourier 

Transformation (FFT) and  S-transformation 

before utilizing a Self-Organizing Map (SOM) 

neural network for classification. Although  the 

predictive results were not particularly strong, the 

study successfully visualized the two hive states  

using the neural network’s output. 

More recently, Rustum (2023) revisited the 

classification of queenless states using a 

combination  of feature engineering methods and 

classification models. [13] The study found that a 

hybrid approach  combining MFCC features with 

K-Nearest Neighbors (KNN) or Random Forest 

(RF) algorithms yielded the  best results, with 

accuracy rates of 83% and 82%, respectively. 

Another study in the same year further  explored 

the classification of queenless states using MFCC 

for feature engineering and logistic regression  

with Lasso for feature selection, achieving a 95% 

accuracy in distinguishing bee sounds associated 

with  the queenless state. [14]   

Beyond hive conditions, researchers have also 

explored the classification of bee species based on  

their flying sounds. In 2021, Ribeiro applied 

support vector machines (SVM) combined with 

MFCC to  distinguish between different types of 

bees and other insects, achieving an accuracy of 

73.39%. [15] This  research aimed to correlate the 

types of bees pollinating tomato plants with the 

quality of the resulting  fruit.  

In 2023, Di conducted a comparative study on 

feature engineering methods for bee sound  
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II. RELATED WORK  



recognition.[16] The study compared two feature 

engineering approaches - a convolutional neural  

network (CNN) hidden layer and MFCC. Four 

different machine learning algorithms (RF, SVM, 

KNN,  Decision Trees) were tested across three 

datasets. The CNN layer consistently 

outperformed MFCC, with  the best model—KNN 

with CNN feature engineering—achieving a 

94.79% accuracy rate.  

Another study in 2023 by Ruvinga focused on the 

classification of queenless states using MFCC  

features as inputs to a Long Short-Term Memory 

(LSTM) classifier and spectrograms as inputs to 

CNNs.  The CNN-based approach achieved a 

remarkable accuracy of 99%. [17]  

In addition to these approaches, a novel study in 

2023 applied Log Mel-Spectrograms and CNN 

EfficientNet V2 with Pre-trained Audio Neural 

Networks (PANNs) to recognize different bee 

species. This  study introduced a data 

augmentation step and achieved an F1 score of 

58.04%. [18]  

Lastly, in 2021, Benetos annotated an acoustic 

dataset with labels indicating the presence or  

absence of bee sounds and tested SVM and CNN 

algorithms to predict hive events like swarming. 

[19] The  results, however, were not satisfactory.  

In conclusion, the literature indicates that 

researchers have explored both classical machine  

learning approaches, such as Random Forest and 

Support Vector Machines, as well as more 

advanced  neural network models, particularly 

CNNs, for the classification of bee sounds. These 

efforts lay a solid  groundwork for our research, 

which focuses on further refining sound 

classification methods for detecting  in-hive events 

and enhancing accuracy using a specific type of 

neural network—a transformer—an  approach not 

previously explored in other studies.  

III.​ DESING OF THE EXPERIMENT  

The design of the experiment follows a systematic 

approach to classify bee sounds into three  

categories: ‘active day,’ ‘queenless,’ and ‘queen 

present.’ The process begins by utilizing an 

already labeled  dataset, which is then cleaned to 

remove silence and ensure all recordings are of 

uniform length. This step  is crucial for 

standardizing the data, making it suitable for 

further analysis and modeling.  

To enhance the dataset and introduce greater 

diversity, data augmentation techniques are  

applied. This step artificially increases the number 

of data points, providing a richer and more varied  

training set that helps improve model 

performance and reduce the risk of overfitting.  

Given that the overarching goal of this experiment 

is to train a transformer model, the subsequent  

step involves partitioning the dataset into distinct 

training and testing subsets. This partitioned data 

must  then be meticulously converted into a data 

dictionary format, which is the required input 

structure for  compatibility with HuggingFace's 

transformer models. This transformation ensures 

that the data is  optimized for efficient processing, 

allowing the model to effectively learn and 

generalize from the training  data while being 

rigorously evaluated on the test set.  

The final phase of the experiment involves 

training a model to classify the bee sounds. Neural  

networks, particularly CNNs, have been identified 

as the most promising models in previous 

research. To  the best of the authors' knowledge, 

transformer models have not yet been explored for 

this specific task. In this experiment, we employ 

the HuBERT model, which incorporates CNN 

layers, and fine-tune a  pretrained version of the 

model using the augmented and original datasets, 

leveraging its prior knowledge  to improve 

classification accuracy.  
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IV.​ DATA 

4.1   Raw Data  

The raw data used in this study originates from 

the research titled "To bee or not to bee:  

Investigating machine learning approaches for 

beehive sound recognition." [19] This dataset 

consists of  78 annotated audio files in three 

formats: WAV, MP3, and LAB. However, for the 

purposes of this paper,  we focus exclusively on 

the WAV and MP3 files, as the LAB format is tied 

to specific software that may not  be readily 

accessible to the broader machine learning 

community. The annotations within these files  

capture various states of the beehive, including 

active beehive days, queenless states, and states 

with a present queen, with a total duration of 12 

hours of recordings. Figure 2 provides a visual 

representation  of how the files are labeled.  

 

 

Figure 2: Snippet of the MFL File with Annotations  

Each audio file is meticulously segmented into 

portions where bee sounds are either audible or  

not. These segments are documented in text files 

with an MFL extension, which contain start and 

end  timestamps corresponding to "Bee" or 

"NoBee" labels. The acoustic data was gathered 

through two  projects, "Open Source Beehive" 

(OSBH) and "NU-Hive," conducted across diverse 

geographical locations  including North America, 

Australia, and Europe. This global data collection 

approach ensures that the  results of the 

classification efforts are not biased by local 

Classification of Acoustic Data with Transformer Model

L
on

d
on

 J
ou

rn
al

 o
f 

R
es

ea
rc

h
 in

 C
om

p
u

te
r 

Sc
ie

n
ce

 &
 T

ec
h

n
ol

og
y

©2025 Great Britain Journals PressVolume 25 | Issue 1 | Compilation 1.04

Figure 1: Design of the Experiment  



environmental sounds or the behaviors of specific  

bee species, thereby enhancing the generalizability 

of the findings.  

 

 

Figure 3: Bee and NoBee Labeling Process [20] 

4.2   Data Cleaning   

The data cleaning process is crucial in preparing 

the raw dataset for the modeling phase. Initially,  

the annotated dataset contains 2,420 rows of 

labeled data, where each row represents a segment 

queen," or "queen present," corresponding to the 

filenames. The  first step in the cleaning process 

involvestransforming the MFL text file into a 

standard Pandas DataFrame,  making it easier to 

manipulate and analyze. (Table 1)  

Table 1: Structured Annotation Data from the MFL File  

Start  End  Label  File Name 

0  11,25  bee  CF001 - Missing Queen - Day - 

11,26  11,52  nobee  CF001 - Missing Queen - Day - 

11,53  15,4  bee  CF001 - Missing Queen - Day - 

0  7,3  bee  

7,31  7,87  nobee  CF003 - Active - Day - (214) 

7,88  10,37  bee  CF003 - Active - Day - (214) 

 

To ensure the dataset is relevant for modeling, we 

first remove all rows where no bee sounds are 

present (i.e., rows labeled as "nobee"). Following 

this, we eliminate any rows where the duration of 

the  audio segment is less than 5 seconds, as 

shorter durations may not provide sufficient 

information for  reliable classification. This 

filtering process reduced the dataset to 679 rows.  

algorithms, as they typically require uniform input 

lengths. To address this, the 679 rows are further 

split  into 5-second intervals, and each interval is 

saved as a separate WAV file. A new annotation 

file is then  created, mapping each 5-second 

interval to its corresponding label. (Table 2)  
 

 

of audio  labeled as either "active day," "missing  
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However, these remaining rows vary in duration, 

which pose a challenge for the machine learning  

 

CF003 - Active - Day - (214) 



Table 2: Snippet of the Updated Annotation Data   

Index  Index_original_file  Start  End  Label  Start_sliced  End_sliced 

0  1  0  11,25  bee  0  5000 

1  1  0  11,25  bee  5000  10000 

2  6  0  7,3  bee  0  5000 

3  18  49,98  bee  

 

This process not only cleans the dataset but also 

standardizes the audio segments, making them  

more suitable for input into machine learning 

algorithms. As a result, the structure of the dataset 

shifted  from a collection of multi-length segments 

to a larger, more uniform set of 5-second audio 

files, ready for  effective modeling. Table 3 

presents a concise summary of the cleaned 

dataset, highlighting data quantity  after 

preprocessing. Notably, these specific cleaning 

and processing steps are not documented in the  

original article “To bee or not to bee: Investigating 

machine learning approaches for beehive sound  

recognition”, representing an enhancement in our 

approach. 

 

Table 3: Cleaned Data Summary  

Actions  Sum Duration  Count Rows 

active day  7327,38  395 

missing queen  13895,06  1178 

queen  8379,4  480 

 4.3   Data Augmentation   

Before transforming the audio data into a format 

which is suitable for training Transfomer model,  

it is advantageous to perform data augmentation, 

a step that is often overlooked but can significantly  

enhance model performance. As mentioned in one 

of the papers in the related work, the authors 

observed  an increase in model accuracy after 

incorporating data augmentation, highlighting its 

importance.  

The primary objective of data augmentation is to 

artificially expand the dataset by generating new  

examples from the existing labeled data. This 

process is especially crucial when dealing with 

limited  datasets, as it provides the machine 

learning algorithm, particularly neural networks, 

with more input  data. Additionally, data 

augmentation introduces variability into the 

dataset, which helps prevent the  model from 

enhances its generalization capabilities. [21] [22]  

For acoustic data, the Python library 

`audiomentations` is commonly used for this 

purpose. [23] In this study, four different 

augmentation techniques were applied randomly, 

each with a 50% probability  of being applied to 

any given audio sample from the train data set:  

1.​ Add Gaussian Noise: This method introduces 

Gaussian noise to the audio signal, with a 

maximum  amplitude of 0.015 and a minimum 

of 0.01, simulating the effect of random 

background noise.  

2.​ Tanh Distortion: The tanh function is applied 

to the audio signal to slightly distort and 

smoothen  the recording, mimicking the 

natural variations that might occur during 

real-world recordings.  
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overfitting to the original training data and 

44,43  44430  49430 



changes in volume, such as a bee moving 

closer to or farther from the  microphone.  

4.​ Air Absorption: This filter simulates 

environmental effects like moisture and air 

absorption, which  can subtly alter the audio 

signal, making the dataset more representative 

of real-world conditions.  

In the above equation, distance is the distance to 

the recording microphone and the absorbing 

coefficient  is the ability of the microphone to 

record.  

By incorporating these augmentation techniques, 

the dataset becomes richer and more diverse,  

providing the model with a broader range of 

examples to learn from, ultimately leading to 

better  performance and robustness in real-world 

4.4   Data Dictionary  

The HuggingFace Transformer model necessitates 

a specific data format known as a data  dictionary 

for effective training. This format is based on 

Apache Arrow, a memory-efficient data structure  

designed for high-performance analytics. [24] 

While Python provides an existing 

implementation to  transform data from a Pandas 

DataFrame to a data dictionary, this conversion 

process is computationally  intensive and 

time-consuming. To optimize performance and 

prevent hardware failures given the current  

experimental setup, parallelization of the 

transformation process (specifically, row-by-row 

transformation)  is required. The structure of the 

data dictionary is as follows:  

 

 

Figure 4: First row from the data dictionary Totten Tomatoes. [25]  

The data dictionary specifies the dataset source 

and the data split, indicating whether the subset  

is used for training or testing. Within the features 

section, each column of the dataset is individually  

detailed, including information about its format 

and data type. For this exercise, the dataset was 

divided  into training and testing subsets, with 

80% allocated to training and 20% to testing, 

using stratified  sampling based on the labels to 

maintain proportional representation across the 

format is performed after the data augmentation 

stage, ensuring that the cleaned,  split, and 

augmented data is properly structured for use with 

the Hugging Face Transformer models. The  graph 

below illustrates the final state of the data, 

showcasing how the cleaned, split, augmented, 

and  transformed dataset appears. This concludes 

the data preparation section of this paper.  
 

𝑎𝑡𝑡 = exp⁡(−𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ∗ 𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛⁡𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑒𝑛𝑡)
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logarithmic intervals, simulating natural 
the training  data has been doubled using the 

above-mentioned data augmentation techniques. 

3. Gain Transition: This technique randomly 

increases or decreases the sound volume in 

applications. In this experiment, the data size for 

splits. The transformation  into the data dictionary 



 

Figure 5: Data Dictionary 

V.   TRANSFORMER   

In this section, following an overview of the data 

and the transformation processes required to  

prepare it for input into the HuggingFace 

transformer model, we provide a concise 

explanation of the  transformer's design, with a 

particular emphasis on the feature engineering 

components. Additionally, we  discuss the 

advantages of utilizing a pre-trained model, the 

rationale behind this approach, and the specific  

model chosen for the task.  

5.1   Overall Architecture   

In this paper, we leverage a transformer model, 

originally developed for sequence-to-sequence  

tasks like text translation, to classify bee sounds. It 

has demonstrated remarkable success in the 

domain  of text-related tasks. [26] Transformers 

offer a significant advantage by combining the 

strengths of  Recurrent Neural Networks (RNNs) 

and Convolutional Neural Networks (CNNs), 

enabling them to model sequential data effectively 

while being computationally efficient due to their 

parallel execution capability.  A key innovation in 

transformer models is the Attention mechanism, 

which allows the model to capture  relationships 

between both closely related and distant elements 

in the sequence. [26] This is particularly useful for 

understanding complex patterns not only in text 

but also in audio data, where distant  

dependencies might be as critical as immediate 

ones. The Attention component enables the model 

to weigh the importance of different parts of the 

audio sequence, allowing it to focus on key 

segments that  are more relevant for the 

classification task, such as specific bee sounds that 

indicate different hive states Another critical 

component of transformers is positional encoding, 

which preserves the order of  inputs—such as the 

sequence of words in text or phonemes in 

audio—across the entire network. This  ensures 

that the model not only understands the content 

but also the context provided by the sequence or 

the acoustic file.  

 

 

Figure 6: HuBERT Architecture [27]  
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In 2020, the transformer model was modified for 

the first time to accept acoustic data as input,  

rather than textual data, demonstrating 

outstanding performance in this domain of 

machine learning. [28] The specific transformer 

model used in our research is HuBERT (Hidden 

Units Bidirectional Encoder Representations from 

Transformers), a variant designed to process 

audio data. HuBERT is based on the BERT model, 

which utilizes only the encoder part of the original 

transformer architecture. [27] Figure 6  presents a 

visual representation of the architecture of the 

HUBERT model.  

The architecture of HuBERT comprises several 

key components, some of which align with the  

standard transformer structure previously 

described. The HuBERT-specific elements are 

detailed briefly  below:  

● Convolutional Network – Following the 

extraction of Mel-Frequency Cepstral 

Coefficients  (MFCC) features from the input 

data—detailed extensively in the subsequent 

section—these  features are processed through 

a CNN layer. The purpose of this step is to 

capture local patterns, such as sound 

frequencies, as well as the hierarchical 

structure inherent in the data.  The resulting 

output consists of transformed vectors - latent 

features.  

● Transformer encoder – Those latent features 

are then passed to transformer encoder. 

Unlike  other transformer models that process 

input in a sequential manner, the encoder in 

HuBERT is bidirectional, meaning it can 

attend to information from both past and 

future contexts simultaneously. This 

bidirectionality is crucial for capturing the 

complex temporal  dependencies present in 

audio data, allowing the model to understand 

the full context of the  sound sequence.  

● K-means clustering – the unsupervised 

approach is used to group different audio 

segments  together as latent labels, capturing 

sound patterns in the data. The model is then 

trained to predict the cluster assignments, 

which helps in learning robust representations 

of the audio  data even before the labeled data 

is introduced.  

5.2   Feature Engineering   

In the transformation of audio data for machine 

learning applications, Mel-spectrograms and Mel 

Frequency Cepstral Coefficients (MFCC) are two 

of the most widely employed feature engineering  

techniques. HuBERT uses MFCC as the feature 

engineering method. Both techniques are 

grounded in the Fourier Transform, a 

mathematical method that converts time-domain 

signals into their frequency-domain  

representations. [29] This transformation is 

crucial for analyzing the spectral content of audio, 

which is essential for tasks like sound 

classification.  

 

 
 

Figure 7: FFT Transformation  

When audio is digitized, it is typically sampled at a 

rate of 44,100 samples per second, capturing  the 

amplitude of the sound wave at discrete time 

intervals. The Fast Fourier Transform (FFT) is 

then applied  to this sampled data, decomposing 

the complex audio signal into its constituent 
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sinusoidal components—specifically, sine and 

cosine waves. [21] This decomposition allows us to 

analyze the frequency  components of the signal. 

(Figure 7) However, one of the underlying 

assumptions of FFT is that the signal  is stationary 

and repetitive, which is rarely true for natural 

sounds.  

To address this limitation, the audio signal is first 

segmented into overlapping time windows, often  

using a window function like the Hamming or 

Hann window to minimize spectral leakage. FFT is 

then  applied to each windowed segment 

individually. This process, known as Short-Time 

Fourier Transform  (STFT), allows the analysis of 

how the frequency content of the signal evolves 

over time. To better align the frequency 

representation with human auditory perception, 

the resulting frequency values are then  mapped 

onto the Mel scale, a perceptual scale of pitches 

judged by listeners to be equal in distance from  

one another. This transformation yields the 

Mel-spectrogram, where frequencies are 

represented on a  logarithmic scale, reflecting the 

human ear's reduced sensitivity to lower 

frequencies. [30] The equation below 

demonstrates the calculation of the 

Mel-spectrogram:  

log is the natural log 

frequence in Hz.  

Mel-Frequency Cepstral Coefficients (MFCC) take 

this process a step further. After obtaining the  

Mel-spectrogram, the log-magnitude of each 

Mel-frequency band is computed. These values are 

then  subjected to a Discrete Cosine Transform 

(DCT), which decorrelates the Mel-spectrogram's 

frequency  components and compacts the most 

significant information into a small number of 

coefficients. The first  few coefficients typically 

capture the bulk of the relevant information, 

making MFCCs an efficient and  effective 

representation of the audio signal for machine 

learning tasks.  

Both Mel-spectrograms and MFCCs are essential 

for transforming raw audio data into structured  

features that can be readily processed by machine 

learning models. By capturing both the temporal 

and  spectral characteristics of the sound, these 

techniques enable the development of robust 

algorithms for  audio classification and other 

related applications.  

5.3   Pretrained Models   

In this paper, we utilize a pretrained HuBERT 

model from the Hugging Face platform, 

specifically  the `hubert-base-ls960` model, which 

has been trained on a diverse dataset of animal 

sounds, including  those of cats and dogs. [31] 

Hugging Face is a leading platform for research 

collaborations on transformer  models. It provides 

a robust ecosystem for implementing these 

state-of-the-art pre-trained models,  making it an 

ideal choice for this experiment. [32] Utilizing 

pre-trained model has a lot of advantages. It is  

environmentally friendly, as it reduces the 

computational resources required for training a 

model from  scratch. [31] It also saves time and 

requires less data, making it particularly suitable 

for tasks with limited  datasets. The pretrained 

HuBERT model comes with a well-learned 

understanding of general audio  patterns, which 

can be fine-tuned for specific tasks like bee sound 

classification. This approach not only  accelerates 

the training process but also enhances the model's 

ability to generalize from the provided  data.  

VI. RESULTS  

The results of our experiment demonstrate a 

significant breakthrough in the field of acoustic  

classification of bee sounds, achieving an 

unprecedented accuracy of 99.7%. This marks the 

highest accuracy reported in the literature for this 

type of problem, indicating the robustness and 

effectiveness of  our approach. The model's 

exceptional performance underscores the 

advantages of leveraging the HuBERT 

architecture, particularly when fine-tuned with 

augmented and diverse datasets. The code for the  

experiment is wrapped into a Python library and 

shared in GitHub repository. [33]  

After training, which took approximately seven 

hours on a system equipped with a 13th Gen  Intel 

(R) Core (TM) i7-13700H processor (20 CPUs, 

~2.4 GHz) and 32GB of RAM, the model is 

𝑚 = 2595𝑙𝑜𝑔10 (1 +
𝑓

700
),  

arithm with base 10 and f is the  frequence 
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well-suited for deployment in real-world 

applications. For practical implementation, the 

trained model can be integrated  with platforms 

like Weights & Biases, which facilitates hosting 

and managing the model for live predictions.  In a 

real-world scenario, a Raspberry Pi or similar 

device with the appropriate microphones and 

sensors  attached can be installed within a beehive 

to record the acoustic environment continuously. 

[34] This data  can then be transmitted to the 

cloud, where the model processes it and provides 

real-time insights into  the hive's state.  

This integration of advanced machine learning 

techniques with accessible hardware and cloud  

platforms represents a promising direction for 

precision beekeeping, enabling beekeepers to 

monitor and  respond to hive conditions with 

unprecedented accuracy and timeliness.  

VII. CONCLUSION  

This study explores the application of transformer 

models to classify bee acoustic data, focusing  on 

detecting significant hive events such as the 

departure of the queen. By employing the 

HuBERT model,  which is adapted from 

text-based transformer architectures, we achieved 

an accuracy of 99.7% in  identifying hive 

conditions. This represents a substantial 

improvement over previous methods and  

illustrates the potential of advanced machine 

learning techniques in ecological monitoring.  

The integration of HuBERT with labeled acoustic 

data and data augmentation strategies has  

demonstrated exceptional performance, paving 

the way for more efficient hive monitoring. This 

approach  not only streamlines the process for 

beekeepers but also enhances the ability to 

respond promptly to  critical hive events. Future 

research could expand on these findings by 

applying the model to various bee  species and 

environments, potentially leading to even greater 

advancements in precision beekeeping and  

ecological management.  
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