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ABSTRACT
The basic principle is “A function is easy to

evaluate but its invert is infeasible unless a secret

key is known”.

It is mathematically proved that security of

cryptographic algorithms does not imply its

implementation of security of the system against

Side-channel Attacks. The security of the system

lies in the difficulty of extracting k from P and Q.

It is essential to secure the implementation of

cryptosystems in embedded devices against

side-channel attacks. These attacks monitor the

power consumption or the Electromagnetic

emanations of a device Ex smart cards or mobile

devices. The attacker’s goal is to retrieve partial

or full information about a long-term key that is

employed in several ECSM executions.

We are implementing a secret key to avoid

retrieving the valuable information by the

attacker through Simple Power Analysis Attacks.

Keywords: elliptic curve cryptography, simple

power analysis, differential power analysis.

I. INTRODUCTION

Elliptic curve cryptosystems (ECCs) are suitable

for implementation on devices with limited

memory and computational capability such as

smart cards and also with limited power such as

wireless handheld devices. This is due to the fact

that elliptic curves over large finite fields provide

the same security level as other cryptosystems

such as RSA for much smaller key sizes.

Considering power analysis attacks, there are two

main types that were presented by Kocher et al.

These are simple and differential power analysis

attacks (referred to as SPA and DPA respectively).

Both of them are based on monitoring the power

consumption of a cryptographic token while

executing an algorithm that manipulates the

secret key.

The traces of the measured power are then

analyzed to Hence, DPA attacks are, in general,

more powerful than the SPA attack.

Randomization of the data processed at some

instant is essential in resisting this type of

attack.Electromagnetic emanations present

another powerful side channel since the

information is leaked from the device via more

than one channel and is a function of space as

well as of time. In [2], Agrawal et al. presented

both simple and differential electromagnetic

analysis attacks on smart cards and on a Palm

pilot . In these attacks they conclude that software

countermeasures rely on signal information

reduction, which is achieved by “randomization

and/or frequent key refreshing within the

computation”, which agrees with the concept of

resisting DPA attacks.

The point addition operation consists of finite

field operations carried in the underlying field K.

We denote the field inversion by I, the

multiplication by M, the squaring by S. The point

addition is denoted by A. When the two operands

of the addition are the same point, the operation

is referred to as point doubling and is denoted by

D.

II. WINDOWMETHODS

This method is sometimes referred to as the

m−ary method. There are different versions of

window methods . What is common among them

is that, if the window width is w, some multiples
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of the point P up to (2 − 1)P are precomputed

and stored and k is processed w bits at a time. k is

recoded to the radix 2 . k can be recoded in a

way so that the average density of the nonzero

digits in the recoding is 1/(w + ), where 0

2 depends on the algorithm. Let the

number of precomputed points be t, in the

Precomputation stage, each point requires either a

doubling or an addition to be computed also

depending on the algorithm.

This ECSM method is suitable for unknown or

fixed-point P. The cost is Storage: t points, where

2 ≤ t ≤2 depending on the algorithm.

Precomputation: t point operations (A or D).

Expected running time:

(n − 1) D + n A,

where 0≤ depending on the algorithm.

Note that the number of doublings is between n −

w and n − 1.

2.1. Simultaneous multiple point multiplication

This method is used to compute kP +lS where P

may be a known point. This algorithm was

referred to as Shamir’s trick in [10]. If k and l are

n-bit integers, then their binary representations

are written in a 2 × n matrix called the exponent

array. Given width w, the values iP +jS are

calculated for . Now the algorithm

performs d = iterations. In every iteration,

the accumulator point is doubled w times and the

current 2 × w window over the exponent array

determines the precomputed point that is to be

added to the accumulator.

Algorithm 2.1. Simultaneous multiple point

multiplication (Shamir-Strauss method)

Input: Window width w, d = ,

k = (K , . . . ,K ,K ) l= (L , ..,L ,L )

, and P, S E(F ). 3 Also according to

[Ber01], it is originally due to Straus [Str64].

Output: kP + lS.

1. Precomputation. Compute iP + jS for all

4. Return(Q).

Storage: 2 − 2 points. For w = 1, 3 points.

For w = 2, 15 points.

Precomputation:

(2 − 2 ) D + (3 · 2 − 2 − 1) A.

For w = 1, 1 A.

For w = 2, 1 D + 11 A.

Expected running time: (d − 1)w D + d −

1) A.

For w = 1, (n − 1) D +( n − 1) A.

For w = 2, (n − 1) D +( n -1) A.

Using sliding windows can save about 1 4 of the

precomputed points and decrease the number of

additions to , which is about 9% saving

for w {2, 3}.

2.2. Interleaving method

This method is also a multiple point

multiplication method, that is we want to

compute for points P and integers

k . In the comb and simultaneous multiplication

methods, each of the precomputed values is a sum

of the multiples of the input points. In the

interleaving method, each precomputed value is

simply a multiple of one of the input points.

Hence, the required storage and the number of

point additions at the precomputation phase is

decreased at the expense of the number of point

additions in the main loop. This method is flexible

Security through Elliptic Curves for Wireless Network in Mobile Devices
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i, j  [0, 2 w − 1].

2. Q  K 1−d P + L 1−d S.

3. for i from d − 2 down to 0 do

3.1 Q   2
w

Q.

3.2 Q   Q + (K i P + L i S).



in that each k can have a different

representation, e.g., different window size, as if a

separate execution of a window method is

performed for each k P with the doubling

step performed jointly on a common accumulator,

as shown in [12]. As an illustration, we provide

the following algorithm that computes kP + lS

where both k and l are represented to the same

base 2 .

Algorithm 2.2. Interleaving method

Input: width w, d = ,

k = (K , . . . ,K ,K ) l= (L , . . . ,L ,L )

, and P, S E(F ).

Output: kP + lS.

5. Return(Q).

Storage: 2 − 2 points.

Precomputation: 2(w-1) D + 2(2 − w − 1) A.

Expected running time: w(d − 1) D + (2d − 1).

A

In general, if different basis and/or

representations are used for k and l, we have

Storage: 2t points, where 2 ≤ t ≤2

depending on the particular window algorithm

used as discussed in Section 2.1.3.

Precomputation: 2t point operations (A or D).

Expected running time: (n − 1) D + 2 A,

where 1 depending on the algorithm

2.3. SPA Attack on ECCs and its Countermeasures

Coron [3] has transferred the power analysis

attacks to ECCs and has shown that an unaware

implementation of EC operations can easily be

exploited to mount an SPA attack. Moreover, it

may also enable it to recognize the exact

instruction that has been executed. For example,

if the difference in power consumption between

point doubling (D) and point addition (A) is

obvious in their respective power traces, then, by

investigating one power trace of a complete

execution of a double-and-add algorithm, the bits

of the scalar k are revealed. That is, whenever a D

is followed by A, the corresponding bit is k = 1,

otherwise if D is followed by another D, then k =

0. This sequence of point operations is referred to

as the DA sequence.

Window methods process the key on a digit

(window) level. The basic version of this method,

that is where _ = 0 in Section 2.1.3, is inherently

uniform since in most iterations, w D operations

are followed by 1 A, except for possibly when the

digit is 0. Therefore, fixed-sequence window

methods were proposed in order to recode the

digits of the key such that the digit set does not

include 0.

2.4. DPA Attack on ECCs and its Countermeasures

As for the SPA attack, Kocher et al. were the first

to introduce the DPA attack on a smart card

implementation of DES. Techniques to strengthen

the attack and a theoretical basis for it were

presented by Messerges et al. in [3]. Coron

applied the DPA attack to ECCs [3].

In order to resist DPA attacks, it is important to

randomize the value of the long-term key involved

in the ECSM across the different executions. Some

of the countermeasures that were based on

randomizing the key representation were proven

to be inadequate since the intermediate point

computed in the accumulator Q at certain

Security through Elliptic Curves for Wireless Network in Mobile Devices
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1. Precomputation. Compute iP and iS for all i 

[0, 2
w

− 1].

2. Q   K 1−d P.

3. Q   Q L 1−d S.

4. for i from d − 2 down to 0 do

4.1 Q   2
w

Q.

4.2 Q   Q + K i P.

4.3 Q   Q + L i S.



iteration remained one of two possible values .

The constancy of the value of this intermediate

point is an integral part in the success of

first-order DPA attacks.

A potential DPA countermeasure is known as key

splitting . It is based on randomly splitting the key

into two parts such that each part is different in

every ECSM execution. An additive splitting using

subtraction is attributed to Clavier and Joye . It is

based on computing

kP = (k − r)P + rP, (I)

The authors mention that the idea of splitting the

data was abstracted in [5]. where r is a n-bit

random integer, that is, of the same bit length as

k. Alternatively, Ciet and Joye [8] suggest the

following additive splitting using division, that is,

k is written as

k = + (k mod r). (1)

Hence, if we let k = (k mod r), k 2 =

and S = rP, we can compute

KP = k p + k P (II)

where the bit length of r is n/2. They also suggest

that (II) should be evaluated with the

Shamir-Strauss method as in Algorithm 2.3.

However, they did not mention whether the same

algorithm should be used to evaluate (I). The

following multiplicative splitting was proposed by

Trichina and Bellezza [0] where r is a random

integer invertible modulo u, the order of P. The

scalar multiplication kP is then evaluated as

kP = [kr (mod u)] (rp)
(III)

To evaluate (III), two scalar multiplications are

needed; first R = rP is computed, then kr R is

computed.

III. KEY SPLITTING METHODS

3.1. Introduction
We discuss different forms of key splitting along

with their strengths and weaknesses. We also

discuss the candidate SPA-resistant algorithms

and compare the resulting performance when

combined with each form of key splitting. At the

end of the chapter, we present countermeasures

to DPA attacks on the ECDSA and the ECMQV

algorithms.

This approach was suggested by Clavier and Joye

in [CJ01] and revisited by Ciet [Cie03] as follows.

In order to compute the point kP, the n-bit key k

is written as

k = k + k ,

such that k = k − r and k = r, where r is a

random integer of length n bits. Then kP is

computed as

kP = k P + k P. (4.1)

It is important to note that each of the terms

should be evaluated separately and their results

combined at the end using point addition. That is

the multiple-point multiplication methods that

use a common accumulator to save doubling

operations. Whether at the bit level (w ≡ 1) or

window level (w > 1)-should not be used, even

when a countermeasure against SPA is employed.

This observation is based on the following lemma.

Let denote or, simply, the

bits of k from bit position b down to bit position a,

with b ≥ a.

Lemma 3.2 Let splitting scheme I at the end of

some iteration j, 0 < j ≤ n − 1, there are only two

possible values for Q, those are [k ] P or [k

− 1] P.

Proof. Algorithm 2.3—and similarly Algorithm

2.4—computes the required point by scanning

k = (k , . . . , k )2 and

k = (k , . . . , k ) from the most

significant end down to the least significant end.

Hence, at the end of iteration j, the accumulator Q

contains the value

Q = k P + k P (4.2)

= [k + k ] P.

We can write k, k and k as

Security through Elliptic Curves for Wireless Network in Mobile Devices
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k = k 2 + k

k = k 2 + k (4.3)

Since k = k + k we have

k + k j = k + b 2 where b

{0, 1} (4.5)

and

k + k = k -b

The DPA attack would proceed in the same way,

whether the algorithm processes a single bit or a

digit per iteration, though it would be more

involved in the latter case depending on the digit

size. The attacker can double the number of traces

gathered and compute the necessary intermediate

points as if there was no countermeasure in place.

3.2 Modular Division:

In the following algorithm, a and b are integers

internally represented each by an array of w-bit

digits. The length of each array is d =

digits. Note that for the modular inversion, as

mentioned by Savas and Ko¸c [25], b needs not be

less than the modulus u, but be in [1, 2 −1],

where m = dw. Also note that the values R mod

u, where R = 2 , and u’ are computed once per

modulus, i.e., per curve.

Algorithm 3.4. Modular division

Input: u: a n-bit prime, d = , m = dw, R

(mod u) = (2m) (mod u), u’ = u mod 2 , a

[1, p − 1] and b [1, 2 − 1].

Output: ab (mod u).

1. Compute b R (mod u) using Algorithm 6.6.

2. Compute x = a(b R)R (mod u) using

Algorithm 6.5.

3. Return(x).

The following algorithm is Algorithm 14.36 in

[21]. We include it here for the sake of

completeness.

Algorithm 3.5Montgomery multiplication

Input: u: a n-bit prime, d = , m = dw, u’ =

u mod 2 , x = (x . . . , x0)2 and

y = (y . . . y0)2 .

Output: xy2 (mod u).

4. Return(A).

The following algorithm was presented by Savas

and Ko¸c as the modified Kaliski-Montgomery

Inverse.

Algorithm 3.6. Montgomery inversion

Input: u: a n-bit prime, d = , m = dw, R

(mod u) = (2 ) (mod u), u = u mod 2

and b [1, 2 − 1].

Output: b R (mod u).

IV. EXISTING SYSTEM

Nevine Maurice Ebied modified the almost

Montgomery inverse algorithm of [ScKK00] to be

resistant to SPA attacks as in the following

algorithm. Swap Address(c, d) denotes

Security through Elliptic Curves for Wireless Network in Mobile Devices
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1. A   0.          // A = (ad, a 1−d , . . . , a0)2w

2. for i from 0 to d − 1 do

2.1 ui   (a 0 + x i y 0 ) mod 2 w

2.2 A    (A + x i y 0 + u i m)/ 2 w

3. if (A > u) then

A   A  u.

1. Compute f and x = b
1−

2f (mod u) using 

Algorithm 6.7,

Where  n ≤ f ≤ m + n.

2. if (f ≤ m) then

2.1 x   xR
2

R
1−
(mod u) using Algorithm 6.5. // x 

= b
1−
2

fm+
(mod u)

2.2 f   f + m. // f > m, x = b−12f (mod u)

3. x   x2
fm−2

R
1−

(mod u)      using Algorithm 6.5.

// x = b
1−
2

f
2

fm−2
2

m−
= b

1−
2

m
(mod u)

4. Return(x).



interchanging the memory addresses of the

integer’s c and d. This is an inexpensive operation,

hence its usage as a dummy operation to balance

the branches of the main loop. We implemented

the “if” statement in steps 3.4 and 3.5 such that

the number of conditions checked per loop

iteration is always three. In assembly language,

this can be easily ensured. Written in Java, step

3.4 is implemented as

If ( ( xLSb = = 0 ) && ( xLSb = = 0 ) && ( xLSb = =

0 ) ).

If the condition is false, due to short-circuit

evaluation, the flow control will move to the

following “if” after the first check, otherwise, it

will perform the check three times. The following

“if”—step 3.5—is similar but with the condition

checked only two times if( ( yLSb = = 0 ) && (

yLSb = = 0 ) ).

Algorithm 3.7. Almost Montgomery inverse

:Input: u: a n-bit prime,

d = , m = dw and b [1, 2 − 1].

Output: f and b 2 (mod u), where n ≤ f ≤ m +

n.

1. x u; y b; r 0; s 1.

2. f 0.

3. while (v > 0) do

3.1 U x − y; V −U.

3.2 T r + s.

3.3 f f + 1.

3.4 if (((lsb (x)=0))) then

// This “if” is special SwapAddress(x, U);

SwapAddress (x, U) // dummy

SHR(x); SHL(s).

3.5 else if ((lsb(y) = 0)) then

// This “if” is special SwapAddress(y, V);

SwapAddress

(y, V) // dummy

SHR(y); SHL(r).

3.6 else if (V >= 0) then

SwapAddress(y, V);

SwapAddress(s, T )

SHR(y); SHL(r).

3.7 else

SwapAddress(x, U);

SwapAddress(r, T )

SHR(x); SHL(s).

4. T u − r; V u + T .

5. if (T > 0) then

Return(f, T )

else

Return(f, V).

The drawback of this algorithm is that an SPA of

the number of iterations of the main loop directly

leaks the value of f. If f is uniformly distributed,

the search space of b is reduced from 2 to 2

, which is not a significant reduction. It is

interesting to study how f is actually distributed.

4.1. PROPOSED SYSTEM

We modified the Nevine Maurice Ebied’s Almost

Montgomery inverse and A SECRET KEY of

[ScKK00] to be resistant to SPA attacks as in the

following algorithm.

Algorithm:4.2. E.KESAVULU REDDY (EKR)

Modified Montgomery Inversion

Input: u: a n-bit prime, d = ,

m = dw, R (mod u) = (2 ) (mod u), u = u

mod 2 and b [1, 2 − 1], t is Secret key.

t: No of precomputed points 1≤ t ≤n

W: Window width least significant of bit

2

Output: b R (mod u).

Select a number b such that

Compute b such that bb 1(mod 2 )

3. If f > m then x = b 2 (mod u)

x = b 2 (mod u)

4. If f ≤ m then

5. x R R = 2

6. x = b 2 (mod u)

7. f m+f

8. Return(x)

In the EKR modified Montgomery Inverse

Algorithm of Savas and Koc , we select f such that

Security through Elliptic Curves for Wireless Network in Mobile Devices
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gcd , m ≤ f ≤ m +n . So b is not

reduced from 2 to 2 . Therefore, this is

significant reduction and hence f is not uniformly

distributed and it can’t leak the value package

javaapplication1;

import java.util.ArrayList;

import java.util.Scanner;

public class Main {

public static void main(String[] args)

{

Scanner s=new Scanner(System.in);

System.out.println("Enter a Prime Integer(U):");

int u=s.nextInt();

String binU=Integer.toBinaryString(u);

int n=binU.length();

System.out.println("Enter a secrete Key(t):");

int t=s.nextInt();

double w=0;

for(int wi=1;wi<=t;wi++)

{

int i1=(int)Math.pow(2,wi-2);

int i2=(int)Math.pow(2,wi)-1;

if(i1<=t && t<=i2)

{

w=wi;

break;

}

}

System.out.println("Window width (W): "+w);

int d=(int)Math.ceil(n/w);

System.out.println("Length of Each Array (d)

:"+d);

int m=(int)(d*w);

System.out.println("....(m) :"+m);

int on1=(int)Math.floor(Math.pow(2,m-1));

int n2=(int)Math.pow(2,m);

for(int i=m;i<on1;i++)

{int n1=i;

while(n1!=n2)

{

if(n1>n2)

n1=n1-n2;

else

n2=n2-n1;

}

//System.out.println("GCD of two number is

"+n1+"and i is "+i);

if(n1==1){on1=i;break;}

}

System.out.println("B="+on1);

int b=on1;

int b_inverse=0;

for(int i=1;i<b;i++)

{

int t2m=(int)Math.pow(2,m);

int temp=t2m*i;

temp=temp+1;

b_inverse=temp/b;

if((temp%b)==0)

{

break;

}

}

System.out.println("B inverse: "+b_inverse);

ArrayList<Integer> af=new ArrayList<Integer>();

for(int i=n;i<=(m+n);i++)

{ af.add(i);

}

int x=0;

for(int f=n;f<=(n+m);f++)

{

if(f>m)

{

x=(int)(b_inverse*Math.pow(2, f))/u;

System.out.println("f="+f+"\nx="+x);

}

else if (f<m)

{

x=(int)(b_inverse*(Math.pow(2,m+f)))/u;

System.out.println("f="+af.get(f)+"\nx="+x);

}

}

}

}

INPUT AND OUTPUT

Enter a Prime Integer(U):

111

Enter a secrete Key(t):

117

Window width (W): 7.0

Length of Each Array (d) :1

....(m) :7

B=7

B inverse: 55

f=8

x=126

f=9

Security through Elliptic Curves for Wireless Network in Mobile Devices
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x=253

f=10

x=507

f=11

x=1014

f=12

x=2029

f=13

x=4059

f=14

x=8118

BUILD SUCCESSFUL (total time: 29 seconds)

V. CONCLUSION

We modified the Nevine Maurice Ebied’s Almost

Montgomery inverse and A New variant of

[ScKK00] of Montgomery Inversion i.e is the

EKR Modified Montgomery Algorithm to be

resistant to SPA attacks . The EKR Modified

Montgomery Inverse Algorithm eliminate the

number of Iterations of the main loop directly

leaks the value of f and also it is mathematically

proved that f is uniformly distributed with a

significant reduction

A function that is easy to evaluate but infeasible to

invert unless the secret trapdoor t is known. So,

the attacker cannot guess the key (t) to retrieve

the valuable information in smart cards and

mobile devices .
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