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Security Through Elliptic Curves for Wireless
Network in Mobile Devices
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ABSTRACT

The basic principle is “A function is easy to
evaluate but its invert is infeasible unless a secret
key is known”.

It is mathematically proved that security of
cryptographic algorithms does not imply its
implementation of security of the system against
Side-channel Attacks. The security of the system
lies in the difficulty of extracting k from P and Q.
It is essential to secure the implementation of
cryptosystems in embedded devices against
side-channel attacks. These attacks monitor the
power consumption or the Electromagnetic
emanations of a device Ex smart cards or mobile
devices. The attacker’s goal is to retrieve partial
or full information about a long-term key that is
employed in several ECSM executions.

We are implementing a secret key to avoid
retrieving the valuable information by the
attacker through Simple Power Analysis Attacks.

Keywords: elliptic curve cryptography, simple
power analysis, differential power analysis.

l. INTRODUCTION

Elliptic curve cryptosystems (ECCs) are suitable
for implementation on devices with limited
memory and computational capability such as
smart cards and also with limited power such as
wireless handheld devices. This is due to the fact
that elliptic curves over large finite fields provide
the same security level as other cryptosystems
such as RSA for much smaller key sizes.

Considering power analysis attacks, there are two
main types that were presented by Kocher et al.
These are simple and differential power analysis
attacks (referred to as SPA and DPA respectively).

(© 2024 Great Britain Journals Press

Both of them are based on monitoring the power
consumption of a cryptographic token while

executing an algorithm that manipulates the
secret key.

The traces of the measured power are then
analyzed to Hence, DPA attacks are, in general,
more powerful than the SPA attack.
Randomization of the data processed at some
instant is essential in resisting this type of
attack.Electromagnetic = emanations  present
another powerful side channel since the
information is leaked from the device via more
than one channel and is a function of space as
well as of time. In [2], Agrawal et al. presented
both simple and differential electromagnetic
analysis attacks on smart cards and on a Palm
pilot . In these attacks they conclude that software
countermeasures rely on signal information
reduction, which is achieved by “randomization
and/or frequent key refreshing within the
computation”, which agrees with the concept of
resisting DPA attacks.

The point addition operation consists of finite
field operations carried in the underlying field K.
We denote the field inversion by I, the
multiplication by M, the squaring by S. The point
addition is denoted by A. When the two operands
of the addition are the same point, the operation
is referred to as point doubling and is denoted by
D.

[l WINDOW METHODS

This method is sometimes referred to as the
m-ary method. There are different versions of
window methods . What is common among them
is that, if the window width is w, some multiples
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of the point Pup to (2" - 1)P are precomputed
and stored and k is processed w bits at a time. k is

recoded to the radix 2 " . k can be recoded in a
way so that the average density of the nonzero

digits in the recoding is 1/(w + 5), where 0

S depends on the algorithm. Let the

number of precomputed points be t, in the
Precomputation stage, each point requires either a
doubling or an addition to be computed also
depending on the algorithm.

This ECSM method is suitable for unknown or
fixed-point P. The cost is Storage: t points, where

2"? <t<2"" depending on the algorithm.
Precomputation: t point operations (A or D).
Expected running time:

n

m-1)D+n"Ts A,

where 0<& <2 depending on the algorithm.
Note that the number of doublings is between n —
wandn - 1.

2.1. Simultaneous multiple point multiplication

This method is used to compute kP +IS where P
may be a known point. This algorithm was
referred to as Shamir’s trick in [10]. If k and 1 are
n-bit integers, then their binary representations
are written in a 2 x n matrix called the exponent
array. Given width w, the values iP +jS are

0<i,j<2"

calculated for . Now the algorithm

performs d = |_n/w-‘ iterations. In every iteration,
the accumulator point is doubled w times and the
current 2 x w window over the exponent array
determines the precomputed point that is to be
added to the accumulator.

Algorithm 2.1. Simultaneous multiple point
multiplication (Shamir-Strauss method)

Input: Window width w, d = |_” / W-| )

k=(Kdt, ... K1 ,K0)2 1= (L, . L1,L0)

20 and P, S € E(F7). 3 Also according to
[Bero1], it is originally due to Straus [Str64].
Output: kP +1S.

1. Precomputation. Compute iP + jS for all
i,j e [0,2" —1].

2.Q €K, ,P+L,,S.

3. forifromd - 2 down to o do

31Q €« 2"Q.

32Q €Q+(K,P+L,S).

4. Return(Q).

2w . .
Storage: 2 — 2 points. For w = 1, 3 points.
For w = 2, 15 points.

Precomputation:

(2 2" D+@g-2 " 2" C A

Forw=1,1A.

2(w-1)

Forw=2,1D + 11 A.

2 -1
Expected running time: (d - )w D + 2™ q-
1) A.
3
Forw=1,(n-1)D +( 4 n-1)A.
15

Forw=2,(n-1)D +( 32 n-1)A.

Using sliding windows can save about 1 4 of the
precomputed points and decrease the number of

n

additions to w+(1/3) , which is about 9% saving
forw € {2, 3}.

2.2. Interleaving method

This method is
multiplication method,

also a
that

multiple point
is we want to

compute ijPj for points P/ and integers

k’ . In the comb and simultaneous multiplication
methods, each of the precomputed values is a sum
of the multiples of the input points. In the
interleaving method, each precomputed value is
simply a multiple of one of the input points.
Hence, the required storage and the number of
point additions at the precomputation phase is
decreased at the expense of the number of point
additions in the main loop. This method is flexible
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in that each k/ can have a different
representation, e.g., different window size, as if a
separate execution of a window method is

performed for each k” P/ with the doubling
step performed jointly on a common accumulator,
as shown in [12]. As an illustration, we provide
the following algorithm that computes kP + 1S
where both k and 1 are represented to the same

base2 " .
Algorithm 2.2. Interleaving method
Input: widthw, d = |_n/w—| ,

k=(Xd4t,... K1, K0)2" I=(L4!,...,L1,L?)

2" 'and P,S € E(F 7).

Output: kP +1S.

1. Precomputation. Compute iP and iS for all i €
[0,2% —1].

2.Q ¢ K, ,P.

3.Q €QL,,S.
4. forifrom d — 2 down to o0 do
41Q ¢« 2"Q.
42Q< Q+K;P.
4.3Q< Q+L;S.
5. Return(Q).
Storage: 2 AL points.
Precomputation: 2(w-1) D + 2(2 Y _w-1)A.
Expected running time: w(d — 1) D + (2d - 1).
)
27 A
In general, if different basis and/or

representations are used for k and 1, we have

w-1

. w—-2
Storage: 2t points, where 2 <t <2
depending on the particular window algorithm
used as discussed in Section 2.1.3.

Precomputation: 2t point operations (A or D).

n

Expected running time: (n — 1) D + 2 W+i A

where 1 <7 <2 depending on the algorithm

2.3. SPA Attack on ECCs and its Countermeasures

Coron [3] has transferred the power analysis
attacks to ECCs and has shown that an unaware
implementation of EC operations can easily be
exploited to mount an SPA attack. Moreover, it
may also enable it to recognize the exact
instruction that has been executed. For example,
if the difference in power consumption between
point doubling (D) and point addition (A) is
obvious in their respective power traces, then, by
investigating one power trace of a complete
execution of a double-and-add algorithm, the bits
of the scalar k are revealed. That is, whenever a D

is followed by A, the corresponding bit is k? =1,

otherwise if D is followed by another D, then ki =
0. This sequence of point operations is referred to
as the DA sequence.

Window methods process the key on a digit
(window) level. The basic version of this method,
that is where _ = 0 in Section 2.1.3, is inherently
uniform since in most iterations, w D operations
are followed by 1 A, except for possibly when the
digit is 0. Therefore, fixed-sequence window
methods were proposed in order to recode the
digits of the key such that the digit set does not
include o.

2.4. DPA Attack on ECCs and its Countermeasures

As for the SPA attack, Kocher et al. were the first
to introduce the DPA attack on a smart card
implementation of DES. Techniques to strengthen
the attack and a theoretical basis for it were
presented by Messerges et al. in [3]. Coron
applied the DPA attack to ECCs [3].

In order to resist DPA attacks, it is important to
randomize the value of the long-term key involved
in the ECSM across the different executions. Some
of the countermeasures that were based on
randomizing the key representation were proven
to be inadequate since the intermediate point
computed in the accumulator Q at certain
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iteration remained one of two possible values .
The constancy of the value of this intermediate
point is an integral part in the success of
first-order DPA attacks.

A potential DPA countermeasure is known as key
splitting . It is based on randomly splitting the key
into two parts such that each part is different in
every ECSM execution. An additive splitting using
subtraction is attributed to Clavier and Joye . It is
based on computing

kP = (k - r)P + rP, D

The authors mention that the idea of splitting the
data was abstracted in [5]. where r is a n-bit
random integer, that is, of the same bit length as
k. Alternatively, Ciet and Joye [8] suggest the
following additive splitting using division, that is,
k is written as

k= [k/r ] + (kmod r). (1)

Hence, if we let k! = (kmodr), k2 2 = |_k/”J
and S =rP, we can compute

KP=kip+k2P (ID)

where the bit length of r is n/2. They also suggest
that (II) should be evaluated with the
Shamir-Strauss method as in Algorithm 2.3.
However, they did not mention whether the same
algorithm should be used to evaluate (I). The
following multiplicative splitting was proposed by
Trichina and Bellezza [0] where r is a random
integer invertible modulo u, the order of P. The
scalar multiplication kP is then evaluated as

kP =[kr ' (mod w)] (rp) (I1D)

To evaluate (III), two scalar multiplications are

needed; first R = rP is computed, then kr T Ris
computed.

. KEY SPLITTING METHODS

3.1. Introduction

We discuss different forms of key splitting along
with their strengths and weaknesses. We also
discuss the candidate SPA-resistant algorithms
and compare the resulting performance when
combined with each form of key splitting. At the

end of the chapter, we present countermeasures
to DPA attacks on the ECDSA and the ECMQV
algorithms.

This approach was suggested by Clavier and Joye
in [CJo1] and revisited by Ciet [Cie03] as follows.
In order to compute the point kP, the n-bit key k
is written as

k=k! +k2,

such that k1 = k — rand k2 =r, where r is a
random integer of length n bits. Then kP is
computed as

kP=k!P+k2P. (4.1)

It is important to note that each of the terms
should be evaluated separately and their results
combined at the end using point addition. That is
the multiple-point multiplication methods that
use a common accumulator to save doubling
operations. Whether at the bit level (w = 1) or
window level (w > 1)-should not be used, even
when a countermeasure against SPA is employed.
This observation is based on the following lemma.

Let =< denote \_k(mod 2b+1)2aJ0r, simply, the
bits of k from bit position b down to bit position a,
with b > a.

Lemma 3.2 Let splitting scheme I at the end of
some iteration j, 0 < j < n - 1, there are only two

possible values for Q, those are [k "/~ ] P or [k
n=I=j — 1] P.

Proof. Algorithm 2.3—and similarly Algorithm
2.4—computes the required point by scanning

kt =kttt ...kt %)2and

k2 = (2, ..., k2 °%)2 from the most
significant end down to the least significant end.
Hence, at the end of iteration j, the accumulator Q
contains the value

Q=k!"I=/ P + k2= P (4.2)
=[k»=/ 4+ k?21=/ ]P.

We can write k, k! andk 2 as
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k=k"" 27 4k

ki=ki ™I/ ol Lxi 10 (4.3)

Sincek=k! + k2 we have

ki /0 k2 705 =kJi10 yho / where b
e {o, 1} (4.5)
and

kl n—I1—j +k2 n—1—j =kn—l—>j _b

The DPA attack would proceed in the same way,
whether the algorithm processes a single bit or a
digit per iteration, though it would be more
involved in the latter case depending on the digit
size. The attacker can double the number of traces
gathered and compute the necessary intermediate
points as if there was no countermeasure in place.

3.2 Modular Division:

In the following algorithm, a and b are integers
internally represented each by an array of w-bit

digits. The length of each array is d = |_n/w-‘
digits. Note that for the modular inversion, as
mentioned by Savas and Ko ¢ [25], b needs not be

less than the modulus u, but be in [1, 2" -1],
where m = dw. Also note that the values R ? mod

m
u, where R = 2 | and u’ are computed once per
modulus, i.e., per curve.

Algorithm 3.4. Modular division

Input: u: a n-bit prime, d = !—n/w—| ,m=dw, R 2

(modu) = (2m) ~ (modu), ' =u  mod2",a
€ [,p-1landb € [1,2" -1].

Output: ab - (mod u).

1. Compute b TR (mod u) using Algorithm 6.6.
ab " R)R

2. Compute x = (mod u) using

Algorithm 6.5.
3. Return(x).

The following algorithm is Algorithm 14.36 in
[21]. We include it here for the sake of
completeness.

Algorithm 3.5Montgomery multiplication

Input: u: a n-bit prime, d = |—n/w_| ,m=dw,u =
u” mod2"”,x=(x%"...,x0)2" and
y=(yl...yo)2".

Output: xy2 " (mod u).

1.LA< o. //A=(ad,a,,,..

2. forifromotod-1do

.,a0)2w

2.1ui € (a, +x;y,)mod 2"

22A ¢ (A+x;y, +u;m)/ 2"

3.1if (A > u) then

A A<

4. Return(A).

The following algorithm was presented by Savas

and Ko,c as the modified Kaliski-Montgomery
Inverse.

Algorithm 3.6. Montgomery inversion

Input: u: a n-bit prime, d = |_n/w_| ,m=dw, R ?

(mod u) = (2" ) (mod u),u =u  mod2"
andb € [1,2" -1].

Output: b " R (mod u).

1. Compute f and x = b ! 2f (mod u) using

Algorithm 6.7,
Where n<f<m +n.

2. if (f < m) then

2.1x € xR?*R ™ (mod u) using Algorithm 6.5. // x
=b2™" (mod u)

2.2f f+m.//f>m,x=b-12f (mod u)

3.x €x2?™ "R (mod u)
//x=bt2" 22™f o™ _},5™ (mod u)

4. Return(x).

V. EXISTING SYSTEM

Nevine Maurice Ebied modified the almost
Montgomery inverse algorithm of [ScKKoo0] to be
resistant to SPA attacks as in the following
algorithm. Swap Address(c, d) denotes
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interchanging the memory addresses of the
integer’s ¢ and d. This is an inexpensive operation,
hence its usage as a dummy operation to balance
the branches of the main loop. We implemented
the “if” statement in steps 3.4 and 3.5 such that
the number of conditions checked per loop
iteration is always three. In assembly language,
this can be easily ensured. Written in Java, step
3.4 is implemented as

If ((xLSb==0) && (xLSb==0) && (XxLSb = =
0)).

If the condition is false, due to short-circuit
evaluation, the flow control will move to the
following “if” after the first check, otherwise, it
will perform the check three times. The following
“if”—step 3.5—is similar but with the condition
checked only two times if( ( yLSb = = 0 ) && (
yLSb==0)).

Algorithm 3.7. Almost Montgomery inverse

:Input: u: a n-bit prime,
d= [n/w] ,m=dwandb € [1,2" -1].

Output: f and b o/ (mod u), wheren<f<m +
n.

LXS wy < b;r < o;s <1
2.f < o.

3. while (v > 0) do

31U < x-y; V& -U.

32T € r+s.

3.3f < f+1.
3.4 if (((sb (x)=0))) then
// This “if” is special SwapAddress(x, U);

SwapAddress (x, U) // dummy
SHR(x); SHL(s).

3.5 else if ((Isb(y) = 0)) then
// This “if’ is special SwapAddress(y, V);
SwapAddress

(v, V) // dummy
SHR(y); SHL(r).

3.6 else if (V >= 0) then
SwapAddress(y, V);
SwapAddress(s, T')
SHR(y); SHL(r).

3.7 else
SwapAddress(x, U);

SwapAddress(r, T )

SHR(x); SHL(s).

4.T < u-n;VE u+T.
5.1f (T > 0) then

Return(f, T)

else

Return(f, V).

The drawback of this algorithm is that an SPA of
the number of iterations of the main loop directly
leaks the value of f. If f is uniformly distributed,

the search space of b is reduced from 2" to 2

m—log2™

, which is not a significant reduction. It is
interesting to study how f is actually distributed.

4.1. PROPOSED SYSTEM

We modified the Nevine Maurice Ebied’s Almost
Montgomery inverse and A SECRET KEY of
[ScKKoo0] to be resistant to SPA attacks as in the
following algorithm.

Algorithm:4.2. E.KESAVULU REDDY (EKR)
Modified Montgomery Inversion

Input: u: a n-bit prime, d = !—n / w_| ,
m=dw,R> (modu)=(2")" (modu),u=u_

mod2"” andb € [1,2" - 1], tis Secret key.
t: No of precomputed points 1<t <n
W: Window width least significant of bit

o £<2" ]

Output: b ' R (mod u).
Select a number b such that (b 2" ): 1
1(mod2 ™)

b 27 (mod u)

Computeb_1 such that bb ' =
3. If f > m then x =

¥ x= b 2’ (modu)
4. Iff <m then

X (—RzRil(mOd”) N R= 2"

5.

6. x=b 2" (mod u)

7. f < m+f

8. Return(x)

In the EKR modified Montgomery Inverse

Algorithm of Savas and Koc , we select f such that
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ged (b’zm)zl,msf < m +n . So b is not

m-log2" ..
reduced from 2"  to 2 . Therefore, this is

significant reduction and hence f is not uniformly
distributed and it can’t leak the value package
javaapplicationi;
import java.util. ArrayList;
import java.util.Scanner;
public class Main {
public static void main(String[] args)
{
Scanner s=new Scanner(System.in);
System.out.println("Enter a Prime Integer(U):");
int u=s.nextInt();
String binU=Integer.toBinaryString(u);
int n=binU.length();
System.out.println("Enter a secrete Key(t):");
int t=s.nextInt();
double w=o0;
for(int wi=1;wi<=t;wi++)
{
int i1=(int)Math.pow(2,wi-2);
int i2=(int)Math.pow(2,wi)-1;
if(i1<=t && t<=i2)
{
W=wi;
break;
}

b
System.out.println("Window width (W): "+w);

int d=(int)Math.ceil(n/w);
System.out.println("Length of Each Array (d)
"+d);
int m=(int)(d*w);
System.out.println("....(m) :"+m);
int on1=(int)Math.floor(Math.pow(2,m-1));
int n2=(int)Math.pow(2,m);
for(int i=m;i<oni;i++)
{int n1=i;
while(n1!=n2)
{
if(n1>n2)
ni=ni-n2;
else
n2=n2-ni;
by
//System.out.println("GCD of two number is
"+n1+"and iis "+i);
if(ni==1){on1=i;break;}

b
System.out.println("B="+on1);
int b=oni;

int b_inverse=o0;

for(int i=1;i<b;i++)

{

int tam=(int)Math.pow(2,m);
int temp=t2m*i;
temp=temp+1;
b_inverse=temp/b;
if((temp%b)==0)

{

break;

b

b

System.out.println("B inverse: "+b_inverse);
ArrayList<Integer> af=new ArrayList<Integer>();
for(int i=n;i<=(m+n);i++)

{ af.add(i);

b

int x=0;

for(int f=n;f<=(n+m);f++)
{

if(f>m)

{

x=(int)(b_inverse*Math.pow(2, f))/u;
System.out.println("f="+f+"\nx="+x);

b

else if (f<m)

{

x=(int)(b_inverse*(Math.pow(2,m+f)))/u;
System.out.println("f="+af.get(f)+"\nx="+x);
by

b

b

¥
INPUT AND OUTPUT

Enter a Prime Integer(U):
111

Enter a secrete Key(t):
117

Window width (W): 7.0
Length of Each Array (d) :1
....(m) :7

B=7

B inverse: 55

f=8

xX=126

f=9
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X=253
f=10
X=507
f=11
X=1014
f=12
X=2029
f=13
X=4059
f=14
x=8118
BUILD SUCCESSFUL (total time: 29 seconds)

V. CONCLUSION

We modified the Nevine Maurice Ebied’s Almost
Montgomery inverse and A New variant of
[ScKKoo] of Montgomery Inversion i.e is the
EKR Modified Montgomery Algorithm to be
resistant to SPA attacks . The EKR Modified
Montgomery Inverse Algorithm eliminate the
number of Iterations of the main loop directly
leaks the value of f and also it is mathematically
proved that f is uniformly distributed with a
significant reduction

A function that is easy to evaluate but infeasible to
invert unless the secret trapdoor t is known. So,
the attacker cannot guess the key (t) to retrieve
the valuable information in smart cards and
mobile devices .
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