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ABSTRACT

Attention mechanisms have become a fundamental component of deep learning, including the field

of computer vision. The key idea behind attention in computer vision is to help the model focus on

the relevant spatial regions of the input image, rather than treating all regions equally. The

traditional approaches to attention mechanisms in computer vision often suffer from distribution

inconsistencies in the attention maps, resulting in sharp transitions that negatively affect model’s

focus and lead to poor generalization on complex shapes. The problem of spatial incoherence is

particularly pronounced in the task of semantic segmentation, where accurate pixel-level

predictions require a detailed understanding of the spatial relationships within the image. In this

paper, we propose an attention mechanism called Smooth Attention designed for convolutional

neural networks to address the problem of spatial inconsistency in attention maps through

multidimensional spatial smoothing. We conduct a series of experiments to evaluate the

effectiveness of the proposed mechanism and demonstrate its superior performance compared to

traditional methods.
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I. INTRODUCTION

Attention mechanisms
1–3
have become a fundamental component of deep learning models, including

the field of computer vision, where spatial understanding plays a crucial role. A wide range of

attention mechanisms have been designed to enable models to focus on the most relevant parts of

input images, leading to improved performance and enhanced interpretability of the models’

decision-making processes.
4–7

The origins of attention in deep learning can be traced back to the revolutionary works in natural

language processing (NLP), introduced as a way to address the limitations of traditional sequence-

to-sequence models,
1
such as the inability to effectively capture long-range dependencies. The initial

success of attention mechanisms in NLP tasks, such as machine translation and language

modeling,
8–10

inspired researchers to explore their potential in other domains, including computer

vision.

In the computer vision domain, attention mechanisms have been adapted to various tasks, such as

image classification, object detection, and semantic segmentation. The key idea behind these at-

tention mechanisms is to allow the model to dynamically focus on the most relevant spatial regions of

the input image, rather than treating all regions equally. The selective focus has been shown to

improve the model’s performance and provide better interpretability of its decision-making.
11
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However, the traditional approaches to attention mechanisms in computer vision often suffer from a

lack of smoothness in the attention maps, resulting in sharp transitions that negatively affect model

generalization. This problem of spatial incoherence is particularly pronounced in the task of

semantic segmentation, where accurate pixel-level predictions require a detailed understanding of

the spatial relationships within the image.
12

Semantic segmentation, the task of assigning a semantic label to each pixel in an image, relies

heavily on capturing fine-grained details and understanding the spatial context. The existing at-

tention mechanisms struggle to effectively capture the detailed relationships within the image due to

the abrupt pixel-level transitions in the attention maps.
13, 14

This inconsistency in the attention maps

often leads to inaccurate segmentation boundary predictions and a tendency for the model to overfit

on the training data, limiting its ability to generalize well on unseen images.

Additionally, the lack of smoothness in attention maps can make models susceptible to noise.
15
Small

perturbations in the input image may drastically alter the attention weights, causing unstable

predictions.
16, 17

Such sensitivity to noise is particularly problematic in real-world scenarios where

images are often corrupted by artifacts or imperfections.

To address these limitations, we present a new approach called Smooth Attention that incorporates a

smoothness constraint, encouraging gradual changes in attention weights and mitigating the risks of

sharp transitions or noise sensitivity. By enabling a detailed understanding of spatial relationships

within the image, Smooth Attention leads to higher-level performance on tasks where spatial

coherence is crucial, such as image semantic segmentation.

1.1 Related Work

The Smooth Attention methodology builds on the successful implementation of attention mecha-

nisms in computer vision, particularly within transformer-based architectures such as the Vision

Transformer
18
and Swin Transformer.

19
Our primary focus is the enhancement of the spatial co-

herence within a single attention layer, drawing inspiration from attention integration techniques in

convolutional neural networks (CNNs), including Non-local Neural Networks
20
and the Convo-

lutional Block Attention Module (CBAM).
21

Spatial coherence has been a focal point in various applications, including image segmentation with

CRF-RNN
22

and image generation through PatchGAN.
23
Smooth Attention introduces adaptive

computation elements akin to Adaptive Computation Time
24
for recurrent neural networks (RNNs),

selectively applying smoothing techniques.

Our framework is inspired by recent innovations in Attention Augmented Convolutional Net- works
25

and Focal Self-attention.
26
By leveraging the Chebyshev distance, we align with the principle of

dynamically adjusting kernel weights based on local features during convolutional operations.
27

The spatial coherence component of our approach resonates with the foundational concepts of

CoordConv,
28
as it explicitly encodes spatial information into convolutional layers. Moreover, our

methodology exhibits parallels with the Performer architecture,
29
which reduces computational

complexity while maintaining high performance by approximating attention through random fea-

ture maps.

Smooth Attention_ Improving Image Semantic Segmentation
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Building on the principles of adaptive filtering as outlined in
30
by Solomon et al., we effectively

combine original and smoothed attention scores based on identified variations. Such selective

smoothing enhances the established concept of gating in GRCNN,
31
enabling precise control over the

influence of neighboring attention scores and pixels while preserving critical features.

II. METHODOLOGY

In this section, we present a new attention mechanism in convolutional neural networks called

Smooth Attention. The module is designed to enhance the spatial coherence of attention maps while

maintaining the flexibility and power of traditional attention mechanisms.
6, 32, 33

Our approach

addresses the issue of inconsistent or “noisy” attention patterns that oftentimes arise in standard

attention mechanisms, particularly in vision tasks where spatial coherence is crucial, like image

segmentation of complex-shaped objects.
8, 34

2.2 Architecture Overview
The Smooth Attention approach is implemented as a neural network module. It consists of three main

components:

1. Query, key, and value projections (3.1.1)

2. Attention computation (3.1.2)

3. Smoothness enforcement mechanism (3.1.3)

Each of these components plays a crucial role in achieving the final goal of spatially coherent

attention.

3.3 Query, Key, and Value Projections

2.4 Attention Computation

After obtaining the projected tensors, we compute the attention scores using the scaled dot-product

attention mechanism, similar to the one used in Transformer architectures,
1
shown in (4):

Smooth Attention_ Improving Image Semantic Segmentation
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The first step in the Smooth Attention module is the projection of the input tensor X into query ( Q),

key (K), and value (V) spaces. The projection is achieved using 1x1 convolutions (1), (2), (3).

(1)

(2)

(3)

Where [Conv1x1] represents a convolutional layer with a 1x1 kernel. The final projections serve

multiple purposes:

1. Allow the network to learn representations of the input that are suitable for computing attention.

2. Enable the module to adjust the channel dimensionality, reducing computational complexity.

3. Provide a learned transformation that emphasizes or suppresses aspects of the input for

attention computation.

Q = Conv1x1(X)

K = Conv1x1(X)

V = Conv1x1(X)

(4)attention = softmax
(
QKT

√
dk

)
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4. QK
T
represents the matrix multiplication of Q and the transpose of K;

5. dk is the dimensionality of the key vectors;

6. √
dk is used for scaling to counteract the effect of large dot products in high dimensions;

7. Softmax is applied to normalize the attention scores.

The computation results in the attention map where each position attends to all other positions,

capturing global dependencies in the input.

2.1.3 Smoothness Enforcement Mechanism
The key concept in the Smooth Attention module is the introduction of a smoothness enforcement

mechanism. The mechanism is designed to address the spatial incoherence in vision attention when

nearby pixels may have radically different attention weights.

To enforce the smoothness, we compute the Chebyshev distance between each pixel’s attention

distribution and those of its eight neighboring pixels. The Chebyshev distance is defined as the

maximum absolute difference across all dimensions (5).

The choice of Chebyshev distance over other metrics is motivated by its sensitivity to the largest

difference in any single dimension, which aligns well with the goal of detecting abrupt changes in

attention patterns.
35, 36

2.2 Smoothness Thresholding and Mask Creation
If the maximum Chebyshev distance exceeds a predefined threshold (a value between 0 and 1), we

consider the attention at that pixel to be non-smooth. We create a binary mask where 1 indicates

non-smooth regions and 0 indicates smooth regions (7).

smoothing mask = (max chebyshev distance > threshold).float() (7)

2.3 Attention Application with Smoothness Consideration

The smoothing mask is then used to selectively apply the attention mechanism. In smooth regions, we

allow the full attention mechanism to operate, while in non-smooth regions, we reduce the influence

of the attention mechanism:

(8)

Where:

• γ is a learnable parameter initialized to zero;

• V is the value projection of the input;

• x is the original input.

The learnable parameter γ allows the network to gradually incorporate the attention mechanism as

training progresses. A soft start is used to help stabilize the training process and allow the network to

learn ”when and how much” to rely on the attention mechanism.

(5)

We compute this distance for each of the eight neighbors and take the maximum:

(6)

d chebyshev(p, q) = maxi|pi − qi|

max distance = max (d chebyshev(attention[i, j], attention[i+ di, j + dj]))

for di, dj in [(−1,−1), (−1, 0), (−1, 1), (0,−1), (0, 1), (1,−1), (1, 0), (1, 1)].

output = γ ∗ attention ∗ V + (1− γ ∗ smoothing mask) ∗ x

Where:



Due to its structure, Smooth Attention module offers several advantages:

1. Spatial Coherence: By enforcing local smoothness, the module encourages the production of more

coherent attention maps, improving model’s performance on complex computer vision tasks.

2. Noise Reduction: The smoothness constraint acts as a form of regularization, reducing the impact

of noise and spurious correlations in the attention computation.

3. Interpretability: Smoother attention maps are more interpretable, providing clearer insights into

which parts of the input the model is focusing on.

4. Adaptive Mechanism: The learnable parameter γ and the smoothness threshold provide additional

level of engineering flexibility, allowing the network to adapt the strength of the smoothness

constraint based on the task and data.

The Smooth Attention module extends traditional attention mechanisms by incorporating a local

smoothness constraint. The constraint is enforced through applying the Chebyshev distances in the

attention space, resulting in more coherent and accurate attention maps for convolutional neural

networks. The module’s design allows for a flexible trade-off between global attention capabilities and

local coherence, making it adaptable to a wide range of vision tasks dependent on the spatial

coherence level.

III. EXPERIMENTS

To demonstrate the effectiveness of Smooth Attention, we perform experiments on five diversified

image segmentation datasets, including the Caltech-UCSD Birds-200-2011,
37
Large-Scale Dataset for

Segmentation and Classification,
38
Fire Segmentation Image Dataset,

39
Kvasir-Instrument: Diagnostic

and Therapeutic Tool Segmentation Dataset in Gastrointestinal Endoscopy,
40
and Flood Semantic

Segmentation Dataset.
41

To explore the influence of the attention module, we implement a custom model with the U-Net

architecture
42–44

which is a popular choice for semantic segmentation tasks. We use ResNet18
45
as the

encoder, which is followed by the Smooth Attention mechanism to help the model focus on important

features. The decoder is implemented as a series of transposed convolutions that upscale the feature

map.
46
Each transposed convolution is followed by a ReLU activation, except for the last one. The

decoder gradually increases the spatial dimensions while reducing the number of channels.
47, 48

The

final layer outputs the same number of channels as the number of classes for segmentation. The

complete model architecture is demonstrated in Figure 1.

We perform experiments across multiple smoothness thresholds (from 0.1 to 0.9 with a 0.1 step) for

each dataset, and compare the results with a threshold of 2.0 that illustrates the model without

attention mechanism in place (any value above 1.0 means no smoothing constraint applied). All

datasets are split into 80% for training, and 20% for testing. We choose IoU, Dice Coefficient, Test

Accuracy, Test Precision Test F1 Score as metrics to compare the final results.
49

Smooth Attention_ Improving Image Semantic Segmentation
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Table 1: Experiments for Caltech-UCSD Birds-200-2011 results

Metric Test IOU Test Dice Test Acc Test Prec Test Recall Test F1

0.1 0.7933 0.9231 0.9686 0.7674 0.9838 0.8550

0.2 0.8028 0.9294 0.9670 0.7457 0.9829 0.8430

0.3 0.7997 0.9292 0.9672 0.7641 0.9829 0.8521

0.4 0.7894 0.9186 0.9679 0.7654 0.9799 0.8495

0.5 0.7963 0.9258 0.9672 0.7609 0.9827 0.8494

0.6 0.7949 0.9260 0.9693 0.7740 0.9812 0.8562

0.7 0.7952 0.9239 0.9677 0.7685 0.9811 0.8526

0.8 0.8003 0.9272 0.9678 0.7700 0.9808 0.8493

0.9 0.7994 0.9229 0.9699 0.7881 0.9823 0.8610

2.0 0.7909 0.9222 0.9667 0.7497 0.9827 0.8453

The results for Caltech-UCSD Birds-200-2011
37
can be observed in Table 1. The superior performance of

the Smooth Attention mechanism at lower smoothness thresholds (0.1, 0.2, 0.3) compared to the model

Smooth Attention_ Improving Image Semantic Segmentation
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Fig. 1: Model Architecture



without attention (threshold of 2.0) suggests that the attention module is effectively helping the model

in focusing on the most relevant features in the image segmentation task. By applying the smoothness

constraint, the attention mechanism is able to selectively high- light most informative regions of the

input, leading to better segmentation accuracy, IoU, and Dice coefficient metrics.

We see the consistently high Test Recall values across all smoothness thresholds, showing that the

model is able to correctly identify most of the positive instances in the test set, regardless of the

attention mechanism’s configuration. Similar to IoU, the Dice coefficient peaks at a lower smoothness

threshold, demonstrating that low levels of attention smoothness provide better balance between focus

and flexibility in feature selection. At the same time, the highest accuracy and pre- cision occur at a

higher threshold, suggesting that for overall pixel-wise classification a smoother attention map reduces

the noise and the number of false positives. The recall peak occurs at the lowest smoothness threshold,

since true positives can be captured at a strict threshold easier. By applying a stricter smoothness

constraint, the attention module is able to capture important visual cues, maximizing the model’s

ability to detect positive instances in the data.

The experiment results for the Large-Scale Dataset for Segmentation and Classification
38
can be

observed in Table 2. The stronger IoU and Dice coefficient performance at lower smoothing thresholds

indicates that the model is more effective in identifying variances in the input image data at strict

thresholds. Such behavior unveils the rich tapestry of diversity within the fish seg- mentation data,

highlighting the necessity for fine-grained approaches to capture the complexities of the images.

Table 2: Large-Scale Dataset for Segmentation and Classification.

Metric Test IOU Test Dice Test Acc Test Prec Test Recall Test F1

0.1 0.9344 0.9764 0.9882 0.9426 0.9904 0.9618

0.2 0.9364 0.9784 0.9887 0.9434 0.9916 0.9638

0.3 0.9309 0.9749 0.9879 0.9493 0.9901 0.9600

0.4 0.9320 0.9751 0.9883 0.9399 0.9898 0.9627

0.5 0.9355 0.9787 0.9886 0.9426 0.9910 0.9630

0.6 0.9283 0.9706 0.9874 0.9383 0.9872 0.9602

0.7 0.9247 0.9694 0.9886 0.9519 0.9866 0.9620

0.8 0.9290 0.9731 0.9885 0.9434 0.9882 0.9626

0.9 0.9336 0.9759 0.9879 0.9465 0.9899 0.9612

2.0 0.9363 0.9781 0.9886 0.9436 0.9915 0.9611

Consistently high accuracy scores for all thresholds, including 2.0 (no attention), showcase the absence

of background complexity within image data, helping the model be accurate in object segmentation

with and without smoothing. Still, slight improvements can be seen when attention smoothing is

applied with peak scores seen at thresholds of 0.2, 0.5 and 0.7.

Precision metric demonstrates the best result at a threshold of 0.7, showing accurate prediction of

pixel-level distribution. The higher thresholds can be more beneficial for tasks requiring broader

feature recognition helped by greater noise suppression and lesser sensitivity to variation in input data.

Moreover, high values of Recall and F1 Score at lower thresholds are a clear representation of the

model’s effectiveness in capturing critical details due to strict smoothing masks.

Smooth Attention_ Improving Image Semantic Segmentation
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Table 3 demonstrates the results for the Fire Segmentation Image Dataset.
39
The IoU and Dice

coefficient peaked at a smoothing threshold of 0.4, with strong performance also observed at 0.5 and

0.6. This behavior can be attributed to the special characteristics of fire images in the dataset.

Table 3: Fire Segmentation Image Dataset

Metric Test IOU Test Dice Test Acc Test Prec Test Recall Test F1

0.1 0.8484 0.9228 0.9904 0.4903 0.9630 0.6322

0.2 0.8512 0.9246 0.9913 0.4868 0.9633 0.6403

0.3 0.8488 0.9189 0.9925 0.5269 0.9599 0.6377

0.4 0.8518 0.9277 0.9914 0.4907 0.9662 0.6446

0.5 0.8501 0.9248 0.9910 0.4753 0.9648 0.6329

0.6 0.8507 0.9268 0.9919 0.5096 0.9656 0.6489

0.7 0.8498 0.9231 0.9918 0.5027 0.9628 0.6460

0.8 0.8480 0.9208 0.9918 0.5057 0.9594 0.6520

0.9 0.8497 0.9231 0.9915 0.4888 0.9608 0.6314

2.0 0.8504 0.9211 0.9911 0.4837 0.9623 0.6399

Fire scenes typically exhibit complex, irregular shapes with varying intensity and color gradients,

making them challenging to segment accurately.

The dataset’s nature, featuring dynamic fire boundaries and potential smoke interference, explains

why moderate smoothing thresholds (0.4 - 0.6) outperform others. At these levels, the algorithm

effectively balances detail preservation and noise reduction. Lower thresholds (0.1 - 0.3) likely retain

too much noise and small, irrelevant features, while higher thresholds (0.7 - 0.9) risk oversimplifying

the fire’s complex structure.

Consistently high values of Accuracy and Recall suggest the model’s ability to correctly identify true

positives and relevant instances in the image dataset, regardless of whether smoothing is applied.

However, attention smoothing does lead to marginally improved performances in these metrics.

The balanced approach to smoothing not only improves traditional segmentation metrics like IoU

and Dice coefficient but also enhances the model’s overall predictive capabilities across a broader

range of performance indicators.

Table 4: Kvasir-Instrument: Diagnostic and Therapeutic Tool Segmentation Dataset in
Gastrointestinal Endoscopy

Metric Test IOU Test Dice Test Acc Test Prec Test Recall Test F1

0.1 0.9105 0.9405 0.9853 0.9427 0.9370 0.9138

0.2 0.9248 0.9536 0.9881 0.9489 0.9674 0.9294

0.3 0.9223 0.9504 0.9876 0.9632 0.9548 0.9263

0.4 0.9071 0.9348 0.9852 0.9231 0.9367 0.9136

0.5 0.9125 0.9420 0.9848 0.9162 0.9364 0.9163

0.6 0.9054 0.9371 0.9847 0.9077 0.9326 0.9167

Smooth Attention_ Improving Image Semantic Segmentation
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0.7 0.9052 0.9374 0.9828 0.9121 0.9345 0.9081

0.8 0.9093 0.9394 0.9861 0.9083 0.9587 0.9217

0.9 0.9091 0.9390 0.9857 0.9115 0.9470 0.9197

2.0 0.9108 0.9376 0.9855 0.9152 0.9479 0.9208

Table 4 presents the results of the Kvasir-Instrument: Diagnostic and Therapeutic Tool Seg- mentation

Dataset in Gastrointestinal Endoscopy.
40

The dataset contains images of the commonly used

gastrointestinal endoscopy surgical tools that pose challenges for segmentation models due to the shape

complexity of the surgical tools captured in the scenes.

The best performance across numerous evaluation metric criteria can be seen at lower thresholds

(0.1-0.3) with peak values achieved at a threshold of 0.2. Such behavior clearly indicates the importance

of fine-grained attention in the medical industry where the decision based on spatial understanding of

the structure of organ imagery and surgical tools can play a major role in life and death situations.

In tasks of segmentation and classification the medical instruments are commonly segmented

incorrectly and mistaken for others. The lower attention threshold strictly punishes false positives,

leading to more accurate segmentation results, as seen at the metrics-performance level.

Additionally, the high values of Dice and IOU at the threshold of 0.2 show that the model is able to

capture image-specific details and identify accurately both linear and non-linear segmentation

boundaries. At the same time, high values of Accuracy, Precision, Recall and F1 Score at the lower

thresholds highlight the model’s readiness to adhere to local sensitivity in pixel-level variations that

are crucial in the medical field.

Table 5: Flood Semantic Segmentation Dataset

Metric Test IOU Test Dice Test Acc Test Prec Test Recall Test F1

0.1 0.8746 0.9321 0.9571 0.9450 0.9669 0.9515

0.2 0.8694 0.9274 0.9542 0.9521 0.9790 0.9486

0.3 0.8765 0.9309 0.9543 0.9432 0.9712 0.9480

0.4 0.8772 0.9334 0.9554 0.9595 0.9662 0.9501

0.5 0.8374 0.9309 0.9560 0.9556 0.9691 0.9495

0.6 0.8728 0.9294 0.9531 0.9501 0.9658 0.9470

0.7 0.8744 0.9317 0.9555 0.9452 0.9612 0.9502

0.8 0.8674 0.9263 0.9522 0.9419 0.9622 0.9446

0.9 0.8696 0.9292 0.9518 0.9517 0.9646 0.9469

2.0 0.8720 0.9308 0.9542 0.9514 0.9605 0.9468

Table 5 reveals the results for the Flood Semantic Segmentation Dataset.
41
The dataset covers a wide

range of image data of flood disaster area sensing in multiple geographical regions, introducing the

complexity of segmentation variation.

The optimal performance can be observed at the thresholds (0.4-0.6) with strong IOU, Dice and

Precision results. Due to the fluid image structure variations, it is important to find the balancing

between border smoothing and fine-grained detail retention. Such balance ensures the model cap- tures

Smooth Attention_ Improving Image Semantic Segmentation
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segmentation features while minimizing artifacts arising from overly aggressive smoothing

techniques.
49, 50

Lower thresholds yield high recall but lower precision values. This phenomenon occurs because the

balance achieved ensures the detection of image details, resulting in a higher percentage of true

positives; however, still providing the needed leniency towards false positives, as the complexity of

flooded areas in varying geographical terrains—such as reflections, shallow water, and debris—can

cause the model to overreact to minor pixel distributions variations.

Higher thresholds tend to perform less effectively due to a tendency to under-segment the shape

complexities of flooded and non-flooded areas. This loss of detail obscures critical features, making it

challenging to accurately distinguish between waterlogged regions and surrounding terrain.

Consequently, important contextual information is lost, leading to inaccuracies in assessing the extent

of flooding.

We demonstrate the comparison of the attention values as heatmaps for the Flood Semantic

Segmentation Dataset [41] at different thresholds in Figures 2 and 3. Figure 2 illustrates attention

heatmap at a threshold of 2.0 (without smoothing applied), resulting in a more fragmented repre-

sentation of attention values across the map. This higher threshold leads to sharper and isolated areas

of focus, which obscure subtle relationships in the image data. Conversely, Figure 3 presents attention

heatmap at a threshold of 0.4 (with effective smoothing applied), showing a more cohe- sive and

visually integrated attention values distribution. The smoothing process creates a gradual transition

between areas of high and low attention, enhancing spatial interpretability and resulting in a more

stable segmentation model performance.

Developing further the insights from the previous figures, we introduce in Figures 4 and 5 the 3D

heatmap representation of attention for the Flood Semantic Segmentation Dataset [41] at the same

respective thresholds. Figure 4 shows the 3D heatmap at a threshold of 2.0 (without smoothing

applied), clearly revealing a sparse and jagged attention landscape. The isolated peaks in this

visualization indicate areas of high attention, but the overall structure appears disjointed, making it

challenging to discern the concise relationships between different attention regions. In contrast, Figure

5 presents the 3D heatmap with a threshold of 0.4 (effective smoothing applied), which significantly

alters the visual interpretation of attention. The smoothing process results in a more fluid attention

surface, building a precise understanding of what regions help the model complete the task accurately.

After the smoothing constraint is applied, the attention regions shift due to the averaging effect that

reduces noise and emphasizes broader trends in the values’ distribution. Such cohesive representation

not only enhances the visibility of region-level importance but also facilitates the identification of

underlying patterns within the image data.
51
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Fig 2: Attention as a Heatmap for Flood Semantic Segmentation Dataset at threshold 2.0 (without
smoothing).

Fig 3: Attention as a Heatmap for Flood Semantic Segmentation Dataset at threshold 0.4 (with
smoothing).
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Fig. 4: Attention as a 3D Heatmap for Flood Semantic Segmentation Dataset at threshold 2.0

(without smoothing).

Fig. 5: Attention as a 3D Heatmap for Flood Semantic Segmentation Dataset at threshold 0.4 (with

smoothing).
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Figures 6 and 7 explore the representation of attention values using 3D scatter plots, providing a

distinct perspective on the attention distribution under varying levels of smoothing for the Large- Scale

Dataset for Segmentation and Classification [38]. Figure 6 illustrates the attention values at a threshold

of 0.9 (with light smoothing applied). It can be observed that the attention points are relatively sparse,

with some clusters indicating areas of significant focus. However, higher threshold values limit the

mechanism’s ability to identify finer details in the distribution map. The light smoothing enhances the

overall visual coherence, developing a stronger understanding of the focusing area where the fish is

illustrated, yet it still retains some of the original fragmentation.

In contrast, Figure 7 presents the attention values at a threshold of 0.1 (with strong smoothing applied).

Such an approach results in a dense interconnected scatter plot, where attention points are uniformly

distributed across the attention region. The strong smoothing effectively blurs the boundaries between

areas of high and low attention, creating a continuous representation of attention across the image

data. Figure 7 highlights the strict relationships between different regions, making it easier to identify

patterns that could have been missed in the original attention map’s spatial inconsistency.

Fig. 6: 3D Scatter Plot for Attention Values at threshold 0.9 (light smoothing) for Large-Scale Dataset

for Segmentation and Classification.
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Fig. 7: 3D Scatter Plot for Attention Values at threshold 0.1 (strong smoothing) for Large-Scale

Dataset for Segmenta- tion and Classification.

Figures 8 and 9 present the final predicted segmentation results for the Flood Semantic Seg- mentation

Dataset [41]. Figure 8 illustrates the segmentation output at a threshold of 2.0 (withoutsmoothing

applied), revealing the segmented images that are characterized by abrupt edges and fragmented

regions. While some areas of interest are accurately captured, the lack of smooth- ing leads to a

disjointed segmentation that does not effectively represent the underlying structural details in the

spatial data.

Fig. 8: Predicted Segmentation Result threshold 2.0 (without smoothing) for Flood Semantic
Segmentation Dataset.
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At the same time Figure 9 demonstrates the predicted segmentation mask at a threshold of 0.4 (with

effective smoothing applied). The result with the Smooth Attention method achieves a more coherent

and unified segmentation, having smoother transitions between the object boundaries. The application

of smoothing constraint enhances the model’s ability to capture complex shapes and relationships on

the pixel-level, resulting in a segmentation mask that outlines detailed variation within the images.

We can see that the introduction of Smooth Attention notably improves the spatial distribution of the

attention values within the attention map, helping the model to achieve better segmentation results.

By incorporating a smoothness constraint, the Smooth Attention method encourages gradual changes

in attention weights, which effectively mitigates the noise sensitivity problems with attention value

distribution. We achieve the reduction of sharp transitions and foster a deeper understanding of

spatial relationships of the image data.

Fig. 9: Predicted Segmentation Result threshold 0.4 (with smoothing) for Flood Semantic
Segmentation Dataset.

IV. CONCLUSION

To summarize, we introduce a new attention approach called Smooth Attention, designed to en- hance

the spatial coherence of attention maps in convolutional neural networks, particularly for vision tasks

like image segmentation. Our experiments demonstrate that by incorporating a spatial

distribution-aware smoothness enforcement mechanism, we improve the quality of the model’s focus

on relevant regions of the input images.

The Smooth Attention module effectively mitigates the complications of noisy attention patterns,

resulting in smoother attention maps that still maintain the detail awareness inherent in traditional

attention mechanism ideas. By leveraging Chebyshev distance to enforce spatial-aware smoothness, we

achieve a balance between global and local attention, enhancing both the model’s performance and

interpretability.

Moreover, the adaptive nature of the learnable parameter and the tunable smoothness threshold

provide the flexibility needed to tailor the mechanism to specific tasks and datasets. Such adaptability
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is essential for applications where varying degrees of spatial coherence are required, allowing to

optimize the performance for the particular use cases based on the metrics results.

Future work will explore the application of Smooth Attention across other datasets and tasks,

extending its use beyond image segmentation to other domains such as object detection and image

captioning.

We believe that the Smooth Attention mechanism holds promise for advancing the interpretabil- ity

and effectiveness of attention in convolutional neural networks for computer vision tasks. By

addressing the challenge of spatial incoherence in attention maps, our approach paves the way for

models that can better understand the complex visual data. We anticipate that this work will inspire

further research in attention mechanisms in computer vision that prioritize interpretability and

coherence, ultimately leading to more trustworthy AI systems in critical applications.
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