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. INTRODUCTION

Attention mechanisms' have become a fundamental component of deep learning models, including
the field of computer vision, where spatial understanding plays a crucial role. A wide range of
attention mechanisms have been designed to enable models to focus on the most relevant parts of
input images, leading to improved performance and enhanced interpretability of the models’
decision-making processes.*”

London Journal of Research in Computer Science & Technology

The origins of attention in deep learning can be traced back to the revolutionary works in natural
language processing (NLP), introduced as a way to address the limitations of traditional sequence-
to-sequence models,' such as the inability to effectively capture long-range dependencies. The initial
success of attention mechanisms in NLP tasks, such as machine translation and language
modeling,®° inspired researchers to explore their potential in other domains, including computer
vision.

In the computer vision domain, attention mechanisms have been adapted to various tasks, such as
image classification, object detection, and semantic segmentation. The key idea behind these at-
tention mechanisms is to allow the model to dynamically focus on the most relevant spatial regions of
the input image, rather than treating all regions equally. The selective focus has been shown to
improve the model’s performance and provide better interpretability of its decision-making."
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However, the traditional approaches to attention mechanisms in computer vision often suffer from a
lack of smoothness in the attention maps, resulting in sharp transitions that negatively affect model
generalization. This problem of spatial incoherence is particularly pronounced in the task of
semantic segmentation, where accurate pixel-level predictions require a detailed understanding of
the spatial relationships within the image.*

Semantic segmentation, the task of assigning a semantic label to each pixel in an image, relies
heavily on capturing fine-grained details and understanding the spatial context. The existing at-
tention mechanisms struggle to effectively capture the detailed relationships within the image due to
the abrupt pixel-level transitions in the attention maps.'> *# This inconsistency in the attention maps
often leads to inaccurate segmentation boundary predictions and a tendency for the model to overfit
on the training data, limiting its ability to generalize well on unseen images.

Additionally, the lack of smoothness in attention maps can make models susceptible to noise.”> Small
perturbations in the input image may drastically alter the attention weights, causing unstable
predictions.'® 7 Such sensitivity to noise is particularly problematic in real-world scenarios where
images are often corrupted by artifacts or imperfections.

To address these limitations, we present a new approach called Smooth Attention that incorporates a
smoothness constraint, encouraging gradual changes in attention weights and mitigating the risks of
sharp transitions or noise sensitivity. By enabling a detailed understanding of spatial relationships
within the image, Smooth Attention leads to higher-level performance on tasks where spatial
coherence is crucial, such as image semantic segmentation.

1.1 Related Work

The Smooth Attention methodology builds on the successful implementation of attention mecha-
nisms in computer vision, particularly within transformer-based architectures such as the Vision
Transformer® and Swin Transformer.” Our primary focus is the enhancement of the spatial co-
herence within a single attention layer, drawing inspiration from attention integration techniques in
convolutional neural networks (CNNs), including Non-local Neural Networks* and the Convo-
lutional Block Attention Module (CBAM).2!

Spatial coherence has been a focal point in various applications, including image segmentation with
CRF-RNN** and image generation through PatchGAN.> Smooth Attention introduces adaptive
computation elements akin to Adaptive Computation Time>* for recurrent neural networks (RNNs),
selectively applying smoothing techniques.

Our framework is inspired by recent innovations in Attention Augmented Convolutional Net- works?>
and Focal Self-attention.?® By leveraging the Chebyshev distance, we align with the principle of
dynamically adjusting kernel weights based on local features during convolutional operations.*”

The spatial coherence component of our approach resonates with the foundational concepts of
CoordConv,?® as it explicitly encodes spatial information into convolutional layers. Moreover, our
methodology exhibits parallels with the Performer architecture,® which reduces computational
complexity while maintaining high performance by approximating attention through random fea-
ture maps.
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Building on the principles of adaptive filtering as outlined in° by Solomon et al., we effectively
combine original and smoothed attention scores based on identified variations. Such selective
smoothing enhances the established concept of gating in GRCNN,*" enabling precise control over the
influence of neighboring attention scores and pixels while preserving critical features.

. METHODOLOGY

In this section, we present a new attention mechanism in convolutional neural networks called
Smooth Attention. The module is designed to enhance the spatial coherence of attention maps while
maintaining the flexibility and power of traditional attention mechanisms.> 3% 33 Our approach
addresses the issue of inconsistent or “noisy” attention patterns that oftentimes arise in standard
attention mechanisms, particularly in vision tasks where spatial coherence is crucial, like image
segmentation of complex-shaped objects.® 34

2.2 Architecture Overview
The Smooth Attention approach is implemented as a neural network module. It consists of three main
components:

1. Query, key, and value projections (3.1.1)
2. Attention computation (3.1.2)
3. Smoothness enforcement mechanism (3.1.3)

Each of these components plays a crucial role in achieving the final goal of spatially coherent
attention.
3.3 Query, Key, and Value Projections

The first step in the Smooth Attention module is the projection of the input tensor X into query ( Q),
key (K), and value (V) spaces. The projection is achieved using 1x1 convolutions (1), (2), (3).

London Journal of Research in Computer Science & Technology

Q = Convlzl(X) @
K = Convlzl(X) (2)
V = Convlzl(X) (3)

Where [Convixi] represents a convolutional layer with a 1x1 kernel. The final projections serve
multiple purposes:

1. Allow the network to learn representations of the input that are suitable for computing attention.

2. Enable the module to adjust the channel dimensionality, reducing computational complexity.

3. Provide a learned transformation that emphasizes or suppresses aspects of the input for
attention computation.

2.4 Attention Computation

After obtaining the projected tensors, we compute the attention scores using the scaled dot-product
attention mechanism, similar to the one used in Transformer architectures,' shown in (4):

KT
attention = softmax (Q ) 4)

Vdy,
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Where:

4. QK" represents the matrix multiplication of Q and the transpose of K;

5. d,is the dimensionality of the key vectors;

6. Vd, is used for scaling to counteract the effect of large dot products in high dimensions;

7. Softmax is applied to normalize the attention scores.

The computation results in the attention map where each position attends to all other positions,
capturing global dependencies in the input.

2.1.3 Smoothness Enforcement Mechanism

The key concept in the Smooth Attention module is the introduction of a smoothness enforcement
mechanism. The mechanism is designed to address the spatial incoherence in vision attention when
nearby pixels may have radically different attention weights.

To enforce the smoothness, we_compute the Chebyshev distance between each pixel’s attention
distribution and those of its eight neighboring pixels. The Chebyshev distance is defined as the
maximum absolute difference across all dimensions (5).

d_chebyshev(p, q) = max;|p; — g (5)

We compute this distance for each of the eight neighbors and take the maximum:
max_distance = max (d_chebyshev (attention[i, j], attention[i + d;, j + d,])) (6)
ford;,d; in [(—1,-1),(-1,0),(-1,1),(0,—1),(0,1), (1, —1),(1,0), (1, 1)].

The choice of Chebyshev distance over other metrics is motivated by its sensitivity to the largest
difference in any single dimension, which aligns well with the goal of detecting abrupt changes in
attention patterns.35 3°

2.2 Smoothness Thresholding and Mask Creation

If the maximum Chebyshev distance exceeds a predefined threshold (a value between 0 and 1), we
consider the attention at that pixel to be non-smooth. We create a binary mask where 1 indicates
non-smooth regions and o indicates smooth regions (7).

smoothing mask = (max chebyshev distance > threshold).float() (7

2.3 Attention Application with Smoothness Consideration

The smoothing mask is then used to selectively apply the attention mechanism. In smooth regions, we
allow the full attention mechanism to operate, while in non-smooth-regions, we reduce the influence
of the attention mechanism:

output = ~ x attention * V' + (1 —  * smoothing_mask) x x (8)
Where:
. y is a learnable parameter initialized to zero;
. Vis the value projection of the input;
. x is the original input.

The learnable parameter y allows the network to gradually incorporate the attention mechanism as
training progresses. A soft start is used to help stabilize the training process and allow the network to
learn "when and how much” to rely on the attention mechanism.
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Due to its structure, Smooth Attention module offers several advantages:

1. Spatial Coherence: By enforcing local smoothness, the module encourages the production of more
coherent attention maps, improving model’s performance on complex computer vision tasks.

2. Noise Reduction: The smoothness constraint acts as a form of regularization, reducing the impact
of noise and spurious correlations in the attention computation.

3. Interpretability: Smoother attention maps are more interpretable, providing clearer insights into
which parts of the input the model is focusing on.

4. Adaptive Mechanism: The learnable parameter y and the smoothness threshold provide additional
level of engineering flexibility, allowing the network to adapt the strength of the smoothness
constraint based on the task and data.

The Smooth Attention module extends traditional attention mechanisms by incorporating a local
smoothness constraint. The constraint is enforced through applying the Chebyshev distances in the
attention space, resulting in more coherent and accurate attention maps for convolutional neural
networks. The module’s design allows for a flexible trade-off between global attention capabilities and
local coherence, making it adaptable to a wide range of vision tasks dependent on the spatial
coherence level.

. EXPERIMENTS

To demonstrate the effectiveness of Smooth Attention, we perform experiments on five diversified
image segmentation datasets, including the Caltech-UCSD Birds-200-2011,%” Large-Scale Dataset for
Segmentation and Classification,?® Fire Segmentation Image Dataset,?® Kvasir-Instrument: Diagnostic
and Therapeutic Tool Segmentation Dataset in Gastrointestinal Endoscopy,* and Flood Semantic
Segmentation Dataset.*

To explore the influence of the attention module, we implement a custom model with the U-Net
architecture*~# which is a popular choice for semantic segmentation tasks. We use ResNet18+ as the
encoder, which is followed by the Smooth Attention mechanism to help the model focus on important
features. The decoder is implemented as a series of transposed convolutions that upscale the feature
map.*® Each transposed convolution is followed by a ReLU activation, except for the last one. The
decoder gradually increases the spatial dimensions while reducing the number of channels.*” 4 The
final layer outputs the same number of channels as the number of classes for segmentation. The
complete model architecture is demonstrated in Figure 1.

We perform experiments across multiple smoothness thresholds (from 0.1 to 0.9 with a 0.1 step) for
each dataset, and compare the results with a threshold of 2.0 that illustrates the model without
attention mechanism in place (any value above 1.0 means no smoothing constraint applied). All
datasets are split into 80% for training, and 20% for testing. We choose IoU, Dice Coefficient, Test
Accuracy, Test Precision Test F1 Score as metrics to compare the final results.*
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Fig. 1. Model Architecture

Table 1: Experiments for Caltech-UCSD Birds-200-2011 results

Metric Test IOU Test Dice  Test Acc  Test Prec Test Recall = Test F1

0.1 0.7933 0.9231 0.9686 0.7674 0.9838 0.8550
0.2 0.8028 0.9294 0.9670 0.7457 0.9829 0.8430
0.3 0.7997 0.9202 0.9672 0.7641 0.9829 0.8521
0.4 0.7894 0.9186 0.9679 0.7654 0.9799 0.8495
0.5 0.7963 0.9258 0.9672 0.7609 0.9827 0.8494
0.6 0.7949 0.9260 0.9693 0.7740 0.9812 0.8562
0.7 0.7952 0.9239 0.9677 0.7685 0.9811 0.8526
0.8 0.8003 0.9272 0.9678 0.7700 0.9808 0.8493
0.9 0.7994 0.9229 0.9699 0.7881 0.9823 0.8610
2.0 0.7909 0.9222 0.9667 0.7497 0.9827 0.8453

The results for Caltech-UCSD Birds-200-2011% can be observed in Table 1. The superior performance of
the Smooth Attention mechanism at lower smoothness thresholds (0.1, 0.2, 0.3) compared to the model
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without attention (threshold of 2.0) suggests that the attention module is effectively helping the model
in focusing on the most relevant features in the image segmentation task. By applying the smoothness
constraint, the attention mechanism is able to selectively high- light most informative regions of the
input, leading to better segmentation accuracy, IoU, and Dice coefficient metrics.

We see the consistently high Test Recall values across all smoothness thresholds, showing that the
model is able to correctly identify most of the positive instances in the test set, regardless of the
attention mechanism’s configuration. Similar to IoU, the Dice coefficient peaks at a lower smoothness
threshold, demonstrating that low levels of attention smoothness provide better balance between focus
and flexibility in feature selection. At the same time, the highest accuracy and pre- cision occur at a
higher threshold, suggesting that for overall pixel-wise classification a smoother attention map reduces
the noise and the number of false positives. The recall peak occurs at the lowest smoothness threshold,
since true positives can be captured at a strict threshold easier. By applying a stricter smoothness
constraint, the attention module is able to capture important visual cues, maximizing the model’s
ability to detect positive instances in the data.

The experiment results for the Large-Scale Dataset for Segmentation and Classification3® can be
observed in Table 2. The stronger IoU and Dice coefficient performance at lower smoothing thresholds
indicates that the model is more effective in identifying variances in the input image data at strict
thresholds. Such behavior unveils the rich tapestry of diversity within the fish seg- mentation data,
highlighting the necessity for fine-grained approaches to capture the complexities of the images.

Table 2: Large-Scale Dataset for Segmentation and Classification.

Metric TestIOU TestDice TestAcc TestPrec TestRecall TestF1

0.1 0.9344 0.9764 0.9882 0.9426 0.9904 0.9618
0.2 0.9364 0.9784 0.9887 0.9434 0.9916 0.9638
0.3 0.9309 0.9749 0.9879 0.9493 0.9901 0.9600
0.4 0.9320 0.9751 0.9883 0.9399 0.9898 0.9627
0.5 0.9355 0.9787 0.9886 0.9426 0.9910 0.9630
0.6 0.9283 0.9706 0.9874 0.9383 0.9872 0.9602
0.7 0.9247 0.9694 0.9886 0.9519 0.9866 0.9620
0.8 0.9290 0.9731 0.9885 0.9434 0.9882 0.9626
0.9 0.9336 0.9759 0.9879 0.9465 0.9899 0.9612
2.0 0.9363 0.9781 0.9886 0.9436 0.9915 0.9611

Consistently high accuracy scores for all thresholds, including 2.0 (no attention), showcase the absence
of background complexity within image data, helping the model be accurate in object segmentation
with and without smoothing. Still, slight improvements can be seen when attention smoothing is
applied with peak scores seen at thresholds of 0.2, 0.5 and 0.7.

Precision metric demonstrates the best result at a threshold of 0.7, showing accurate prediction of
pixel-level distribution. The higher thresholds can be more beneficial for tasks requiring broader
feature recognition helped by greater noise suppression and lesser sensitivity to variation in input data.
Moreover, high values of Recall and F1 Score at lower thresholds are a clear representation of the
model’s effectiveness in capturing critical details due to strict smoothing masks.

Smooth Attention_ Improving Image Semantic Segmentation

London Journal of Research in Computer Science & Technology

Volume 24 | Issue 2 | Compilation 1.0



London Journal of Research in Computer Science & Technology

Table 3 demonstrates the results for the Fire Segmentation Image Dataset.?® The IoU and Dice
coefficient peaked at a smoothing threshold of 0.4, with strong performance also observed at 0.5 and
0.6. This behavior can be attributed to the special characteristics of fire images in the dataset.

Table 3. Fire Segmentation Image Dataset

Metric  TestIOU  Test Dice  Test Acc  TestPrec = Test Recall Test F1
0.1 0.8484 0.9228 0.9904 0.4903 0.9630 0.6322
0.2 0.8512 0.9246 0.9913 0.4868 0.9633 0.6403
0.3 0.8488 0.9189 0.9925 0.5269 0.9599 0.6377
0.4 0.8518 0.9277 0.9914 0.4907 0.9662 0.6446
0.5 0.8501 0.9248 0.9910 0.4753 0.9648 0.6329
0.6 0.8507 0.9268 0.9919 0.5096 0.9656 0.6489
0.7 0.8498 0.9231 0.9918 0.5027 0.9628 0.6460
0.8 0.8480 0.9208 0.9918 0.5057 0.9594 0.6520
0.9 0.8497 0.9231 0.9915 0.4888 0.9608 0.6314
2.0 0.8504 0.9211 0.9911 0.4837 0.9623 0.6399

Fire scenes typically exhibit complex, irregular shapes with varying intensity and color gradients,
making them challenging to segment accurately.

The dataset’s nature, featuring dynamic fire boundaries and potential smoke interference, explains
why moderate smoothing thresholds (0.4 - 0.6) outperform others. At these levels, the algorithm
effectively balances detail preservation and noise reduction. Lower thresholds (0.1 - 0.3) likely retain
too much noise and small, irrelevant features, while higher thresholds (0.7 - 0.9) risk oversimplifying
the fire’s complex structure.

Consistently high values of Accuracy and Recall suggest the model’s ability to correctly identify true
positives and relevant instances in the image dataset, regardless of whether smoothing is applied.
However, attention smoothing does lead to marginally improved performances in these metrics.

The balanced approach to smoothing not only improves traditional segmentation metrics like IoU
and Dice coefficient but also enhances the model’s overall predictive capabilities across a broader
range of performance indicators.

Table 4: Kvasir-Instrument: Diagnostic and Therapeutic Tool Segmentation Dataset in
Gastrointestinal Endoscopy

Metric  TestIOU  Test Dice @ Test Acc  TestPrec  Test Recall Test F1
0.1 0.9105 0.9405 0.9853 0.9427 0.9370 0.9138
0.2 0.9248 0.9536 0.9881 0.9489 0.9674 0.9294
0.3 0.9223 0.9504 0.9876 0.9632 0.9548 0.9263
0.4 0.9071 0.9348 0.9852 0.9231 0.9367 0.9136
0.5 0.9125 0.9420 0.9848 0.9162 0.9364 0.9163
0.6 0.9054 0.9371 0.9847 0.9077 0.9326 0.9167
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0.7 0.9052 0.9374 0.9828 0.9121 0.9345 0.9081
0.8 0.9093 0.9394 0.9861 0.9083 0.9587 0.9217
0.9 0.9091 0.9390 0.9857 0.9115 0.9470 0.9197
2.0 0.9108 0.9376 0.9855 0.9152 0.9479 0.9208

Table 4 presents the results of the Kvasir-Instrument: Diagnostic and Therapeutic Tool Seg- mentation
Dataset in Gastrointestinal Endoscopy.*® The dataset contains images of the commonly used
gastrointestinal endoscopy surgical tools that pose challenges for segmentation models due to the shape
complexity of the surgical tools captured in the scenes.

The best performance across numerous evaluation metric criteria can be seen at lower thresholds
(0.1-0.3) with peak values achieved at a threshold of 0.2. Such behavior clearly indicates the importance
of fine-grained attention in the medical industry where the decision based on spatial understanding of
the structure of organ imagery and surgical tools can play a major role in life and death situations.

In tasks of segmentation and classification the medical instruments are commonly segmented
incorrectly and mistaken for others. The lower attention threshold strictly punishes false positives,
leading to more accurate segmentation results, as seen at the metrics-performance level.

Additionally, the high values of Dice and IOU at the threshold of 0.2 show that the model is able to
capture image-specific details and identify accurately both linear and non-linear segmentation
boundaries. At the same time, high values of Accuracy, Precision, Recall and F1 Score at the lower
thresholds highlight the model’s readiness to adhere to local sensitivity in pixel-level variations that

are crucial in the medical field.

Table 5: Flood Semantic Segmentation Dataset

Metric Test IOU Test Dice Test Acc Test Prec Test Recall Test F1

0.1 0.8746 0.9321 0.9571 0.9450 0.9669 0.9515
0.2 0.8694 0.9274 0.9542 0.9521 0.9790 0.9486
0.3 0.8765 0.9309 0.9543 0.9432 0.9712 0.9480
0.4 0.8772 0.9334 0.9554 0.9595 0.9662 0.9501
0.5 0.8374 0.9309 0.9560 0.9556 0.9691 0.9495
0.6 0.8728 0.9294 0.9531 0.9501 0.9658 0.9470
0.7 0.8744 0.9317 0.9555 0.9452 0.9612 0.9502
0.8 0.8674 0.9263 0.9522 0.9419 0.9622 0.9446
0.9 0.8696 0.9292 0.9518 0.9517 0.9646 0.9469
2.0 0.8720 0.9308 0.9542 0.9514 0.9605 0.9468

Table 5 reveals the results for the Flood Semantic Segmentation Dataset.*' The dataset covers a wide
range of image data of flood disaster area sensing in multiple geographical regions, introducing the
complexity of segmentation variation.

The optimal performance can be observed at the thresholds (0.4-0.6) with strong IOU, Dice and
Precision results. Due to the fluid image structure variations, it is important to find the balancing
between border smoothing and fine-grained detail retention. Such balance ensures the model cap- tures
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segmentation features while minimizing artifacts arising from overly aggressive smoothing
techniques.* 5°

Lower thresholds yield high recall but lower precision values. This phenomenon occurs because the
balance achieved ensures the detection of image details, resulting in a higher percentage of true
positives; however, still providing the needed leniency towards false positives, as the complexity of
flooded areas in varying geographical terrains—such as reflections, shallow water, and debris—can
cause the model to overreact to minor pixel distributions variations.

Higher thresholds tend to perform less effectively due to a tendency to under-segment the shape
complexities of flooded and non-flooded areas. This loss of detail obscures critical features, making it
challenging to accurately distinguish between waterlogged regions and surrounding terrain.
Consequently, important contextual information is lost, leading to inaccuracies in assessing the extent
of flooding.

We demonstrate the comparison of the attention values as heatmaps for the Flood Semantic
Segmentation Dataset [41] at different thresholds in Figures 2 and 3. Figure 2 illustrates attention
heatmap at a threshold of 2.0 (without smoothing applied), resulting in a more fragmented repre-
sentation of attention values across the map. This higher threshold leads to sharper and isolated areas
of focus, which obscure subtle relationships in the image data. Conversely, Figure 3 presents attention
heatmap at a threshold of 0.4 (with effective smoothing applied), showing a more cohe- sive and
visually integrated attention values distribution. The smoothing process creates a gradual transition
between areas of high and low attention, enhancing spatial interpretability and resulting in a more
stable segmentation model performance.

Developing further the insights from the previous figures, we introduce in Figures 4 and 5 the 3D
heatmap representation of attention for the Flood Semantic Segmentation Dataset [41] at the same
respective thresholds. Figure 4 shows the 3D heatmap at a threshold of 2.0 (without smoothing
applied), clearly revealing a sparse and jagged attention landscape. The isolated peaks in this
visualization indicate areas of high attention, but the overall structure appears disjointed, making it
challenging to discern the concise relationships between different attention regions. In contrast, Figure
5 presents the 3D heatmap with a threshold of 0.4 (effective smoothing applied), which significantly
alters the visual interpretation of attention. The smoothing process results in a more fluid attention
surface, building a precise understanding of what regions help the model complete the task accurately.
After the smoothing constraint is applied, the attention regions shift due to the averaging effect that
reduces noise and emphasizes broader trends in the values’ distribution. Such cohesive representation
not only enhances the visibility of region-level importance but also facilitates the identification of
underlying patterns within the image data.>
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Fig 2: Attention as a Heatmap for Flood Semantic Segmentation Dataset at threshold 2.0 (without
smoothing).
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Fig 3. Attention as a Heatmap for Flood Semantic Segmentation Dataset at threshold 0.4 (with
smoothing).
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Fig. 4: Attention as a 3D Heatmap for Flood Semantic Segmentation Dataset at threshold 2.0
(without smoothing).

Fig. 5: Attention as a 3D Heatmap for Flood Semantic Segmentation Dataset at threshold 0.4 (with
smoothing).
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Figures 6 and 7 explore the representation of attention values using 3D scatter plots, providing a
distinct perspective on the attention distribution under varying levels of smoothing for the Large- Scale
Dataset for Segmentation and Classification [38]. Figure 6 illustrates the attention values at a threshold
of 0.9 (with light smoothing applied). It can be observed that the attention points are relatively sparse,
with some clusters indicating areas of significant focus. However, higher threshold values limit the
mechanism’s ability to identify finer details in the distribution map. The light smoothing enhances the
overall visual coherence, developing a stronger understanding of the focusing area where the fish is
illustrated, yet it still retains some of the original fragmentation.

In contrast, Figure 7 presents the attention values at a threshold of 0.1 (with strong smoothing applied).
Such an approach results in a dense interconnected scatter plot, where attention points are uniformly
distributed across the attention region. The strong smoothing effectively blurs the boundaries between
areas of high and low attention, creating a continuous representation of attention across the image
data. Figure 7 highlights the strict relationships between different regions, making it easier to identify
patterns that could have been missed in the original attention map’s spatial inconsistency.

Fig. 6: 3D Scatter Plot for Attention Values at threshold 0.9 (light smoothing) for Large-Scale Dataset
for Segmentation and Classification.
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Fig. 7: 3D Scatter Plot for Attention Values at threshold 0.1 (strong smoothing) for Large-Scale
Dataset for Segmenta- tion and Classification.

Figures 8 and 9 present the final predicted segmentation results for the Flood Semantic Seg- mentation
Dataset [41]. Figure 8 illustrates the segmentation output at a threshold of 2.0 (withoutsmoothing
applied), revealing the segmented images that are characterized by abrupt edges and fragmented
regions. While some areas of interest are accurately captured, the lack of smooth- ing leads to a
disjointed segmentation that does not effectively represent the underlying structural details in the
spatial data.

Input iImage 1 Predicted Mask 1 True Mask 1

. \“C‘;ﬁ » Vg« »\“1

O

Input Image 2 Predicted Mask 2 True Mask 2

A

Fig. 8: Predicted Segmentation Result threshold 2.0 (without smoothing) for Flood Semantic
Segmentation Dataset.
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At the same time Figure 9 demonstrates the predicted segmentation mask at a threshold of 0.4 (with
effective smoothing applied). The result with the Smooth Attention method achieves a more coherent
and unified segmentation, having smoother transitions between the object boundaries. The application
of smoothing constraint enhances the model’s ability to capture complex shapes and relationships on
the pixel-level, resulting in a segmentation mask that outlines detailed variation within the images.

We can see that the introduction of Smooth Attention notably improves the spatial distribution of the
attention values within the attention map, helping the model to achieve better segmentation results.
By incorporating a smoothness constraint, the Smooth Attention method encourages gradual changes
in attention weights, which effectively mitigates the noise sensitivity problems with attention value
distribution. We achieve the reduction of sharp transitions and foster a deeper understanding of
spatial relationships of the image data.

Input Image 1 Predicted Mask 1 True Mask 1
—— - -

\
, B, "1 » “1
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a~ s

Input Image 2 Predicted Mask 2 True Mask 2

> >

Fig. 9: Predicted Segmentation Result threshold 0.4 (with smoothing) for Flood Semantic
Segmentation Dataset.

V. CONCLUSION

To summarize, we introduce a new attention approach called Smooth Attention, designed to en- hance
the spatial coherence of attention maps in convolutional neural networks, particularly for vision tasks
like image segmentation. Our experiments demonstrate that by incorporating a spatial
distribution-aware smoothness enforcement mechanism, we improve the quality of the model’s focus
on relevant regions of the input images.

The Smooth Attention module effectively mitigates the complications of noisy attention patterns,
resulting in smoother attention maps that still maintain the detail awareness inherent in traditional
attention mechanism ideas. By leveraging Chebyshev distance to enforce spatial-aware smoothness, we
achieve a balance between global and local attention, enhancing both the model’s performance and
interpretability.

Moreover, the adaptive nature of the learnable parameter and the tunable smoothness threshold
provide the flexibility needed to tailor the mechanism to specific tasks and datasets. Such adaptability
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is essential for applications where varying degrees of spatial coherence are required, allowing to
optimize the performance for the particular use cases based on the metrics results.

Future work will explore the application of Smooth Attention across other datasets and tasks,
extending its use beyond image segmentation to other domains such as object detection and image
captioning.

We believe that the Smooth Attention mechanism holds promise for advancing the interpretabil- ity
and effectiveness of attention in convolutional neural networks for computer vision tasks. By
addressing the challenge of spatial incoherence in attention maps, our approach paves the way for
models that can better understand the complex visual data. We anticipate that this work will inspire
further research in attention mechanisms in computer vision that prioritize interpretability and
coherence, ultimately leading to more trustworthy Al systems in critical applications.
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