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ABSTRACT

Purpose: To enhance the performance of the

logistic regression by integrating step-wise

procedures and henceforth compare and

evaluate its performance with the Logistic

regression and Naïve Bayes in classifying HIV

viral load suppression (VLS).

Methods: Models for classifying VLS were built

using Logistic regression, modified logistic

regression and Naïve Bayes classifiers. Accuracy,

balanced accuracy and the area under the

receiver operating characteristics curve (AUC)

were the key performance metrics used to

evaluate the generalizability of the various

classifiers.

Results: The modified logistic regression model

trained on fewer predictor attributes achieved an

accuracy of 84.9%, a balanced accuracy of 83.8%

and an AUC of 92.6%. The traditional logistic

regression model trained on a full set of predictor

attributes achieved an accuracy of 84.9%, a

balanced accuracy of 83.6% and an AUC of

92.5% whereas the naïve Bayes model achieved

an accuracy of 81.6%, a balanced accuracy of

80.5% and AUC of 89.4%.

Conclusion: The modified logistic regression

model outperformed the traditional logistic

regression and naïve Bayes models on account of

recording higher balanced accuracy and AUC

values of 83.8% and 92.6% respectively albeit

with fewer predictor attributes. Hence

integrating step-wise regression procedures in

the traditional logistic regression model can

enhance its classification performance leading to

better predictions.

Keywords: comparison, logistic, modified, naïve

bayes, classification, viral load suppression.

Author α σ ρ: School of Statistics and Planning,

Makerere University, Kampala, Uganda. Department of

Planning and Applied Statistics School of Statistics and
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I. INTRODUCTION

Logistic regression and Naïve Bayes are among

the most used data mining classification

techniques [1]. This might be because they have

algorithms that are easy to implement [2, 3], their

ability to handle both continuous and discrete

data [1], application of probability theory in their

classification modelling [4] and they produce

real-time predictions that can be easily

interpreted [5].

The Logistic regression classifier assumes the

absence of multicollinearity among the predictors

while conducting classifications [6]. However, the

performance of the Logistic regression classifier is

usually weakened by the presence of

multicollinearity among the predictors which may

lead to poor classifications [7]. A study by

Senaviratna & Cooray [8] reported that the best

solution is to understand the cause of

multicollinearity and remove the highly correlated

variables in the model. However, O'Brien [9],

objected to removing the correlated variables

from the model because less information would be

available potentially leading to suboptimal model

performance. Despite this weakness associated

with the Logistic regression classifier, several

scholars [10, 11, 12] have independently employed

the logistic regression classifier while undertaking

classification tasks.
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Scholars [13, 14] have recommended the use of

the Bayesian approach premised on Bayes’

theorem as an alternative to the Logistic

regression classifier to overcome the problem of

multicollinearity because its assumption of

mutual independence among the predictors

enables each distribution to be independently

estimated. Several scholars [15, 16, 17] further

stressed that the Naïve Bayes classifier has

superior strengths such as being efficient,

computationally fast, and does not require a lot of

data for training to conduct classifications. Owing

to its strength, the Naïve Bayes classifier has

outperformed the Logistic Regression classifier in

various fields [3, 18, 19] to provide accurate and

reliable results. Asharaf et al., [20] recommended

the need for more comparative studies of the

different data mining techniques to determine

their classification ability so that the most optimal

model can be chosen. Above all, a number of

approaches have been proposed to improve the

goodness of fit of the traditional logistic

regression classifier in order to overcome its

multicollinearity bottlenecks [21, 22]. These

include Principal Components Analysis (PCA)

[23], Monte Carlo simulation [24] and Variance

Inflation factor (VIF) [25], which drops predictors

with high VIFs.

Motivated by the performance improvement of

enhanced independent classifiers [26] coupled

with the fact that stepwise regression procedures

are more likely to have lower false classification

rates [27]. This study proposes a modified logistic

regression classifier which employs the VIF

integrated with step-wise regression due to its

simplicity [21].

1.1 HIV Viral Load Suppression as a Case Study

HIV viral load suppression (VLS) is the ultimate

measure of treatment success for People Living

with HIV/AIDS (PLHIV) receiving antiretroviral

therapy (ART) [28]. This is in line with the third

Sustainable Development Goal (SDG 3) premised

on the commitment made by the United Nations

(UN) member states to end the AIDS epidemic by

2030 by achieving 95% VLS by 2025 [29, 30]. The

consolidated guidelines on the use of ART drugs

for treating and preventing HIV infection define

all PLHIV receiving ART with HIV viral load (VL)

less than 1000 copies/mL as having a suppressed

VL [28]. According to the Annual Health Sector

Report for the Financial Year 2021/2022, Zombo

District achieved VLS of 71% [28]. This falls below

the national VLS rate for Uganda of 82% [29] and

also below the UNAIDS 95-95-95 target of at least

95% VLS by 2025. Despite several efforts to

improve the treatment outcome of PLHIV

receiving ART outcome through health education,

infrastructural development, bridging the human

resource gaps and strengthening the supply

chains for essential commodities [31], so little is

known about the key factors associated with VLS

as well as the performance of various classifiers in

determining these factors among PLHIV on ART

in Zombo District.

1.2 Classifier Evaluation Metrics

Evaluating the performance of a classifier is

paramount as it permits researchers to compare

competing models as well as determine the degree

to which its results can be generalized to an

unseen sample or population from the same

distribution from which the existing data were

drawn [32]. Several scholars [33, 34, 35] attest

that the confusion matrix; which provides a

summary of classification outcomes, is the

commonest way for evaluating classifier

performances.

On the other hand, presenting a confusion matrix

by itself in the absence of a suitable summary

statistic or metric is insufficient and easily leads to

biased interpretations of performance [32]. The

most utilized summary statistic emanating from

the confusion matrices is accuracy, defined as the

number of correct predictions across all classes

[36, 37]. However, classification accuracy is a

misleading performance metric particularly when

the data are not perfectly balanced [36, 38].

The balanced accuracy metric, defined as the

arithmetic mean from both the minority and

majority classes was suggested to address the

above limitation [32]; thus providing more

reliable performance evaluations for imbalanced

data [39, 40].
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1.3 Problem Statement

Many scholars have independently employed

logistic regression for classification problems.

However, the performance of the Logistic

regression classifier is usually weakened by

multicollinearity among the predictors which may

lead to poor classification results. Naïve Bayes has

been suggested as an alternative classifier to

overcoming multicollinearity as it assumes mutual

independence among the predictors. To this end,

limited research has been done to enhance the

performance of the logistic regression as well as

compare its performance with respect to the naive

Bayes classifier.

In order to deal with the existing multicollinearity

challenges of the traditional logistic regression

classifier, this paper proposes a modified logistic

regression classifier which employs a step-wise

procedure based on VIFs and hence compare and

evaluate its performance with the traditional

logistic regression and naïve Bayes classifiers on a

similar dataset to determine the most optimal

classifier.

II. METHODS

2.1 Data Preprocessing

2.1.1 Data Sources

Data was extracted from Patient forms in one

Hospital and nine health facilities of level three

(HC IIIs) in Zombo District [41] that are

accredited to offer antiretroviral therapy (ART)

services for PLHIV who were newly initiated on

ART between February 2020 to May 2022. This

period conforms with the revised ART guidelines

that specify the evaluation of VL for all newly

identified PLHIV started on ART after six months

of ART treatment [42, 43]. The extracted variables

and their descriptions are indicated in Table 1.

Table 1: Description of Variables used in this Study

Sn
Variable

Name
Description

Variable

Type
Categories

1
HIV Clinic

No.

Unique Number is assigned to the HIV patient

upon being enrolled on care at the ART clinic in a

health facility

2 Age Age of the HIV patient in completed years Continuous

This was transformed into

four (4) categories namely;

0 – 9 years, 10 – 19 years,

20 – 49 years, 50 years

and above

3 Gender Gender of the HIV patient Categorical M-Male, F-Female

4 Marital Marital Status of the HIV patient Categorical
Married, Never Married,

Separated, Widow

5 Stage HIV WHO Clinical Stage of the patient Categorical
Stage 1, Stage 2, Stage 3,

Stage 4

6 regimen ART regimen Categorical

DTG-based regimen, LPV-

based regimen, NPV-based

regimen

7 freq Daily ART dosage drugs Categorical
Once per day, Twice per

day

8 month_2
HIV patient monthly clinical encounter at the

second month
Categorical

Active, Missed Appoint-

ment

9 month_3
HIV patient monthly clinical encounter at the

third month
Categorical

Active, Missed Appoint-

ment, Lost to Follow up

10 month_4
HIV patient monthly clinical encounter at fourth

month
Categorical

Active, Missed Appoint-

ment, Lost to Follow up

11 month_5
HIV patient monthly clinical encounter at the

fifth month
Categorical

Active, Missed Appoint-

ment, Lost to Follow up

12 month_6
HIV patient monthly clinical encounter at the

sixth month
Categorical

Active, Missed Appoint-

ment, Lost to Follow up
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Sn
Variable

Name
Description

Variable

Type
Categories

13 adherence
Adherence to taking ART drugs by the HIV

patient during the sixth months period on care
Categorical Fair, Good, Poor

14 Disclosure Disclosure of HIV status by the client Categorical Yes, No

15 VLS
HIV Viral Load Suppression outcome after 6

months of being on HIV care.

Categorical

/Binary

variable

0=Suppressed,

1=Non-Suppressed

A total of 1,757 records were extracted, each

denoting a newly identified PLHIV started on

ART after six months of ART treatment.

2.1.2 Data Cleaning

The researchers examined the data set for missing

values, outliers, and addressed discrepancies and

observations with missing values were excluded

[44].

2.1.3 Data Transformation

Given that the dataset contained both continuous

and categorical variables, data discretization was

used to create homogenous groups of continuous

predictor variables, reducing outliers and

minimizing noise formation [45].

2.1.4 Training and Validation Datasets

The researchers split the dataset into training and

testing datasets. 70% of the dataset was assigned

to the training group for the development of the

classifiers. The rest of the dataset (30% of the

total cases) was assigned to the validation groups

for the assessment of model performance [46].

Analysis

The following classifiers were employed;

Naïve Bayes: It utilizes the Bayes theorem [47] to compute the posterior probability of dependent

variable given predictor variables the following equation (1).𝑍 𝑌 = 𝑦
1
, 𝑦

2
, …, 𝑦

𝑛( )

𝑃
𝑍

𝑛

𝑦
1
,𝑦

2
,…,𝑦

𝑛
( ) =

𝑃 𝑍
𝑛( )

𝑖=1

𝑛

∏ 𝑃 𝑃
𝑦

𝑖

𝑍
𝑛

( )( )
𝑖=1

𝑛

∏ 𝑃 𝑦
𝑖( )

(1)

Where = the probability of to be observed𝑃 𝑍
𝑛( ) 𝑍

= the probability of to be observed𝑃 𝑦
𝑖( ) 𝑦

= the posterior probability of class ( given predictor ( ).𝑃
𝑍

𝑛

𝑦
𝑖

( ) 𝑍) 𝑦

= the probability of observing given holds          𝑃
𝑦

𝑖

𝑍
𝑛

( ) 𝑦 𝑍

Since the naïve Bayes assumption is that predictors are conditionally independent of the𝑦
1
, 𝑦

2
, …, 𝑦

𝑛( )
response variable , the posterior probabilities and are computed for a new sample by𝑍 𝑃 𝑍=1

𝑌( ) 𝑃 𝑍=0
𝑌( )

dropping the denominator in equation (1) as illustrated in equation (2).

𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑃
𝑍

𝑛

𝑦
𝑖

( ) =  𝑃 𝑍
𝑛( )

𝑖=1

𝑛

∏ (2)

Where x is the class of the response variable with the highest probability given a set of variables.

Logistic regression: It uses numerical and or categorical predictors to estimate the likelihood of a

dichotomous response variable [5]. The logistic regression model can be expressed as;
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log 𝑙𝑜𝑔 
𝑃 𝑦

𝑖
=1( )

𝑃 𝑦
𝑖
=0( )( ) = α + β

1
𝑥

1
+ (3)

Where denotes the response variable𝑌
denotes the predictor variables𝑥

𝑖

denotes the coefficients of the predictor variablesβ
𝑖

denotes the interceptα

The probability of is represented by equation (4)𝑝
𝑖

𝑝
𝑖
 = 1

1+𝑒−𝑥β( )       ∈ 0, 1[ ] (4)

2.1.5 Proposed Modified Logistic Regression
The researchers integrated the backward stepwise

regression process [48] into the traditional

logistic regression indicated in equation (iii) in

order to determine the importance of each

predictor variable [49].

The researchers commenced with a full classifier

and kept removing predictor attributes with the

least significant values (highest P-values>0.05;

variables that worsen the model highest), to the

trained model, one at a time. For every removal,

the trained modified logistic classifier was

fit/generalized onto test data until the stopping

criteria were met. The criteria to terminate was

achieving balanced accuracy metrics similar to or

higher than those returned by the traditional

logistic regression classifier. The above process

was repeated until only variables that generated a

parsimonious model were retained in the

classifier

2.1.6 Goodness of fit

The 10-fold cross-validation method was

employed to validate the accuracy, sensitivity,

specificity and balanced accuracy of the classifiers

[33] as indicated the equations (5) (6), (7) and

(8);

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃+𝑇𝑁
𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁( ) ( 5)

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃
𝑇𝑃+𝐹𝑁( ) ( 6)

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑡𝑦 = 𝑇𝑃+𝑇𝑁
𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁( ) ( 7)

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦+𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦
2( ) ( 8)

Where in the context of this study, the entries in

the confusion matrix were defined as.

1. True positive (TP): is the number of actual

“NO” VLS cases classified as “NO”.

2. False-positive (FP): is the number of actual

“YES” VLS cases classified as “NO”

3. False Negative (FN): is the number of actual

“NO” VLS cases classified as “YES”.

4. True Negative (TN): is the number of actual

“YES” VLS cases classified as “YES”.
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Software

The data processing and analysis were carried out

in R, version 4.1.2 [50], using the R packages

“dplyr” version 1.0.7 [51], “caret” version 6.0-90

[52], “pROC” version 1.18.0 [53] and “ROCR”

version 1.0-11 [54].

III. RESULTS

In this section, the researchers first present the

results from each classifier and then present the

comparison results.

3.1 Key Variables for Classification of VLS

Results revealed that fourteen (14) out of 25

variables were key for classifying VLS, namely;

“never married”, “HIV WHO clinical stage 3”,

A Comparison of Logistic Regression, Modified Logistic Regression and Naïve Bayes Models for Classifying HIV Viral load Suppression: The
Case of Zombo District in Uganda

Volume 23 | Issue 13 | Compilation 1.0



to follow up”, “month 4 missed appointment”,

“month 5 lost to follow up”, “month 5 missed

appointment”, “month 6 lost to follow up”,

“month 6 missed appointment”, “good ART drug

adherence”, “poor ART drug adherence” and

“disclosure of HIV status by the patient”.

Table 2: Key Variables for Classification of VLS for the Logistic vs Modified Logistic Regression Models

Model Accuracy(%)

Traditional Logistic regression model with all variables (25) 84.9

Modified Logistic regression model with fewer variables (14) 84.9

Table 2 reveals that when the modified logistic

regression is trained on the dataset, the number of

predictor variables is reduced from 25 to 14. This

implies that the modified logistic regression

model was able to achieve the accuracy of the

traditional logistic regression trained on a full set

of variables at the expense of some irrelevant or

correlated variables. Hence the resultant variable

subset using the modified logistic regression is the

most significant set of variables that improves the

predictive accuracy of VLS and thus a more robust

model for determining VLS.

3.2 Comparison of the Classifiers Performance

The performance of the classifiers was evaluated

based on their capacity to classify the instances of

the data set into “YES” and “NO” VLS. The

researchers utilized 10-fold cross-validation to

assess the performance of the three classifiers on

previously unlearned data. Computation of the

performance metrics indicated in equations 8-11

revealed the results indicated in Fig. 1.

Fig. 1: Comparison of Classifiers’ Performance Using 10 Fold Cross-Validation

According to Fig. 1, the modified logistic

regression model attained the highest

performance with respect to the accuracy,

sensitivity, and balance accuracy metrics recorded

at 84.8%, 80.1%, and 83.8% respectively. This

implies that this model correctly classified 84.8%
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twice”, “month 3 lost to follow up”, “ month 4 lost
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(accuracy) of PLHIV whose viral load was either

suppressed or not suppressed. Additionally, this

model also correctly classified 80.1% of PLHIV

whose viral load was not-suppressed.

On the other hand, the naïve Bayes classifier

registered the highest specificity at 90.8%

compared to 88.3% registered by traditional

logistic regression and 87.4% obtained by the

modified logistic regression classifier. The

achieved balanced accuracy results indicate that

the proposed modified logistic regression model

outperformed the traditional logistic regression

and naïve Bayes classifiers by 0.2% and 10.3%

respectively.

Comparatively, raw data in Table 1 revealed that

the response variable (VLS) comprised uneven

proportions of 36% suppressed VL and 64%

suppressed VL and therefore the balanced

accuracy metric was used as the overall evaluation

which balances the precision and recall metrics

across each response variable class [55].

3.2.1 Receiver Operating Characteristics (ROC)
Curve
The ROC curve (Fig. 2) is a graphical illustration

of the relationship between the performance of a

classifier's sensitivity and specificity [42]. The

ROC enabled the researcher to evaluate how well

the developed models performed at different

thresholds. Fig. 2 shows that the Modified logistic

regression, traditional logistic regression and

naive Bayes classifiers' corresponding Area under

the Curve (AUC) values were 92.6%, 92.5% and

89.4%. A random model would simply divide the

graph in half, giving it an AUC of 50%. For this

reason, the classifiers' produced ROC curves

supersede a random model, showing that the

applied models provide a good measure of

separability.

The purple line, which denotes the modified

logistic regression, generated a superior cut-off

decision level than the other two classifiers since

it maximised the true positive rate at the lowest

level of false positives (1-specificity).

Fig. 2: Comparison of the ROCs for the Classifiers at Various Thresholds

IV. DISCUSSION

The purpose of this study was two fold. Firstly, to

enhance the performance of the traditional

logistic regression classifier and secondly, to

compare and evaluate the performance of the

traditional logistic regression, modified logistic

regression and Naive Bayes models in classifying

VLS. The findings showed that the modified
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logistic regression classifier slightly outperformed

the traditional logistic regression and naïve Bayes

classifiers with regards to accuracy, sensitivity and

balanced accuracy whereas the naïve Bayes

performed best in terms of specificity.

The proposed modified logistic regression

classifier inherits properties of the backward

stepwise regression algorithm. This implies that

integrating the step wise regression procedures

into traditional data mining classifiers can

enhance their classification performance as

evidenced by the better performance of the

modified logistic regression classifier when fitted

on previously unknown data samples. This

phenomenon is in agreement with those of

previous studies [56, 57, 58] that reveal that the

performance of the traditional data mining

classifiers can be improved by integrating it with

other machine learning techniques. In terms of

key determinants of VLS, our findings were

consistent with those of [59, 60, 61, 62].

Conversely, the study faced a key challenge of

available data being limited to data whose

variables were regularly gathered from patients

and caretakers and recorded in the patient

medical records systems for the period under

investigation hence the researchers were unable

to subject the developed modified model to a

higher dimensional dataset in terms of variables

and observations from a known population which

would return more reliable and robust

performance results [63].

V. CONCLUSION

In this study, a modified logistic regression

classifier is proposed to further enhance the

classification performance of the traditional

logistic regression classifier. Furthermore,

performance comparisons were made between the

modified logistic regression, traditional logistic

regression and naïve Bayes classifiers. We found

that the modified logistic regression performed

slightly better than the traditional logistic

regression and naïve Bayes classifiers on account

of recording higher balanced accuracy and AUC

values of 83.8% and 92.6% respectively albeit

with fewer predictor attributes. We attribute this

to the fact that the modified logistic regression

adapts a step-wise regression procedure which

uses a linear combination of the best variables to

form a robust classifier, unlike the traditional

logistic regression and naïve Bayes. Hence

integrating step-wise regression procedures in the

traditional logistic regression model can enhance

its classification performance leading to better

predictions.
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