

CrossRef DOI of original article:

1 Disordered Breath-Brain Lateralization: At the Core of 2 Schizophrenia Pathogenesis

3

4 Received: 1 January 1970 Accepted: 1 January 1970 Published: 1 January 1970

5

6 **Abstract**

7

8 **Index terms—**

9 **1 I. INTRODUCTION**

10 The modern age is characterised by development, innovation, and technology, which make life full of ease, comfort, and miracles. Nevertheless, it also brings new peculiarities and complications.

12 Increasing rates of chronic stress, anxiety, and schizophrenia are products of overcompetition. Last century witnessed an unprecedented increase in cases of schizophrenia, and this decade of the COVID-19 pandemic has accelerated it further. However, scientists are still struggling with the core aspect: why does schizophrenia occur? Schizophrenia affects 0.3-0.7% of the global population, with a 2016 global age-standardised point prevalence of 0.28%. The median incidence is 15.2/100,000 people, with the middle 80% of estimates fluctuating by a factor of five. The 12-month prevalence is 0.33%, while the lifetime prevalence is 0.48%. However, there has been an increase in the number of cases of schizophrenia in certain areas, such as London, UK, where a doubling in the prevalence between 1965 and 1997 has been attributed to migration.

20 Research Domain Criteria (RDoC) is a new tool for investigation in clinical psychology (Kang 2017, Cuthbert 2022). In this self-analysis report, using empirical (introspective) findings and a review of the literature, an attempt is made to bridge the knowledge gap between three prominent theories on schizophrenia, namely neurodegeneration theory, mitochondrial dysfunction theory, and neurotransmitter deregulation theory. By using the concepts of nasal cycle rhythmic dominance, cerebral brain hemispheric lateralization, and the autonomic London Journal of Medical and Health Research nervous system's (ANS) sympathetic and parasympathetic states, the aetiology of psychopathology that leads to disordered brain hemispheric function is elaborated.

27 **2 II. METHODS AND TOOLS**

28 This narrative review summarises the onset of the psychopathology of schizophrenia using biological as well as behavioural constructs through the self-analysis (introspection) method. The author is a 20-year-old introspective psychologist. Google Scholar and extensive snowball searching on relevant insight points summarised the research findings. Transparent and impartial review quality is sought. Non-English articles are excluded, and only high-quality systematic reviews that address the research question are included. Schizophrenia research and knowledge are the main objectives. The objective is theoretical integration.

34 The author followed defined methodologies and guidelines to ensure credibility and reliability in the self-analysis approach. Among them were maintaining a clear head, being honest and straightforward, avoiding preconceptions, taking a systematic approach, and critically scrutinising information. The method proved reliable since it relied on high-quality systematic reviews and summaries from Google Scholar.

38 **3 Oxygen Requirement for Brain Functioning**

39 Mental and emotional states have a direct impact on the respiratory, cardiac, and digestive systems via the ANS. 40 The ANS is divided into three parts: sympathetic, parasympathetic, and enteric.

41 The respiratory system has an immediate and long-lasting effect on the body's physiological and mental well-being. ANS has direct involuntary control over the mind, regulated by breath (Kang S. W., 2017).

43 Emotional stress is correlated with respiratory oxygen intake by the body. Stress increases brain oxygen needs, which may go unmet. Stress is correlated with an increased respiratory rate (Widjaja, Orini, et al.

45 2013). Increased anxiety Neurotrophin signalling is deregulated in the pathogenesis of schizophrenia, involving
46 obstetric complications along with psychopathology. In persons with genetic susceptibility to schizophrenia,
47 prenatal hypoxia is associated with an increased risk of developing schizophrenia later in life (Cannon, Yolken et
48 al. 2008). In the following section, we will investigate how stress can impact the human body and mind through
49 altered patterns of breathing and oxygen intake. In addition, genetic vulnerability can increase the probability
50 of this psychopathology.

51 **4 Asymmetrically Lateralized Rhythms**

52 Biological systems are functionally lateralized in the body. These bilateral organ systems have complex functions
53 that work through activation in a simultaneous pattern. Bilateral organs distribute workload and enhance
54 survivability with enhanced awareness and improved movement.

55 Bilateral organ systems are groups of organs that work together to execute specialised tasks on one side of the
56 body. The cerebral hemispheres are responsible for language, logical reasoning, creativity, and spatial awareness,
57 as do the lungs London Journal of Medical and Health Research (Suess, Alexander, et al., 1980).

58 Mammals have only 2% brain weight in comparison to total body mass but consume about 20% of the total
59 oxygen requirement (Sokoloff 1989). Oxygen homeostasis perturbations cause reduced oxygen availability, called
60 hypoxia (Widjaja, Orini et al. 2013). Non-stressful attention decreases total respiratory variability, while mental
61 load increases it (Widjaja, Orini, et al. 2013). Stress can bring about a hyperventilation reaction in the action-
62 oriented reaction mode towards fight or flight, while feelings of defeat, depression, and being overwhelmed may
63 produce a hypoventilation response (Suess, Alexander et al. 1980). Hypoxia impacts physiological systems
64 through altered neuronal functions by adversely influencing neurotransmitter synthesis. Molecular oxygen is
65 needed by rate-limiting enzymes in the fusion of many neurotransmitters for their activity (Widjaja, Orini, et al.
66 2013).

67 for breathing and the kidneys for waste filtration. The central nervous system (CNS) and autonomic nervous
68 system (ANS) are asymmetrically

69 **5 Nasal Cycle Dominance**

70 Shannonhoff-Khalsa ??1991) Reciprocal changes in the nasal airflow take place through left and right oscillators
71 in the brain-stem region to produce an asymmetric sympathetic tone along the brain activity. Autonomic nervous
72 fibres, through vasoconstrictor sympathetic nerves embodying large veins in turbines, supply peripheral regulation
73 (Price and Eccles 2016).

74 **6 Breath and Brain Inter-Relationship**

75 Breath is interlinked with both body and mind (Werntz, Bickford, et al., 1983). Fluctuations in cerebral
76 hemispheric activity remain associated with rhythmic variations in nasal airflow. Nostril dominance is associated
77 with cerebral dominance.

78 Hence, there is a link between brain asymmetry and nasal airflow (Price and Eccles, 2016). The nasal cycle is
79 coupled with cerebral hemispheric lateralization. Homo-lateral body-half provocation of sympathetic dominance
80 can be accomplished through nasal airflow. Metabolism and mental states may be affected by the self-regulation
81 of breathing (Werntz, Bickford, et al., 1983).

82 The nasal cycle is connected with the arousal of cerebral hemispheric lateralized rhythms (Werntz, Bickford,
83 et al. 1983). Increased parasympathetic tone is a generalised resting position as left nostril/right brain dominance
84 enhances parasympathetic activity and peaks healing, regeneration, and immune function (Werntz, Bickford,
85 et al. 1983). To uphold proper homeostasis, the lateralization rhythms of ANS-CNS activity are produced for
86 coupling mind and metabolism. Nature uses this alteration process to maximise economic efficiency.

87 ANS functions endure as "ergotrophic" (energy expenditure) and "trophotrophic" (protection and restitution
88 of energy) functions. The active phase of BRAC correlates with the dominant status of left-brain right-nostril,
89 while the resting phase of BRAC correlates with dominant right-brain left-nostril. Greater sympathetic activity
90 in the right side of the physique produces the active phase of BRAC (Werntz, Bickford, et al. 1983).

91 **7 Catecholamine Regulation through Ultradian Rhythms**

92 The CNS and body periphery possess ANS fibres located in an uncrossed manner. The nasal cycle is coupled
93 to the lateralized ultradian ANS-CNS rhythm in the body for plasma catecholamine level regulation (Kennedy,
94 Ziegler et al. 1986).

95 Connections between cortex and hypothalamus and between periphery and hypothalamus are linked with
96 uncrossed fibre systems of the ANS (Netter 1969)

97 **8 Werntz**

98 (1983) demonstrated plasma catecholamine (norepinephrine, epinephrine, and dopamine) levels. These rhythms
99 produce coupling between the CNS and ANS. BRAC has coupling with the hypothalamic-pituitary-adrenal axis
100 (HPA), a psychological phenomenon. CRH in the hypothalamus, considered a stress peptide, co-varies with

101 locomotor movement. Ultradian rhythms are connected to pituitary hormone secretions such as cortisol and
102 adrenocorticotropin (ACTH).

103 **9 Onset of Schizophrenia**

104 With psychological conditions shifting in ANS, lateralization episodes switch instantaneously. Immune functions
105 are affected by states of CNS-ANS action, with distinct stressors playing an important role. Cerebral states
106 and personality profiles can be impacted by overstimulation of one-half of the body's periphery, consisting of
107 the CNS and ANS. Stress or overactivity combines the right sympathetic mode with excessive left-brain activity,
108 depending on how long and how frequently a particular status is maintained. A prolonged shift towards one
109 status is easy to imagine in the form of extended shifts and acute swings. Immune functions may be over -or
110 under-activated with the atypical over-stimulation endeavour of one hemisphere.

111 In humans, when there is no alternative to fight or flight or no control of circumstances, they are forced towards
112 a passive state for an extremely long time, which makes them inclined to depression, a right cerebral disorder.
113 This is a determinant disease condition due to unequalised lateralization action in the form of uneven metabolic
114 shifts with a negative psychological and physiological impact. This occurs because of the environmental condition
115 that is responsible for excessive use of the cerebral state (Selye 1946). Stress or overactivity contributes to right
116 sympathetic dominance as a result of too much brain activity (Werntz, Bickford et al. 1983). These produce
117 diseases of adaptation or stress-induced mental disorders.

118 Prolonged stress may induce a condition of hypoactivity in the brain, which, if not restored to its normal
119 resting phase within its normal rhythmic cycle time, may continue for a prolonged period. This over-work of
120 one hemisphere may exhaust the brain's (impulse) energy resources and disturb homeostatic adaptation between
121 brain hemisphere and nostril dominance; both may start working in a contrary to normal (opposite) dominant
122 position.

123 London Journal of Medical and Health Research Ultradian rhythms possess lateralized autonomic dominance.
124 (Kleitman 1967; Kleitman 1982) The ultradian BRAC hypothesis, in its extended form, explains the lateralized
125 ultradian ANS-CNS coupling alteration. To maintain homeostasis, together with adaptation in the structural
126 and temporal elements, these rhythms must persist and be organised economically.

127 In the extended continuance attributed to the "active phase" of BRAC, sudden neurodegeneration into one
128 (right) brain hemisphere's A choked right nostril produces a lack of oxygen supply to the active hemisphere,
129 creating hypoxia in the neuro-cells and impacting cortical stimulation. Literally speaking, the right brain stops
130 breathing, which may create neurodegeneration and hypo-frontality in a particular (right) hemisphere, leading
131 to the psychopathological disorder of schizophrenia.

132 This creates lateralized cerebral dysfunction. Hence, schizophrenia and similar lateralization diseases may
133 occur due to the cortical connection of nasal airflow asymmetry (Price and Eccles 2016).

134 Physiological malfunctions are connected with nasal cycle dysfunctions such as schizophrenia, autism,
135 Kallmann's syndrome, Parkinson's disease, etc.

136 **10 Mitochondrial Dysfunction**

137 Dysfunction in the mitochondria leading to cell death (due to apoptotic cell death or neurosis) is caused by the
138 formation of reactive oxygen species (ROS) and reactive nitrogen species (RNS). Lack of oxygen, or hypoxia,
139 produces oxidative stress (OxS). Moreover, a high influx of sodium and calcium in the glutamate-dependent N-
140 methyl-D-aspartate (NMDA) channels also causes overproduction of free radicals, which finally leads to OxS. This
141 OxS may decrease the respiratory complex's activities, which in turn cause defective mitochondrial respiratory
142 chain complexes. Due to excessive oxidants or reduced antioxidants, an imbalance in oxidants and antioxidants
143 is created, causing oxidative damage to the cell. This increases free iron levels or generates free radicals, causing
144 ROS. Neural membranes rich in polyunsaturated fatty acids are particularly susceptible to the formation of ROS.

145 Nicotinamide adenine dinucleotide phosphate (NADPH) oxydase, which oxidises NADPH by donating electrons
146 to an oxygen molecule (O_2) to produce superoxide (O_2^-), may also lead to reactive oxygen species (ROS)
147 formation.

148 Inefficient oxidative phosphorylation (OXPHOS) in cells may also lead to ROS, which in turn leads to impaired
149 energy metabolism due to a low adenosine triphosphate (ATP) supply. Energy metabolism is responsible for the
150 oxidation of mitochondrial proteins, lipids, and DNA (

151 Defective energy metabolism leads to compromised viability of mitochondria and, hence, mitochondrial dys-
152 function. Necrosis, or apoptotic cell death, is caused by mitochondrial dysfunction, leading to neurodegeneration
153 and neuroinflammation.

154 **11 Right Prefrontal-Cortex Neurodegeneration**

155 Murray (1987) advocated hypo-frontality and said that negative symptoms and attention-cognitive deficits in
156 schizophrenia are due to dysfunctional frontal lobes. Neuro-degeneration is found to occur in the dorso-lateral
157 prefrontal cortex (DLPFC) of the right hemisphere through apoptosis, which leads to slow activation of frontal and
158 prefrontal lobe regions and is called "hypo -frontality" of prefrontal areas. According to Murray, schizophrenia is a
159 disorder of connectivity. Default Mode Network (DNM), which is a baseline for neuron activity, is severely altered

160 in schizophrenia; this alteration may occur due to varied causes. Neural injury occurring to London Journal
161 of Medical and Health Research prefrontal cortex (PFC) may occur because of acute or prolonged imbalance
162 comprising lateralized autonomic arousal in the brain. Deep into the right nasal path, the inferior turbinate nasal
163 septum is engorged with erectile tissue obstruction due to greater blood flow into the ipsilateral hemisphere. A
164 higher sympathetic state of arousal (Ergotrophic state) is correlated with a higher right-sided sympathetic tone.
165 Greater sympathetic activity is produced in the right side of the physique (Selye 1946) during this arousal phase,
166 and it may activate right adrenal action through quick metabolic change. Plasma catecholamine levels, such as
167 norepinephrine, epinephrine, and dopamine, may become disordered and imbalanced, and immune functions may
168 get disturbed (with over-or underactivation) due to overstimulation generated in one single hemisphere. cells
169 is called "brain gliosis and may occur due to apoptosis in the brain. There are two types of brain gliosis due to
170 apoptosis: astrocytosis and microgliosis. Oligodendrocytes perform the 2.10 Hypo-Active Right Brain Hemisphere
171 Gur (1978) showed that people with schizophrenia overactivate their left hemisphere, which gets dysfunctional to
172 a greater degree than typical humans. Chaotic use of the left (dysfunctional) hemisphere creates malfunctioning
173 logic and a lack of affect (Gur 1978). Right dorsolateral prefrontal cortex hypometabolism influences emotion
174 expression, with social affiliation leading to abnormal emotional behaviour. Hypo-frontality enjoys a positive
175 correlation with chronic schizophrenia, which in turn is associated with negative symptoms.

176 12 Hyper-Active Left Brain Hemisphere

177 The left brain hemisphere gets hyper-active due to right hemispheric hypo-frontality. ??ur (Feb. 1987a) showed
178 this in patients with the left as compared to the right sub-cortex. Due to hypo-frontality in schizophrenia,
179 frontal regions, as compared to posterior ones, have reduced metabolic rates in addition to glucose metabolism.
180 Kucharska-Pietura (2006) has noted similarities between right-sided brain-damaged people and people with
181 schizophrenia. There is right-hemisphere impairment in schizophrenia (Kucharska-Pietura 2006). Right
182 hemisphere damage patients (due to an accident) and schizophrenia patients share a number of characteristics,
183 according to Rotenberg (1994), including apathy, indifference, an inability to express emotions, a poor assessment
184 of negative emotions, impaired perception of fear and anger, deficits in the affective process, and general cognitive
185 deficits (Rotenberg 1994). Schizophrenia patients who take the Chimeric faces test exhibit left-hemisphere bias
186 (Levy, Heller et al. 1983).

187 13 Hypo -to Hyper-Brain Activation: A Compensatory Effort

188 Rotenberg (1984) stated that the right hemisphere performs imagination and information processing, while the
189 left one performs arithmetic tasks and numerical counting. The right hemisphere is "entropic" of image thinking
190 (polysemantic context). To limit the interconnections of things and phenomena and for probability forecasting,
191 the left hemisphere requires additional activation.

192 Brain "hypo-activation" is due to the right London Journal of Medical and Health Research Myelination leads
193 to the loss of white matter in the prefrontal cortex. This white matter works to join the frontal and temporal lobes.
194 The imbalance in the inhabitation and excitation processes in the prefrontal cortex leads to reduced formation
195 and excessive shortening of this inhibitory and excitatory process, which may cause loss of grey matter in the
196 brain. Diminished neuroplasticity leads to loss of neuropil due to small apoptosis in dendrites and individual
197 synapses. Due to loss of neuropil by apoptosis, excess neuropil excretion, retention, and degeneration, without
198 causing cell death, leads to synaptic degeneration (disappearance of synapses) and a reduction in neuron size
199 (Murray and Foerster 1987). Hence, neurodegeneration is the cause of negative symptoms and hypofrontality.

200 Also, the left temporal lobe shows higher activity, and the left basal ganglia receives reduced metabolism.
201 They possess left hemispheric over-activation ??Gur, Resnick et al. 1987).

202 More severely disturbed patients showed greater left-hemispheric metabolism. ??ur (Feb. 1987b) showed
203 that hemispheric arousal is atypical in the right cerebral hemispheric cortex as compared to the left one. The
204 dopaminergic system in schizophrenia contains greater left-hemispheric involvement ??Gur, Resnick et al. 1987).

205 Unilateral forced nostril breathing yields clinical effects for the treatment of a variety of disorders. Differential
206 stimulation of cognitive efficiency can be produced by altering cerebral activity through breathing, which is used
207 as a remedy for psychopathologies connected with lateralized cerebral dysfunctions (Shannahoff-Khalsa, Boyle et
208 al. 1991).

209 hemisphere's thinking manner leading to functional inadequacy during task resolution, which activates "hyper-
210 arousal" of the left Rotenberg (1994) explained that the left hemisphere undertakes additional compensatory
211 physiological and psychological activation because of right hemisphere functional insufficiency. The left
212 hemisphere makes effort as compensatory hyper-activation (due to the weakness of right hemisphere skills) in the
213 realms of logical thinking and decision-making in non-verbal tasks that are accomplished by right hemisphere
214 competence.

215 Although unsuccessful and inefficient, the brain attempts to transfer all its resources to perform at its best.
216 Search activity, in addition to brain catecholamines, upholds the appositive feedback loop mechanism, which is
217 entirely performed by hyperbolic left hemisphere functions. Dopamine pathways support higher action in the left
218 hemisphere over the right one.

219 The left sub-cortical structure has an additional number of dopamine receptors as compared to the right one
220 (Rotenberg 1994).

221 **14 Neurotransmitter Deregulation**

222 With respect to schizophrenia, Weinberger (1987) described that defects in the DLPFC myelination process may
223 cause dysfunction in the mesolimbic dopamine system by making it functionally overactive. Degenerative changes
224 in the prefrontal cortex affect dopamine neurons by diminishing activity at their terminals. The mesocortical
225 system stretches from the prefrontal cortex to the midbrain up to the amygdala, nucleus accumbens, and other
226 areas such as the hypothalamus and hippocampus. To enhance physiological activity in the prefrontal cortex,
227 dopamine function attempts an up-regulation of post-synaptic receptors, and increased dopamine turnover, such
228 as homovanillic acid concentration and chronic caused as a result of enhanced dopamine (Weinberger 1987).

229 Oxygen supply can limit the synthesis of a few neurotransmitters in the brain. Under limited oxygen supply,
230 catecholamine and serotonin synthesis get restricted, and "transmission failure" occurs because of decreased
231 biosynthesis of neurotransmitters under hypoxic conditions (Feinsilver, Wong et al. 1987).

232 Molecular oxygen is needed by rate-limiting enzymes for the synthesis of many neurotransmitters and their
233 activity. Hypoxia impacts neuronal functions by adversely influencing neurotransmitter synthesis. Biogenic
234 amines, amino acids, acetylcholine, and bio-active peptides, together with gas transmitter synthesis, are impacted
235 by hypoxia (Kumar 2011).

236 This study has some limitations that must be considered. The author's humanities background as a self-analysis
237 (introspecting) reporting psychologist may be limiting in his descriptions of biological concepts. References may
238 be less recent because they come from their original sources. Introspection can be biased, even with care.
239 Additionally, this method is unrepeatable.

240 **15 III. CONCLUSION**

241 Disturbed nasal cycle rhythms may be considered reasons behind the onset of schizophrenia. A chronically
242 clogged right nostril creates hypoxia in the ipsilateral right hemisphere, causing neurodegeneration in the right
243 PFC, making it hypofrontal. As a compensatory mechanism, the left brain attempts hyper-activation, producing
244 neurotransmitter dysregulation. Hence, cerebral hemispheric lateralization and ANS functioning get disordered,
245 leading to abnormal behaviour. In schizophrenia, right-hemisphere functioning is disordered (David and Cutting
246 1990). Kucharska-Pietura (2006) stated that there is a functional deficiency and inadequacy or an anatomical
247 abnormality of subtle brain impairment in the right cerebral cortex in schizophrenia. dopamine hyperactivity,
develops. Hallucinations, delusions, and other positive symptoms are

2

Figure 1: 2 ©

248

Figure 2: 4 ©

asymmetrical blood flow. A rhythmic shift of nasal dominance delivers engorgement of nasal mucosa for 25-200 minutes in each nostril (Schiff and Rump 1995). Vasoconstriction (and decongestion) in one nasal passage is connected to unilateral sympathetic dominance, while simultaneous vasodilation (and congestion) in another is connected to parasympathetic dominance. In this way, the ANS is connected to the nasal cycle, and ANS asymmetry is due to nasal asymmetry. The nose and hypothalamus are linked through autonomic nerve fibres, and nasal airflow affects brain activity. Rhythmic nasal cycles are produced by hypothalamic regulation. Brain stem oscillators, collections of sympathetic neurons, function as central regulators of sympathetic tone.

Differential nasal congestion influences the half-sided response to the lungs. The dominant nostril involves the homolateral lung to generate sympathetic tone (Shannahoff-Khalsa 1991). Alternating congestion and decongestion of the nostrils is called the nasal cycle (Shannahoff-Khalsa, Boyle et al. 1991). The concept of "nasal cycle" referred to the interchanges in nostril breathing efficiency. Erectile tissue causes transient blockage in the nasal passage, producing an asymmetry of higher airflow in one nostril over the other, with the mechanism of physical blockage in the air by asymmetrically increased tissue. The anterior nasal septum with the inferior turbinate of the nostril achieves engorgement of erectile tissue extensively

Figure 3: worked extensively on the nasal cycle study. The nasal cycle is the most important rhythmic lateralization of the ANS.

The sympathetic nervous system (SNS) has a

correlation with cerebral hemispheric action and nasal airflow. The brain-stem area reticular formation involved in arousal and consciousness enhances arousal by air insufflations. The sensation of nasal airflow entering the trigeminal nerve stimulates the nasal mucosa's intense cold receptors. Nasal airflow stimulation increases arousal, activates reticular formation, and improves cognitive performance. Unilateral nasal airflow stimulation generates contralateral and ipsilateral effects on the hemispheres, with greater effects on the contralateral side. Lower cortical stimulation (with nasal airflow) is effective in the ipsilateral hemisphere (Price and Eccles 2016).

The dominant nostril leads to the arousal of the contralateral brain hemisphere through relative nostril effectiveness (Schiff and Rump 1995). The cerebral hemisphere gets vasoconstricted because of ipsilateral vasoconstriction in the nasal vessels (with unilateral forced nostril breathing), inducing ipsilaterally diminished cerebral blood flow with a contralateral increase. This enhances blood flow contralaterally and improves cognitive performance. Nasal airflow stimulation creates arousal of the cerebral cortex using the medium of reticular formation (Price and Eccles 2016). The dominant nostril with the contralateral hemisphere has increased blood flow due to cerebral parasympathetic dominance. The ipsilateral hemisphere has decreased blood flow due to cerebral sympathetic activity. Increased sympathetic activity reduces cerebral circulation. The hemisphere contralateral to the dominant nostril has increased mental activity and metabolic rates. Due to dilated cortical arteries and increased parasympathetic tone, cognitive performance efficiency is increased in the contralateral cerebral hemisphere of the

dominant (greater airflow) nostril (Shannahoff-Khalsa, Boyle et al., 1991; Shannahoff-Khalsa,

Kennedy et al., 1996; Shannahoff-Khalsa, Shannahoff-Khalsa 2007). Vasoconstriction and decongestion of the nostril are caused by unilateral ~~sympathetic~~, concurrent vasodilation and congestion of the opposite nostril are caused by parasympathetic dominance.

2.5 Basic Rest and Activity Cycle

Each hemisphere functions independently. The ANS regulates cognition. Cerebral and ultradian rhythms (nasal cycle) are tightly coupled and controlled by the ANS (Shannahoff-Khalsa, Boyle et al. 1991). Werntz, Bickford, et al. (1983) supported the idea that the ultradian rhythms of the nasal cycle are tightly coupled to the alternating lateralization of cerebral activity.

cerebral, and functional states. The paired Central Nervous System (CNS)-ANS is asymmetrically organised in a lateralized body, possessing asymmetrical activity in the form of rhythmic lateralization to complement each other's functions independently. Lateralized neural activities of the CNS and ANS fulfil bodily necessities

lateral hemisphere ~~arogenetrates~~ unilateral

249 [Feinsilver et al. ()] 'Adaptations of neurotransmitter synthesis to chronic hypoxia in cell culture'. S H Feinsilver
250 , R Wong , D M Raybin . 10.1016/0167-4889(87)90085-1. [https://doi.org/10.1016/0167-4889\(87\)90085-1](https://doi.org/10.1016/0167-4889(87)90085-1) *Biochim Biophys Acta* 1987. 928 (1) p. .

252 [David and Cutting ()] 'Affect, affective disorder and schizophrenia: A neuropsychological investigation of right
253 hemisphere function'. A S David , J C Cutting . 10.1192/bj.156.4.491. <https://doi.org/10.1192/bj.156.4.491> *The British Journal of Psychiatry* 1990. 156 (4) p. .

255 [Werntz et al. ()] 'Alternating cerebral hemispheric activity and the lateralization of autonomic nervous function'.
256 D A Werntz , R Bickford , F Bloom , D Shannahoff-Khalsa . *Human neurobiology* 1983. 2 (1) p. .

257 [Kennedy et al. ()] 'Alternating lateralization of plasma catecholamines and nasal patency in humans'. B
258 Kennedy , M G Ziegler , D S Shannahoff-Khalsa . [https://doi.org/1016/0024-3205\(86\)90175-X](https://doi.org/1016/0024-3205(86)90175-X)
259 *Life Sciences* 1986. 38 (13) p. .

260 [Rotenberg ()] 'An integrative psychophysiological approach to brain hemisphere functions in schizophrenia'. V
261 S Rotenberg . 10.1016/j.biopsych.2008.04.012. <https://doi.org/10.1016/j.biopsych.2008.04.012>
262 *Neuroscience & Biobehavioral Reviews* 1994. 18 (4) p. .

263 [Schiff and Rump ()] 'Asymmetrical hemispheric activation and emotion-the effects of unilateral forced nostril
264 breathing'. B B Schiff , S A Rump . 10.1006/brcg.1995.1279. <https://doi.org/10.1006/brcg.1995.1279> *Brain and Cognition* 1995. 29 (3) p. .

266 [Levy et al. ()] 'Asymmetry of perception in free viewing of chimeric faces'. J Levy , W Heller , M T Banich , L
267 A Burton . 10.1016/0278-2626. <https://doi.org/10.1016/0278-2626> *Brain and cognition* 1983. 2 (4)
268 p. .

269 [Kleitman ()] 'Basic rest-activity cycle-22 years later'. N Kleitman . 10.1093/sleep/5.4.311. <https://doi.org/10.1093/sleep/5.4.311> *Sleep* 1982. 5 (4) p. .

271 [Widjaja et al. ()] 'Cardiorespiratory dynamic response to mental stress: a multivariate time-frequency analysis'.
272 D Widjaja , M Orini , E Vlemincx , S Van Huffel . 10.1155/2013/451857. <https://doi.org/10.1155/2013/451857> *Computational and mathematical methods in medicine* 2013. 2013.

274 [Sokoloff ()] 'Circulation and energy metabolism of the brain'. L Sokoloff . *Basic neurochemistry* 1989. 2 p. .

275 [Cannon et al. ()] 'Decreased neurotrophic response to birth hypoxia in the etiology of schizophrenia'. T D
276 Cannon , R Yolken , S Buka , E F Torrey , C S G O T P O O S P Disorders . *London Journal of Medical
277 and Health Research* 2008. 64 (9) . (Biological Psychiatry)

278 [Saper et al. ()] 'Direct hypothalamo-autonomic connections'. C Saper , A Loewy , L Swanson , W Cowan .
279 10.1016/0006-8993. <https://doi.org/10.1016/0006-8993> *Brain research* 1976. 117 (2) p. .

280 [Disordered Breath-Brain Lateralization: At the Core of Schizophrenia Pathogenesis Science]
281 10.16952/pns.2017.14.2.64. <https://doi.org/10.16952/pns.2017.14.2.64> *Disordered Breath-Brain
282 Lateralization: At the Core of Schizophrenia Pathogenesis Science*, 14 p. .

283 [Kucharska-Pietura ()] 'Disordered emotional processing in schizophrenia and one-sided brain damage'. K
284 Kucharska-Pietura . 10.1016/S0079-6123. <https://doi.org/10.1016/S0079-6123> *Progress in Brain
285 Research* 2006. 156 (06) p. .

286 [Great ()] *Great*, Compilation 1.0. 2023. Britain Journals Press. 23.

287 [Saper ()] 'Hypothalamic connections with the cerebral cortex'. C B Saper . <https://doi.org/1016/S0079-6123> *Progress in brain research* 2000. 126 (00) p. .

289 [Kumar ()] 'Hypoxia. 3. Hypoxia and neurotransmitter synthesis'. G K Kumar . 10.1152/ajpcell.00019. <https://doi.org/10.1152/ajpcell.00019> *American Journal of Physiology-Cell Physiology* 2011. 2011. 300 (4) p. .

292 [Weinberger ()] 'Implications of normal brain development for the pathogenesis of schizophrenia'. D R Wein-
293 berger . 10.1001/archpsyc.1987.0180019008. <https://doi.org/10.1001/archpsyc.1987.0180019008>
294 *Archives of general psychiatry* 1987. 44 (7) p. .

295 [Shannahoff-Khalsa ()] 'Lateralized rhythms of the central and autonomic nervous systems'. D Shannahoff-Khalsa
296 . 10.1016/0167-8760(91)90017-R. [https://doi.org/10.1016/0167-8760\(91\)90017-R](https://doi.org/10.1016/0167-8760(91)90017-R) *International
297 Journal of Psychophysiology* 1991. 11 (3) p. .

298 [Gur ()] 'Left hemisphere dysfunction and left hemisphere overactivation in schizophrenia'. R E Gur .
299 10.1037/0021-843X.87.2.226. <https://doi.org/10.1037/0021-843X.87.2.226> *Journal of abnormal
300 psychology* 1978. 87 (2) p. 226.

301 [Curtis et al. ()] 'NADPH and Mitochondrial Quality Control as Targets for a Circadian-Based Fasting and
302 Exercise Therapy for the Treatment of Parkinson's Disease'. W M Curtis , W A Seeds , M P Mattson , P C
303 Bradshaw . 10.3390/cells. <https://doi.org/10.3390/cells> *Cells* 2022. 11 (15) p. 52416.

15 III. CONCLUSION

304 [Price and Eccles ()] 'Nasal airflow and brain activity: is there a link?'. A Price , R Eccles .
305 10.1017/S002221511008537. <https://doi.org/10.1017/S002221511008537> *The Journal of Laryngology & Otology* 2016. 130 (9) p. .

307 [Saper ()] 'Organization of cerebral cortical afferent systems in the rat. II. Hypothalamocortical projections'. C
308 B Saper . <https://doi.org/1002/cne.902370103> *Journal of Comparative Neurology* 1985. 237 (1) p. .

309 [Kleitman ()] 'Phylogenetic, ontogenetic and environmental determinants in the evolution of sleep-wakefulness
310 cycles'. N Kleitman . *Research publications-Association for Research in Nervous and Mental Disease* 1967. 45
311 p. .

312 [Shannahoff-Khalsa ()] 'Psychophy siological states: The ultradian dynamics of mind-body interactions'. D
313 Shannahoff-Khalsa . 10.1016/S0074-7742(07. [https://doi.org/10.1016/S0074-7742\(07](https://doi.org/10.1016/S0074-7742(07) *International
314 review of neurobiology* 2007. 80 p. .

315 [Gur et al. ()] 'Regional brain function in schizophrenia: I. A positron emission tomography study'. R E Gur
316 , S M Resnick , A Alavi , R C Gur , S Caroff , R Dann , F L Silver , A J Saykin , J B Chawluk
317 , M Kushner . 10.1001/archpsyc.1987.01800140021003. [https://doi.org/10.1001/archpsyc.1987.
318 01800140021003](https://doi.org/10.1001/archpsyc.1987.01800140021003) *Archives of general psychiatry* 1987. 44 (2) p. .

319 [Gur et al. ()] 'Regional brain function in schizophrenia: II. Repeated evaluation with positron emission tomog-
320 raphy'. R E Gur , S M Resnick , R C Gur , A Alavi , S Caroff , M Kushner , M Reivich . 10.1001/arch-
321 psyc.1987.01800140028004. <https://doi.org/10.1001/archpsyc.1987.01800140028004> *Archives
322 of General Psychiatry* 1987. 44 (2) p. .

323 [Cuthbert ()] 'Research Domain Criteria: toward future psychiatric nosologies'. B N Cuthbert .
324 10.1177/09637214211051363. <https://doi.org/10.1177/09637214211051363> *Dialogues in clinical
325 neuroscience*, 2022.

326 [Murray and Foerster ()] 'Schizophrenia: is the concept disintegrating?'. R M Murray , A Foer-
327 ster . 10.1177/026988118700100301. <https://doi.org/10.1177/026988118700100301> *Journal of
328 Psychopharmacology* 1987. 1 (3) p. .

329 [Netter ()] *The CIBA collection of medical illustration*, F H Netter . 1969. Heart. p. .

330 [Suess et al. ()] 'The effects of psychological stress on respiration: a preliminary study of anxiety and hyper-
331 ventilation'. W M Suess , A B Alexander , D D Smith , H W Sweeney , R J Marion . 10.1111/j.1469-
332 8986.1980.tb02293.x. <https://doi.org/10.1111/j.1469-8986.1980.tb02293.x> *Psychophysiology*
333 1980. 17 (6) p. .

334 [Shannahoff-Khalsa et al. ()] 'The effects of unilateral forced nostril breathing on cognition'. D S Shannahoff-
335 Khalsa , M R Boyle , M E Buebel . 10.3109/00207459109150697. [https://doi.org/10.3109/
336 00207459109150697](https://doi.org/10.3109/00207459109150697) *International Journal of Neuroscience* 1991. 57 (3-4) p. .

337 [Selye ()] 'The general adaptation syndrome and the diseases of adaptation'. H Selye . 10.1210/jcem-6-2-117.
338 <https://doi.org/10.1210/jcem-6-2-117> *The journal of clinical endocrinology* 1946. 6 (2) p. .

339 [Kang ()] 'The relationship and mechanism underlying the effect of conscious breathing on the autonomic nervous
340 system and brain waves'. S W Kang . 10.1016/0149-7634. <https://doi.org/10.1016/0149-7634>
341 *Perspectives in Nursing* 2017. 94 p. .

342 [Shannahoff-Khalsa et al. ()] 'Ultradian rhythms of autonomic, cardiovascular, and neuroendocrine systems
343 are related in humans'. D S Shannahoff-Khalsa , B Kennedy , F E Yates , M G Ziegler .
344 10.1152/ajpregu.1996.270.4.R873. <https://doi.org/10.1152/ajpregu.1996.270.4.R873> *American
345 Journal of Physiology-Regulatory, Integrative and Comparative Physiology* 1996. 270 (4) p. .