

CrossRef DOI of original article:

1 Prevalence and Factors Associated with COVID-19 Vaccine
2 Acceptance among Adult Population in Northern Uganda. A
3 Cross-Sectional Study

4

5 *Received: 1 January 1970 Accepted: 1 January 1970 Published: 1 January 1970*

6

7 **Abstract**

8 Background: When COVID-19 vaccines arrived in Uganda in March of 2021, there was
9 inadequate information on vaccine acceptance in the population due to many factors, but
10 mainly due to misinformation and disinformation circulating in Ugandan media. This study
11 aimed to determine the prevalence and factors associated with COVID-19 vaccine acceptance
12 among adult population in northern Uganda. Methods: We conducted a cross-sectional study
13 on 723-adult populations in northern Uganda from March to April of 2022. Participants were
14 selected by systematic sampling from twenty-four health facilities in Acholi sub-region. SPSS
15 version 25.0 was used for data analysis at multivariable regression analysis and a p-value
16 <0.05 was considered significant.

17

18 *Index terms—*

19 **1 I. INTRODUCTION**

20 Coronavirus disease 2019 (COVID-19) is one of today's most significant public health worries world-wide [1,2].
21 As a result, much effort has been devoted to implementing control strategies for COVID-19 pandemic globally, for
22 example, lockdown measures, travel bans, isolation of confirmed cases and close contacts, bans on mass gatherings,
23 social distancing, wearing facemasks, COVID-19 vaccination, and other hygiene measures, but the transmission of
24 the virus is likely to blowback when these strategies are lifted [2]. Thus, many scholars, academicians, physicians,
25 and public health specialists have observed that of the many approaches to control this pandemic, mass COVID-
26 19 vaccination is one of the top priority interventions [3]. It is now known that COVID-19 vaccines can potentially
27 decrease the spread of coronavirus by reducing its incidence, risks of developing severe disease and hospitalization,
28 and death in the general population; however, these have generated a lot of debate in the population [4].

29 Reports from Vaccine Alliance found that wealthier nations had hoarded so much of COVID-19 vaccines
30 that it was predicted that many of the low-to-middle-income countries would most likely not receive COVID-
31 19 vaccines in 2021 [5]. In addition, in Africa, where most vaccines for many killer diseases have been very
32 successful in reducing infant and child mortality rates and increased the lifespan of the current population, the
33 population suffered from false rumors and conspiracy theories that have led to COVID-19 vaccine hesitancy; a
34 factor jeopardizing critical efforts to stop the spread of severe -acute-respiratory-syndrome-coronavirus-2 (SAR-
35 S-CoV-2) on the continent [5]. Also, vaccine safety and access to COVID-19 vaccines have been among the top
36 concerns of most respondents in a survey conducted by GeoPoll in sub-Saharan Africa [5]. The survey showed
37 that 23% of respondents believed that whoever paid for COVID-19 vaccines got it first, thus highlighting the
38 inequity in healthcare resource distribution at critical moments, especially in sub-Saharan Africa [5].

39 Experts have described COVID-19 vaccine hesitancy as one of the top ten commonest threats to global health
40 security in 2019 [6], and as defined by the World Health Organization (WHO), vaccine hesitancy is a reluctance
41 or refusal by a person to get vaccinated despite availability of vaccines [6]. Accordingly, WHO states that some
42 reasons people choose not to get vaccinated include the lack of trust in the healthcare systems, complacency, and
43 inconvenience in getting vaccines [6]. On the other hand, vaccine acceptance is defined as the degree to which

6 SELECTION CRITERIA

44 individuals accept, question, or refuse vaccination, and it determines vaccine uptake and distribution successes
45 ???].

46 As part of a broader process to prioritize frontline health workers' vaccination with limited COVID-19 vaccines
47 in Uganda, a recent report from Amuru district local government in northern London Journal of Medical and
48 Health Research Uganda showed that most COVID-19 vaccines sent for health workers were not used and were
49 at risk of getting expired ???]. In response, the Resident District Commissioner (RDC) of Amuru issued an
50 ultimatum to health workers to either get vaccinated with COVID-19 vaccines or quit their jobs [8].

51 So, looking broadly at vaccine acceptance in Uganda, it was found that approximately 60% (600/1,000) of
52 respondents were interested in getting COVID-19 vaccines [9]. However, there were no comprehensive details on
53 regional prevalence of COVID-19 vaccine acceptance as Uganda prepared to roll out mass COVID-19 vaccinations.
54 As seen in many reports on the management of diseases with epidemic potential, population's education is part
55 of the prevention and control strategies, particularly to inform people to change their habits and behaviors and
56 holistically tackle the spread of the infection [10].

57 However, despite this vast knowledge on the role played by the population's goodwill in managing epidemics,
58 some African governments still wanted to cut health education-related budgets during the COVID-19 pandemic
59 [10]. Such moves on health budget cuts during the pandemic could hamper efforts to effectively educate and
60 vaccinate the general population in the African continent.

61 Remarkably, one study conducted among medical students in the United States of America (USA) showed that
62 there was COVID-19 vaccine hesitancy and that 23% were unwilling to take COVID-19 vaccines [11]. Students
63 raised concerns about COVID-19 vaccines, especially regarding the population's trust in public healthcare systems
64 and side effects of COVID-19 vaccines [11].

65 Similarly, findings among university students in Italy, the United Kingdom, and Turkey showed a high COVID-19
66 vaccine hesitancy ranging from 14% to 31% [12].

67 On COVID-19 vaccine hesitancy, many scholars and experts view the many uncertainties surrounding the
68 origin of the SAR-CoV-2 virus as the main underlying reason [13]. In addition, a study found that COVID-19
69 vaccine hesitancy was associated with beliefs and suspicions about the origin of the SAR-CoV-2 virus [13]. It
70 is said that most people who believed in the natural evolution of SAR-CoV-2 virus were more likely to accept
71 COVID-19 vaccines than those who thought the virus was manufactured [13].

72 In Jordan and Kuwait, a study investigating COVID-19 vaccine hesitancy found that misinformation and
73 disinformation circulating in social media with numerous conspiracy theories extensively played a part in vaccine
74 hesitancy in that population [14]. In the same study, 28% of participants believed COVID-19 vaccines were to
75 introduce microchips into recipients' bodies, and 23% thought COVID-19 vaccines were to reduce fertility in their
76 population [14].

77 Also, a study on COVID-19 vaccine hesitancy in healthcare workers in two large academic centers in South
78 Africa found that 90% of the 1308 sampled population accepted COVID-19 vaccines [15]. However, healthcare
79 workers with lower educational status and those who previously refused other vaccines were less likely to take
80 COVID-19 vaccines [15]. In addition, Ahmed and colleagues researching COVID-19 vaccine acceptability in
81 Somalia found that 23% of their survey population were reluctant to take COVID-19 vaccines, and being a
82 female was associated with vaccine hesitancy [16].

83 Not much is known or published on COVID-19 vaccine acceptance in the general Ugandan population. Because
84 of this, several questions have been raised, and many more unanswered questions are being asked on the level of
85 vaccine hesitancy/inquisitiveness or acceptance in the general Ugandan population as the country prepared to
86 roll out COVID-19 vaccinations.

87 This study aimed to determine the prevalence and factors associated with COVID-19 vaccine acceptance
88 among adult population of northern Uganda.

89 2 II. METHODS

90 3 Study design:

91 We conducted a cross-sectional study among adult population in northern Uganda from March to April 2022.

92 4 London Journal of Medical and Health Research

93 These health centers (HCs) were selected based on their participation in offering free COVID-19 vaccines to the
94 region's population.

95 5 Study Population

96 We recruited participants (adults/>18 years) who were attendees or attendants to outpatient clinics of the
97 twenty-four health facilities in northern Uganda's nine districts of the Acholi sub-region.

98 6 Selection Criteria

99 The selection of participants was stratified at regional level into nine districts of the Acholi subregion and at
100 district level to twenty-four health facilities (Hospitals, HCIVs, and HCIIIs).

101 The study was conducted in the Outpatient Department (OPD) in each of the twenty-four health facilities.
102 Participants were selected by systematic sampling in that every third adult attendee or attendant aged 18 years
103 and above who consented to the study were recruited. We excluded participants who were critically ill and those
104 who were not willing to answer our research questions.

105 **7 Sample Size Estimation**

106 The sample size was calculated based on the Raosoft sample size calculation methods. The computation was
107 built on a 50% response distribution, 5% margin of error, and 95% Confidence Interval. The online software
108 foundation uses a widely utilized descriptive sample size estimation formula [17,18]. The research team chose this
109 software calculator because Raosoft, Inc. form and survey software comprises a database management system
110 of great strength and reliability that communicates with other proprietary formats. In addition, the Raosoft
111 database is a highly robust, proven system with high data integrity and security [17,18].

112 The sample size was calculated using the formula = $(z\text{-score})^2 \times \text{StdDev}^2 \times (1-\text{StdDev}^2) / (\text{Confidence Interval})^2$
113 Based on the assumption of a population size of 45,000 clients
114 and visitors in one month in all the health facilities in the Acholi subregion, the minimum sample size was
115 calculated to be 396 participants.

116 **8 Sampling Technique**

117 We conducted a stratified sampling approach at regional and district levels, and a systematic sampling approach
118 for selecting participants at each of the twenty-four health facility's outpatient departments [19]. The Acholi
119 subregion was stratified into the nine districts (Gulu City, Gulu, Nwoya, Amuru, Omoro, Pader, Agago, Kitgum,
120 and Lamwo districts) and further into twenty-four selected health facilities (Hospitals, HCIVs, and HCIIIs) where
121 COVID-19 vaccines were administered freely to the population. At each outpatient department, every day from
122 morning to evening, a third attendee or attendant was selected from the OPD register by a systematic sampling
123 method for one week until the required sample size was achieved [19,20].

124 It was estimated that approximately 45,000 people receive health services in the twenty-four selected health
125 facilities' outpatient departments in one month. We also defined systematic sampling as a probability sampling
126 method where researchers select population members at regular [19,20], which was the ideal situation the research
127 team had to achieve.

128 **9 Study Variables**

129 The dependent variable was COVID-19 vaccine acceptance ("Have you received a jab of COVID-19 vaccine? and
130 the answer was either "yes" and coded as "1" or "no" and coded as "0" for the analysis).

131 The independent variables were the sociodemographic characteristics such as; age, sex, occupation, religion,
132 level of education, tribe, marital status, districts, presence of comorbidities, nationality, race, health insurance
133 coverage status, and whether participants "Strongly agree" ("SA"), "Agree," ("A"), "Neutral" ("N"), "Disagree"
134 ("DA") or "Strongly Disagree," ("SD") that vaccines in health facilities in northern Uganda were safe.

135 **10 Data Collection Methods**

136 **11 Data**

137 were collected using face-to-face questionnaire interviews by our research team, strictly following Uganda's
138 standard operating procedures (SOPs) and COVID-19 infection, prevention, and control (IPC) guidelines [21].
139 We used a questionnaire constructed in English, consisting of questions on sociodemographic characteristics
140 and participants' views on vaccine safety in health facilities in the Acholi sub-region (Additional file 1). The
141 questionnaire was developed and grounded on literature reviews and discussions by our research team [22,23].

142 Further, the questionnaire was pretested among out patients at Gulu Regional Referral Hospital with an
143 internal validity of Cronbach's $\alpha=0.772$. Also, participants were assured of confidentiality and privacy of their
144 responses to reduce potential bias introduced by self-reported data. In addition, the questionnaire was designed
145 short to minimize lethargy in answering questions which made it easy for participants' responses.

146 **12 Data Analysis**

147 Data analysis was performed using SPSS statistical software version 25.0. Continuous variables were presented in
148 means, histograms, standard deviations, medians, and interquartile ranges. Categorical data were presented as
149 frequencies and percentages. Chi-square and crosstabs tests were performed on categorical data when comparing
150 two or more groups. Also, to assess associations of each independent variable with COVID-19 vaccine acceptance
151 (dependent variable), a bivariable logistic regression analysis was conducted and Crude Odds Ratios (COR), at
152 95% Confidence Intervals (CI) and P-values were presented.

153 Independent variables found insignificant at bivariable level but with (P-values >0.20) were included in the
154 final multivariable logistic regression analysis model together with significant independent variables and the
155 dependent variable. However, independent variables that had P-values above 0.201 at bivariable level were not

16 IV. DISCUSSION

156 included in the final multivariable regression models. In the multivariable regression analysis, we constructed
157 two models by categorizing independent variables into sociodemographic characteristics, comorbidity status,
158 national insurance coverage status, The first multivariable logistic regression model included participant's
159 socio-demographic characteristics (age, sex, level of education, districts, religion, occupation, and smoking
160 status). After that, we constructed a second and final multivariable regression model adjusting for participants'
161 comorbidity status, health insurance coverage status and views on the safety of vaccines in health facilities of
162 northern Uganda.

163 The adjusted odds ratios (aOR) at 95% Confidence Intervals (CI) and p-values were determined with a
164 significant level set at a p-value <0.05.

165 13 Ethical Approval

166 This study was approved by St. Mary's Hospital, Lacor Institutional, Review and Ethics Committee (LHIREC
167 No. 0193/10/2021) and administrative clearance from the twenty-four health facilities. In addition, each
168 participant consented before being recruited to the study. The research team ensured that confidentiality
169 of personal information was maintained during the investigation, and only participants' unique identifiers
170 were retained on public records. During the study, only the Principal Investigator and supervisors accessed
171 participants' database and at the end of the project, the database was archived at Gulu University, Faculty of
172 Medicine, in the Department of Surgery. A map showing Acholi subregion and the nine districts is presented
173 showing the health facilities where this study was conducted. A near-uniform distribution of health facilities in
174 the region has been noted, indicating that findings from our study are representative of the region's population
175 (Figure 2).

176 14 III. RESULTS

177 15 Most

178 16 IV. DISCUSSION

179 The most significant finding from this study population (Table 1, Figure 1, Figure 2) was that COVID-19 vaccine
180 acceptance in northern Uganda was high at 580/723 (80.2%, 95% CI:78.9%-83. 4%). This finding contrasts with
181 a study by Kabagengyi et al, in Uganda (2022) which observed a low COVID-19 vaccine acceptance at 41.4%
182 [24]. However, that study noted substantial regional variations in vaccine hesitancy where a lower COVID-19
183 vaccine hesitancy was observed in participants from northern and eastern Uganda compared to western and
184 central Uganda [24], a finding which is like our study findings (Table 2, Table 3, Table 4, Table 5). The authors
185 argued that the lower vaccine hesitancy in northern Ugandan population compared to central and western Uganda
186 was due to prior Ugandan Ministry of Health mobilization and roll out of information on COVID-19 vaccines,
187 dispelling misconceptions, myths, and conspiracy theories about COVID-19 vaccines and thus the higher vaccine
188 acceptance rate [24].

189 Thus, the high COVID-19 vaccine acceptance rate is likely because of the commendable work of health
190 managers in northern Uganda for conducting consistent community sensitization, mobilization, and engagements
191 using village health teams (VHTs), which helped turn a vaccine-hesitant/inquisitive population to the opposite.
192 This finding is consistent with others that stakeholder engagement, social mobilization, and equitable distribution
193 of vaccines increase vaccine acceptance in low-to-middle-income countries [25,26,27]. Accordingly, we, the authors
194 propose that the approach used to achieve this high COVID-19 vaccine acceptance rate in northern Uganda could
195 be replicated in other parts of Uganda, especially using VHTs as agents of change.

196 The current study's finding that female gender was significantly associated with COVID-19 vaccine acceptance
197 is not new (females 77.8% versus males 82.2%) (Table 6) but contrasts another observed in Kabagengyi, et al.,
198 (aOR=0.77,95% CI:0.58-1.02) in Uganda [24] but consistent with other studies elsewhere [28,29].

199 For example, high COVID-19 vaccine acceptance rates were recorded among pregnant women in northwestern
200 Ethiopia [28] and Saudi Arabia [29].

201 Relatedly, many studies in Uganda show that females have better health-seeking behaviors than males
202 [30,31,32,33]. Females' better healthseeking behaviors than males have been similarly observed during imple-
203 mentation of many health activities among communities in northern Uganda [31]. In addition, experience from
204 Uganda shows that females are more receptive to health messages from Ugandan government and have always
205 been at the forefront of fighting against many infectious diseases, including malaria [32]. Thus, their compliance
206 with health messages from the Ugandan Ministry of Health has always been positive. This experience includes
207 reproductive health services, vaccination of children, voluntary counseling, and testing (VCT) for HIV and AIDS,
208 cancer screening, and many health prevention and promotion activities [33].

209 However, a systematic review and meta-analysis by Stephanie showed that males had more likely intentions
210 of getting vaccinated against COVID-19 than females [34]. In contrast, our current study showed that it was
211 more likely for females to accept COVID-19 vaccines than males (Table 6). This finding is likely because of
212 disinformation, misinformation, and numerous conspiracy theories circulating in the community through social
213 and other media sources about COVID-19 vaccines that may have affected males more than females but also
214 highlights deeper problems on health seeking behaviors among males in northern Uganda. For similar reasons,

215 non-health workers were more likely to accept COVID-19 vaccines compared to health workers and this is
216 consistent with the findings from Amuru district in Uganda ??7], sub-Saharan Africa [13] and Kuwait and
217 Jordan [14]. Furthermore, the Baganda tribe who were resident in northern Uganda were more likely to accept
218 COVID-19 vaccines (89.8% versus 10.2%) (Baganda compared to the north (Table 2 and Table 3). It is also
219 important to note that participants in our study raised many issues regarding the reasons for accepting COVID-
220 19 vaccines ranging from the fear of death, the fear of contracting the virus and infecting family members. We,
221 the authors argue that the fear factor and experience of COVID-19 during the second wave may have in many
222 ways contributed to the vaccine acceptance among this sector of the study population (Table 2 and Table 3).

223 Also, our study found that participants with comorbidities were less likely to accept COVID- 6). This finding
224 among persons with comorbidities is inconsistent with many studies in Uganda, which showed participants
225 with comorbidities, particularly diabetes, hyper tension, obesity, heart diseases, chronic obstructive pulmonary
226 diseases (COPD), HIV, and AIDS, were more at risk of developing severe COVID-19 illness, and higher chances
227 of hospitalization, and death [35][36][37][38] ??39] ??40].

228 Note that despite persistent messages on the increased risks and susceptibility to coronavirus, with higher
229 chances of acquiring the more severe form of the disease, higher chances of hospitalization, and death among the
230 most at-risk population which the mainstream and social media had widely covered and that most people had
231 become aware, the COVID-19 vaccine acceptance was less likely in participants with comorbidity in our study
232 population (Table 6). In addition, the Ugandan Ministry of Health had prioritized vaccination of the elderly and
233 those with comorbidities in the early phases of COVID-19 vaccine roll-out in Uganda [36].

234 Of special interest was a finding in Kabagambe, et al., that a significant proportion of Ugandan population
235 had misconceptions that COVID-19 vaccines could spread coronavirus in the body, that the virus kills people
236 with underlying conditions, and that the COVID-19 vaccine could make them infertile [24]. In addition, others
237 doubted the existence of the virus and the safety of the vaccine itself [24]. This information could have likely
238 been responsible in part for the COVID-19 vaccine hesitancy among the comorbid population, age-group of 20-29
239 years, and graduates in our study (Table 6).

240 Meanwhile, in other participants in this study population, COVID-19 vaccine acceptance was high for many
241 reasons, including the fear of getting infected, the fear of infecting family members, the fear of death, and worries
242 that COVID-19 medications would be forced on them if they did not get vaccinated (Table 3 and Table 4).

243 Most notable was, however that the COVID-19 vaccine preferred by each participant in our study population
244 was provided by the Government of Uganda through the Ministry of Health, and choices on the type of COVID-19
245 vaccine were participant's decision (Table 5).

246 Furthermore, some participants and their associates had tested positive for coronavirus and had experienced
247 the disease, which perhaps impacted their decision to get vaccinated (Table 2, Table 3, and Table 4). So, we,
248 the authors argue that whereas COVID-19 vaccination was a timely intervention by the Ugandan Ministry of
249 Health, participants with comorbidities were less likely to accept COVID-19 vaccines (6). On this finding, studies
250 show that vaccine acceptance is linked to community's confidence in healthcare systems, health workers, cultural
251 backgrounds, attitudes, beliefs, perceptions, political, environmental, personal factors, and compliance with face
252 mask-wearing guidelines [11, ??1, ??2, ??3].

253 We, the authors, found that the three districts, just like others in Uganda, set up COVID-19 district task
254 forces layered to the village health teams (VHTs) who promoted COVID-19 vaccinations at local levels ??43].
255 The village health teams are vital in connecting communities to the Ugandan healthcare system ??43]. We, the
256 Authors, argue that VHTs' roles in disease prevention, promotion and control in Ugandan healthcare system
257 need to be rated more by policymakers.

258 Nevertheless, VHTs are critical change agents, and their position in Ugandan health delivery system should be
259 promoted to enhance their contributions to the healthcare system [44]. This finding implies that for the Ugandan
260 Ministry of Health to achieve higher COVID-19 vaccine acceptance rates, layered task forces up to the village
261 level and using VHTs for campaigns could be adopted ??44]. The authors argue that VHTs played a considerable
262 role in convincing the community to accept COVID-19 vaccines in the three districts ??44].

263 Further, the finding that smokers in this study population were more likely to accept COVID-19 vaccines than
264 non-smokers and ex-smokers have attracted much interest (Table 6). These participants could have been more
265 confident in COVID-19 vaccines' ability to reduce the virus's chances of infecting them. More so, this virus being
266 a respiratory disease could have swayed them by the fear factor and worries about getting infected or being forced
267 to take medications if they missed out on their COVID-19 jabs (Table 3).

268 This finding is like one in a refugee camp in Bidibidi in Uganda where the authors found that COVID-19
269 vaccine acceptance rate among refugees was 78% and was associated with beliefs that COVID-19 vaccines could
270 stop the spread of coronavirus [45] as similarly seen in these groups of smokers (Table 6). In addition, findings
271 show that respondents who were uncertain whether COVID-19 vaccines would stop transmissions were less likely
272 to get the vaccine (aOR=0.70; 95%CI=0.51-0.96) than confident respondents. In that study, respondents who
273 did not want to go to health facilities (aOR=0.61;95%CI=0.44-0.84) were also less likely to accept COVID-19
274 vaccines than counterparts who wanted to go to health facilities ??45].

275 Lastly, our finding that participants that strongly disagree and disagree on the safety of vaccines in health
276 facilities in northern Uganda were three and two times more likely to accept COVID-19 vaccines compared to
277 participants who strongly agree, respectively, raised our interests (Table 6). This finding is unique as most

21 ETHICS APPROVAL AND CONSENT TO PARTICIPATE

278 previous studies show that the confidence and trust in healthcare systems were among the most likely reasons
279 for vaccine acceptance [6,14,15, ??41] ??42] ??43]. We, the authors, intend to explore these responses from
280 our participants in a future qualitative study. Could it have been that this finding was an isolated response or
281 specifically seen with COVID-19 vaccines in northern Uganda? We, the authors argue that it may be too early
282 to determine what exactly it is until a comprehensive analysis has been completed in future studies.

283 In summary, our current study found a high COVID-19 vaccine acceptance rate of 580/723(80.2%) in an adult
284 population in northern Uganda. This survey was conducted after the second wave of COVID-19 in Uganda when
285 many high-profile persons had lost their lives compared to the first wave. In addition, this current acceptance
286 rate in northern Uganda was lower than a South African study at 90% [15] but higher than a Somali study at
287 77% [16] and another Ugandan study at 60% [8]

288 17 Strengths and Limitations of this Study

289 Our study has many strengths. First, this data is vital as it is one of the few well-documented and completed
290 data on 723 participants from the Acholi sub-region regarding COVID-19 vaccine acceptance in the recent period.
291 Second, findings from this study show a higher COVID-19 vaccine acceptance rate despite differing results from
292 other parts of Uganda. Third, we used a systematic sampling method, a probability sampling method which is
293 vital for the study's results. Finally, using a validated questionnaire helped us obtain this information which is
294 generalizable in the context.

295 However, this study had limitations in the design, a cross-sectional study where one-time information from
296 participants is gathered and analyzed. These have shortcomings in that, views and opinions of participants
297 are dynamic; they vary according to prevailing environmental situations. In this, we suggest a need for future
298 prospective or a longitudinal assessment of COVID-19 vaccine acceptance in future, ensuring that all data are
299 measured and recorded accordingly.

300 18 Generalizability of Results

301 These findings should be cautiously interpreted and generalized to regions with low-resource settings in Uganda
302 and other sub-Saharan African countries.

303 19 V. CONCLUSION

304 COVID-19 vaccine acceptance rate among the study population was encouragingly high despite misinformation
305 and disinformation in Ugandan media. Participants were more likely to accept COVID-19 vaccines among those
306 who strongly disagree and disagree that vaccines in northern Uganda's health facilities were safe than those
307 who strongly agree; smokers compared to non-smokers, and participants from Gulu, Kitgum, and Pader districts
308 compared to Lamwo district. However, it was less likely for participants with comorbidities to accept COVID-19
309 vaccines compared to participants without comorbidities. The fear of contracting coronavirus and death if not
310 vaccinated contributed substantially to COVID-19 vaccine acceptance in northern Uganda. There is a need for
311 health managers to engage, sensitize and mobilize the population on COVID-19 vaccines and vaccination using
312 VHTs and other structures, which remain critically important if the high COVID-19 vaccine acceptance rate in
313 the subregion is maintained or improved.

314 20 Statements and Declarations

315 21 Ethics approval and consent to participate

1

Figure 1: Figure 1 :

2

Figure 2: Figure 2 :

1

London Journal of Medical and
Health Research

Variables	Frequency (N=723)	Percent (%)
Sex		
Female	329	45.5
Male	394	54.5
Age (years)		
Less than 20	80	11.1
20-29	279	38.6
30-39	225	31.1
40-49	95	13.1
50 and above	44	6.1
Marital status		
Never married	316	43.7
Married	377	52.1

London Journal of Medical and Health Research 8 Table 1 Shows That Most Participants Were Males 394/723(54.5%); in the Age-Group of 20-29 Years 279/723 (38.6%); Married 377/723 (52.1%); Catholics 354/723 (49.0%); Acholi by Tribe 446/723 (61.7%); From Gulu District 364/723 (50.4%), Had Secondary Level of Education 237/723 (32.8%), Non-Health Workers 518/723 (71.7%); Ugandans by Nationality 720/723 (99.6%); Africans by Race 721/723 (99.7%); Did Not Smoke Cigarettes 699/723 (96.7%); Never Drank Alcohol 521/723 (72.1%); Had No Comorbidities 520/723 (71.9%); Agreed That Vaccines in Health Facilities in the Region Were Safe 250/723 (34.6%); and Had No Health Insurance Coverage 666/723(92.1%).

Figure 3: Table 1 :

The fear of getting infected with coronavirus	491(67.9)	232(32.1)
The fear of a family member getting infected with coronavirus	440(60.9)	283(39.1)
The fear of death	462(63.9)	261(36.1)
Financial related worries	325(45.0)	398(55.0)
Food insecurity related worries	163(22.5)	560(77.5)
Unavailability of vaccines	114(15.8)	609(84.2)
Coronavirus is a plot or a conspiracy theory	62(8.6)	661(91.4)
I may be forced to take medicines for coronavirus	59(8.16)	664(91.8)
I may be forced to take COVID-19 vaccines	158(21.9)	565(78.1)
I am not worried about any COVID-19 issues	34(4.7)	689(95.3)
Have you got a jab of the COVID-19 vaccine?	580(80.2)	143(19.8)
Which COVID-19 vaccine have you received?		
AstraZeneca	414(57.3)	
Johnson and Johnson	17(2.4)	
Modena	117(16.2)	
Pfizer	14(2.0)	
Sinovac	13(1.8)	
Sputnik	7(1.0)	
None	141(19.5)	
How many doses of the COVID-19 vaccine have you received?		
One	189(26.1)	
Two	392(54.2)	
None	142(19.6)	

* Views on COVID-19 and Vaccinations among Participants in Northern Uganda
 Variables Yes (n, %) No (n, %) Have you been exposed to coronavirus? 407(56.3)
 316(43.7) What are you most worried about during this COVID-19 pandemic?
 London Journal of Medical and Health Research 10

Figure 4: Table 2 :

Figure 5: Table 2

3

Variables	Participants' Responses			
	Yes (n, %)	No (n, %)	? 2	p-value
Those who were exposed to coronavirus	337(46.6)	243(33.6)	5.183	0.023
The fear of getting infected with coronavirus	413(57.1)	167(23.1)	14.614	0.000
The fear of death	382(52.8)	198(27.1)	4.892	0.027
The fear of a family member getting infected	363(50.2)	217(30.0)	3.679	0.055
Financial worries	268(37.1)	312(43.2)	1.867	0.172
Job-related worries	152(21.0)	428(59.2)	0.183	0.669
Food insecurity worries	134(18.5)	446(61.7)	0.524	0.469
Worries about unavailability of vaccines	96(13.3)	484(66.9)	1.357	0.244
Worries that COVID-19 is a plot or conspiracy theory	47(6.5)	533(73.7)	0.833	0.361
Worries of being forced to take COVID-19 medications	41(5.7)	539(74.6)	4.661	0.031
Worries about being forced to take COVID-19 vaccines	114(15.8)	466(64.5)	8.297	0.004
No worries on issues of COVID-19 vaccines	19(2.6)	561(77.6)	13.32	0.000

Figure 6: Table 3 :

3

Figure 7: Table 3

Variables	Age groups	Marital status	Religion	Tribe	Districts	Level of Education
Fever	3.146(p=0.534)	4.786(p=0.310)	2.453(p=0.653)	2.148(p=0.709)	7.582(p=0.371)	4.694(p=0.454)
Joint pains	2.069(p=0.723)	1.355(p=0.852)	0.353(p=0.983)	5.094(p=0.278)	13.633(p=0.058)	8.871(p=0.114)
Loss of appetite	3.927(p=0.416)	1.311(p=0.846)	1.592(p=0.810)	6.284(p=0.179)	16.573(p=0.020)	3.593(p=0.609)
Steven- John son ' s reaction	4.980(p=0.289)	0.657(p=0.957)	2.455(p=0.653)	7.494(p=0.112)	6.137(p=0.524)	2.722(p=0.743)
Blot clot	6.509(p=0.164)	4.895(p=0.298)	6.335(p=0.176)	16.284(p=0.003)	22.710(p=0.002)	18.431(p=0.002)
Feeling dizzy	0.691(p=0.952)	0.461(p=0.977)	1.549(p=0.818)	8.880(p=0.064)	3.060(p=0.879)	5.532(p=0.354)
Death	16.608(p=0.002)	8.350(p=0.080)	6.892(p=0.142)	4.099(p=0.393)	35.083(p=0.000)	14.298(p=0.014)
Feeling uncomfortable	4.402(p=0.354)	0.786(p=0.940)	1.762(p=0.779)	3.335(p=0.503)	4.855(p=0.678)	3.971(p=0.554)

London Journal of Medical and Health Research 15 11 © 2023 Great] Britain Journals Press Volume 23 | Issue 7 | Compilation 1.0 7 Prevalence and Factors Associated with COVID-19 Vaccine Acceptance among Adult Population in Northern Uganda. A Cross-Sectional Study

Figure 8: Table 4 :

Shows Significant Differences in Signs and Symptoms Shared Among Age-Groups, Especially Excessive Sweating $\chi^2=10.163$; $p=0.038$ and the Fear of Death $\chi^2=16.608$; $p=0.002$, Among Older Age-Groups. Joint Pains $\chi^2=13.633$; $p=0.058$, Loss of Appetite $\chi^2=16.573$; $p=0.020$, Blood Clots $\chi^2=22.710$; $p=0.002$, the Fear of Death $\chi^2=35.083$; $p=0.000$, and Excessive Sweating $\chi^2=24.316$; $p=0.001$ Were Common in Districts. Blood Clots $\chi^2=18.431$; $p=0.002$ and the Fear of Death $\chi^2=14.298$; $p=0.014$ Were Reported at Levels of Education. for Occupation, Blood Clots $\chi^2=8.656$; $p=0.003$ and the Fear of Death $\chi^2=4.936$; $p=0.02$ and Finally, Blood Clots $\chi^2=7.878$; $p=0.005$ and the Fear of Death $\chi^2=15.454$; $p<0.000$ Were Reported Among Participants With Comorbidities.

Figure 9: Table 4

5

Variables	AZ	J&J	Moderna	Pfizer	Chi Square Test		Chi df	p-va
					Sinovac	Sputnik		
1 Sex								
Female	91(12.6%)	109(15.1%)	34(4.7%)	6(0.8%)	0(0.0%)	1(0.1%)	88(12.2%)	22.362 0.
Male	115(15.9%)	141(19.5%)	26(3.6%)	30(4.1%)	3(0.4%)	2(0.3%)	77(10.7%)	
2 Age groups (years)								
<20	21(2.9%)	28(3.9%)	8(1.1%)	4(0.6%)	0(0.0%)	0(0.0%)	19(2.6%)	52.877 0.
20-29	77(10.7%)	82(11.3%)	25(3.5%)	14(1.9%)	1(0.1%)	1(0.1%)	78(10.84%)	
30-39	73(10.19%)	79(10.9%)	12(1.7%)	15(2.1%)	0(0.0%)	0(0.0%)	45(6.2%)	
40-49	21(2.9%)	42(5.8%)	15(2.1%)	2(0.3%)	0(0.0%)	0(0.0%)	15(2.1%)	
>50	14(1.9%)	19(2.6%)	0(0.0%)	1(0.1%)	2(0.3%)	2(0.3%)	8(1.1%)	
3 Marital status								
Divorced	4(0.6%)	11(1.5%)	1(0.1%)	0(0.0%)	0(0.0%)	0(0.0%)	7(1.0%)	20.783 0.
Married	99(13.7%)	141(19.5%)	37(5.1%)	16(2.2%)	2(0.3%)	3(0.4%)	79(10.9%)	
Separated	1(0.1%)	0(0.0%)	0(0.0%)	0(0.0%)	0(0.0%)	0(0.0%)	1(0.1%)	
Single	100(13.8%)	96(13.3%)	21(2.9%)	20(2.8%)	1(0.1%)	0(0.0%)	1(0.1%)	
widowed	2(0.3%)	2(0.3%)	1(0.1%)	0(0.0%)	0(0.0%)	0(0.0%)	78(10.8%)	
4 Religion								
Born	28(3.9%)	31(4.3%)	7(1.0%)	9(1.2%)	0(0.0%)	1(0.1%)	36(5.0%)	36.584 0.
Again								
Catholics	98(13.6%)	142(19.6%)	21(2.9%)	16(2.2%)	2(0.3%)	2(0.3%)	73(10.1%)	
Muslims	7(1.0%)	8(1.1%)	4(0.6%)	1(0.1%)	0(0.0%)	0(0.0%)	6(0.8%)	
Protestants	69(9.5%)	69(9.5%)	28(3.9%)	9(1.2%)	1(0.1%)	0(0.0%)	50(6.9%)	
Others	4(0.6%)	0(0.0%)	0(0.0%)	1(0.1%)	0(0.0%)	0(0.0%)	0(0.0%)	
5 Tribes								
Acholi	130(18.0%)	163(22.3%)	38(5.3%)	10(1.4%)	3(0.4%)	3(0.4%)	99(13.7%)	43.686 0.
Itesot	7(1.0%)	9(1.2%)	1(0.1%)	2(0.4%)	0(0.0%)	0(0.0%)	3(0.4%)	
Lango	25(3.5%)	24(3.3%)	9(1.2%)	2(0.3%)	0(0.0%)	0(0.0%)	0(0.0%)	
Baganda	15(2.1%)	16(2.2%)	2(0.3%)	8(1.1%)	0(0.0%)	0(0.0%)	0(0.0%)	
Others	29(4.0%)	38(5.3%)	10(1.4%)	14(1.9%)	0(0.0%)	0(0.0%)	33(4.6%)	
6 Districts								
Agago	28(3.8%)	22(3.0%)	8(1.1%)	0(0.0%)	1(0.1%)	0(0.0%)	24(3.3%)	83.942 0.
Amuru	4(0.6%)	1(0.1%)	1(0.1%)	1(0.1%)	0(0.0%)	0(0.0%)	5(0.7%)	
Gulu	105(14.5%)	111(15.4%)	19(2.6%)	28(3.9%)	2(0.3%)	0(0.0%)	99(13.7%)	
Kitgum	20(2.8%)	19(2.6%)	8(1.1%)	2(0.3%)	0(0.0%)	0(0.0%)	8(1.1%)	
Lamwo	17(2.4%)	26(3.6%)	10(1.4%)	2(0.3%)	0(0.0%)	1(0.1%)	6(0.8%)	
Nwoya	1(0.1%)	0(0.0%)	0(0.0%)	0(0.0%)	0(0.0%)	0(0.0%)	3(0.4%)	
Omoro	4(0.6%)	5(0.7%)	0(0.0%)	0(0.0%)	0(0.0%)	0(0.0%)	0(0.0%)	
Pader	27(3.7%)	66(9.1%)	14(1.9%)	3(0.4%)	0(0.0%)	2(0.3%)	20(2.8%)	

London Journal of Medical and Health Research 12 © 2023 Great] Britain Journals
 Press Volume 23 | Issue | Compilation 1.0 7 7 Prevalence and Factors Associated
 with COVID-19 Vaccine Acceptance among Adult Population in Northern Uganda.
 A Cross-Sectional Study

Figure 10: Table 5 :

5

Between Males and Females $\chi^2=22.362$; $p=0.001$; Age-Groups $\chi^2=52.887$; $p=0.001$; Religious Groups $\chi^2=36.560$; $p=0.048$; Districts $\chi^2=83.192$; $p=0.000$; Tribal Groups $\chi^2=43.666$; $p=0.008$; Those With and Without Comorbidities $\chi^2=23.532$; $p=0.001$

Figure 11: Table 5

6

Participants

Prevalence and Factors Associated with COVID-19 Vaccine Acceptance among Adult Population in Northern Uganda. A Cross-Sectional Study

Figure 12: Table 6 :

6

London shows factors associated with COVID-19 vaccine acceptance among participants in northern Journal of Medical and Health Research

Uganda. Participants who disagree that vaccines in health facilities in northern Uganda were safe, aOR=1.98, 95% CI:1.01-3.89; $p=0.046$ and participants who strongly disagree that vaccines in health facilities in northern Uganda were safe aOR=3.31, 95% CI:1.49-7.36; $p=0.003$ compared to those who strongly agree; participants from Gulu district aOR=5.19, 95% CI:1.71-15.80; $p=0.004$; Kitgum district aOR=6.05, 95% CI:1.76-20.80; $p=0.004$; Pader district aOR=3.45, 95% CI:1.07-11.14; $p=0.038$ compared to Lamwo district, smokers aOR=7.75, 95% CI:2.06-29.23; $p=0.002$ compared to non-smokers; females aOR=1.95, 95% CI:1.04-2.42; $p=0.032$ compared to males; Baganda tribe

14 Volume 23 | Issue | Compilation 1.0 7 7

©
2023
Great
] Britain
Jour-
nals
Press

Prevalence and Factors Associated with COVID-19 Vaccine Acceptance among Adult Population in Northern Uganda. A Cross-Sectional Study

Figure 13: Table 6

Strongly Agree	108 (83.7)	21 (16.3)	Reference	Reference			
Agree	216 (86.4)	34 (13.6)	0.810 (0.448- 1.462)	0.483 (0.555	0.824 1.060	(0.436- 1.558)	0.552
Neutral	146 (81.8)	34 (18.9)	1.198 (.658- 2.178)	0.555 (1.303- 4.436)	1.060 2.178	(0.552- 2.038)	0.86
Disagree	77 (68.1)	36 (31.9)	2.404 (1.303- 4.436)	0.005 (1.338- 5.882)	1.984 3.308	(1.011- 3.894)	0.046
Strongly Disagree	33 (64.7)	18 (35.3)	2.805 (1.338- 5.882)	0.006 (1.338- 5.882)	3.308 7.360	(1.487- 7.360)	0.003

aOR=5.19,95% CI:1.71-15.80; p=0.004; and Other tribes (Alur, Basoga, Banyoro) aOR=6.05,95%

CI:1.76-20.80; p=0.004 compared to Itesot; and non-health-workers aOR=1.74,95% CI:1.03-2.96; p=0.040 compared to health workers. However, participants with co-morbidities aOR=0.42,95% CI:0.24-0.71;p=0.001 were less likely to accept COVID-19 vaccines than those who did not have; Graduates were less likely to accept COVID-19 vaccines aOR=0.42,95% CI:0.18-0.99; p=0.049 than participants with primary education; and age-group of 20-29 years aOR=0.52,95% CI:0.31-0.86; p=0.011 than 30-39 year age-group. London Journal of Medical and Health Research 15 15 © 2023 Great] Britain Journals Press Volume 23 | Issue 7 | Compilation 1.0 7 Prevalence and Factors Associated with COVID-19 Vaccine Acceptance among Adult Population in Northern Uganda. A Cross-Sectional Study

Figure 14: in our health facilities are safe

6

© 2023 Great] Britain Journals Press

Prevalence and Factors Associated with COVID-19 Vaccine Acceptance among Adult Population in Northern Uganda. A Cross-Sectional Study

Figure 15: Table 6)

6

). Could they

Figure 16: Table 6

Therefore, we, the authors propose that the most effective strategy for reducing COVID-19 vaccine hesitancy in the Ugandan setting should include educating the population on COVID-19 and vaccines. The authors propose that educating people through a community engagement strategy is the most optimum way of dispelling myths, misconceptions, rumors, conspiracy theories, and fears about coronavirus. Thus, we propose that encouraging healthy behaviors towards coronavirus will keep Ugandans safe, a virus that has ravaged the world so much.

Finally, findings from other Ugandan studies indicate a high COVID-19 vaccine hesitancy in the general population. However, our findings are inconsistent with theirs and have a higher COVID-19 vaccine acceptance rate. Therefore, we, the authors, question and continue to ask more questions whether the suspected high COVID-19 vaccine hesitancy among the Ugandan population could have been a vaccine inquisitiveness rather than vaccine hesitancy. The higher COVID-19 vaccine acceptance among this study population in northern Uganda compared to others favors the understanding that the situation was more of COVID-19 vaccine inquisitiveness rather than COVID-19 vaccine hesitancy.

Figure 17:

Figure 18:

21 ETHICS APPROVAL AND CONSENT TO PARTICIPATE

316 1 2

¹ © 2023 Great] Britain Journals Press Volume 23 | Issue 7 | Compilation 1.0

² Prevalence and Factors Associated with COVID-19 Vaccine Acceptance among Adult Population in Northern Uganda. A Cross-Sectional Study

317 .1 ACKNOWLEDGMENT

318 We acknowledge with many thanks the assistance from the administration of health facilities for the information
319 obtained. Financial support from UMA Acholi branch members, which enabled the team to conduct this study
320 successfully, is most appreciated.

321 .2 Availability of data and materials

322 All datasets supporting this article's conclusion are within this article and are accessible by a reasonable request
323 to the corresponding author.

324 Prevalence and Factors Associated with COVID-19 Vaccine Acceptance among Adult Population in Northern
325 Uganda. A Cross-Sectional Study

326 Funding: All funds for this study were contributions from individual research members of the Uganda Medical
327 Association (UMA) Acholi branch.

328 Authors' contributions: This study was designed by DLK, JNO, JA, SB, PA, and FWDO. JA, JNO, PA,
329 FWDO, and DLK supervised data collection. ENI and DLK conducted data analysis and interpretation. SB,
330 CO, PA, NOA, DA, JNO, DO, POO, SGO, FPP, ENI, FWDO, JA, and DLK wrote and revised the manuscript.
331 All Authors approved the manuscript and attested they met the ICMJE criteria for authorship.

332 [Africa, Pan African Medical Journal ()] , 10.1186/s12879-021-06863-5#auth-Roongruedee-Chaiteerakij.
333 Africa, Pan African Medical Journal 2021. p. 38.

334 [London Journal of Medical and Health Research ()] , Compilation 1.0. London Journal of Medical and Health
335 Research 2023. Britain Journals Press. 15 (7) .

336 [Nzirakaindi Ikoona and Kitara] A proposed framework to limit post-lockdown community transmission of, Eric
337 Nzirakaindi Ikoona , David Lagoro Kitara . 10.1186/s12879-021-06863-5#auth-Roongruedee-Chaiteerakij.
338 COVID-19.

339 [Nzaji et al. ()] 'Acceptability of vaccination against COVID-19 among healthcare workers in the Democratic
340 Republic of the Congo'. Kabamba Nzaji , M , Kabamba Ngombe , L , Ngoie Mwamba , G , Banza Ndala ,
341 DB , Mbidi Miema , J , Luhata Lungoyo , C . 10.2147/por.s271096. Pragmatic Obes Res 2020. 11 p. .

342 [El-Elimat et al. ()] 'Acceptance and attitudes toward COVID-19 vaccines: A cross-sectional study from Jordan'.
343 T El-Elimat , M M Abualsamen , B A Almomani , Al - Sawalha , N A Alali , FQ . PloS one 2021. 16 (4) p.
344 250555.

345 [Adeniyi et al. ()] 'Acceptance of COVID-19 Vaccine among the Healthcare Workers in the Eastern Cape, South
346 Africa: A Cross-Sectional Study'. O V Adeniyi , D Stead , M Singata-Madliki , J Batting , M Wright , E
347 Jelliman . Vaccines 2021. 9 (6) p. 666.

348 [Ranya A Ghamri et al. ()] Acceptance of COVID-19 Vaccine and Associated Factors Among Pregnant Women
349 in Saudi Arabia, Ranya A Ghamri , Sahar S Othman , H Mudhawi , Alhiniah , Rakan H Alelyani , M Atheer
350 , Asma A Badawi , Alshahran . 2022. 101713. Dove press. 26.

351 [Marvin Kanyike et al. ()] 'Acceptance of the coronavirus disease 2019 vaccine among medical students in
352 Uganda'. Andrew Marvin Kanyike , Ronald Olum , Jonathan Kajjimu , Daniel Ojilong , Gabriel
353 Madut Akech , Rhoda Dianah , Nassozzi . 10.1186/s12936-022-04046-4. <https://doi.org/10.1186/s41182-021-00331-1> Tropical Medicine and Health 2021. 49 p. 37.

355 [Acharya et al. ()] Access to and equitable distribution of COVID-19 vaccine in low-income countries. npj
356 Vaccines, K P Acharya , T R Ghimire , S H Subramanya . 10.1038/s41541-021-00323-6. <https://doi.org/10.1038/s41541-021-00323-6> 2021. 6.

358 [Amuru RDC orders compulsory COVID-19 vaccination for frontline workers. Uganda Radio Network (URN) (2022)]
359 Amuru RDC orders compulsory COVID-19 vaccination for frontline workers. Uganda Radio Network (URN),
360 <https://www.independent.co.ug> 12 th June 2022. The Independent

361 [Dahab et al. ()] 'COVID-19 control in low-income settings and displaced populations: what can realistically be
362 done?'. M Dahab , K Van Zandvoort , S Flasche . 10.1186/s13031-020-00296-8. Conflict and Health 2020. 14
363 (1) p. 54.

364 [COVID-19 Prevention Standard Operating Procedures (SOPs) for Uganda ()] COVID-19 Prevention Standard
365 Operating Procedures (SOPs) for Uganda, https://www.igg.go.ug/media/files/publications/INSPECTORATE_OF_GOVERNMEnt_covid_19_sops.pdf 2020. Inspectorate of Government (IG).

367 [Ahmed et al. ()] 'COVID-19 Vaccine Acceptability and Adherence to Preventive Measures in Somalia: Results
368 of an Online Survey'. M Ahmed , R Colebunders , A A Gele , A A Farah , S Osman , I A Guled . Vaccines
369 2021. 9 (6) p. 543.

370 [Bongomin et al. ()] 'COVID-19 vaccine acceptance among high-risk populations in Uganda'. Felix Bongomin ,
371 Ronald Olum , Irene Andia-Biraro , Frederick Nelson Nakwagala , Khalid Hudow Hassan , Dianah Rhoda
372 Nassozi . 10.1177/20499361211024376. Ther Adv Infectious Dis 2021. 8 p. .

21 ETHICS APPROVAL AND CONSENT TO PARTICIPATE

373 [Lucia et al. ()] 'COVID-19 vaccine hesitancy among medical students'. V C Lucia , A Kelekar , N M Afonso .
374 *Journal of public health* 2020. Oxford, England. (fdaa230. Advance online publication)

375 [Salali and Uysal ()] 'COVID-19 vaccine hesitancy is associated with beliefs on the origin of the novel coronavirus
376 in the UK and Turkey'. G D Salali , M S Uysal . *Psychological medicine* 2020. p. .

377 [David ()] 'Determinants of Health Seeking Behaviour in Uganda -Is It Just Income and Important User Fees?'.
378 Lawson David . *Development Economics and Public Policy Working Papers*, 2004. 30553. University of
379 Manchester, Institute for Development Policy, and Management (IDPM)

380 [Kumari et al. ()] 'Development and validation of a questionnaire to assess knowledge, attitude, practices, and
381 concerns regarding COVID-19 vaccination among the general population'. A Kumari , P Ranjan , S Chopra
382 , D Kaur , A D Upadhyay , T Kaur . *Diabetes & metabolic syndrome* 2021. 15 (3) p. .

383 [Aloyo et al.] *Distinct Characteristics of the COVID-19 among Children and Young Adolescents Treated at Gulu
384 Regional Referral Hospital*, Judith Aloyo , Denis Acullu , Nelson Onira Alema , Freddy Wathum Drinkwater
385 , Eric Oyat , David Nzirakaindi Ikoona , Lagoro Kitara . 10.1186/s41182-021-00331-1.

386 [Scott and Smith ()] 'Estimation in multi-stage surveys'. Aj & Scott , Tmf Smith . *Journal of the American
387 Statistical Association* 1969. 64 p. .

388 [Rutten et al. ()] 'Evidence-based strategies for clinical organizations to address COVID-19 vaccine hesitancy'.
389 Ljf Rutten , X Zhu , A L Leppin , J L Ridgeway , M D Swift , J M Griffin . 10.1016/J.MAYOCP.2020.12.024.
390 *Mayo Clin Proc* 2021. 96 (3) p. 699.

391 [Mouhamadou et al. ()] *Factors associated with COVID-19 vaccine hesitancy in Senegal: a mixed study*, *Human
392 Vaccines & Immunotherapeutics*, Faly Mouhamadou , Adama Ba , Babacar Faye , Amadou Kane , Amandine
393 Ibra Diallo , Ibrahima Junot , Gaye . 10.1080/21645515.2022.2060020. 2022.

394 [Kabagenyi et al. ()] 'Factors Associated with COVID-19 Vaccine Hesitancy in Uganda: A Population-Based
395 Cross-Sectional Survey'. Allen Kabagenyi , Ronald Wasswa , Atek Kagirita , Juliet Nabirye , Leonard Atuhaire
396 , Peter Waiswa . *Intern J General Medicine* 2022. 15 p. .

397 [Baguma et al. ()] *Factors associated with mortality among the COVID-19 patients treated at Gulu Regional
398 Referral Hospital: A retrospective study*, Steven Baguma , Denis Acullu , Freddy Wathum Drinkwater ,
399 Judith Oyat , Eric Nzirakaindi Aloyo , David Ikoona , Lagoro Kitara . 10.1007/s10389-021-01677-w. 2022.
400 *Front. Public Health*. 10 p. 841906.

401 [Okiring et al. ()] 'Gender differencein the incidence of malaria diagnosedin public health facilities in Uganda'.
402 Jafer Okiring , Adrienne Epstein , Jane F Namuganga , Emmanuel V Kamya , Isaiah Nabende , Martha Nas-
403 sali . 10.1186/s12936-022-04046-4. <https://doi.org/10.1186/s12936-022-04046-4> *Malaria Journal*
404 2022. 21 p. 22.

405 [Zintel et al. ()] 'Gender differences in the intention to get vaccinated against COVID-19: a systematic review and
406 meta-analysis'. Stephanie Zintel , Charlotte Flock , Anna Lisa Arbogast , Alice Forster , Monika Christian Von
407 Wagner , Sieverding . 10.1007/s10389-021-01677-w. <https://doi.org/10.1007/s10389-021-01677-w>
408 *Journal of Public Health* 2022.

409 [Ateghang-Awankem et al. ()] 'Good participatory practice, clinical trials awareness, and COVID-19 vaccine
410 acceptance in Sub-Saharan Africa'. B Ateghang-Awankem , L Deluca , E Shadzeka , K Y Anchang . *Am J
411 Public Health Research* 2021. 9 (3) p. .

412 [Bishawtaye and Wasietyaye ()] 'Haymanot AlemMuche, Nuhamin TesfaTsega, Tsion TadesseHaile, Agumas
413 EskeziaTiguh. COVID-19 vaccine acceptance and associated factors among women attending antenatal and
414 postnatal care in Central Gondar Zone public hospitals, Northwest Ethiopia'. Eden Bishawtaye , Zewdu
415 Wasietyaye . *Clinical Epidemiology and Global Health* 2022. 14 p. 100993.

416 [Sallam et al. ()] 'High Rates of COVID-19 Vaccine Hesitancy and Its Association with Conspiracy Beliefs: A
417 Study in Jordan and Kuwait among Other Arab Countries'. M Sallam , D Dababseh , H Eid , K Al-Mahzoum
418 , A Al-Haidar , D Taim . *Vaccines* 2021. 9 (1) p. 42.

419 [Lagoro and Aloyo ()] 'HIV/AIDS Stigmatization, the reason for poor access to HIV Counseling and Testing
420 (HCT) among the youths in Gulu (Uganda)'. David Lagoro , Kitara , Judith Aloyo . *Afr J Infect Dis* 2012.
421 6 (1) p. .

422 [Mahmudovic ()] Jasko Mahmudovic . [https://www.surveylegend.com/sampling/
423 systematic-sampling/](https://www.surveylegend.com/sampling/systematic-sampling/) *What is Systematic Sampling? Pros, Cons, and Examples*. *Survey Legend*,
424 2023.

425 [Sirikalyanpaiboon et al. ()] 'Panyavee Pitisuttithum, Watsamon Jantarabenjakul, Roongruedee Chaiteerakij
426 et al. COVID-19 vaccine acceptance, hesitancy, and determinants among physicians in a university-based
427 teaching hospital in Thailand'. May Sirikalyanpaiboon , Krittin Ousirimanee Chai , Jeerath Phannajit . *BMC
428 Infectious Diseases* 2021. 2021. 21 p. 1174.

429 [Prevalence and Factors Associated with COVID-19 Vaccine Acceptance among Adult Population in Northern Uganda. A Cross-S-
430 *Prevalence and Factors Associated with COVID-19 Vaccine Acceptance among Adult Population in Northern*
431 *Uganda. A Cross-Sectional Study,*

432 [Sathian et al. ()] 'Relevance of Sample Size Determination in Medical Research'. B Sathian , J Sreedharan , S
433 Baboo , K Sharan , E Abhilash , E Rajesh . *Nepal Journal of Epidemiology* 2010. 1 (1) p. .

434 [Thomas ()] *Systematic Sampling / A Step-by-Step Guide with Examples. Scribbr*, Lauren Thomas . <https://www.scribbr.com/methodology/systematic-sampling/> 2022.

435

436 [Ten threats to global health in 2019] *Ten threats to global health in 2019*, <https://www.who.int/news-room/spotlight/ten-threats-to-global-health-in-2019> World Health Organization
437 (WHO).

438

439 [Seyed M Moghadas et al. ()] 'The Impact of Vaccination on Coronavirus Disease 2019 (COVID-19) Outbreaks
440 in the United States'. Thomas N Seyed M Moghadas , Kevin Vilches , Chad R Zhang , Affan Wells , Burton
441 H Shoukat , Singer . *Clinical Infectious Diseases* 2021. 73 (12) p. .

442 [Ashley E Thompson et al. ()] 'The influence of gender and other patient characteristics on healthcare-seeking
443 behavior a QUALICOPC study'. Yvonne Ashley E Thompson , Baukje Anisimowicz , William Miedema ,
444 Walter P Hogg , Kris Wodchis , Aubrey-Bassler . 10.1038/s41541-021-00323-6. *BMC Family Practice* 2016.
445 17 p. 38.

446 [Agaba (2021)] *Ugandans shed their vaccine hesitancy as COVID-19 cases spike*, John Agaba . 2021. 16 th July
447 2021.

448 [Barello et al. ()] 'Vaccine hesitancy among university students in Italy during the COVID-19 pandemic'. S
449 Barello , T Nania , F Dellaifiore , G Graffigna , R Caruso . *European journal of epidemiology* 2020. 35
450 (8) p. .

451 [Lansell (2020)] *Vaccine Hesitancy and COVID-19 Vaccine Acceptance in sub-Saharan Africa. GeoPoll*, S Lansell
452 . 2020. 11 th Dec 2020.