

CrossRef DOI of original article:

Analyzing the Effectiveness of Digital Technology in Vaccine Supply Management in Kano State, Nigeria

3

4 *Received: 1 January 1970 Accepted: 1 January 1970 Published: 1 January 1970*

5

6 **Abstract**

7

8 *Index terms—*

9 **1 I. INTRODUCTION**

10 Full routine immunization for children below 24 months now costs between US\$37 and US\$101 across different
11 settings in low-and middleincome countries as more and costlier vaccines are being introduced into national
12 immunization programs [1]. The rising cost of vaccine and vaccine distribution, global supply shortages, and the
13 introduction of new vaccines have provided the impetus to deploy a real-time management system to negate the
14 uneven distribution of vaccines, improve efficiencies and allow better visibility of the vaccine supply chain [2,3].

15 A robust vaccine cold chain and logistics system including storage and transportation is the London Journal of
16 Medical and Health Research cornerstone of all immunization programmes [4]. Rigorous supply planning based
17 on accurate data should enable such a system to have the right vaccines in the right place, at the right time, in
18 the right quantities, in the right condition, and at the right cost [3].

19 The 2021 Multiple Indicator Cluster Survey-National Immunization Coverage Survey (MICS-NICS) report
20 showed that only about 44.2% of all children between 12-23 months old have received all basic vaccination doses
21 in Nigeria; while only about 40% of those aged between 24-35 months had received all the recommended vaccines
22 on the national immunization schedule in Nigeria in 2021 [5].

23 These indicators for measuring RI performance have shown slow progress in full immunization coverage in
24 Nigeria despite huge investments and improvements in supply chain and distribution of vaccines in the last 5
25 years. However, the increasing incidence of stockouts and disrupted access to vaccines is of growing concern [3].
26 The majority of these stockouts are a result of internal issues such as inaccurate forecasts, stock management
27 issues and restock delays ??6].

28 Vaccine supply chain management systems have been prominent features of the Expanded Programme on
29 Immunization (EPI) plans from the onset [7]. System requirements have expanded dramatically over the past
30 several years with the introduction of new vaccines and the frequent mass campaigns to control, eliminate, or
31 eradicate specific diseases, such as polio, measles, rubella, tetanus. While such initiatives tend to be well-funded,
32 the strain they place on the supply chain system are substantial and often not acknowledged, particularly at
33 state levels [7]. The most visible impact of new vaccine introduction is an increase in the volume of products that
34 need to be stored, transported, and tracked, as well as the need for more storage capacity due to the increased
35 use of single-dose vials [8].

36 These further exacerbates existing and new challenges in vaccine supply chain management like poor cold chain
37 equipment inventory and status; poor vaccine stock, distribution and utilization data collection and management;
38 lack of skilled and properly trained workers in vaccine management operations; poor vaccine storage facility; and
39 unreliable micro-plan data which leads to wastage, stock-outs and overstock, and inequitable distribution of
40 products ??9,10,11]. It is important to note these challenges and many other vaccine supply chain management
41 problems are related to inefficient database management systems and innovative digital tools ??9,12].

42 In 2016, the Ministerial Conference on Immunization in Africa laid the groundwork for the landmark Addis
43 Declaration on Immunization (ADI), including 10 commitments to achieve universal and equitable access to
44 immunization in Africa. The ADI was endorsed by Heads of State from across Africa at the 28th African Union
45 Summit in early 2017, signaling political support for immunization on the continent at the highest possible level
46 [13]. Real-time data and digital tools were identified as a powerful instrument to advance these efforts. Digital

8 DATA COLLECTION AND ANALYSIS METHODOLOGY

47 platforms make it easy to assess progress and to revisit decisions along the way, instead of waiting for quarterly
48 reports or midline assessments. Digital tools also democratize learning and decision-making, so that stakeholders
49 at all levels of the health system can make meaningful use of data.

50 In response to these assertions, eHealth Africa, a non-governmental organization (NGO) was funded by the
51 Bill and Melinda Gates Foundation (BMGF) and the Kano State Primary Health Care Development Agencies
52 (KSPHCDA) to conceptualize, design and roll out an electronic logistic management information system, LoMIS
53 Suite to strengthen accountability and data-driven management in vaccine supply chain management in 2014.
54 The Suite consists of an offlinecapable mobile application "LoMIS Stock" and a web application and "LoMIS
55 Deliver." LoMIS Stock was designed to help health care workers (HCWs) bypass the traditional paper-based
56 reporting system and submit reports instantly using an app on their mobile device. The app was also built to
57 enable supervisors to get near real-time visibility of stock inventory, consumption rate (vaccine wastage, stock
58 out, utilization), cold chain status and cascade London Journal of Medical and Health Research deliveries from
59 all locations where vaccines are stored. LoMIS Stock answers three critical questions "Where are my Vaccines?
60 ""Are they sufficient?" and "Are they potent?" LoMIS Deliver on the other hand aggregate these reports on stock
61 levels, equipment status, and vaccine utilizations into a single web dashboard for real-time data visualization of
62 field operations.

63 Both applications are based on the structure and workflows of the KSPHCMB system.

64 2 Evaluation Questions

65 This study was conducted to answer the following research questions:

- 66 1. Is the LoMIS stock tool being used by the proposed users to report routine immunization vaccine supplies?
- 67 2. What is the effect of its use on the duration in reporting stock out and the turnaround time? 3. What is the
68 impact of the tool on facility stock out experiences? 4. How has the tool supported the routine immunization
69 stakeholders to plan for vaccine distribution?

70 3 Evaluation Objectives

71 In line with the research questions, we were guided by the objective of understanding the impact of using digital
72 data management tools in vaccine supply chain management against the traditional paper-based systems in Kano
73 state. Specifically,

74 4 Research Limitations

75 The main limitation encountered in this paper is the quality of data and data availability in the DHIS2 data.
76 Especially in Kano state, we were unable to conduct robustness checks on stock out by vaccines due to the
77 unavailability of data.

78 5 II. STUDY DESIGN AND METHODS

79 6 Study Design

80 We employed the quasi-experimental design using a mix of quantitative and qualitative research methods to
81 determine what would have been the outcomes in Kano state if the digital tool (intervention) had not been
82 utilized. In this study, we identified Bauchi State vaccine supply chain management system as the comparison
83 group based on validated evidence that Bauchi state was utilizing the paper-based reporting tools for vaccine
84 stock inventory as of the period of this study.

85 7 Sampling techniques

86 Our study respondents were selected by using a three multi-stage sampling technique to select and recruit sixty
87 (60) and forty (40) Ward Technical Officers/Routine Immunization Officers (10) for the intervention (Kano state)
88 and the comparison (Bauchi state). We stratified all the state LGAs under the three senatorial zones in both
89 Kano and Bauchi States and used a purposive sampling approach to select ?? LGAs under the 6 Administrative
90 Zones of Routine Immunization in the Kano State, and 4 LGAs under the 2 Administrative Zones of Routine
91 Immunization in Bauchi State based on their geographical proximity to each other. Ten ??

92 8 Data Collection and Analysis Methodology

93 Primary data for this study were collected using the evaluation tools (structured questionnaires and Key in-
94 depth interviews) while secondary data was collected from records on the LoMIS Dashboard and District Health
95 Information System Software (DHIS2). LoMIS dashboard is a platform that enables near-real-time visibility,
96 storage, and retrieval of vaccine stock inventory while DHIS2 enables the collection, storage, retrieval and
97 management of case-based data records. The primary data sources provided information on duration of reporting
98 vaccines, duration of response to reports, and the benefits of LoMIS. The secondary data sources also provided
99 information on the duration of vaccine reports and duration of response to those reports. The secondary data
100 sources provided more information including the usability of LoMIS, availability of stock or stock-out.

101 **9 III. RESULT AND DISCUSSION**

102 **10 Respondent's Demographics**

103 In this study, it was found that males are the predominant staff working within the routine immunization areas
104 across Kano (73%) and Bauchi (90%) states (Figure 4).

105 **11 Research Question 2: Duration of reporting RI vaccine stock
106 inventories and turnaround time**

107 The findings related to the amount of time it takes to report RI vaccine inventories via LoMIS Stock in Kano state
108 and the paper-based tools in Bauchi state were compared. In Kano state, it was found that 67% of respondents
109 reported that it takes more than 10 minutes to complete the process of reporting vaccine stock inventories
110 via the paper-based tools while 100% of the respondents reported an average of 5 minutes to complete a report
111 via LoMIS Stock. This is consistent with the findings from the comparison group (Bauchi State) where 63% of
112 them reported spending more than ten minutes whilst reporting through paper-based tools.

113 Findings from the tool dashboard validates the duration of reporting via LoMIS. Users of LoMIS application
114 tool used an average duration of less than 5 minutes on any stock inventory form as illustrated in Figure 6.

115 **12 State Partner, Bauchi**

116 In Kano state, it was found that out of the 39 respondents that provided answer to the question of average
117 response time to stock out reports, 34 (57%) reported that all stock-out reports done through the LoMIS tool
118 got response under 24 hours as compared with 20% that got response under 24 hours prior the use of LoMIS
119 stock.

120 Twenty-two (59%) of 37 responses revealed that Cold Chain Equipment breakdown through LoMIS got a
121 response within 24 hours as compared to 10% who got a response in 24 hours before the use of LoMIS (Figure
122 7).

123 Source: Study survey data

124 **13 Research Question 3: The Impact of LoMIS Stock on
125 experiences of RI vaccine stock-out at facilities**

126 Another major finding from this assessment study is reduction in stock-out experiences in health facilities. It
127 was found that 60% of facilities had at least reported an event of stock-out from January experiencing stock-out
128 reduced with time in Kano state. Within 3 years of using the LoMIS tool, the number of facilities experiencing
129 stock out reduced by 92% in Kano (LoMIS) as compared to only 42% reduction in Bauchi (paper-reporting tool)
130 within the same period (Figure 8). In addition, the differences in stock out outcomes in Kano and Bauchi
131 states were confirmed as the Analysis of Variance (ANOVA) showed that the effect of the reporting tool on
132 stock-out was significant ($F(1,70) = 215.506, p = 0.000$). The comparison analysis using a paired-sample t-test
133 showed that the mean difference in facility stock-out between a 3-year period prior and after LoMIS was found
134 to be statistically significant ($p=0.000$) (Table 1).

135 This implies that LoMIS significantly contributed to reduced experiences of vaccine stock-out in health
136 facilities. The independent sample T-test also revealed a huge significant difference between the means of facility
137 stock-out in Kano (use of LoMIS) and Bauchi (Paper-tool) with a large effect size. Again, this result further
138 validates the contribution of LoMIS to reduced vaccine stock-out in Kano (Table 2). 9). This further validates
139 the effect of LoMIS on reduced stock-out occurrences in Kano state.

140 **14 London Journal of Medical and Health Research**

141 **15 IV. DISCUSSION**

142 We conducted a comprehensive assessment of the impact of LoMIS Stock reporting tool on vaccine stock
143 management in Kano state. The results showed that LoMIS Stock has contributed to effective vaccine
144 management in terms of real-time reports, vaccine visibility and accountability. These have led to timeliness
145 of report, increased response rate, reduction in facilities experiencing stock-out and eventually availability of
146 adequate stock at the last-mile facilities. The findings from this study further corroborates the results of several
147 studies on the impact on the use of digital tools as an effective approach to public health interventions globally
148 [15, ??6,17,18].

149 In Nigeria, one of the challenges of vaccine stock management occurs because of poor vaccine stock visibility
150 at health facilities [19]. Our study has shown that this challenge can be significantly addressed with a digital
151 tool as we found that the use of LoMIS Stock for reporting vaccine stock inventory enhanced access to vaccine
152 stock distribution across the focal facilities. The usability rate (82%) of LoMIS Stock shows that the use of
153 digital tools is a prioritized solution to the challenges of public health interventions in low-and middle-income
154 countries like Nigeria. study where it was found that digital technology is a feasible and acceptable approach
155 for public health interventions [20]. Specifically for immunization interventions, a recent study reported high

15 IV. DISCUSSION

156 acceptability rating amongst vaccinators and district managers for an iterative mobile-app that was developed
157 to track immunization encounters in Pakistan which shares similar public health demographics with Nigeria [21].
158 In another study in Malawi, end-users assessed the usability of two digital tools for community case management
159 of under-five children-highlighting that although both tools are useful in gathering important intervention data,
160 their usability differs by a wide margin and this determined the overall success of the tool in supporting health
161 interventions in the study setting [22]. This implies that the ease-of-use that was recorded with the end-users
162 of the LOMIS Stock App contributed significantly to the success of the tool in managing vaccine supply chain
163 management in Nigeria.

164 We found that the amount of time needed to complete a report of RI vaccine inventory significantly reduced
165 using a digital health tool. This corroborates the findings of a digital health responses were consistent with
166 pre-LoMIS findings in Kano State. In another study, the results also posits that the use of digital technology for
167 reporting routine immunization data is feasible and can provide real-time updates to RI performance indicators
168 such as vaccine availability ??23].

169 In addition, this study sought to assess the impact of the digital tool on facilities experiencing stock-out; and
170 we found that the stock-out experiences reduced over time in Kano state.

171 Within 3 years of using the LoMIS tool, the facilities experiencing stock out reduced by 92% in Kano (LoMIS)
172 as compared to only 42% reduction in Bauchi (paper-reporting tool) within the same period. The implication of
173 this result is that there was sufficient stock of death-preventing vaccines at health facilities in the study location.

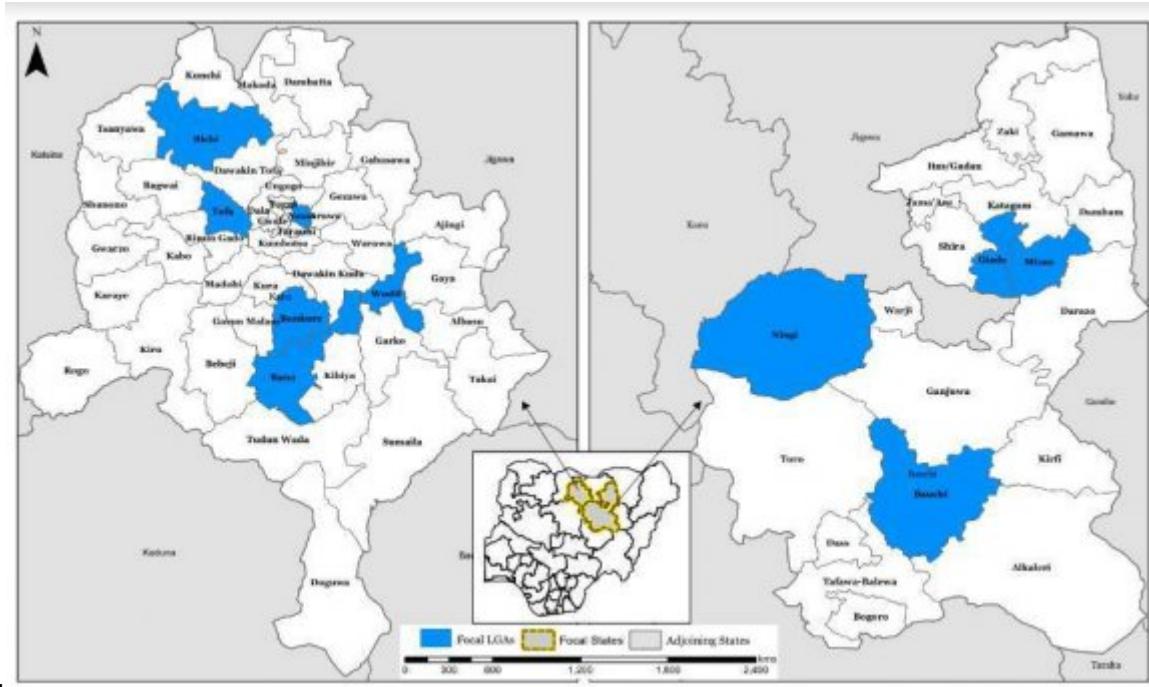
174 This finding strengthens the discussions around the value of developing and implementing digital health tools
175 in public health interventions [24].

176 Furthermore, the impact of the tool, LoMIS Stock on vaccine planning and management was significant as
177 our results showed that the LoMIS dashboard tool enhanced the vaccine operations visibility-providing near real-
178 time data that enabled key decision makers to respond to stock-outs, CCE breakdown, and vaccine over-stock
179 in record time, and ensure that immunization efforts meet expectations. Improved planning and management
180 organization is another notable impact of the LOMIS dashboard on decision makers in the study location as
181 we recorded in this study. This further contributes to existing evidence that data dashboards in public health
182 tools provide reliable information to inform and support policy makers and project managers in iterating public
183 health interventions [25]. Several sources show that a wide range of COVID-19 response interventions utilized
184 many dashboards to collect data on time series, geographic maps, case incidents, contact tracing, community
185 surveillance and clinical trials to refine intervention approach, outputs and outcomes [26,27,28,29]. A similar
186 result was obtained by another researcher where a proactive infection prevention and control (IPC) monitoring
187 tool was pioneered to provide reliable data for real-time response to emerging risks to COVID-19 infection
188 amongst healthcare workers in Guangdong Second Provincial General Hospital in China. The study showed that
189 the worrisome rate of healthcare workers infection prior to the deployment of the tool was reduced; and future
190 plans to integrate artificial algorithms to the tool for improved outcomes are already being muted ??30].

Figure 1: Figure 1 :

190 1 2 3
191

¹ © 2023 Great] Britain Journals Press Volume 23 | Issue 6 | Compilation 1.0 Analyzing the Effectiveness of
Digital Technology in Vaccine Supply Management in Kano State, NigeriaSource: DHIS2


² © 2023 Great] Britain Journals Press Volume 23 | Issue | Compilation 1.0

³ Analyzing the Effectiveness of Digital Technology in Vaccine Supply Management in Kano State, Nigeria

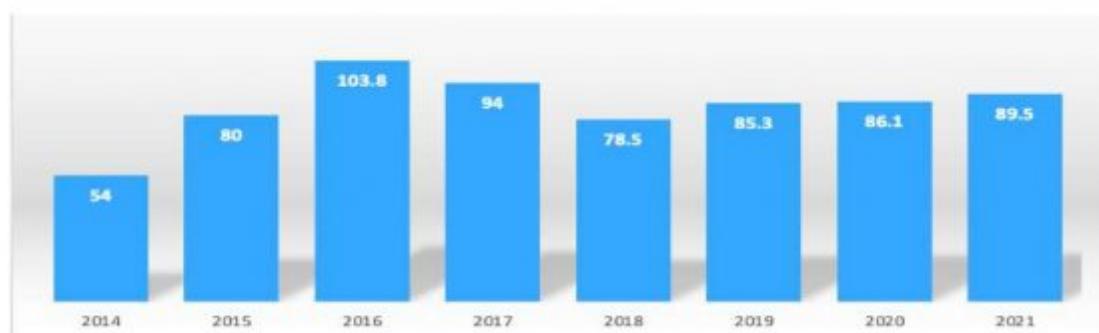


Figure 3: Figure 3 :

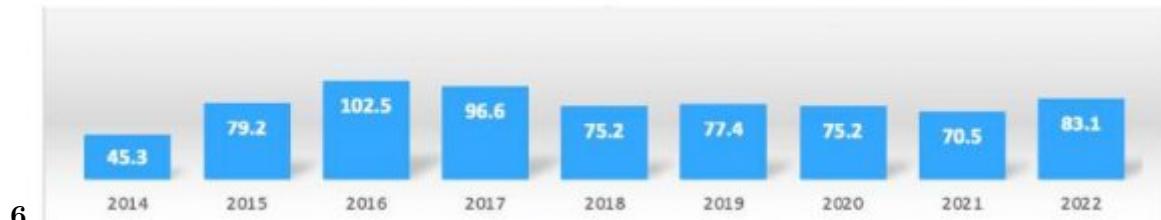

4

Figure 4: Figure 4 :

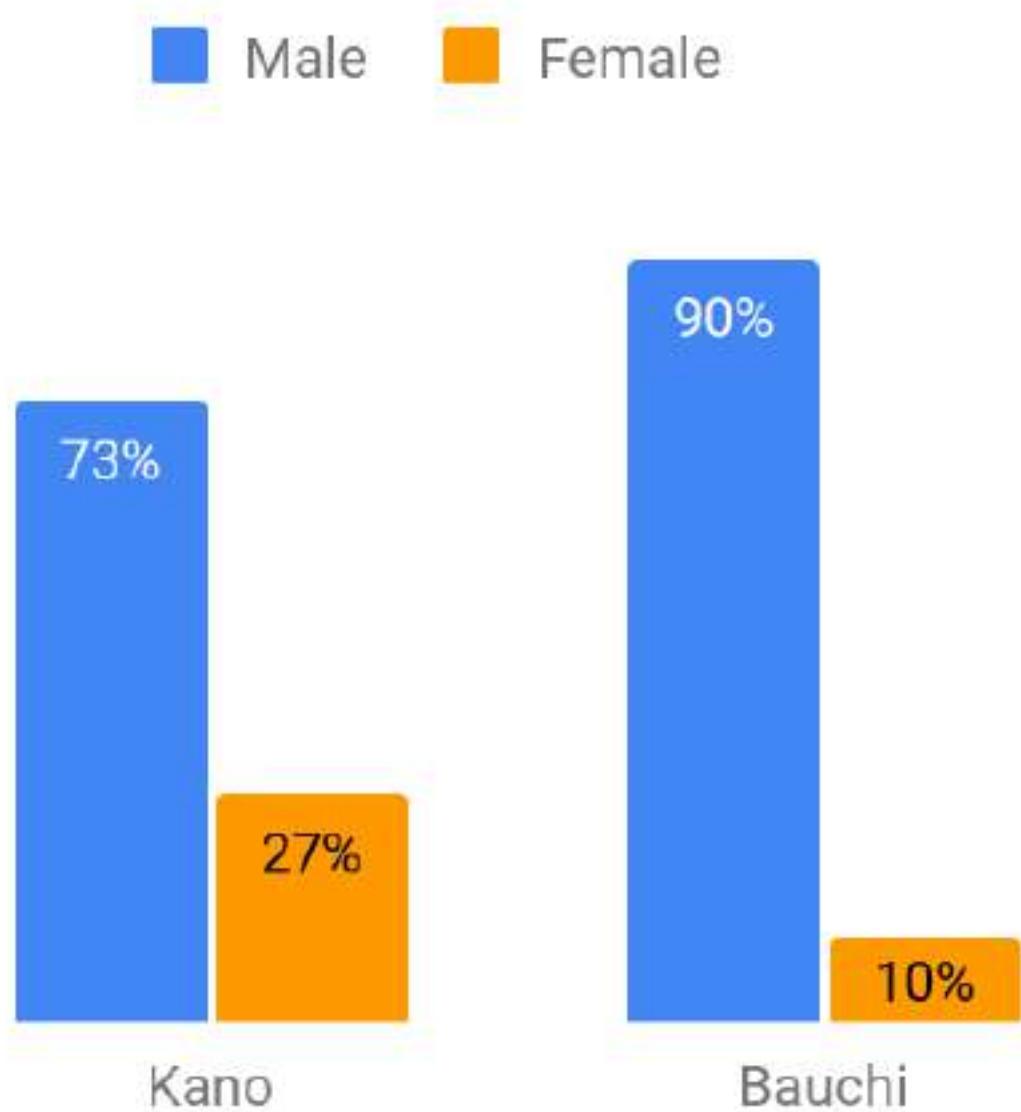
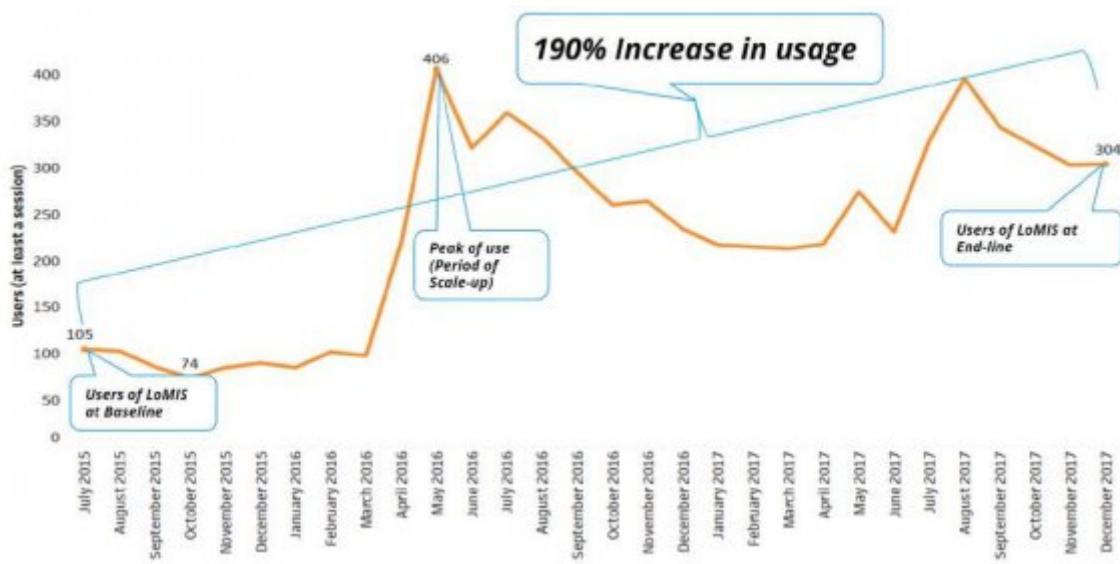

5

Figure 5: Figure 5 :

6


Figure 6: Figure 6

7

Figure 8: Figure 7 :

8

Figure 9: Figure 8 :

9

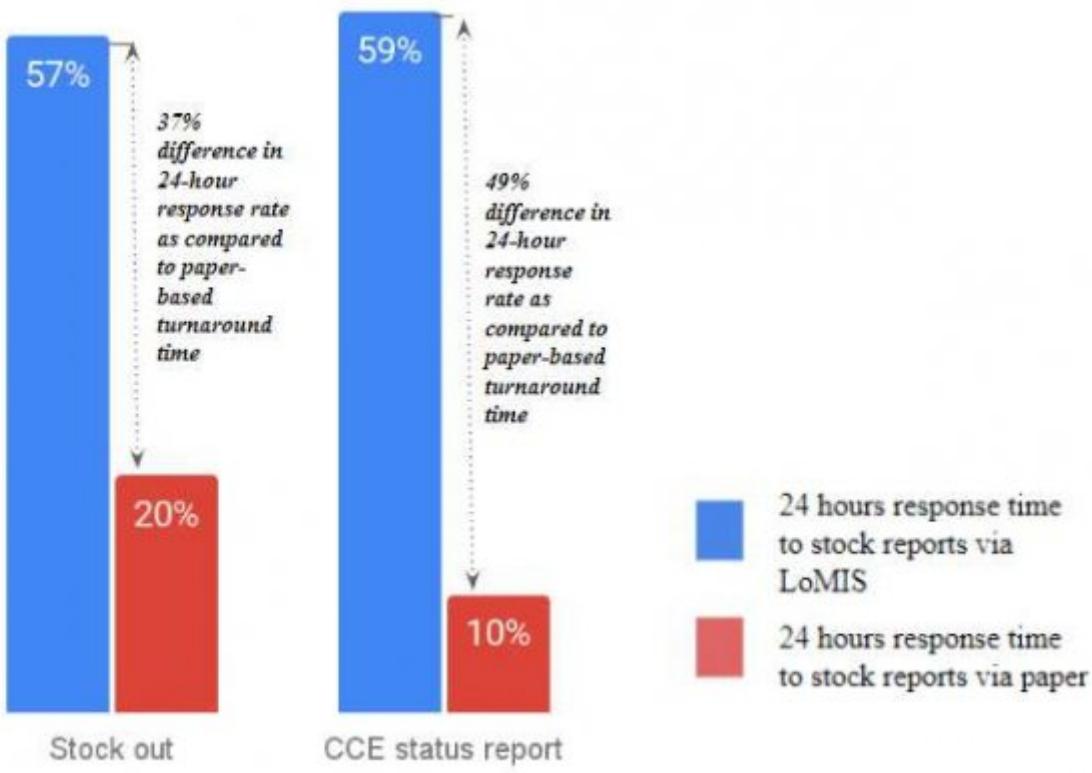


Figure 10: Figure 9 :

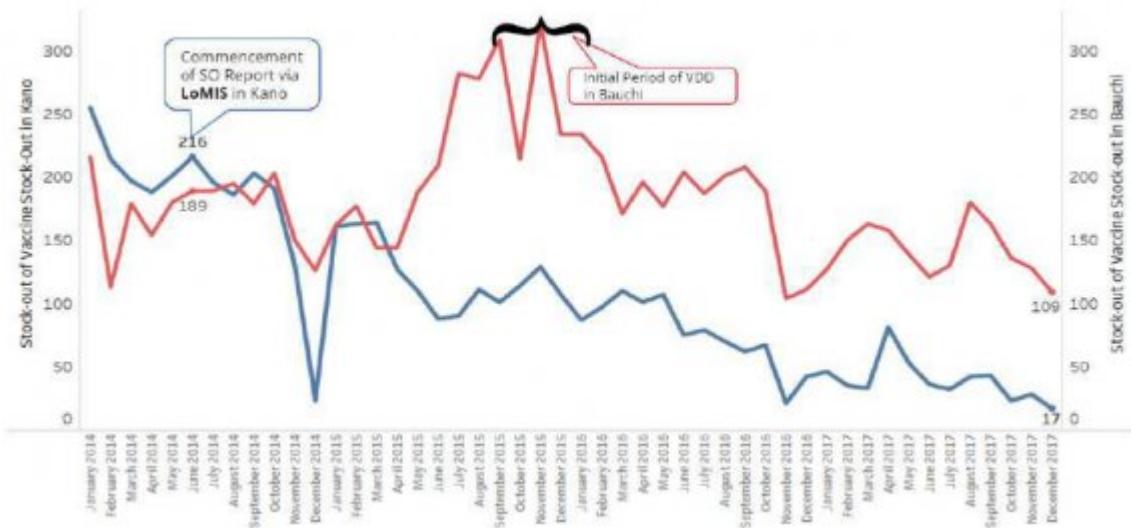


Figure 11:

All quantitative data was entered, analyzed using Statistical Package for Social Science (SPSS,). Analysis of Variance (ANOVA) was employed to

determine the effect of the LoMIS tool on stock-out data in Kano. Paired and independent t-tests were used to determine the significance of the mean difference between stock-out data between pre/post-LoMIS and to compare

Figure 12:

London
Jour-
nal
of
Med-
ical
and
Health
Re-
search

Findings from the desk reviews revealed that 484 facility personnel had been trained on how to use LoMIS Stock app for vaccine stock inventory.

Non-current users (40%) of LoMIS Stock have had experience of its use but issues related to network and faulty/missing phones stopped them from using LoMIS in reporting vaccine stock inventories. The LoMIS web dashboard further

revealed increased use of the tool over time. As of

December 2017, the usability rate had improved from 105 (22%) (January 2015) to 304 (63%) resulting in 190% increase in usage rate (Figure 5). As expected, the survey findings affirmed that

Source: Study Survey data 3.2 Analysis of findings by Research Questions 3.2.1 Research Question 1: The Utilization of LoMIS Mobile Application Tool in Reporting Vaccine Stock Inventory in Kano State (Usability Rate) Analytics from LoMIS Dashboard showed 82% usage rate, that is, 397 of 484 Ward Technical Officers had used LoMIS application to report at least one stock inventory. Among all (60) users of the tool interviewed 60% are current users of LoMIS Stock as of the period of study. Analyzing the Effectiveness of Digital Technology in Vaccine Supply Management in Kano State, Nigeria

Figure 13:

1

Period	Mean	SD	SE	P Value
Pre-LoMIS (January 2012 - June 2014)	246.58	61.68	10.28	0.000**
Post-LoMIS (July 2014 - December 2017)	79.22	41.57	6.9	
Paired Differences	Mean	SD	CI	T P Value
Pre-post stock-out	167.36	48.40	150.98 - 183.73	20.74 0.000

* London Journal of Medical and Health Research 15 25 © 2023 Great] Britain
Journals Press Volume 23 | Issue 6 | Compilation 1.0 Analyzing the Effectiveness of
Digital Technology in Vaccine Supply Management in Kano State, NigeriaSource:
DHIS2

Figure 14: Table 1 :

		Post-LoMIS (Bauchi)	Mean	SDSE	t	MD	CI
Kano (LoMIS)							
Bauchi			90.02	52.8714-		-	Low
			8.01	91.09		-	113
						Upper	-
						-	68.4
(Paper-based Tool)							
3.2.4 Research Question 4: The Impact of LoMIS Stock on Data-Driven RI Vaccine Supply Planning and Management							3.2.5 Research Question 4: The Impact of LoMIS Stock on Data-Driven RI Vaccine Supply Planning and Management
In this study, it was found that LoMIS Stock has enabled near-real time RI vaccine reports, and this has led to improved visibility to the status of RI vaccines across health facilities in Kano state. Enhanced vaccine visibility has enabled most of the decision makers to respond to stock-outs, CCE breakdown							and over- of vaccines stock
immediately. The planning RI vaccine supply has been influenced by the distribution data of RI vaccine status across the facilities.							
"With LoMIS Dashboard, the status of the vaccine has been visible, that is visibility of stock availability. This helps me to take decisions in time."							
"I use LoMIS Dashboard weekly to ensure there is no Stock Out in any facility. I also identify any CCE breakdown for replacement or repair. Recently, I saw Stock-out of BCG in a facility on the Dashboard and called the facility immediately."							
LoMIS is really an engine room, it's a bank for information on vaccine management. At a go, it is easy to see the status of CCE and make decisions at a go too. Non-functional CCE receives speedy repair.							State Partner, Kano
"LoMIS is real time, for me, I see the status of vaccines immediately and I also have the contact of service providers and I just call. It helps my daily plan. For me, I go on LoMIS every day.							Development Partner, Kano
							Development Partner, Kano

192 .1 Funding

193 No Funding

194 .2 V. CONCLUSION

195 The implication of this result is that there was sufficient stock of death-preventing vaccines at health facilities in
196 the study location. This finding strengthens the discussions around the value of developing and implementing
197 digital health tools in public health interventions [24].

198 Furthermore, the impact of the tool, LoMIS Stock on vaccine planning and management was significant as our
199 results showed that the LoMIS dashboard tool enhanced the vaccine operations.

200 .3 Declarations Consent for publication

201 .4 Not Applicable

202 .5 Availability of data and materials

203 The datasets used and/or analyzed during the current study are available from the corresponding author on
204 reasonable request.

205 .6 Competing interests

206 The authors declare that they have no competing interests" in this section.

207 .7 Ethical Consideration

208 All methods were performed in accordance with the guidelines and recommendations specified within the Helsinki
209 declaration. Official permission was sought and obtained from the participating vaccine stock management
210 stakeholders in Kano and Bauchi states where the study was conducted. ??thical

211 .8 Informed Consent

212 All participants provided written informed consent before participating in the study.

213 .9 Competing interests

214 The authors declare that they have no conflicts of interest.

215 [] , 10.1016/j.ijmedinf.2020.104323. <https://www.sciencedirect.com/science/article/pii/S138650562030931X>

216 [] , 10.2196/24182. 345. PMC8485189. p. 28891.

217 [Thorlund et al. ()] 'A real-time dashboard of clinical trials for COVID-19'. K Thorlund , L Dron , J Park , G
218 Hsu , J I Forrest , E J Mills . *The Lancet Digital Health* 2020. 2 (6) p. .

219 [Hicks et al. (2021)] 'Acceptability and Potential Effectiveness of eHealth Tools for Training Primary Health
220 Workers From Nigeria at Scale: Mixed Methods, Uncontrolled Before-and-After Study'. J P Hicks , M J
221 Allsop , G O Akaba , R M Yalma , O Dirisu , B Okusanya , J Tukur , K Okunade , D Akeju , A Ajepu , O
222 Okuzu , T Mirzoev , B Ebenso . *JMIR Mhealth Uhealth* 2021 Sep 16.

223 [Unicef ()] 'Achieving immunization targets with the comprehensive effective vaccine management (EVM)
224 framework'. Who Unicef . WHO/UNICEF Jt. statement 2016. 2014. p. .

225 [Analyzing the Effectiveness of Digital Technology in Vaccine Supply Management in Kano State, Nigeria of Digital Technologies
226 *Analyzing the Effectiveness of Digital Technology in Vaccine Supply Management in Kano State, Nigeria*
227 *of Digital Technologies to Support Vaccination Programmes in Europe: State of the Art and Best Practices*
228 *from Experts' Interviews. Vaccines (Basel)*, 10.3390/vaccines9101126. 34696234. PMC8538238. 2021 Oct 3.
229 9 p. 1126.

230 [Rai et al. ()] *Assessing technological impact on vaccine supply chain performance. Industrial Management &*
231 *Data Systems*, P Rai , S Bera , P Ray . 10.1108/IMDS-08-2021-0488r. <https://doi.org/10.1108/IMDS-08-2021-0488r> 2022. 122 p. .

232 [Budd et al. ()] 'Digital technologies in the public-health response to COVID-19'. J Budd , B S Miller , E
233 M Manning . 10.1038/s41591-020-1011-4. <https://doi.org/10.1038/s41591-020-1011-4> *Nat Med*
234 2020. 26 p. .

235 [Baxter Chirambo et al. ()] 'End-user perspectives of two mHealth decision support tools: Electronic Community
236 Case Management in Northern Malawi'. Grifin Baxter Chirambo , Adamson S Muula , Matthew Thompson
237 , Victoria E Hardy , Ciara Heavin , Yvonne O' Connor , Nikolaos Mastellos , Bo Andersson , O'
238 John , Donoghue . 10.1016/j.ijmedinf.2020.1043. <https://doi.org/10.1016/j.ijmedinf.2020.1043>
239 *International Journal of Medical Informatics* 1386-5056. 2021. 145.

242 [Expanded Immunization Programme: Supply chain and logistics (2022)] *Expanded Immunization Programme: Supply chain and logistics*, <https://www.who.int/teams/immunization-vaccines-and-biologicals/essential-programme-on-immunization/supply> 2022. November 2022. World Health Organization.

243

244

245

246 [Dairo and Osizimete (2016)] 'Factors affecting vaccine handling and storage practices among immunization service providers in Ibadan'. D M Dairo , O E Osizimete . 10.4314/ahs.v16i2.27. PMID:27605974. PMC4994548. *Afr Health Sci* 2016 Jun. Oyo State, Nigeria. 16 (2) p. .

247

248

249 [Shuaib et al. ()] 'Implementing the routine immunisation data module and dashboard of DHIS2 in Nigeria'. F Shuaib , A B Garba , E Meribole , S Obasi , A Sule , C Nnadi , N E Waziri , O Bolu , P M Nguku , M Ghiselli , O J Adegoke , S Jacenko , E Mungure , S Gidado , I Wilson , E Wiesen , H Elmousaad , P Bloland , L Rosencrans , F Mahoney , A Macneil , R Franka , J Vertefeuille . 10.1080/21645515.2018.1477458. 32694218. PMC7375433. *BMJ Glob Health* 2014-2019. 2020 Jul. 5 (7) p. 2203.

250

251

252

253

254 [Akerele et al. ()] 'Improving routine immunization data quality using daily short message system reporting platform: An experience from Nasarawa state'. A Akerele , B Uba , M Adulolu , S Etamesor , J A Umar , O B Adeoye . 10.1371/journal.pone.0255563. <https://doi.org/10.1371/journal.pone.0255563> *PLoS ONE* 2021. Nigeria. 16 (8) p. 255563.

255

256

257

258 [Latest situation of novel coronavirus infection in Hong Kong The Government of the Hong Kong Special Administrative Region ()] 'Latest situation of novel coronavirus infection in Hong Kong'. 10.1038/s41591-020-1011-4. <https://chp-dashboard.geodata.gov.hk/covid-19/en.html> *The Government of the Hong Kong Special Administrative Region*, 2022. November 2022. Centre for Health Protection, Department of Health.

259

260

261

262 [Stuhldreher et al. ()] 'Lessons Learned From Implementing Digital Health Tools to Address COVID-19 in LMICs'. C , Lazenby S Stuhldreher , R Kimball , M Bartlein , R . 10.1371/journal.pone.0255563. *Front. Public Health* 2022. 10 p. 859941.

263

264

265 [Duijzer et al. ()] 'Literature review: The vaccine supply chain'. Lotty Evertje Duijzer , Willem Van Jaarsveld , Rommert Dekker . 10.1016/j.ejor.2018.01.015. <https://doi.org/10.1016/j.ejor.2018.01.015> *European Journal of Operational Research* 0377-2217. 2018. 268 (1) p. .

266

267

268 [Ottih and Cussen ()] 'MBuilding strong health supply chain systems: the visibility and analytics network approach to improving the Nigerian immunisation supply chainBMJ'. C Ottih , K Cussen , Mustafa . 10.14236/jhi.v25i4.944. *Health & Care Informatics* 2018. 25.

269

270

271 [Multiple Indicator Cluster Survey 2021 (2022)] *Multiple Indicator Cluster Survey 2021*, August, 2022. Abuja, Nigeria: National Bureau of Statistics and United Nations Children's Fund. (Survey Findings Report)

272

273 [Zaidi et al. (2020)] 'Operability, Acceptability, and Usefulness of a Mobile App to Track Routine Immunization Performance in Rural Pakistan: Interview Study Among Vaccinators and Key Informants'. S Zaidi , S A Shaikh , S Sayani , A M Kazi , A Khoja , S S Hussain , R Najmi . 10.2196/16081.bank-education-and-covid-19. <https://mhealth.jmir.org/2020/2/e16081> *JMIR Mhealth Uhealth* 2020. November 2022. 8 (2) p. 16081.

274

275

276

277

278 [Iwu et al. ()] 'Scoping review of interventions for vaccine stock management in primary health-care facilities'. C J Iwu , A Jaca , L H Abdullahi , N J Ngcobo , C S Wiysonge . 10.1080/21645515.2019.1607130. *Hum Vaccin Immunother* 2019. 15 (11) p. .

279

280

281 [Strategic Advisory Group of Experts on Immunization. The Global Vaccine Action Plan 2011-2020 ()] *Strategic Advisory Group of Experts on Immunization. The Global Vaccine Action Plan 2011-2020*, WHO/IVB/19.07. Licence: CC BY-NC-SA 3.0 IGO. 2019. Geneva: World Health Organization. (Review and lessons learned)

282

283

284

285 [Omole ()] 'The Challenges of Nigeria Vaccine Supply Chain, a Community of Practice Perspective'. Timilehin Omole . *Issue III* 2321-2705. 2020. March 2019. VI.

286

287 [Zaffran et al. (2013)] 'The imperative for stronger vaccine supply and logistics systems'. M Zaffran , J Vandelaer , D Kristensen , B Melgaard , P Yadav , Antwi-Agyei Ko , H Lasher . 10.1016/j.vaccine.2012.11.036. 23598495. *Vaccine* 2013 Apr 18. 31. (Suppl 2: B73-80)

288

289

290 [The Use of Real Time Monitoring Approaches and Tools for Immunization Campaigns: Good Practices and Lessons Learned New York: United Nations Children's Fund (UNICEF), 2021] *The Use of Real Time Monitoring Approaches and Tools for Immunization Campaigns: Good Practices and Lessons Learned New York: United Nations Children's Fund (UNICEF), 2021*. *London Journal of Medical and Health Research*

291

292

293

294 [Kolff et al. ()] 'The use of technology to promote vaccination: A social ecological model based framework'. Chelsea A Kolff , Vanessa P Scott , Melissa S Stockwell . 10.1080/21645515.2018.1477458. *Human Vaccines & Immunotherapeutics* 2018. 14 (7) p. .

295

296

297 [United Nations Children's Fund, Costs of vaccinating a child (2020)] *United Nations Children's Fund, Costs of vaccinating a child*, 2020. August 2020. New York: UNICEF.

298

299 [Updates on COVID-19 (coronavirus disease 2019) local situation ()] *Updates on COVID-19 (coronavirus dis-*
300 *ease 2019) local situation*, <https://www.moh.gov.sg/covid-19/> 2022. Ministry of Health Singapore.

301 [Tchoualeu et al. (2021)] ‘Use of a district health information system 2 routine immunization dashboard for
302 immunization program monitoring and decision making’. D D Tchoualeu , H E Elmousaad , L U Osadebe
303 , O J Adegoke , C Nnadi , S A Haladu , S M Jacenko , L B Davis , P B Bloland , H S Sandhu .
304 10.11604/pamj.supp.2021.40.1.17313. 36157564. PMCID:PM C9474830. *Pan Afr Med J* 2021 Nov 12. Kano
305 State, Nigeria. 40 (Suppl 1) p. 2.

306 [Nestory et al. ()] ‘Vaccine management practices among healthcare workers in Morogoro, Tanzania: a cross-
307 sectional study’. B Nestory , M Anasel , J B Nyandwi . 10.1186/s40545-022-00496-y. <https://doi.org/10.1186/s40545-022-00496-y> *J of Pharm Policy and Pract* 2022. 15 p. 95.

309 [Kaufmann et al. (2011)] *Vaccine supply chains need to be better funded and strengthened, or lives will be at risk.*
310 *Health Aff (Millwood)*, J R Kaufmann , R Miller , J Cheyne . 10.1377/hlthaff.2011.0368. 21653965. 2011 Jun.
311 30 p. .

312 [World Bank Education and COVID-19 London Journal of Medical and Health Research ()] ‘World Bank Edu-
313 cation and COVID-19’. <https://www.worldbank.org/en/data/interactive/2020/03/24/world>
314 *London Journal of Medical and Health Research* 2022. 2023. Britain Journals Press. 30 p. 0. (Issue |
315 Compilation)