

CrossRef DOI of original article:

1 Some Egyptian Medicinal Plants and Heart, and Blood Disease

2

3 *Received: 1 January 1970 Accepted: 1 January 1970 Published: 1 January 1970*

4

5 **Abstract**

6

7 *Index terms—*

8 **1 I. INTRODUCTION**

9 Traditional medicinal plants definite a Phytotherapies, their use still burgeoning worldwide, the medicinal plants
10 are used as a herbal for recovery to many diseases, and of their constituents now used in very most beige scale
11 to cure of many diseases such as diabetes², skin, liver, cancer and heart disease too. Drugs of herbal or their
12 derivatives are considered natural products that mostly have not no side effects.

13 Medicinal plants contain many compounds, which have an excellent effect on remedies for many diseases, such
14 as essential oils that are used as a sedative, skin diseases, relaxing, and so on.

15 Phenols and flavonoids that are used as an antioxidant that prevents cancer, glyoxidates that have a good
16 effect upon heart disease such as quercetin of onion, scillaren of white squill, allyl of garlic and so on of the
17 contents of medicinal plants that the spot will be light on their active ingredients for heart disease in the present
18 work.

19 The heart attack returns to the of heart muscle, then the coronary artery is blocked, that supplies blood to
20 the heart, that due to damage of heart muscle sustenance, and cause that blood is not arrived to it, so it becomes
21 starved of Oxygen. Systolic heart failure done, because the heart muscle could not push blood around all the
22 body properly. At the time of the heart and blood circulation both stop cardiac arrest, so a person's life will end.

23 The factors that cause heart failure are type 2 diabetes, smoking, anemia, obesity, lupus, thyroid problems,
24 includes hyperthyroidism and hypothyroidism, inflammation of heart muscle that returns to the virus, and could
25 drive to failure of the left side of heart. Abnormal heart rhythms and fast heartbeat could cause heart weakness,
26 and so on a slow heartbeat due to reduced blood flow, which leads to heart failure.

27 **2 Dietary factors are very close to heart coronary, particularly 28 when dietary contains the greatest**

29 London Journal of Medical and Health Research ratio of saturated fatty acids, Coronary disease is considered
30 number one that causes death in the world. However, it must be said that most people survive their first heart
31 attack and return to their normal lives, enjoying many more years of productive activity. But experiencing a
32 heart attack does mean that you need to make some changes.

33 **3 Garlic (Allium Sativum)**

34 Garlic is a perennial plant; it has been valued for its medicinal properties. The intact cells of garlic bulbs
35 contain an odorless sulfur-containing amino acid, allinin. When garlic is crushed, allinin is exposed to alliinase,
36 which converts allinin to allicin. This has potent antibacterial properties and is highly odoriferous and unstable.
37 Ajoenes are the self-condensation products of allicin and suggested to be responsible for garlic's antithrombotic
38 action. Most authorities now agree that allicin and its derivatives are the bioactive constituents of garlic.

39 Dried garlic preparations lack allicin but contain both allinin and alliinase. Since alliinase inactivated in the
40 stomach, dried garlic preparations should have an enteric coating so that they pass unaltered through the stomach
41 to the small intestine, where allinin enzymatically converted to allicin. Only a few commercially available garlic
42 preparations standardized for their yield of allicin based on the allinin content (Mashour, Lin, and Frishman
43 1998).

5 ONION (ALLIUM CEPA L.)

44 The consumption of large quantities of fresh garlic (0.25-1.0 g/kg or about 5-20 average-sized 4 g cloves) found
45 to produce the aforementioned beneficial effects (Kleijnen, Knipschild, and ter Riet 1989). In support of this, a
46 double-blind, crossover study of moderately hypercholesterolemic men, which compared the effects of 7.2 g of
47 aged garlic extract with placebo on blood lipid levels, found a maximal decrease of 6.1% in total serum cholesterol
48 levels and 4.6% in LDL cholesterol levels with garlic (Steiner et al. 1996).

49 However, despite the positive evidence from a number of trials, full endorsement of garlic for CVD prevention
50 is not currently possible. Many published studies have methodological shortcomings (Isaacsohn et al. 1998).
51 Trials were small, lacked statistical power, had inappropriate methods of randomization, lacked dietary run-in
52 periods, were of short duration, or failed to undertake intention to treat analysis. This has led to a cautious
53 approach to previous meta-analyses (Neil et al. 1996). One more recent meta-analysis concludes that garlic
54 decreases total cholesterol to a modest extent, an effect driven mostly by the modest decreases in triglycerides,
55 with no appreciable effect on LDL or HDL cholesterol (Reinhart et al. 2009).

56 Garlic studied hypertension with no conclusive result (Simons, Wollersheim, and Thien 2009). A meta-analysis
57 of eight trials suggested some clinical value in patients with mild hypertension, but the evidence was insufficient
58 to recommend garlic for routine clinical therapy (Silagy and Neil 1994). Garlic reported to show antiplatelet
59 stickiness activity. This has been documented in vitro (Bordia, Verma, and Srivastava 1996), and another study
60 examined the effect of consuming a clove of fresh garlic on platelet thromboxane production. After 26 weeks,
61 serum thromboxane levels lowered by about 80% (Ali and Thomson 1995). In these ways, garlic is beneficial to
62 cardiovascular health, and these effects need further study. However, with consumption of more than five cloves
63 daily, heartburn, flatulence, and other gastrointestinal disturbances reported.

64 Allergic contact dermatitis is also reported, and patch testing is available when garlic allergy suspected
65 (Delaney and Donnelly 1996). Due to its antithrombotic activity, garlic is taken with caution by people on
66 oral anticoagulants (Rose et ??l. 1990).

67 4 London Journal of Medical and Health Research

68 5 Onion (Allium cepa L.)

69 The onion (Allium cepa L.), is known as the bulb onion or common onion, onions are cultivated and used around
70 the world. Most onion cultivars are about 89% water, 9% carbohydrates (including 4% sugar and 2% dietary
71 fiber), 1% protein, and negligible fat (table). Onions contain low amounts of essential nutrients and have an
72 energy value of 166 kJ (40 Calories) in a 100 g (3.5 oz.) amount. Onions contribute savory flavor to dishes
73 without contributing significant caloric content (US National Onion Association, 2011)

74 Considerable differences exist between onion varieties in phytochemical content, particularly for polyphenols,
75 with shallots having the highest level, six times the amount found in Vidalia onions. Yellow onions have the
76 highest total flavonoid content, an amount 11 times higher than in white onions (Slimestad, et al., 2007), they
77 added that red onions have considerable content of anthocyanin pigments, with at least 25 different compounds
78 identified representing 10% of total flavonoid content.

79 Allium cepa is highly valued for its therapeutic properties. It was used as a food remedy from time immemorial.
80 Research shows that onions may help guard against many chronic diseases. That is probably because onions
81 contain generous amounts of the flavonoid quercetin. Studies have shown that quercetin protects against
82 cataracts, cardiovascular disease, and cancer. In addition, onions contain a variety of other naturally occurring
83 chemicals known as organosulfur compounds, which, linked to lowering blood pressure and cholesterol levels.
84 Although rarely used specifically as a medicinal herb, the onion has a wide range of beneficial actions on the
85 body and when eaten (especially raw) on a regular basis will promote the general health of the body. The
86 bulb is anthelmintic, anti-inflammatory, antiseptic, antispasmodic, carminative, diuretic, expectorant, febrifuge,
87 hypoglycaemic, hypotensive, lithontripic, stomachic and tonic.

88 When used regularly in the diet it offsets tendencies towards angina, arteriosclerosis and heart attack. This is
89 used particularly in the treatment of people whose symptoms include running eyes and nose. The onions ability to
90 relieve congestions especially in the lungs and bronchial tract is hard to believe until you have actually witnessed
91 the results. The drawing of infection, congestion and colds out of the ear is also remarkable. The onion will
92 relieve stomach upset and other gastrointestinal disorders and it will strengthen the appetite. Pharmacologically
93 known as Allium cepa, onion found in every household. The purple-skinned onion tastes great.

94 Additionally, it has several health benefits and is part of many home remedies and beauty solutions.

95 Onion possesses properties allied to those of garlic, but in a milder degree, and the absorption of its oil and
96 influence upon the system is somewhat similar to that of the oil of garlic.

97 Onions do not agree with all persons, especially dyspeptics, in whom they favor the production of flatus, which,
98 however, is a common symptom among all those who eat largely of them; boiling, in a great measure, deprives
99 them of this property. Sugar and onion-juice form a syrup, much used in domestic practice, for cough and other
100 affections of the air-tubes among children. A roasted Onion employed as a cataplasm to support tumors, or to the
101 ear in otitis has proved beneficial. A saturated tincture of onions made with good Holland gin, found serviceable
102 in gravel and dropsically affections. A cataplasm of onions pounded with vinegar, applied for a number of days,
103 and changed 3 times a day, has been found to cure corn and bunions. Most human studies that have shown
104 an effect from onions used at least 25 grams per day and often two to four times that amount. Though some

105 studies have found cooked onions acceptable, several studies suggest that onion constituents degrade by cooking
106 and that fresh or raw onions are probably most active. If a tincture, syrup, or oil extract is used, 1 tablespoon
107 three times per day may be necessary for several months before effects are noted.

108 London Due to the anti-inflammatory agents in onions they help reduce the severity of symptoms associated
109 with conditions such as the pain and swelling of the osteo and rheumatoid arthritis, the allergic inflammatory
110 response of asthma, and the respiratory congestion associated with common colds. The onions have anti-
111 inflammatory effects only due to their vitamin C and quercetin, but other active components called isothiocyanates
112 have made onions a good ingredient for soups and stews during cold and flu season. WHO recommends the use
113 of fresh onion extracts for treating coughs, colds, asthma, bronchitis and relieving hoarseness. The World Health
114 Organization also supports the use of onions for the treatment of appetite loss and preventing atherosclerosis.
115 Similar to garlic, the regular consumption of onion lowers blood pressure and the serum levels of cholesterol and
116 triglyceride, while increasing HDL levels. As a result, it prevents atherosclerosis and diabetic heart disease, and
117 reduces the risk of heart attacks or strokes. Onions considered as one of the small number of vegetables, which
118 reduce heart disease risk. This beneficial effect attributed to its vitamin B6, which lowers homocysteine levels,
119 an important risk factor for heart attacks and strokes. Onions are natural anti-clotting agents due to their sulfur
120 content. In ancient Greece, large quantities of onion consumed in order to lighten the balance of blood. The
121 high amount of fructo oligosaccharide in onions stimulates the growth of healthy bacteria and suppresses the
122 potentially harmful bacteria in the colon such as *Bacillus subtilis*, *Salmonella*, and *E. coli*. Sulfides in onion
123 extracts provide protection against tumor growth especially stomach and colon cancer.

124 Roasted onions are good for earaches. They also recommended treating headaches, snakebites, hair loss and
125 infertility in women. In many parts of the world, onions used to heal blisters and boils. Products containing onion
126 extract (such as Mederma) used to treat scars; they also relieve itching secondary to allergy. In homeopathy,
127 *Allium cepa* used for rhinorrhea and hay fever.

128 Onions believed to be effective in diabetes. Its Allyl propyl disulfide and chromium can decrease fasting
129 blood glucose levels, improve glucose tolerance, and lower insulin levels. Onions may be especially beneficial
130 for women, who are at creased risk of osteoporosis during the menopause. Onion's gamma-L-glutamyl-trans-S-
131 1-propenyl-L-cysteine sulfoxide (GPCS) inhibits the osteoclasts (the cells which break down bone) activity and
132 fights osteoporosis. Onion syrup is useful in extracting renal stones. Onions are also a recommended treatment
133 for edema due to their diuretic effect. They also promote the menstrual periods.

134 6 *Salvia* species

135 The genus *Salvia* (sage) belongs to the Lamiaceae and encompasses 900 species worldwide of which ca. 26
136 indigenous species found in Africa. *Salvia* is the largest genus in this family and constitutes almost one quarter
137 of the Lamiaceae. *Salvia* species used in many parts of the world to treat various conditions. Many sages, if not
138 all, form an integral part of traditional healing in Africa, particularly in Sinea where they occur in abundance.
139 Several species used to treat microbial infections, cancer, malaria, inflammation, loss of memory and to disinfect
140 homes after sickness.

141 The composition of the oils from leaves and flowers of three *Salvia* species (*S. aethiopis* L., *S. hypoleuca* Benth.
142 and *S. multicaulis* Vahl.) has been analyzed by a combination of GC and GC-MS. During the flowering period, two
143 oils (*S. aethiopis* and *S. hypoleuca*) consisted mainly of sesquiterpenes, while in *S. multicaulis* oil monoterpenes
144 predominated over sesquiterpenes. The major components of the oil of *S. aethiopis* were γ -caryophyllene (24.6%),
145 γ -copaene (15.5%) and germacrene D (13.5%). In the oil of *S. hypoleuca*, γ -caryophyllene (22.0%), γ -elemene
146 (15.5%) and bicyclogermacrene (15.1%) were found to be the major constituents. γ -Pinene (26.0%), 1,8-cineole
147 +limonene (20.0%) and camphor (19.0%) were the predominant compounds in the oil of *S. multicaulis*.

148 Ten phenolic compounds were isolated from butanol fraction of sage extracts, and their structures were
149 determined with spectral methods (NMR, MS, IR), among them a novel compound, London Journal of
150 Medical and Health Research 4-hydroxyacetophenone-4- β -D-apiofuranosyl-(1 \longrightarrow 6)- β -D-glucopyranoside,
151 was identified.

152 The rosmarinic acid and luteolin-7- β -D-glucopyranoside were the active compounds of antioxidantactivity.

153 The metabolite profile of *S. miltiorrhiza* (SM) or Chinese sage is similar to that of common sage, and recently,
154 it was shown that an extract of SM was able to lower the plasma cholesterol, low density lipoprotein (LDL), and
155 triglycerides (TGs), as well as increase the high density lipoprotein (HDL) levels in lipidemic rats (Christensen,
156 et al., 2010).

157 The extract of *S. officinalis* is found to activate peroxisome proliferator-activated receptor gamma (PPAR γ)
158 which is a regulator of genes involved in energy spending as well as lipid and glucose metabolism, and its activation
159 improves the HDL/LDL ratio and lowers TGs in serum, reduces insulin resistance, and reduces the size of adipose
160 (fat) tissue (Christensen, et al., 2010). Extracts from some sage species shown to be effective in the prevention
161 of cardiovascular disease due to, at least in part, prevention of LDL-cholesterol oxidation (Ramos, et al., 2009).

162 7 *Tropaeolum majus*

163 The garden nasturtium (*Tropaeolum majus* L.) belongs to the family Tropaeolaceae. Native to South America
164 it brought to Europe in the XVI century. It is a plant with numerous healing properties. Medicinal plants

9 II. CONCLUSION

165 such as the garden nasturtium contain trace elements and bioactive compounds, which easily absorbed by the
166 human body. The flowers and other parts of the garden nasturtium are a good source of microelements such
167 as potassium, phosphorus, calcium and magnesium, and macro elements, especially of zinc, copper and iron.
168 The essential oil, the extract from the flowers and leaves, and the compounds isolated from these elements have
169 antimicrobial, antifungal, hypotensive, expectorant and anticancer effects. Antioxidant activity of extracts from
170 garden nasturtium is an effect of its high content of compounds such as anthocyanins, polyphenols and vitamin
171 C. Due to its rich phytochemical content and unique elemental composition, the garden nasturtium may be used
172 in the treatment of many diseases for example the illnesses of the respiratory and digestive systems.

173 High content of erucic acid in nasturtium seeds makes it possible to use its oil as treatment in adrenoleukodystrophy.
174 It is also applied in dermatology because it improves the condition of skin and hair. More recently, the
175 flowers of this species used as a decorative and edible element of some types of dishes.

176 It is used in folk medicine against cardiovascular disorders, urinary tract infections, asthma, and constipation
177 (Ferro, 2006). Previous phytochemical studies have reported the occurrence of the flavonoids isoquercitrin and
178 kaempferol glycoside, in the leaves of *T. majus* (Zanetti et al., 2004), besides glucosinolates and tetracyclic
179 triterpenes (Griffiths et al., 2001). Several studies disclosed a number of relevant pharmacological properties
180 associated with flavonoids, such as antioxidant, diuretic and cardioprotective effects ??Wu and Muir, 2008).
181 Diuretics, such as thiazides and furosemide, are among the most used anti-hypertensive agents in humans. These
182 drugs known for their ability to reduce blood pressure in hypertension and improve the cardiovascular function
183 in heart failure, among others. However, these agents are also associated with important adverse effects, such
184 deleterious/dangerous reduction in Na⁺ and K⁺ plasmatic levels. Thus, the development of new diuretic agents
185 with reduced adverse effects is important to improve the output in several cardiovascular diseases.

186 8 **Urginea maritima**

187 The White Squill (*Urginea maritima*) belongs to family liliaceae, it has been used as a medicinal plant
188 through centuries over the world, believed to have certain traditional actions. The Squill bulb used by
189 herbalists traditionally for the treatment of cardiac failure, chronic bronchitis, rodenticides and asthma. Novel
190 cardiac glycosides have recently been isolated from squill known as ufodienolides. The plant is rare in the
191 Mediterranean coastal region. dihydroquercetin-4-monoglucoside.), stig-masterol, scilliglaucosidin, and mucilage
192 (gluco-galactans). Scillaren A and proscillarin A. Scillaren B has been used to describe a mixture of squill
193 glycosides as opposed to pure scillaren A.

194 Other constituents present in white squill include flavonoides (vitexin, isovitexin, orientin, isoorientin,
195 scoparin, vicenin-2, quercetin, dihydroquercetin or taxifolin, dihydroquercetin -4-monoglucoside.), stig-masterol,
196 scilliglaucosidin, and mucilage (gluco-galactans). The glycosides present in the squill have digitalis-like cardiotonic
197 properties, which are due to their aglycones. Action is faster but shorter-lasting than that of digitalis glycosides.
198 Squill has a stimulating action on the heart that makes it useful for heart failure and fluid retention caused
199 by heart problems. It used in cases where Digitalis considered dangerous. In medicinal doses, it acts upon
200 the circulation like Digitalis, slowing and strengthening the cardiac contractions, making the pulse slower and
201 stronger, raising arterial tension, and increasing the flow of urine.

202 The action of the drug is that of a cardiac stimulant, with three important further properties all dependent on
203 its irritant constituents. In small doses, that would not affect the heart, it is a The two later properties make it
204 a powerful expectorant and a fairly active diuretic. The difference between its actions as an expecto-rant and a
205 cardiac stimulant would seem to indicate its possession of two or more active principles, one specifically affecting
206 the secretory mucous membranes, and the other the circulatory apparatus. Squill combined with Marrubium and
207 Tussi-lago in bronchitis, with Ipecacuanha in whooping cough.

208 9 II. CONCLUSION

209 Traditional medicine known as indigenous or folk medicine comprises knowledge systems that developed over
210 generations within various societies before the era of modern medicine.

211 The World Health Organization (WHO) defines traditional medicine as the sum total of the knowledge, skills,
212 and practices based on the theories, beliefs, and experiences indigenous to different cultures, whether explicable
213 or not, used in the maintenance of health as well as in the prevention, diagnosis, improvement or treatment of
214 physical and mental illness. At the turn of the 20th century, folk medicine was viewed as a practice used by
215 poverty-stricken communities and quacks.. The prevalence of folk medicine in certain areas of the world varies
216 according to cultural norms. Some modern medicine based on plant phytochemicals that used in folk medicine.

217 The positive isotropic effect results mostly from blocking Na⁺ / K⁺-ATPase by glycoside constituent of the
218 extract. The diuretic and natriuretic effects of the plant extract look like effects of potassium sparing diuretics.

Figure 1: 21 Volume 23 |

White squill contains, active constituents, several steroid glycosides (bufadienolides). Including scil-laren A (scillarenin + rhamnose + glucose), gluco scillaren A (scillaren A + glucose), proscillarin A (scillarenin + rhamnose), scillarin A, scilli-cyanoside, scilly glucoside, scilliphaeoside (12 B-hydroxy proscillarin A), and glucoscilliphaeoside (12 B-hydroxyscillaren), the most important being scillaren A and proscillarin A. Scillaren B has been used to describe a mixture of squill glycosides as opposed to pure scillaren A. Other constituents present in white squill include flavonoides (vitexin, isovitexin, vicenin-2, taxifolin,

orientin, orientinparin, querctin, hydroquerctin or

Figure 2:

9 II. CONCLUSION

219 The hypertensive effect attributed to its diuretic property. The mechanism of bradycardia might be due to
220 increased vagal tone, a reflex mechanism through baroreceptors. ^{1 2 3 4 5 6 7}

¹ Volume 23 | Issue 4 | Compilation 1.0 Some Egyptian Medicinal Plants and Heart, and Blood Disease © 2023 Great] Britain Journals Press

² Some Egyptian Medicinal Plants and Heart, and Blood Disease © 2023 Great] Britain Journals Press

³ Volume

⁴ | Issue 4 | Compilation 1.0 Some Egyptian Medicinal Plants and Heart, and Blood Disease © 2023 Great] Britain Journals Press

⁵ Volume 23 | Issue 4 | Compilation 1.0 Some Egyptian Medicinal Plants and Heart, and Blood Disease © 2023 Great] Britain Journals Press

⁶ Volume 23 | Issue 4 | Compilation 1.0 gastro-intestinal, a bronchial and renal irritant. Some Egyptian Medicinal Plants and Heart, and Blood Disease © 2023 Great] Britain Journals Press

⁷ © 2023 Great] Britain Journals Press

221 [London Journal of Medical and Health Research] , *London Journal of Medical and Health Research*
222 [London Journal of Medical and Health Research] , Compilation 1.0. *London Journal of Medical and Health*
223 *Research* 25 (4) .

224 [Steiner et al. ()] 'A double-blind crossover study in moderately hypercholesterolemic men that compared the
225 effect of aged garlic extract and placebo administration on blood lipids'. M Steiner , A H Khan , D Holbert ,
226 R I Lin . *Am J Clin Nutr* 1996. 64 p. .

227 [Silagy and Neil ()] 'A meta-analysis of the effect of garlic on blood pressure'. C A Silagy , H A Neil . *J Hypertens*
228 1994. 12 p. .

229 [Simons et al. ()] 'A systematic review on the influence of trial quality on the effect of garlic on blood pressure'.
230 S Simons , H Wollersheim , T Thien . *Neth J Med* 2009. 67 p. .

231 [Christensen et al. ()] 'Activation of the nuclear receptor PPAR γ by metabolites isolated from sage (*Salvia*
232 *officinalis* L)'. K B Christensen , D Jorgenson , R K Kotowska , K Peterson , L P Kristiansen . *J Ethnopharmacol*
233 2010. 132 p. .

234 [Ali and Thomson ()] 'Consumption of a garlic clove a day could be beneficial in preventing thrombosis'. M Ali
235 , M Thomson . *Prostaglandins Leukot Essent Fatty Acids* 1995. 53 p. .

236 [Bordia et al. ()] 'Effect of garlic on platelet aggregation in humans: A study in healthy subjects and patients
237 with coronary artery disease'. A Bordia , S K Verma , K C Srivastava . *Prostaglandins Leukot Essent Fatty*
238 *Acids* 1996. 55 p. .

239 [Ferro ()] D Ferro . *Fitoterapia: conceitos clínicos* Atheneu, (São Paulo) 2006.

240 [Rahman and Lowe ()] 'Garlic and cardiovascular disease: A critical review'. K Rahman , G M Lowe . *J Nutr*
241 2006. 136 p. .

242 [Donnelly ()] 'Garlic dermatitis'. Delaney T A Donnelly , AM . *Australas J Dermatol* 1996. 37 p. .

243 [Isaacsohn et al. ()] 'Garlic powder and plasma lipids and lipoproteins: A multi-center, randomized, placebo-
244 controlled trial'. J L Isaacsohn , M Moser , E A Stein . *Arch Intern Med* 1998. 158 p. .

245 [Neil et al. ()] 'Garlic powder in the treatment of moderate hyperlipidaemia: A controlled trial and meta-
246 analysis'. H A Neil , C A Silagy , T Lancaster . *J R Coll Physicians Lond* 1996. 30 p. .

247 [Kleijnen et al. ()] 'Garlic, onions and cardiovascular risk factors: A review of the evidence from human
248 experiments with emphasis on commercially available preparations'. J Kleijnen , P Knipschild , G Riet ,
249 Ter . *Br J Clin Pharmacol* 1989. 28 p. .

250 [Mashour and Frishman ()] 'Herbal medicine for the treatment of cardiovascular disease: Clinical considerations'.
251 N H Mashour , Lin G I Frishman , WH . *Arch Intern Med* 1998. 158 p. .

252 [Zanetti and Manfron ()] *Hoelze l Análise morfo-anatômica de Tropaeolum majus L. (Tropaeolaceae)*
253 *IHERINGIA Série Botânica*, G D Zanetti , M P Manfron , SC S . 2004. 59 p. .

254 [Huxley ()] A Huxley . *New RHS Dictionary of Gardening*, 1992. Macmillan.

255 [Wu ()] 'MuirIsoflavone content and its potential contribution to the antihypertensive activity in soybean
256 angiotensin I converting enzyme inhibitory peptides'. A J D Wu . *Journal of Agricultural and Food Chemistry*
257 2008. 56 p. .

258 [Slimestad et al. ()] 'Onions: A source of unique dietary flavonoids'. R Slimestad , T; ; Fossen , I M Vägen .
259 *Journal of Agricultural and Food Chemistry* 2007. 55 (25) p. .

260 [Parliament and Levin ()] 'Spontaneous spinal epidural hematoma with associated platelet dysfunction from
261 excessive garlic ingestion: A case report'. RoseK D , Croissant P D Parliament , C F Levin , MB . *Neurosurgery*
262 1990. 26 p. .

263 [Griffiths et al. ()] 'Identification of glucosinolates on the leaf surface of plants from the Cruciferae and
264 other closely related species'. D W Griffiths , A N Deighton , B Birch , R Patrian , E Baur . *Phytochemistry*
265 2001. 57 p. .

266 [Ramos et al. ()] 'The impact of garlic on lipid parameters: A systematic review and meta-analysis'. C Ramos
267 , A Sa , M Azevedo , C Lima , M Fernandes-Ferreira , C Pereira-Reinhart , K M Talati , R White , C M
268 Coleman , CI . *Nutr Res Rev* 2009. 22 p. . (Some Egyptian Medicinal Plants and Heart, and Blood Disease
269 14)

270 [Lucas ()] 'The Interaction of CAM and Prescription Heart Medications'. K H Lucas . *US Pharm* 2006. 8 p. .

271 [Wilson Sage tea drinking improves lipid profile and antioxidant defences in humans Int J Mol Sci ()] 'Wilson
272 Sage tea drinking improves lipid profile and antioxidant defences in humans'. *Int J Mol Sci* 2009. 10 p. .