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ABSTRACT

The devastating worldwide impact of the
COVID-19 pandemic created a need to better
understand the effects of vaccination on case
fatality rates (CFR) in a pandemic setting.
Foundational time series forecasting models
(ARIMA, Prophet, LSTM) and novel hybrid
models (SARIMA-Bidirectional LSTM and
SARIMA-Prophet-Bidirectional LSTM) were
compared for performance and accuracy to
forecast vaccination inflection points for 26
countries. Correlation analyses demonstrated
that stringency index, age 65 and older, life
expectancy, and positive test rate, are factors
correlating the most with the vaccination and
case fatality rates. The primary vaccination
inflection point was reached at 83.27 days
(15-367 days), at the vaccination rate of 13.1%
(0.1% - 50%), with 42% of countries seeing the
initial impact in <50 days.

The secondary vaccination inflection point
(SVIP) was reached at 339.31 days (161-560
days) at the cumulative vaccination rate of
67.8% (28% - 89%), with 23.1% of countries
reaching it in < 300 days, 73% in the second half
of 2021, and 27% in early 2022. The highest
vaccination rate was achieved in Portugal (89%)
and the lowest in Bulgaria (28%). All assessed
machine and deep learning methodologies
performed with high accuracy relative to
COVID-19 historical data, demonstrated strong
forecasting value, and were validated by
anomaly and volatility detection analyses. The
novel triple hybrid model performed the best
and had the highest accuracy across all
performance metrics. Countries prioritizing the
health of elderly and frail populations and
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utilizing AI technology will be better prepared
for any future pandemic.

Index Terms: COVID-19, primary vaccination
inflection point, secondary vaccination inflection
point, ARIMA, prophet, LSTM, double hybrid,
triple hybrid, SARIMA-bidirectional LSTM,
SARIMA-prophet-bidirectional LSTM.
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|, INTRODUCTION

COVID-19 is an infectious disease, caused by the
Severe Acute Respiratory Syndrome Coronavirus
2 (SARS-CoV-2) characterized by high morbidity
and mortality, and a significant burden on
hospital systems and country economies. Over
the last three years, the COVID-19 virus infected
over 300 million people, caused death for
approximately seven million people [1], and had a
negative impact of $3.8 trillion on economies
around the world. At the end of 2023, COVID-19
is still present with different virus mutations
continuing to cause infections and deaths across
the world [2, 3, 4].

The experience with the COVID-19 pandemic
demonstrated the inadequate levels of
preparedness across countries. Two thirds of
world countries have a good capacity for public
health threat surveillance and analytics in order
to drive policy and planning. However, half of the
countries have a limited capacity to
systematically monitor care, including the impact
of vaccination [5]. Both surveillance and
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monitoring are needed to adequately plan and
prepare for possible infectious disease outbreaks
with novel viruses [6, 7, 8, 9, 10, 11, 12, 13].

Vaccination is an effective way to obtain
individual and herd immunity [14]. When the
herd immunity threshold is reached, naturally or
through vaccination, it creates an environment
that is sufficient to control large outbreaks,
reduce the number of infected individuals and
possible deaths, protect vulnerable individuals in
the society, and relax other public health
measures [15]. There are many factors that
influence a success of a vaccination campaign,
such as availability of vaccine supply (e.g. speed
of development, level of demand, difficulties with
production and distribution of vaccines
worldwide), vaccination strategy outlining
priority groups for vaccination, and population
acceptance of vaccination (e.g. anti-vaccination
movement).

The vaccination efforts for COVID-19 started in
December of 2020 for most of the countries in
the world. There were several types of vaccines
that were available: genetically engineered
messenger RNA, viral vector, and protein subunit
vaccines. The initial vaccinations from 2020 were
followed with booster doses in 2021, 2022 and
2023, for a total of four booster doses, specifically
in developed countries [16]. Understanding the
impact of vaccination campaigns, the correlation
of vaccination rates, incidence of COVID-19, and
mortality rates was researched over the last two
years. The results confirmed that successful
vaccination efforts (e.g. availability of vaccines,
public acceptance, strong government programs,
etc.) can significantly reduce the negative effects
of the COVID-19 pandemic, with a sharp decrease
in the fatality rate [17, 18, 19]. Some researchers
were able to define the vaccination threshold,
identifying that a mean level of administering
about 80 doses of vaccines per 100 inhabitants
can sustain a reduction of confirmed cases and
number of deaths [11], or when the mean
cumulative vaccination rate reaches 29.06 doses
per 100 people and 7.88 doses per 100 people,
respectively, for spread and mortality [19]. Many
researchers also looked at the sentiment around
vaccination. Attitudes toward COVID-19 and

vaccination, conspiracy beliefs, misconceptions,
and complaints about COVID-19 control, were
documented as dominant sentiments [21, 22, 23].
Researchers used data from different sources
(local, national, and global registries) and
different time frames (e.g., periods of 3 or 6
months post initial vaccination).

Diverse research methodologies were applied to
increase sensitivity of analyses and achieve more
accurate results, such as neural networks with cut
effect [17], Augmented Artificial Neural Network
Model for the COVID-19 Mortality Prediction
relative to the vaccination rates [24]; Deep
Learning Sequence Models for Forecasting
COVID-19 Spread and Vaccinations with two
recurrent neural network-based approaches,
LSTM and GRU [25]; amalgamation of neural
network with two powerful optimization
algorithms, firefly algorithm and artificial bee
colony based feed-forward neural networks to
look at the effect of vaccinated population on the
COVID-19 prediction [26]; and a multi-path long
short term memory (LSTM) neural network for
COVID-19 forecasting of new viral variants and
vaccination [27]. Other researchers explored
other models, structured and unstructured
machine learning (ML) models [22], structural
topic modeling [23], Latent Dirichlet Allocation
(LDA) [28], deep learning and NLP [29, 30].
Cheng applied newly developed ARIMA models
to improve the accuracy of weekly COVID-19 case
growth rates and forecast COVID-19 spread
according to protective behavior and vaccination
[31]. Dhamodharavadhani and colleagues used
hybrid models to forecast the vaccination rate,
such as HARIMA, a hybrid of ARIMA and
HGRNN, a hybrid of Generalized Regression
Neural Network and the Gaussian Process
Regression model [32]. Yi-Tui Chen and
colleagues explored the effect of vaccination
patterns and vaccination rates on the spread and
mortality of the COVID-19 pandemic [19], and
Kumar utilized the recurrent neural network
(RNN)  Convolutional Residual  Network
(RNNCON-Res) [33].

Nicholson and colleagues used both supervised
and unsupervised methodologies to identify the
critical county-level factors for studying COVID-
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19 propagation prior to the
availability of a vaccine [40].

widespread

Published research has increased collective
knowledge and has answered many questions.
With limitations of every research, availability of
more data and novel methodologies, there is a
need and a responsibility to continue to expand
the knowledge around pandemic vulnerability
that can allow for better understanding of the
dynamics of vaccination, infection rates and
mortality.

This research was conducted to identify the
vaccination inflection points and the time needed
to reach the critical cumulative vaccination rate
thresholds to observe continuous decrease of the
case fatality rates. It was conducted both at an
aggregate and at the country level. COVID-19
historical data was utilized to develop models
that can be used for future pandemics. Applying
advanced AI methodologies to forecast time to
country specific vaccination inflection points, and
assessing the vaccination rates relative to the case
fatality rates, can provide another useful tool to

guide countries in their pandemic risk
preparedness.

. MATERIALS AND METHODS
21 Data

This research utilized data from the Oxford
University Our World in Data Covid 19 Dataset.
This dataset contains data points collected on an
ongoing basis from Johns Hopkins University,
Center for Systems Science and Engineering
COVID-19 data, European Centre for Disease
Control, and OXFORD COVID-19 Government
Response Tracker, from January 2020 to the
present. The original dataset contains data from
207 countries and territories from which 26
countries were selected for this research: United
States, Canada, Italy, Ireland, Finland, Iceland,
Denmark, Belgium, Sweden, United Kingdom,
Switzerland, Slovenia, Austria, Portugal, France,
Netherlands, Luxembourg, Spain, Romania,
Latvia, Cyprus, Estonia, Czechia, Slovakia,
Serbia, and Bulgaria. Data for this research paper

was accessed and downloaded on Dec 30, 2022
[35], and this longitudinal dataset was used from
the period of December 2020, when most of the
countries in the research dataset started
vaccinating their population, to December 30,
2022.

The analyses in this research used 16 variables.
Table 1 presents the 14 variables that represent
the actual values from the research dataset. Two
additional variables, case fatality rate and
vaccination rate, were derived. The case fatality
rate (CFR), an epidemiologic metric defined as
the proportion of deaths within an observed
population of interest [34], was calculated by
dividing the respective values in the total deaths
column by the total cases column of the dataset,
for each of the 26 countries. The vaccination rate
was calculated by dividing the number of people
vaccinated (with at least one dose) by the total
population of each country, for each of the 26
countries.

For a more meaningful interpretation of the data
variables used to assess the correlation with the
vaccination and CFR rates, data variables were
organized into novel public health
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Table 1. Public Health Indices definitions from the Our World in Data metadata file [20]

Population Health Index (PHI) Pandemic Sensitivity Index (PSI)

cardiovasc death rate: death rate from the
cardiovascular disease in 2017 (annual
number of deaths per 100,000 people)

stringency_index: Government response stringency
index: composite measure based on 9 response
indicators including school and workplace closures, and
travel bans.

diabetes prevalence: Diabetes prevalence (%
of population aged 20 to 79) in 2017

positive_rate: The share of COVID-19 tests that are
positive given as a rolling 7-day average

female smokers: Share of women who smoke,
most recent years available

hosp_ patients: Number of COVID-19 patients in
hospital on a given day

male smokers: Share of men who smoke,
most recent years available

icu_patients: Number of COVID-19 patients in intensive
care unit (ICUs) on a given day

life_expectancy: Life expectancy at birth in
2019

reproduction_ rate: Real time estimate of the effective
reproduction rate of COVID-19

aged 65 or older: Share of the population that
is 65 years or older, most recent years
available

total_cases: Total confirmed cases of COVID-19

median age: Median age of the population,

total_deaths: Total deaths attributed to COVID-19

UN projection for 2020

indices, the Population Health Index, PHI [35],
and Pandemic Sensitivity Index, PSI (Table 1).
The PHI contains the parameters that describe
the health of the population such as:
cardiovascular death rate, diabetes prevalence,
female smokers, male smokers, life expectancy,
age 65 and older, and median age. The PSI Index
represents variables that are directly impacted by
the pandemic, such as total COVID-19 cases and
deaths, number of COVID-19 hospital and ICU
admissions, Government response stringency
index (a composite measure based on nine
response indicators including school and
workplace  closures, and travel bans),
reproduction rate of transmission of COVID-19,
and positivity rate of COVID-19.

This research was conducted to identify the
vaccination inflection points and the time needed
to reach the critical cumulative vaccination rate
thresholds to observe continuous decrease of the
case fatality rates. It was conducted both at an
aggregate and at the country level. To
accommodate for the peaks and troughs of the
case fatality rate curves, the vaccination inflection
points were assessed at two different timepoints.
The first vaccination inflection time point,
primary vaccination inflection point (PVIP) was
assessed from the vaccination start date to the
date of the first CFR drop post vaccination. The

secondary vaccination inflection point (SVIP) was
assessed from the vaccination start date to the
steepest, most significant CFR decline post
vaccination. It represents the time point when the
cumulative vaccination rate reached a critical
threshold showing a continuous decrease of the
case fatality rate, signaling the turnaround in the
pandemic. Table 2 provides an overview of
descriptions of critical variables used in this
research relative to the vaccination inflection
point. COVID-19 historical data was utilized to
develop models that can be used for future
pandemics.

In this research, it was assumed that all vaccines
produced by different technologies and
manufacturers have the same effectiveness. It
was also assumed that distribution of different
vaccines in different countries includes a
combination of initial two-dose and single-dose
vaccines and single dose booster vaccines over
the two-year period (Dec 2020-Dec 2022). Since
all vaccines require approximately two weeks to
produce immunity, the effect of performance of
vaccines on CFR was examined two weeks after
the start of vaccination.

Several types of vaccines were available at the
time of the initial vaccination: genetically
engineered messenger RNA Pfizer/BioNTech and
Moderna, viral vector vaccines (Janssen/Johnson
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& Johnson and University of
Oxford/AstraZeneca, Sputnik V), protein subunit
vaccine (Novavax, Sinovac). The initial
vaccinations in 2020 were delivered, in most
cases, in sets of 2-doses, with a 3-week period in
between (Pfizer/BioNTech, Moderna, Sinovac,
Sputnik V). Some initial vaccines were delivered
as a single dose vaccine (J&J, AZ/Oxford).
Consequently, booster doses were delivered as
single dose vaccines, starting in the third quarter
of 2021 (Sep 2021 in the US, Oct/Nov 2021 in the
EU) and continuing in 2022 (approved boosters
in Mar and Sep 2022 in the US) and 2023
(approved in Sep 2023 in US and EU), for a total
of four booster doses [16]. Today there are
approximately 40 COVID-19 vaccines that were
approved by regulatory agencies for full
emergency use authorization. Of those 40, 16

have full authorization in only one country, 12 in
ten or fewer countries, and 12 in more than 10
countries [36]. Emergence of new variants may
be a challenge for the vaccines, reducing their
protective power with the transmissibility of new
variants  substantially  higher than the
pre-existing SARS-CoV-2 variants. Booster dose
vaccines were introduced to boost the protection
power of vaccines and help the individuals with
weakened immune systems. Efficacy of most
vaccines range from 70-95%, mainly against
symptomatic disease [37, 38]. All countries from
this dataset (26 countries) are classified in three
categories relative to their GDP per capita
(>$50,000, $35,000-$50,000, and <$35,000)
[20]. Table 3 summarizes the distribution of
countries. This research was solely conducted by
using publicly available data.

Table 2: Description of derived variables used for vaccination inflection point analyses

Variables
vaccination start date

Description
first documented date when vaccination started at the country level

CFR at vaccination start

Case fatality rate at the time on the 1st day of vaccination

CFR + 14 days

case fatality rate at the time when initial immunity from vaccination
should be developed

vaccination rate at CFR +14 days

vaccination rate at the time of initial immunity

Primary vaccination inflection
point (PVIP)

date when the first case fatality rate reduction is observed post
vaccination, measured on the day of the 1st CFR peak post vaccination
+ one day

CFR at PVIP

case fatality rate at PVIP, measured on the day of the 1st CFR peak
post-vaccination + one day

vaccination rate at PVIP

vaccination rate at the PVIP, measured as the vaccination rate on the
day of the 1st CFR peak post vaccination + one day

Secondary vaccination inflection
point (SVIP)

date when the most significant CFR reduction is observed post
vaccination, measured on the day of the CFR peak that is followed by
the most significant and continuous CFR reduction post vaccination +
one day

CFR at SVIP

case fatality rate at the SVIP, measured as the CFR rate on the day of
CFR peak that is followed by the most significant CFR reduction post
vaccination + one day

vaccination rate at SVIP

vaccination rate at the SVIP, measured as the vaccination rate on the
day of the CFR peak that is followed by the most significant CFR
reduction post vaccination + one day

Table 3: Distribution of countries based on GDP per capita

GDP per Capita Country Distribution

> 50,000

Ireland, Luxembourg, Switzerland, United States

35,000-50,000

Austria, Belgium, Canada, Denmark, Finland, France, Iceland, Italy, Netherlands,
Sweden, United Kingdom.

< 35,000

Bulgaria, Cyprus, Czechia, Estonia, Latvia, Portugal, Romania, Serbia, Slovakia,
Slovenia, Spain.
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2.2 Methodologies

Data utilized in this research was pre-processed
by assigning the original time series dataset to
training and testing datasets temporally. For each
country, the training set included data from the
beginning of the pandemic (March 1, 2020) until
a few weeks post vaccination start. The testing set
included the remaining data post vaccination
until the end of the dataset (December 30, 2022).

Data cleaning was conducted by resolving the
problem of missing and duplicate values,
resolving data inconsistencies, removing outliers,
and smoothing variables used for forecasting
(vaccination_rate and case_fatality_rate),
including all exogeneous variables (stringency
index, aged_65_older, life_expectancy, and
positive_rate). Smoothing was conducted by
using a window of seven days to remove all noisy
data. The current day value was calculated using
the mean of the previous seven days for each
variable. In this type of dataset, it is common that
some data is missing, both at random and not at
random. For this research, it was important that
the data on the total number of cases and deaths
was complete since it was used to derive the case
fatality rates. This missing data was resolved by
taking the mean values of the total number of
cases and deaths from the previous day and the
next day. Other missing data was managed in a
similar manner. Data quality assessments
(completeness, reliability, consistency, validity,
and no redundancy) were also completed.
Exploratory Data Analysis was conducted by
exploring graphs and visuals in order to observe
trends over time of the vaccination and case
fatality rates for each country.

Three foundational forecasting methodologies
were applied: Autoregressive Integrated Moving
Average (ARIMA), Prophet, and Long-Short
Term Memory (LSTM) models. These models
were then enhanced and combined to develop
novel double and triple hybrids, SARIMA-
Bidirectional LSTM and SARIMA-Prophet-
Bidirectional LSTM models. They were used to
forecast the primary and secondary vaccination
inflection points (PVIP and SVIP) relative to the
case fatality rates, for each of the 26 countries. All

machine learning and deep learning analyses
were done using Python version 3.10.1 and the
scikit-learn library version 1.2.0 [39]. In addition,
the novel Vaccination Inflection Point Score was
developed, and countries were classified
according to the score.

221 Correlation Analysis

The correlation analysis was performed using
Ordinary Least Squares Multifactor Regression
Methodology to identify the top four variables
that correlate the most with vaccination and case
fatality rates for implementation into forecasting
methodologies. These analyses were performed
as an aggregate analysis of 14 variables that were
assessed for correlation with vaccination and case
fatality rates. All variables were used for the
correlation assessment with the vaccination rate.
Two variables, total cases and total deaths were
not used in the assessment of the case fatality
correlation since the CFR is a ratio of these two
variables. In order to derive the list of the top
four variables most correlated with both
vaccination and case fatality rates together, the
ranking order was assessed across both target
variables (vaccination and case fatality rates).

2.2.2 Foundational Forecasting Methodologies

Baseline forecasting methodologies were selected
based on literature search, model strengths and
limitations.

A. Autoregressive Integrated Moving Average
(Arima)

ARIMA (Autoregressive Integrated Moving
Average) model is selected for its characteristics
of being well-suited for forecasting time series
data that exhibits trends and seasonality. It is
deemed to be effective in forecasting a variety of
real-world phenomena, which has good
applicability for COVID-19, showing greater
flexibility, = accuracy, interpretability, and
robustness. The parameters of the ARIMA model
are defined as follows: p is the lag order, which
represents the number of lag observations
incorporated in the model, d is the degree of
differencing, which denotes the number of times
raw observations undergo differencing, and q is
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the order of the moving average, which indicates
the size of the moving average window [41].

B. Prophet

The Facebook Prophet algorithm is an
open-source software developed by Facebook’s
core Data Science Team. If the time series data
has strong seasonal effects, this model works the
best. It is a regression model for forecasting,
specifically designed to forecast time series data
that exhibits trends, seasonality, and coverage for
holidays. It is also fast and scalable, and similar
to ARIMA, this model is interpretable, robust,
flexible, and accurate [42].

C. Long Short-Term Memory (LSTM)

LSTM Model is a neural network model that can
learn long-term dependencies in time series data,
handle nonstationary and noisy data, as well as
leverage additional features. It is also accurate,
flexible, and scalable [43, 83].

1) Double Hybrid Forecasting Model: Sarima-
Bidirectional LSTM

Review of published literature showcases the use
of different forecast models and enhancements in
COVID-19 research, demonstrating Dbetter
accuracy and performance in forecasting by
hybrid models. For example, ARIMA-LSTM
hybrid model was used to predict future
COVID-19 transmissions in China where
ARIMA-LSTM model was paralleled by weight of
regression coefficient performing better than
ARIMA alone [45]; the same group also looked at
COVID-19 prediction using data from Germany
and Japan and utilized three enhanced hybrid
models: PSO-LSTM-ARIMA, MLR-LSTM-
ARIMA, and BPNN-LSTM-ARIMA. The research
showed that BPNN-LSTM-ARIMA had the best
prediction accuracy [46]. Priya and colleagues
compared time series forecasting models utilizing
ARIMA, Facebook Prophet, Holt-Winters Model,
and Hybrid ARIMA-ANN (to take advantage of
the unique characteristics of ARIMA and ANN
models in linear and nonlinear modeling). The
Hybrid model showed better accuracy and root
mean square error [47]; Morais looked at
forecasting daily Covid-19 cases with a hybrid

ARIMA and neural network model to capture the
linear and non-linear structures of daily Covid-19
cases (MLP-ARIMA) [48]; and Nawi researched a
hybrid ARIMA-SVM model [49]. Borges looked
at COVID-19 ICU demand forecasting utilizing
Prophet-LSTM approach vs a stand-alone
approach in  Brazil, confirming better
performance of the hybrid model [50], and Long
researched an efficient forecasting tool for
Monkeypox outbreak in the US using ARIMA,
Prophet, Neural Prophet, stacking model, and
LSTM models. NeuralProphet achieved the
optimal performance [51]. In addition, Guha, in
his paper, presented two recurrent neural
network-based approaches to predict the daily
confirmed COVID-19 cases, daily total positive
tests and total individuals vaccinated using LSTM
and gated recurrent unit (GRU) [25]; Shastri
looked at time series forecasting of Covid-19
using deep learning models: the recurrent neural
network based variants of long-short term
memory (LSTM) such as Stacked LSTM,
Bi-directional LSTM and Convolutional [52];
Devaray utilized ARIMA, LSTM, Stacked LSTM
(SLSTM) and Prophet approaches [53]; Zhenyu
Li researched convolutional neural network
combined with the stacked long-short-term-
memory network model (CNN-Stack BiLSTM)
[54]. The Stacked LSTM (SLSTM) model was also
researched by Maaliw [55] and Ali, who also use
the bidirectional enhancement to create a stacked
Bi-directional long short-term memory (Stacked
Bi-LSTM) network that forecasts COVID-19 more
accurately [56]. Sah compared different
COVID-19 forecasting models, Prophet, ARIMA,
LSTM, and stacked LSTM-GRU models
demonstrating better prediction results with the
hybrid stacked LSTM-GRU model [57]. Other
researchers looked at the Ensemble Empirical
Mode Decomposition and Deep Learning creating
an EEMD-LSTM hybrid model [58] and EEMD
method with the Autoregressive Integrated
Moving Average Exogenous inputs (ARIMAX)
method, which they called EEMD-ARIMAX [59].

Hybrid models for this research were selected
based on the literature search, strengths, and
limitations of the individual components for
forecasting performance, available enhancements
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to address limitations, and for their specific
complementary characteristics that land them
well for hybrid application. SARIMA-
Bidirectional LSTM hybrid model combines the
strengths of two powerful forecasting techniques,
ARIMA enhanced with a seasonality component
(the S) in SARIMA and enhancing the LSTM
model to analyze data in both directions
(Bidirectional component). This hybrid combines
a linear and non-linear model, benefits from
forecasting time series data that exhibits trends
and seasonality and at the same time, an ability
to learn long-term dependencies in time series
data, as well as capture both forward and
backward dependencies. SARIMA-Bidirectional
LSTM complements the strength of each model
and is expected to achieve better forecasting
accuracy than either model individually [44].

2) Triple Hybrid Forecasting Model: Sarima-
Prophet-Bidirectional LSTM

The triple hybrid SARIMA-Prophet-Bidirectional
LSTM forecasting model enhances the previously
mentioned hybrid model with a Facebook
Prophet forecasting model that is specifically
designed to forecast time series data that exhibits
trends, seasonality, and holidays. The new triple
hybrid combines the strengths of all three
forecasting techniques with an ability to capture
short-, medium-, and long-term dependencies,
handle non-stationary and noisy data, and
leverage additional features. Due to the
complementary nature of the hybrid model
components and a better fit for the data being
researched, it would be expected that the new
models would achieve better forecasting accuracy
than either model individually.

3) Accuracy and Performance Assessment

Accuracy and performance assessment was
conducted across all the models (foundational
and hybrid models) evaluating vaccination and
case fatality rates: Mean Absolute Error (MAE),
Mean Squared Error (MSE), Root Mean Squared
Error (RMSE) and Entropy, relative to the actual
data. In addition, the accuracy of the forecasting
results of each model was compared with actual
historical data from the Our World in Data

dataset, specifically, to the actual time needed to
reach the vaccination inflection points for each
country.

4) Anomaly and Volatility Analyses

Anomaly and Volatility analysis and assessments
were conducted across all-time series analysis
and forecasting models utilizing Isolation Forest
and Generalized Autoregressive Conditional
Heteroskedasticity (GARCH) models, both
well-studied in this field. These methodologies
were selected based on the review of published
literature that showcase their good performance
as well as being valuable algorithms for anomaly
and volatility detection in the context of
COVID-19 vaccination forecasting [60]. The
results obtained upon performing anomaly and
volatility detection were used to select the best
performing model for forecasting the time to
COVID-19 vaccination inflection point for each
country.

A. Isolation Forest

The last part of the research was focused on the
assessment of anomaly and volatility detection
analysis across the time series analysis models.
These analyses were conducted to identify
unusual or unexpected patterns in data, to
prevent overfitting, improve the accuracy,
performance, and reliability of machine learning
models and complex systems. It is often used in
Systems Engineering to detect unusual activity in
system logs, performance bottlenecks in systems,
and anomalous patterns in system data and to
improve overall reliability, efficiency, and
security of complex systems. The first algorithm
used in this research is Isolation Forest.

Isolation Forest can detect anomalies in an
unsupervised manner. This model is used to
compare the accuracy of different forecasting
models and considered to be efficient, scalable,
and robust to outliers. It works by randomly
selecting features and splitting values to create
partitions of the data. This process is repeated
until isolation of the anomalies. It is particularly
well-suited for high-dimensional data, which is
the case with COVID-19 vaccination data, which
includes features such as vaccination rate, case
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fatality  rate, population density, and
socio-economic factors. It is also relatively
insensitive to outliers, which can be a problem for
other anomaly detection algorithms. Isolation
Forest can be used to detect anomalies in the
vaccination and case fatality rates. This can be
useful for identifying periods where the
vaccination and CFR rate are significantly higher
or lower than expected, adjusting, or improving
the forecasts for the vaccination inflection point
[61].

Isolation Forest measured three parameters:
Precision, Recall, and Fi-score. Precision
measures the proportion of detected anomalies
that are actually true anomalies, where high
precision (closer to 1) is very accurate in its
anomaly detections, with few false positives. A
good threshold for Isolation Forest is 0.7 or
higher. Recall measures the proportion of true
anomalies that are correctly identified by the
model, high recall (closer to 1) means the model
is sensitive and can capture most anomalies. A
good threshold for Isolation Forest is 0.7 or
higher. Fi-score combines precision and recall
into a single metric, balancing their trade-off. A
high Fi-score (closer to 1) indicates a good
balance between precision and recall, suggesting
a reliable anomaly detector. Isolation Forest
results at 0.7 or higher for all parameters are
considered to be good results [61].

B. Generalized Autoregressive  Conditional

Heteroskedasticity (Garch)

The second algorithm used to compare the
accuracy of different forecasting models is the
Generalized Autoregressive Conditional Heteros-
kedasticity (GARCH) model. The GARCH model
is a powerful tool employed to capture and model
volatility patterns in the residuals. This model
considers the conditional variance and accounts
for the time-varying volatility and is especially
well suited for time-series analysis, which is the
case with COVID-19 vaccination and case fatality
rate data.

The GARCH model was used to forecast the
volatility of the COVID-19 vaccination and CFR
rate. This helped to identify periods where the
vaccination and CFR rates are likely to increase

or decrease more rapidly than expected. If the
model detects anomalies, this could indicate that
the vaccination and CFR rates are not following
the expected patterns [62].

Isolation Forest and GARCH models are both
well-suited for anomaly and volatility detection,
respectively, in the context of COVID-19
vaccination inflection point forecasting. They are
both efficient, important for anomaly and
volatility detection in large datasets, and robust
to outliers. This can be a problem in COVID-19
vaccination data due to factors such as data entry
errors and reporting delays. These models are
also flexible, due to ease of adaptation to a variety
of different anomaly detection tasks. The GARCH
model also has several limitations, such as
sensitivity to the choice of parameters, less robust
performance for very short time series datasets,
and the inability to capture all types of anomalies.

The GARCH model measures three parameters:
Volatility Persistence, Relative Importance of
ARCH Term, and Relative Importance of GARCH
Term. Volatility Persistence represents the degree
to which shocks to volatility persist over time,
with an acceptable range between 0.7 and
1. Values below 1 are considered
acceptable, ensuring stationarity of the volatility
process. However, values closer to or exceeding 1,
indicate stronger persistence, meaning shocks
have longer-lasting impacts on volatility and
might suggest issues like integrated volatility or
model misspecification. The range that is typical
and acceptable for Relative Importance of ARCH
Term is 0 to 0.4. Relative Importance of GARCH
Term captures the persistence of volatility shocks
over time with an acceptable range of 0.3 to 0.9
[62].

1. Vaccination Inflection Point Score

Vaccination Inflection Point score was developed
to categorize countries based on their actual time
to achieving secondary vaccination inflection
point, representing the time of the most
significant CFR reduction post vaccination, and
therefore, identifying the critical threshold
signaling the turnaround in the pandemic.
Countries were categorized into three groups
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corresponding to scores 1, 2, and 3, with a score
of 1 indicating that the country needed the
shortest amount of time to reach their secondary
vaccination inflection point. This tool can help
with the interpretation of changes in the
pandemic dynamic, serve as a learning tool for
the importance of the contribution of vaccination
to achieving faster herd immunity, and improving
the overall pandemic risk of countries.

ll.  RESULTS
3.1 Correlation Analysis Results

The correlation analysis was performed using
Ordinary Least Squares Multifactor Regression
Methodology. These analyses were performed as
aggregate analysis with 14 variables. The
correlation was assessed first with the
vaccination rate as the target variable, followed

by the case fatality rate. The top four variables
most correlated with vaccination rate were:
stringency_index, life_expectancy, positive_
rate, and total _deaths. The top four variables for
the case fatality rate were: stringency_index,
aged_65_older, life_expectancy, and positive_
rate. The top four variables that are the most
correlated with both vaccination and case fatality
rates together were derived by using the ranking
order of variables across both vaccination and
case fatality rates. The final ranking order of the
four variables was: stringency_index, aged_
65_older, life_expectancy, and positive_ rate,
representing the exogeneous variables that were
used in the primary and secondary vaccination
inflection point forecasting analyses. The
stringency index and positive rate were variables
representing the PSI index and aged 65 and older
and life expectancy represented the PHI index.

ordinary Least Squares Multifactor Regression Feature ImportanceVaccination Rate Correlation (Aggregate Analysis)

stringency_index
life_expectancy
positive_rate
total_deaths
male_smokers
female_smokars

cardiovasc_death_rate

Feature

median_age
total_cases
reproduction_rate
icu_patients
aged_65_older
hosp_patients

diabetes_prevalence

T
0.00 0.05 010

Impartance Value

Figure 1. Correlation Analysis for Vaccination Rate (Aggregate Analysis)
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Ordinary Least Squares Multifactor Regression Feature Importance-Case Fatality Rate Correlation (Aggregate Analysis)
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Figure 2: Correlation Analysis for Case Fatality Rate (Aggregate Analysis)

3.2 Forecasting Analysis Results

The summary of the conducted analyses is
presented in Table 4, first as an aggregate and
then per GDP per capita category (>$50,000,
$35,000-$50,000, and <$35,000). Overall, all
countries started their vaccination campaigns
within the 43 days, starting with Latvia on
December 4, 2020, and ending with the UK
starting on January 10, 2021. Countries with the
higher GDP initiated their vaccination efforts
faster than the other countries (15 days vs 26 and
35 days), however, countries with the mid-range
GDPs reached the PVIP and SVIP faster than the
other two groups, with high and low GDP per
capita. PVIP was reached in 37.5 days vs 76 and
131.7 days, and SVIP in 299.2 days vs 336.5 and
380.4 days.

Similar results were observed when median
numbers were used, with the mid-range GDP
countries again performing better, with the
shortest time needed to reach both PVIP (34 days
vs 80.5 and 82 days) and SVIP (316 days vs 343.5
and 365 days), and with the highest achieved
vaccination rate (74.7% vs 70.6% and 63.3%), for
GDP mid-range, high-range, and low-range
respectively. Overall, all countries reached an
average vaccination rate of 67.8% (mean) and
71.25% (median) at the time they observed the
significant CFR drop post-vaccination (SVIP).

The highest vaccination rate was achieved in
Portugal (89%) and the lowest in Bulgaria (28%).

Analysis of vaccinations by age group in Our
World in Data (except for three countries)
showed similar distribution by age [20]. The
elderly population (60-70, 70-80, and 80+ years
of age) achieved the highest vaccination rates in
all, but three countries (Latvia, Romania, and
Bulgaria), followed by the middle age group
(18-24, 25-59). The smallest vaccination rates
were observed in the youngest age group (0-17).

The data for the US and UK were not available in
the Our World in Data dataset, however, data
from official government sites demonstrated the
same patterns observed with the rest of the
countries [81, 82], supplement Tables S10, S11,
and S12. There were no official records available
for Serbia at the time of this research. This
confirms earlier statements that most countries
prioritize elderly and frail populations in their
vaccination campaigns. Looking at the countries
based on their GDP per capita grouping, the
mid-range group on average achieved higher
vaccination rates of the elderly population than
the countries with higher and lower GDP per
capita. These findings support the better
performance of the countries in the mid-range
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GDP group, demonstrating the importance of
prioritizing the needs of the elderly population
(age 65 and older and life expectancy) in a
pandemic setting. It should be assumed that
other factors, such as acceptance and robustness
of the vaccination campaign and vaccination
mandates imposed by governments played a
significant role as well [71].

Table 5 presents the ranking order of the
countries based on the time to reach SVIP. The
UK observed the SVIP in the shortest amount of
time, at 161 days (CFR 3.3%, vaccination rate

63.8%), while Romania reached the same point in
560 days (CFR 2.2%, vaccination rate 41.6%).

Supplemental Tables (Table S1, S2A-B, S3A-B)
present all results of all forecasting models, the
three foundational (ARIMA, PROPHET, LSTM)
and the two hybrid forecasting models (double
hybrid: SARIMA-Bidirectional LSTM, and triple
hybrid: SARIMA-Prophet-Bidirectional LSTM).
The baseline data for each country, as well as the
actual historical data from the COVID-19
pandemic are also documented in these
supplemental tables.

Table 4. Summary of Results Across 26 Countries

London Journal of Engineering Research

Aggregate data for 26 countries

Countries with GDP per capita
>$50,000

Countries with GDP per capita
$35,000-$50,000

Countries with GDP per capita
< $35,000

4 countries (15.4%])

11 countries (42.3%)

11 countries {42.3%)

vaccination start

43 days (Dec 8,2020 - Jan 10,2021

15 days {Dec 13 - Dec 28, 2020}

26 days (Dec 8,2020 - Jan 3, 2021}

35 days (Dec 4, 2020 - Jan 8, 2021}

mean (range}

time to reach PVIP*

83.27 days (15-367 }

76 days (49-94)

37.5 days (15-75})

131.7 days (16-367)

vaccination rate at PVIP 13.1% (0.1-50} 9.7% (0.9-24.8) 5% (0.4-33.1) 18.6% (1.5-50.1}
time to reach SVIP** 339.31 days (161-560) 336.5 days (296-363) 299.2 days {161-371}) 380.4 days (319-560}
vaccination rate at SVIP 67.8% (28-89) 71% (66.4-76.5) 74.2% (63.8-81.8} 60.3% (28-89.1)

median (range}

time to reach PVIP

57.5 days (L5-367 )

80.5 days (49-94}

34 days (15-75})

82 days (16-367}

vaccination rate at PVIP

6.05% (0.1-50)

6.6% (0.9-24.8)

2.4% (0.4-33.1)

9.5% (1.5-50.1)

time to reach SVIP

355.5 days (161-560}

343.5 days (296-363}

316 days (161-371)

365 days (319-560)

vaccination rate at SVIP

71.25% (28-89)

70.6% (66.4-76.5)

74.7% (63.8-81.8}

63.3% (28-89.1)

Volume 24 | Issue 3 | Compilation 1.0

*PVIP: Primary vaccination inflection point
**SVIP: Secondary vaccination inflection point

Table 5: Ranking of the Countries based on the Time to Reach SVIP

oy Time (days) to Vaccination Date SVIP Vaccination
reach SVIP start date reached rate at SVIP
1 United Kingdom 161 days Jan 10 2021 Jun 20 2021 63.88%
2 Iceland 201 days Dec 30 2020 Jul 19 2021 71.64%
3 Denmark 274 days Dec 8 2020 Sep 8 2021 73.99%
4 Belgium 292 days Dec 28 2020 Oct 16 2021 74.77%
5 Netherlands 293 days Jan 8 2021 Oct 28 2021 69.99%
6 Ireland 296 days Dec 28 2020 Oct 20 2021 76.58%
7 Italy 316 days Dec 27 2020 Nov 8 2021 79.32%
8 Portugal 319 days Jan 12021 Nov 16 2021 89.10%
9 France 323 days Dec 27 2020 Nov 15 2021 76.88%
10 Switzerland 329 days Dec 21 2020 Nov 15 2021 66.42%
11 Finland 333 days Jan 3 2021 Dec 2 2021 77.16%
12 Spain 337 days Jan 4 2021 Dec 7 2021 80.84%
13 Cyprus 353 days Jan 6 2021 Dec 25 2021 71.53%
14 Sweden 358 days Jan 3 2021 Dec 27 2021 72.39%
15 Luxembourg 358 days Dec 28 2020 Dec 21 2021 70.99%
16 Serbia 361 days Jan 8 2021 Jan 4 2022 48.20%
17 Estonia 362 days Dec 27 2020 Dec 24 2021 63.20%
18 United States 363 days Dec 13 2020 Dec 11 2021 70.30%

Reaching Pandemic Milestones with Country Primary and Secondary Vaccination Inflection Points: An Assessment of Foundational and
Hybrid Forecasting Methodologies

© 2024 Great Britain Journals Press




19 Bulgaria 365 days Dec 29 2020 Dec 29 2021 28.08%
20 Canada 370 days Dec 14 2020 Dec 19 2021 81.80%
21 Austria 371 days Dec 27 2020 Jan 2 2022 75.10%
22 Czechia 372 days Dec 27 2020 Jan 3 2022 65.12%
23 Slovenia 374 days Dec 27 2020 Jan 52022 59.07%
24 Slovakia 386 days Jan 3 2021 Jan 24 2022 45.73%
25 Latvia 395 days Dec 4 2020 Jan 3 2022 71.06%
26 Romania 560 days Dec 27 2020 Jul 10 2022 41.64%

In the dataset used for this research, 65% of
countries started their vaccination efforts in
December 2020, and 35% started in January
2021. The primary vaccination inflection point
representing the first observed reduction in the
CFR post vaccination was reached at 83.27 days
(mean, range 15-367 days), with 42% of countries
seeing the initial impact in less than 50 days,
38.4% in 50-100 days, and 19.2% above 100 days
(Figure 3). This reduction was achieved with the
initial vaccination rate of 31.1% (mean, range
0.1% to 50%), with 27% of countries reaching the
vaccination rate of >25%, 15.3% reaching the rate
between 11-25%, and 57.7% reaching the rate of
<10% (Figure 4). Finland observed the fastest
PVIP in only 15 days (CFR 1.6%, vaccination rate
of 1.1%), while Romania had the longest wait to
first reduction at 367 days (CFR 3.2%,
vaccination rate 27.8%).

inflection point
most significant

The secondary vaccination
(SVIP), representing the

reduction in CFR post vaccination, signaling the
start of the continuous CFR reduction and
turnaround in the pandemic, was reached at
339.31 days (mean, range 161-560 days), with
23.1% of countries observing this impact in less
than 300 days, 53.8% from 300-370 days, and
23.1% in more than 370 days (Figure 5). This
reduction was achieved with the cumulative
vaccination rate of 67.8% (mean, range 8%-89%),
with 50% of countries reaching the vaccination
rate between 50-75% (Figure 6). Most of the
countries reached a significant drop in the CFR in
2021 (73%), out of which 61.5% reached it in the
4" quarter of 2021, 11.5% in the 3'¢ quarter of
2021, and 27% in early 2022. The highest
vaccination rate at this inflection point was
achieved in Portugal (89%) on November 16,
2021.

Percentage of Countries Reaching PVIP Per Time Category
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Figure 6: Percentage of Countries Per Vaccination Rate Categories (SVIP)

Overall, at the time of the SVIP, all countries with
the exception of three, showed a reduction in the
CFRs relative to the CFRs at the beginning of the
vaccination. The highest CFR at the time of the
SVIP was in Bulgaria (4.1%), followed by the UK
(3.32%), and Italy (2.75%). Belgium and Romania
had the CFRs that were > 2.0%, and the
remaining countries had the CFRs <2.0%. The
lowest CFRs were documented in Cyprus (0.42%)
and Iceland (0.45%). Bulgaria, Latvia and
Slovakia had the CFRs at the SVIP that were
higher than the CFR at the vaccination start date,
however, all three countries showed a reduction
in the CFRs from the PVIP to the SVIP, indicating
a positive impact of the vaccination.

3.3 Accuracy and Performance Assessment

Accuracy and performance assessment was
conducted across all the models (foundational
and hybrid models) evaluating vaccination and
case fatality rates: Mean Absolute Error (MAE),
Mean Squared Error (MSE), Root Mean Squared
Error (RMSE) and Entropy, relative to the actual
data. Tables 6-7 showcase the mean and median
results for all calculated metrics indicating the

superior performance of the triple hybrid model
SARIMA-Prophet- Bidirectional LSTM.

3.4 Anomaly and Volatility Analysis Results

Anomaly and Volatility analysis and assessments
were conducted across all time-series-analysis
and forecasting models utilizing Isolation Forest
and Generalized Autoregressive Conditional
Heteroskedasticity (GARCH) models. In the
Isolation Forest model, precision, recall, and
Fi-score values above 0.7 indicate good
performance. As presented in Tables 8 and o,
both mean and median values were above 0.7,
indicating that all forecasting methodologies are
performing well and accurately, validating
performance of all forecasting models. In the
GARCH model, Volatility Performance between
0.7-1, Relative Importance ARCH Term between
0-0.4, and Relative Importance of GARCH Term
between 0.3 - 0.9, indicate good performance.

Tables 10 and 11 presented that both mean and
median values are within typical and acceptable
ranges for all three indicators, suggesting that all
forecasting methodologies are performing well
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and accurately, validating performance of all
forecasting models.

Metric

Country

Table 6: Vaccination Rate Forecasting Metrics

Prophet

SARIMA-Bidire
ctional LSTM
Double Hybrid

SARIMA-Prophet
-Bidirectional

LSTM Triple
Hybrid

Mean Mean: 0.273440346 0.269496 0.246185113 0.197624417 0.04688918
Absolute .
Error (MAE) Median: 0.2801870395 0.264832 0.190341017 0.091510384 0.008675794
Mean Mean: 0.147081 0.185847 0.184565242 0.12681021 0.022887863
S d E
qu?;Z,SE)rror Median: 0.104444003 0.161433 0.076258508 0.0723305005 0.0000841
Root Mean Mean: 0.333789454 0.321616 0.298212928 0.210208282 0.053976834
S d E
qlE;iSE;ror Median: 0.327567389 0.322921 0.31088121 0.187344609 0.009161993
Mean: 0.197672158 0.172476 0.093079818 0.111602614 0.10330825
Entropy -
Median: 0.157320015 0.181081 0.02683001 0.0245333975 0.02033074

Table 7: Case Fatality Rate Forecasting Metrics

SARIMA-Bidi
rectional

SARIMA-Prophet-B

Metric Country Prophet idirectional LSTM

LSTM Double

London Journal of Engineering Research

Hybrid

Triple Hybrid

Mean Absolute Mean: 0.423921554 0.240282 0.243192654 0.240685426 0.059632661461538
Error (MAE) Median: 0.271977023 0.211509 0.206126957 0.163648243 0.033323647
Mean Squared Mean: 0.430524623 0.225626 0.165527034 0.147206818 0.008526044
Error (MSE) Median: 0.106648124 0.213829 0.0766076 0.062206746 0.001274246
Root Mean Mean: 0.500104124 0.275272 0.271744391 0.303519309 0.063672814
S d E
qlzzgf/[SE;ror Median: 0.326569872 0.273384 0.2643577545 0.258133644 0.037807365
Entro Mean: 0.199711931 0.19532 0.083534021 0.042455902 0.034290933
Py Median: 0.217112239 0.193974 0.0327498355 0.009875701 0.0095256035

Table 8: Isolation Forest: Anomaly Detection for Vaccination Rate

Isolation Forest-Anomaly Detection Results (Vaccination Rate Forecasting)

Country Precision Recall F1 Score
United States 0.957 0.739 0.8007
Austria 0.9117 0.8159 0.9772
Serbia 0.7469 0.9786 0.8216
Canada 0.9969 0.8121 0.7191
Belgium 0.7331 0.9941 0.8332
Bulgaria 0.7079 0.8811 0.7067
Czechia 0.9397 0.8437 0.7551
Denmark 0.9514 0.8081 0.7378
Estonia 0.7033 0.9454 0.9022
Finland 0.8061 0.8942 0.7076
France 0.7569 0.9209 0.7978
Iceland 0.7113 0.7931 0.7926
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Ireland 0.8135 0.8411 0.7034
Ttaly 0.7614 0.8705 0.8592
Latvia 0.7289 0.8352 0.786
Luxembourg 0.7961 0.7753 0.8538
Netherlands 0.7212 0.7771 0.9907
Portugal 0.8517 0.9156 0.8336
Romania 0.9704 0.7877 0.7137
Slovakia 0.7616 0.904 0.9632
Slovenia 0.8737 0.7902 0.7825
Spain 0.8443 0.868 0.9747
Sweden 0.8305 0.7749 0.973
Switzerland 0.9417 0.7178 0.7002
United Kingdom 0.915 0.8303 0.8497
Cyprus 0.8723 0.9244 0.7774
Mean: 0.8309 0.8476 0.8197
Median: 0.822 0.8382 0.7993

Table 9: Isolation Forest: Anomaly Detection for Case Fatality Rate

Isolation Forest-Anomaly Detection Results (Case Fatality Rate Forecasting)

Country Precision Recall F1 Score
United States 0.8875 0.7503 0.857
Austria 0.926 0.7301 0.8791
Serbia 0.9929 0.8165 0.8089
Canada 0.797 0.9341 0.7126
Belgium 0.9709 0.7439 0.8172
Bulgaria 0.7817 0.9051 0.9914
Czechia 0.9896 0.9788 0.7884
Denmark 0.8408 0.9157 0.7323
Estonia 0.8036 0.8121 0.8191
Finland 0.9038 0.8677 0.8376
France 0.8538 0.9745 0.7094
Iceland 0.9427 0.9422 0.9627
Ireland 0.8745 0.7822 0.769
Italy 0.9391 0.907 0.9095
Latvia 0.9576 0.9067 0.7518
Luxembourg 0.8179 0.7254 0.996
Netherlands 0.747 0.8287 0.8018
Portugal 0.7876 0.918 0.8372
Romania 0.8899 0.752 0.7196
Slovakia 0.9771 0.9905 0.9455
Slovenia 0.921 0.9264 0.7131
Spain 0.7366 0.9903 0.7089
Sweden 0.7791 0.9988 0.8754
Switzerland 0.8953 0.7339 0.7227
United Kingdom 0.7583 0.7996 0.8798
Cyprus 0.9981 0.7523 0.7227
Mean: 0.8757 0.8609 0.818
Median: 0.8887 0.8864 0.8131
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Table 10: GARCH: Volatility Detection for Vaccination Rate

GARCH-Volatility Detection Results (Vaccination Rate Forecasting)

Volatility Relative Importance of ARCH Relative Importance of
Persistence Term GARCH Term
United States 0.8282 0.2504 0.852
Austria 0.7063 0.1871 0.6404
Serbia 0.8652 0.3208 0.8104
Canada 0.8244 0.026 0.8845
Belgium 0.714 0.0902 0.4021
Bulgaria 0.7451 0.1982 0.3019
Czechia 0.8241 0.1447 0.5649
Denmark 0.7312 0.0737 0.3504
Estonia 0.8505 0.069 0.6422
Finland 0.7691 0.2895 0.4325
France 0.7524 0.1025 0.4491
Iceland 0.8171 0.063 0.63
Ireland 0.7553 0.0197 0.8928
Ttaly 0.7087 0.2201 0.3192
Latvia 0.7707 0.1126 0.7709
Luxembourg 0.7432 0.1899 0.4111
Netherlands 0.7774 0.0394 0.5235
Portugal 0.75 0.0377 0.7828
Romania 0.8011 0.0934 0.3291
Slovakia 0.7535 0.0961 0.6822
Slovenia 0.7218 0.2805 0.3256
Spain 0.7524 0.3012 0.4183
Sweden 0.7409 0.1956 0.8429
Switzerland 0.7716 0.1138 0.4444
United
Kingdom 0.8017 0.0097 0.7839
Cyprus 0.7527 0.3958 0.6299
Mean: 0.7703 0.1511 0.5814
Median: 0.7544 0.1132 0.5974

Table 11: GARCH: Volatility Detection for Case Fatality Rate

GARCH-Volatility Detection Results (Case Fatality Rate Forecasting)

Country Volatility Relative Importance of ARCH Relative Importance of
Persistence Term GARCH Term
United States 0.7459 0.055 0.5546
Austria 0.7973 0.295 0.6177
Serbia 0.7003 0.1989 0.4148
Canada 0.7955 0.0907 0.5704
Belgium 0.837 0.1485 0.5992
Bulgaria 0.7926 0.1119 0.4248
Czechia 0.8525 0.2854 0.815
Denmark 0.8412 0.0142 0.5472
Estonia 0.7639 0.2216 0.5843
Finland 0.7499 0.1335 0.3002
France 0.8511 0.2473 0.8511
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Iceland 0.7068 0.2207 0.3123
Ireland 0.7093 0.3246 0.6198
Italy 0.8087 0.0608 0.8999
Latvia 0.7109 0.0828 0.3823
Luxembourg 0.8555 0.3423 0.6214
Netherlands 0.8424 0.1738 0.3842
Portugal 0.809 0.216 0.7016
Romania 0.7274 0.1294 0.3674
Slovakia 0.8668 0.1789 0.4596
Slovenia 0.846 0.3062 0.7968
Spain 0.8044 0.3552 0.3832
Sweden 0.7273 0.3213 0.602
Switzerland 0.7126 0.3562 0.6668
United Kingdom 0.8057 0.3061 0.5669
Cyprus 0.7119 0.356 0.3568
Mean: 0.7835 0.2128 0.5539
Median: 0.7964 0.2184 0.5687

3.5 Vaccination Inflection Point Score Results

Vaccination Inflection Point score was developed
to categorize countries based on their actual time
to achieving secondary vaccination inflection
point, representing the time of the most
significant CFR reduction post vaccination.
Countries were categorized into three groups
with scores 1, 2, and 3, with a score of 1 indicating
the country needing the shortest amount of time
to reach their secondary vaccination inflection
point.

Table 12 and Figure 7 present the distribution of
countries per VIP score. This data indicates that
the majority of countries (53.8%) reached the
SVIP between 300-370 days (score 2). While
there is a broad range in the achieved vaccination
rates across different countries, the median
values show numerically higher vaccination rates
in the countries with the shortest time to SVIP,
score 1 (72.75%), over score 2 (71.75%), and score
3 countries (62%).

Table 12: Distribution of Countries per SVIP Score

Distribution of Countries @ Of. Vaccination
Countries Rate Range
) < 300 Denmark, Belgium, Iceland, Ireland, 23.10% 63.8-76%.
Netherlands, UK (6) median 72.75%
US, Serbia, Canada, Bulgaria, Estonia,
Finland, France, Italy, Luxemburg, 28-89%.
2 3007370 Portugal, Spain, Swe}(;en, Switzerlind, 53.80% median(')71.75%
Cyprus (14)
3 5370 Austria, Czechia, Latvia, Romania, 23.10% 41.6-75.1%.
Slovakia, Slovenia (6) median 62%
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Percentage of Countries Per Days to reach SVIP

@ Less than 300
days

@ Between 300 and
370 days

@ Longer than 370
days

Figure 7: Percentage of Countries per days to reach SVIP

V. DISCUSSION

The significant negative impact of the COVID-19
pandemic highlighted the need for better
preparedness of countries and more sophisticated
tools to guide the efforts of public health officials
and governments. A wealth of data collected
during the COVID-19 pandemic and advanced Al
methodologies are allowing researchers to
expand our collective knowledge and guide these
efforts. This paper builds on the research that
highlighted the importance of the non-pandemic
predictors in the assessment of pandemic risk
[35]. It expands into pandemic predictors and
utilizes COVID-19 actual data to refine
forecasting tools for future outbreaks. This
research was conducted to identify the
vaccination inflection points and the time needed
to reach the critical cumulative vaccination rate
thresholds to observe continuous decrease of the
case fatality rates. It was conducted both at the
aggregate and country levels, signaling the
turnaround point in the pandemic.

The analysis of the actual COVID-19 historical
data shows that all of the countries, in aggregate,
had the highest fatality rates during the first year
of the pandemic. Implementation of the
pandemic measures, such as masks, social
distancing, school and workplace lockdowns, and
testing, had a significant impact on the initial
lowering of the case fatality rates. With the
introduction of first vaccines in December of
2020, the case fatality rates decreased even
further, often reflected as steep downward slopes

in graphs. Several types of vaccines were
available at the time of the initial vaccination:
genetically engineered messenger RNA, viral
vector vaccines, and protein subunit vaccine [63].
The initial vaccinations were delivered as single
dose or 2-dose vaccines, followed by single dose
booster vaccines to improve already established
immunity. The first booster dose was approved
for use in the third quarter of 2021, followed by
two in 2022, and one in 2023, for a total of four
booster doses, in developed countries [16]. As of
today, there are approximately 40 different
vaccines that were approved by regulatory
agencies for full emergency use authorization
across different countries [36].

In the dataset used for this research, 65% of
countries started their vaccination efforts in
December 2020, and 35% started in January
2021. On average, looking at the mean values, the
time to reach the primary vaccination inflection
point, the first reduction in the case fatality rate
post vaccination, was on day 83.27 at the
vaccination rate of 31%. The secondary
vaccination inflection point, representing the
most significant and continuous CFR drop post
vaccination, was reached at day 339.31 at the
average vaccination rate of 67.8%. All four
parameters had a very large range, signalizing the
presence of outliers. Median values indicate a
shorter time to reach the PVIP (57.5 days), lower
vaccination rate at PVIP (6.05%), a longer time to
reach the SVIP (355.5 days) and a higher overall
vaccination rate at SVIP (771.25%). Countries with
the mid-level GDP per capita implemented their

Reaching Pandemic Milestones with Country Primary and Secondary Vaccination Inflection Points: An Assessment of Foundational and

Hybrid Forecasting Methodologies
© 2024 Great Britain Journals Press



vaccination campaigns in the most successful
way, securing the shortest times to reach both
vaccination inflection points looking at both
mean and median values. Regarding the
individual countries, Finland was the first
country to reach the PVIP in only 15 days with the
vaccination rate of 1.1%, while Romania had the
longest wait, reaching the PVIP in 367 days with
a vaccination rate of 27.8%. The UK observed the
most significant CFR reduction (SVIP) in the
shortest amount of time in 161 days (vaccination
rate 63.8%), while Romania reached the same
point in 560 days (vaccination rate 41.6%). The
highest vaccination rate at SVIP was achieved in
Portugal (89%) on November 16, 2021. The SVIP
score was developed to categorize countries based
on their actual time to achieving secondary
vaccination inflection point. The majority of
countries reached the SVIP between 300-370
days, while the countries with the lowest score
(shorter time to SVIP) had the highest median
vaccination rates. This tool can help with the
interpretation of changes in the dynamics of the
pandemic.

Looking specifically at the US (Supplement Table
S1), PVIP was achieved after 94 days
post-vaccination, at a vaccination rate of 24.8%
and CFR of 1.8%. The most significant reduction
in CFR (SVIP) was achieved at 363 days after the
vaccination start date or 269 days after the PVIP
date. The vaccination threshold at the SVIP was
70.3% with the CFR of 1.59%. The CFR reduced
from 1.82 at the time of start of vaccination to
1.59 at the time when it reached the SVIP. In
most countries, including the US, priority for
COVID-19 vaccination was given to health care
workers, residents and personnel of long-term
care facilities, elderly patients, and patients with
certain comorbidities. The US was grouped with
Switzerland, Luxembourg, and Ireland in the
high GDP per capita countries (>$50,000).
Within this group, the US was the first country to
start the vaccination campaign; however, it
needed a longer time than other countries to
reach both vaccination inflection points. These
results were most likely influenced by the impact
of widespread anti-vaccine campaigns, scientific
misinformation, and overall lack of readiness of

certain parts of the population to support
government efforts [21, 22, 23].

It is important to recognize that the impact of
vaccination is dependent on many factors, such
as speed of implementation of the campaign,
availability of vaccines, acceptance of the vaccine
by the targeted population, and others. The direct
impact of vaccination at the population level will
often lag and the data may show some initial
misalignment that can be explained. For
example, the most significant reduction in CFR in
the US was observed in December 2021, signaling
the turnaround of the pandemic in the US, with
the steady decline of the ratio of total infections
and death cases. However, in the next few
months in 2022 there was a significant increase
in new infections and deaths [20]. While the
vaccination rate in the US at that time was
reaching 70%, it can be assumed that the increase
in new cases was caused by several factors, such
as the delay in immunity development post
vaccination, breakthrough infections, lack of
booster vaccination, higher vulnerability of the
unvaccinated population, relaxation of pandemic
measures and, most significantly, the emergence
of new variants with limited immunity coverage
from existing vaccines (e.g., omicron variant
BA.2.86 that emerged in Nov of 2021).

To understand the findings and applications of
this research, it is important to examine the
potential variables that may have influenced the
results. This research indicates that there are four
most important factors that influence the
vaccination, and the case fatality rates in any
country. Two are non-pandemic variables (not
immediately influenced by the pandemic):
percentage of people in the population who are
65 years of age or older, and the life expectancy of
the population. An additional two variables are
pandemic variables: percentage of people who
had a confirmed COVID-19 infection with testing,
and the level and scope of the pandemic
measures that were implemented. The final
ranking order of importance of the four variables
was: stringency_index, aged_65_older, life
expectancy, and positive_rate. It would be
expected that the same factors would be the most
important in a potential new pandemic as well,
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due to the increased vulnerability of the elderly
and sick patient populations to any infectious
disease, and the importance of the infection
transmission rates and the speed of
implementation of response measures. Simply
put, if the vaccines were available at the outbreak
of COVID-19 and campaigns were implemented
fast in targeted populations, the world would not
have a pandemic. This is critical learning
highlighting the need to take care of the most
vulnerable parts of the populations and
implementing appropriate procedures for testing,
vaccination, and other public health measures.

This research may have been influenced by the
inherited challenges of the vaccination process.
Published literature highlights the challenges
introduced by the disparity in the distribution of
COVID-19 vaccines, where the majority of the
vaccines were initially delivered to high — and
upper middle-income countries vs lower-income
countries [64]. This was evident by the
differences in times to first vaccination inflection
point, demonstrating that lower-income
countries had a higher case fatality rate and
needed a longer time to observe the CFR
reduction as a result of vaccinations, than the
higher-income countries. Lack of availability of
sufficient doses of vaccines, less organized
execution of vaccine campaigns, including the
order of vaccination (elderly and
immunocompromised population) may have also
influenced the results across countries. In
addition, factors affecting vaccination acceptance,
confidence in safety and efficacy and the risk of
side effects, preference for natural immunity,
scientifically sounding misinformation, as well as
different cultures and political systems, also
played a role in the observed vaccination
patterns, spread of infection, and mortality of
COVID-19 [65, 66, 67, 68, 69, 70].

All foundational forecasting methodologies
utilized in this research (ARIMA, Prophet, and
LSTM) showed good accuracy and precision, with
only small numerical differences in results,
relative to the actual values. They performed well
and continue to be a true foundational platform
for time series forecasting. Utilization of
enhancement features to improve limitations of

foundational models is already an established
approach, and customizing enhancement based
on specificities of data allows for more robust
analyses. Combining models into hybrids of
foundational or foundational with enhancement
models is a newer approach requiring validation.
The two hybrid forecasting models (double
hybrid: SARIMA-Bidirectional LSTM, and triple
hybrid: SARIMA-Prophet- Bidirectional LSTM)
utilized in this research are both novel models
and their validation was conducted by comparing
them to foundational models alone, to each other,
and to the actual historical data. They both
performed well with high accuracy and precision,
and better than the foundational models.

However, the performance and accuracy of the
triple hybrid SARIMA- Prophet-Bidirectional
LSTM model was superior to other models. In
addition, the anomaly and volatility detection
analyses, conducted using Isolation Forest and
GARCH models, validated performance of all
forecasting  methodologies, reporting all
indicators within the typical and acceptable
ranges. In summary, all foundational and hybrid
models used for forecasting showed comparable
results at the primary and secondary vaccination
inflection timepoints and performed with high
accuracy relative to the actual data. The best
performance was observed with the novel triple
hybrid SARIMA-Prophet-Bidirectional LSTM,
indicating that hybrid models, combining models
with enhanced capabilities, can result in higher
accuracy and greater sophistication in analysis.
Ability to predict the vaccination inflection point
and measure its immediate, as well as the most
pronounced impacts, allows for a deeper
understanding of the dynamics between the
vaccination and case fatality rates. In addition, it
is important to remember that the data for this
research was trained based on the specificities of
the COVID-19 pandemic. For the use of these
forecasting models for future pandemics, they
may need to be re-trained with the data specific
to the new pandemic.

The results of this research can guide countries in
the assessment of the pandemic risk and inform
public health policy makers in creating measures
to minimize the impact of any potential infectious
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disease pandemic on the people, environment,
and socio-economic systems. It is determined
that countries can achieve a maximum
vaccination rate of 70% with milder measures,
and that 90% can be reached only with strict
mandates imposed by governments [71]. This
highlights the need to plan, organize and execute
efficient vaccination campaigns, and improve
surveillance and monitoring to substantially
reduce morbidity and mortality and avoidance of
breakdown of health care systems in countries to
control potential new pandemics [72, 73, 74, 75,

76, 77,78, 79, 80].

V. CONCLUSION AND FUTURE
RESEARCH

In conclusion, the research conducted in this
paper will add to the knowledge base in the areas
of machine and deep learning, and public health.
It demonstrates that the novel hybrid time series
forecasting models, combining foundational
models with enhanced features, provides better
performance and higher accuracy over traditional
foundational models. The performance and
accuracy of the triple hybrid SARIMA-Prophet-
Bidirectional LSTM model was superior to other
models and was successfully validated with
anomaly and volatility detection analyses. In
addition, it shows that 42% of countries had seen
an immediate effect of vaccination in <50 days,
and 23.1% of countries reached the most
pronounced impact in <300 days, suggesting the
need for improvements. Applying advanced Al
methodologies to forecast time to country specific
vaccination inflection points, and assessing the
vaccination rates relative to the case fatality rates,
can provide another useful tool to guide countries
in their pandemic risk preparedness.

This paper has several limitations that can be
utilized to guide further research, such as: (1)
inherited limitations and variabilities of the
vaccination campaigns in different countries
(supply, distribution, new variants reducing the
effectiveness of current vaccines; (2) differences
in the health system infrastructures, speed and
scope of implementation of other pandemic
measures across countries; (3) limitations of the
Our Word In Data dataset (e.g., size,

completeness, and accuracy, due to the voluntary
data reporting and possible underreporting of
infection and death cases; and (4) selection of
machine and deep learning methodologies and
enhancements.
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