
London Journal of Engineering Research

Volume 2   | Issue    | Compilation 1.0

LJP Copyright ID: 392941

Online ISSN: 2631-8482
Print ISSN: 2631-8474

4 3

Reaching Pandemic Milestones with Country
Primary and Secondary Vaccination Inflection
Points: An Assessment of Foundational and

Hybrid Forecasting Methodologies
Marco M. Vlajnic & Steven J. Simske

Colorado State University

The devastating worldwide impact of the COVID-19 pandemic created a need to better understand the

effects of vaccination on case fatality rates (CFR) in a pandemic setting. Foundational time series

forecasting models (ARIMA, Prophet, LSTM) and novel hybrid models (SARIMA-Bidirectional LSTM

and SARIMA-Prophet-Bidirectional LSTM) were compared for performance and accuracy to forecast

vaccination inflection points for 26 countries. Correlation analyses demonstrated that stringency index,

age 65 and older, life expectancy, and positive test rate, are factors correlating the most with the

vaccination and case fatality rates. The primary vaccination inflection point was reached at 83.27 days

(15-367 days), at the vaccination rate of 13.1% (0.1% - 50%), with 42% of countries seeing the initial

impact in <50 days.

The secondary vaccination inflection point (SVIP) was reached at 339.31 days (161-560 days) at the

cumulative vaccination rate of 67.8% (28% - 89%), with 23.1% of countries reaching it in < 300 days,

73% in the second half of 2021, and 27% in early 2022.

Classification: LCC Code: HB1-3840

Language: English

© 2024. Marco M. Vlajnic & Steven J. Simske. This is a research/review paper, distributed under the terms of the Creative Commons
Attribution- Noncom-mercial 4.0 Unported License http://creativecommons.org/licenses/by-nc/4.0/), permitting all noncommercial
use, distribution, and reproduction in any medium, provided the original work is properly cited.

Index Terms: COVID-19, primary vaccination inflection point, secondary vaccination inflection point,

ARIMA, prophet, LSTM, double hybrid, triple hybrid, SARIMA-bidirectional LSTM,

SARIMA-prophet-bidirectional LSTM.





Reaching Pandemic Milestones with Country
Primary and Secondary Vaccination Inflection
Points: An Assessment of Foundational and

Hybrid Forecasting Methodologies
Marco M. Vlajnicα & Steven J. Simskeσ

____________________________________________

ABSTRACT

The devastating worldwide impact of the

COVID-19 pandemic created a need to better

understand the effects of vaccination on case

fatality rates (CFR) in a pandemic setting.

Foundational time series forecasting models

(ARIMA, Prophet, LSTM) and novel hybrid

models (SARIMA-Bidirectional LSTM and

SARIMA-Prophet-Bidirectional LSTM) were

compared for performance and accuracy to

forecast vaccination inflection points for 26

countries. Correlation analyses demonstrated

that stringency index, age 65 and older, life

expectancy, and positive test rate, are factors

correlating the most with the vaccination and

case fatality rates. The primary vaccination

inflection point was reached at 83.27 days

(15-367 days), at the vaccination rate of 13.1%

(0.1% - 50%), with 42% of countries seeing the

initial impact in <50 days.

The secondary vaccination inflection point

(SVIP) was reached at 339.31 days (161-560

days) at the cumulative vaccination rate of

67.8% (28% - 89%), with 23.1% of countries

reaching it in < 300 days, 73% in the second half

of 2021, and 27% in early 2022. The highest

vaccination rate was achieved in Portugal (89%)

and the lowest in Bulgaria (28%). All assessed

machine and deep learning methodologies

performed with high accuracy relative to

COVID-19 historical data, demonstrated strong

forecasting value, and were validated by

anomaly and volatility detection analyses. The

novel triple hybrid model performed the best

and had the highest accuracy across all

performance metrics. Countries prioritizing the

health of elderly and frail populations and

utilizing AI technology will be better prepared

for any future pandemic.

Index Terms: COVID-19, primary vaccination

inflection point, secondary vaccination inflection

point, ARIMA, prophet, LSTM, double hybrid,

triple hybrid, SARIMA-bidirectional LSTM,

SARIMA-prophet-bidirectional LSTM.

Author α, σ: Systems Engineering Department,

Colorado State University, Engineering Building Suite

202, 400 Isotope Dr, Fort Collins, Colorado,

80523-6029 United States of America.

I. INTRODUCTION

COVID-19 is an infectious disease, caused by the

Severe Acute Respiratory Syndrome Coronavirus

2 (SARS-CoV-2) characterized by high morbidity

and mortality, and a significant burden on

hospital systems and country economies. Over

the last three years, the COVID-19 virus infected

over 300 million people, caused death for

approximately seven million people [1], and had a

negative impact of $3.8 trillion on economies

around the world. At the end of 2023, COVID-19

is still present with different virus mutations

continuing to cause infections and deaths across

the world [2, 3, 4].

The experience with the COVID-19 pandemic

demonstrated the inadequate levels of

preparedness across countries. Two thirds of

world countries have a good capacity for public

health threat surveillance and analytics in order

to drive policy and planning. However, half of the

countries have a limited capacity to

systematically monitor care, including the impact

of vaccination [5]. Both surveillance and
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monitoring are needed to adequately plan and

prepare for possible infectious disease outbreaks

with novel viruses [6, 7, 8, 9, 10, 11, 12, 13].

Vaccination is an effective way to obtain

individual and herd immunity [14]. When the

herd immunity threshold is reached, naturally or

through vaccination, it creates an environment

that is sufficient to control large outbreaks,

reduce the number of infected individuals and

possible deaths, protect vulnerable individuals in

the society, and relax other public health

measures [15]. There are many factors that

influence a success of a vaccination campaign,

such as availability of vaccine supply (e.g. speed

of development, level of demand, difficulties with

production and distribution of vaccines

worldwide), vaccination strategy outlining

priority groups for vaccination, and population

acceptance of vaccination (e.g. anti-vaccination

movement).

The vaccination efforts for COVID-19 started in

December of 2020 for most of the countries in

the world. There were several types of vaccines

that were available: genetically engineered

messenger RNA, viral vector, and protein subunit

vaccines. The initial vaccinations from 2020 were

followed with booster doses in 2021, 2022 and

2023, for a total of four booster doses, specifically

in developed countries [16]. Understanding the

impact of vaccination campaigns, the correlation

of vaccination rates, incidence of COVID-19, and

mortality rates was researched over the last two

years. The results confirmed that successful

vaccination efforts (e.g. availability of vaccines,

public acceptance, strong government programs,

etc.) can significantly reduce the negative effects

of the COVID-19 pandemic, with a sharp decrease

in the fatality rate [17, 18, 19]. Some researchers

were able to define the vaccination threshold,

identifying that a mean level of administering

about 80 doses of vaccines per 100 inhabitants

can sustain a reduction of confirmed cases and

number of deaths [11], or when the mean

cumulative vaccination rate reaches 29.06 doses

per 100 people and 7.88 doses per 100 people,

respectively, for spread and mortality [19]. Many

researchers also looked at the sentiment around

vaccination. Attitudes toward COVID-19 and

vaccination, conspiracy beliefs, misconceptions,

and complaints about COVID-19 control, were

documented as dominant sentiments [21, 22, 23].

Researchers used data from different sources

(local, national, and global registries) and

different time frames (e.g., periods of 3 or 6

months post initial vaccination).

Diverse research methodologies were applied to

increase sensitivity of analyses and achieve more

accurate results, such as neural networks with cut

effect [17], Augmented Artificial Neural Network

Model for the COVID-19 Mortality Prediction

relative to the vaccination rates [24]; Deep

Learning Sequence Models for Forecasting

COVID-19 Spread and Vaccinations with two

recurrent neural network-based approaches,

LSTM and GRU [25]; amalgamation of neural

network with two powerful optimization

algorithms, firefly algorithm and artificial bee

colony based feed-forward neural networks to

look at the effect of vaccinated population on the

COVID-19 prediction [26]; and a multi-path long

short term memory (LSTM) neural network for

COVID-19 forecasting of new viral variants and

vaccination [27]. Other researchers explored

other models, structured and unstructured

machine learning (ML) models [22], structural

topic modeling [23], Latent Dirichlet Allocation

(LDA) [28], deep learning and NLP [29, 30].

Cheng applied newly developed ARIMA models

to improve the accuracy of weekly COVID-19 case

growth rates and forecast COVID-19 spread

according to protective behavior and vaccination

[31]. Dhamodharavadhani and colleagues used

hybrid models to forecast the vaccination rate,

such as HARIMA, a hybrid of ARIMA and

HGRNN, a hybrid of Generalized Regression

Neural Network and the Gaussian Process

Regression model [32]. Yi-Tui Chen and

colleagues explored the effect of vaccination

patterns and vaccination rates on the spread and

mortality of the COVID-19 pandemic [19], and

Kumar utilized the recurrent neural network

(RNN) Convolutional Residual Network

(RNNCON-Res) [33].

Nicholson and colleagues used both supervised

and unsupervised methodologies to identify the

critical county-level factors for studying COVID-
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19 propagation prior to the widespread

availability of a vaccine [40].

Published research has increased collective

knowledge and has answered many questions.

With limitations of every research, availability of

more data and novel methodologies, there is a

need and a responsibility to continue to expand

the knowledge around pandemic vulnerability

that can allow for better understanding of the

dynamics of vaccination, infection rates and

mortality.

This research was conducted to identify the

vaccination inflection points and the time needed

to reach the critical cumulative vaccination rate

thresholds to observe continuous decrease of the

case fatality rates. It was conducted both at an

aggregate and at the country level. COVID-19

historical data was utilized to develop models

that can be used for future pandemics. Applying

advanced AI methodologies to forecast time to

country specific vaccination inflection points, and

assessing the vaccination rates relative to the case

fatality rates, can provide another useful tool to

guide countries in their pandemic risk

preparedness.

II. MATERIALS AND METHODS

2.1 Data

This research utilized data from the Oxford

University Our World in Data Covid 19 Dataset.

This dataset contains data points collected on an

ongoing basis from Johns Hopkins University,

Center for Systems Science and Engineering

COVID-19 data, European Centre for Disease

Control, and OXFORD COVID-19 Government

Response Tracker, from January 2020 to the

present. The original dataset contains data from

207 countries and territories from which 26

countries were selected for this research: United

States, Canada, Italy, Ireland, Finland, Iceland,

Denmark, Belgium, Sweden, United Kingdom,

Switzerland, Slovenia, Austria, Portugal, France,

Netherlands, Luxembourg, Spain, Romania,

Latvia, Cyprus, Estonia, Czechia, Slovakia,

Serbia, and Bulgaria. Data for this research paper

was accessed and downloaded on Dec 30, 2022

[35], and this longitudinal dataset was used from

the period of December 2020, when most of the

countries in the research dataset started

vaccinating their population, to December 30,

2022.

The analyses in this research used 16 variables.

Table 1 presents the 14 variables that represent

the actual values from the research dataset. Two

additional variables, case fatality rate and

vaccination rate, were derived. The case fatality

rate (CFR), an epidemiologic metric defined as

the proportion of deaths within an observed

population of interest [34], was calculated by

dividing the respective values in the total deaths

column by the total cases column of the dataset,

for each of the 26 countries. The vaccination rate

was calculated by dividing the number of people

vaccinated (with at least one dose) by the total

population of each country, for each of the 26

countries.

For a more meaningful interpretation of the data

variables used to assess the correlation with the

vaccination and CFR rates, data variables were

organized into novel public health
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Table 1: Public Health Indices definitions from the Our World in Data metadata file [20]

Population Health Index (PHI) Pandemic Sensitivity Index (PSI)

cardiovasc death rate: death rate from the

cardiovascular disease in 2017 (annual

number of deaths per 100,000 people)

stringency_index: Government response stringency

index: composite measure based on 9 response

indicators including school and workplace closures, and

travel bans.

diabetes prevalence: Diabetes prevalence (%

of population aged 20 to 79) in 2017

positive_rate: The share of COVID-19 tests that are

positive given as a rolling 7-day average

female smokers: Share of women who smoke,

most recent years available

hosp_ patients: Number of COVID-19 patients in

hospital on a given day

male smokers: Share of men who smoke,

most recent years available

icu_patients: Number of COVID-19 patients in intensive

care unit (ICUs) on a given day

life_expectancy: Life expectancy at birth in

2019

reproduction_ rate: Real time estimate of the effective

reproduction rate of COVID-19

aged 65 or older: Share of the population that

is 65 years or older, most recent years

available

total_cases: Total confirmed cases of COVID-19

median age: Median age of the population,

UN projection for 2020
total_deaths: Total deaths attributed to COVID-19

indices, the Population Health Index, PHI [35],

and Pandemic Sensitivity Index, PSI (Table 1).

The PHI contains the parameters that describe

the health of the population such as:

cardiovascular death rate, diabetes prevalence,

female smokers, male smokers, life expectancy,

age 65 and older, and median age. The PSI Index

represents variables that are directly impacted by

the pandemic, such as total COVID-19 cases and

deaths, number of COVID-19 hospital and ICU

admissions, Government response stringency

index (a composite measure based on nine

response indicators including school and

workplace closures, and travel bans),

reproduction rate of transmission of COVID-19,

and positivity rate of COVID-19.

This research was conducted to identify the

vaccination inflection points and the time needed

to reach the critical cumulative vaccination rate

thresholds to observe continuous decrease of the

case fatality rates. It was conducted both at an

aggregate and at the country level. To

accommodate for the peaks and troughs of the

case fatality rate curves, the vaccination inflection

points were assessed at two different timepoints.

The first vaccination inflection time point,

primary vaccination inflection point (PVIP) was

assessed from the vaccination start date to the

date of the first CFR drop post vaccination. The

secondary vaccination inflection point (SVIP) was

assessed from the vaccination start date to the

steepest, most significant CFR decline post

vaccination. It represents the time point when the

cumulative vaccination rate reached a critical

threshold showing a continuous decrease of the

case fatality rate, signaling the turnaround in the

pandemic. Table 2 provides an overview of

descriptions of critical variables used in this

research relative to the vaccination inflection

point. COVID-19 historical data was utilized to

develop models that can be used for future

pandemics.

In this research, it was assumed that all vaccines

produced by different technologies and

manufacturers have the same effectiveness. It

was also assumed that distribution of different

vaccines in different countries includes a

combination of initial two-dose and single-dose

vaccines and single dose booster vaccines over

the two-year period (Dec 2020-Dec 2022). Since

all vaccines require approximately two weeks to

produce immunity, the effect of performance of

vaccines on CFR was examined two weeks after

the start of vaccination.

Several types of vaccines were available at the

time of the initial vaccination: genetically

engineered messenger RNA Pfizer/BioNTech and

Moderna, viral vector vaccines (Janssen/Johnson
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& Johnson and University of

Oxford/AstraZeneca, Sputnik V), protein subunit

vaccine (Novavax, Sinovac). The initial

vaccinations in 2020 were delivered, in most

cases, in sets of 2-doses, with a 3-week period in

between (Pfizer/BioNTech, Moderna, Sinovac,

Sputnik V). Some initial vaccines were delivered

as a single dose vaccine (J&J, AZ/Oxford).

Consequently, booster doses were delivered as

single dose vaccines, starting in the third quarter

of 2021 (Sep 2021 in the US, Oct/Nov 2021 in the

EU) and continuing in 2022 (approved boosters

in Mar and Sep 2022 in the US) and 2023

(approved in Sep 2023 in US and EU), for a total

of four booster doses [16]. Today there are

approximately 40 COVID-19 vaccines that were

approved by regulatory agencies for full

emergency use authorization. Of those 40, 16

have full authorization in only one country, 12 in

ten or fewer countries, and 12 in more than 10

countries [36]. Emergence of new variants may

be a challenge for the vaccines, reducing their

protective power with the transmissibility of new

variants substantially higher than the

pre-existing SARS-CoV-2 variants. Booster dose

vaccines were introduced to boost the protection

power of vaccines and help the individuals with

weakened immune systems. Efficacy of most

vaccines range from 70-95%, mainly against

symptomatic disease [37, 38]. All countries from

this dataset (26 countries) are classified in three

categories relative to their GDP per capita

(>$50,000, $35,000-$50,000, and <$35,000)

[20]. Table 3 summarizes the distribution of

countries. This research was solely conducted by

using publicly available data.

Table 2: Description of derived variables used for vaccination inflection point analyses
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Variables Description

vaccination start date first documented date when vaccination started at the country level

CFR at vaccination start Case fatality rate at the time on the 1st day of vaccination

CFR + 14 days
case fatality rate at the time when initial immunity from vaccination

should be developed

vaccination rate at CFR +14 days vaccination rate at the time of initial immunity

Primary vaccination inflection

point (PVIP)

date when the first case fatality rate reduction is observed post

vaccination, measured on the day of the 1st CFR peak post vaccination

+ one day

CFR at PVIP
case fatality rate at PVIP, measured on the day of the 1st CFR peak

post-vaccination + one day

vaccination rate at PVIP
vaccination rate at the PVIP, measured as the vaccination rate on the

day of the 1st CFR peak post vaccination + one day

Secondary vaccination inflection

point (SVIP)

date when the most significant CFR reduction is observed post

vaccination, measured on the day of the CFR peak that is followed by

the most significant and continuous CFR reduction post vaccination +

one day

CFR at SVIP

case fatality rate at the SVIP, measured as the CFR rate on the day of

CFR peak that is followed by the most significant CFR reduction post

vaccination + one day

vaccination rate at SVIP

vaccination rate at the SVIP, measured as the vaccination rate on the

day of the CFR peak that is followed by the most significant CFR

reduction post vaccination + one day

Table 3: Distribution of countries based on GDP per capita

GDP per Capita Country Distribution

> 50,000 Ireland, Luxembourg, Switzerland, United States

35,000-50,000
Austria, Belgium, Canada, Denmark, Finland, France, Iceland, Italy, Netherlands,

Sweden, United Kingdom.

< 35,000
Bulgaria, Cyprus, Czechia, Estonia, Latvia, Portugal, Romania, Serbia, Slovakia,

Slovenia, Spain.



2.2 Methodologies

Data utilized in this research was pre-processed

by assigning the original time series dataset to

training and testing datasets temporally. For each

country, the training set included data from the

beginning of the pandemic (March 1, 2020) until

a few weeks post vaccination start. The testing set

included the remaining data post vaccination

until the end of the dataset (December 30, 2022).

Data cleaning was conducted by resolving the

problem of missing and duplicate values,

resolving data inconsistencies, removing outliers,

and smoothing variables used for forecasting

(vaccination_rate and case_fatality_rate),

including all exogeneous variables (stringency_

index, aged_65_older, life_expectancy, and

positive_rate). Smoothing was conducted by

using a window of seven days to remove all noisy

data. The current day value was calculated using

the mean of the previous seven days for each

variable. In this type of dataset, it is common that

some data is missing, both at random and not at

random. For this research, it was important that

the data on the total number of cases and deaths

was complete since it was used to derive the case

fatality rates. This missing data was resolved by

taking the mean values of the total number of

cases and deaths from the previous day and the

next day. Other missing data was managed in a

similar manner. Data quality assessments

(completeness, reliability, consistency, validity,

and no redundancy) were also completed.

Exploratory Data Analysis was conducted by

exploring graphs and visuals in order to observe

trends over time of the vaccination and case

fatality rates for each country.

Three foundational forecasting methodologies

were applied: Autoregressive Integrated Moving

Average (ARIMA), Prophet, and Long-Short

Term Memory (LSTM) models. These models

were then enhanced and combined to develop

novel double and triple hybrids, SARIMA-

Bidirectional LSTM and SARIMA-Prophet-

Bidirectional LSTM models. They were used to

forecast the primary and secondary vaccination

inflection points (PVIP and SVIP) relative to the

case fatality rates, for each of the 26 countries. All

machine learning and deep learning analyses

were done using Python version 3.10.1 and the

scikit-learn library version 1.2.0 [39]. In addition,

the novel Vaccination Inflection Point Score was

developed, and countries were classified

according to the score.

2.2.1 Correlation Analysis

The correlation analysis was performed using

Ordinary Least Squares Multifactor Regression

Methodology to identify the top four variables

that correlate the most with vaccination and case

fatality rates for implementation into forecasting

methodologies. These analyses were performed

as an aggregate analysis of 14 variables that were

assessed for correlation with vaccination and case

fatality rates. All variables were used for the

correlation assessment with the vaccination rate.

Two variables, total_cases and total_deaths were

not used in the assessment of the case fatality

correlation since the CFR is a ratio of these two

variables. In order to derive the list of the top

four variables most correlated with both

vaccination and case fatality rates together, the

ranking order was assessed across both target

variables (vaccination and case fatality rates).

2.2.2 Foundational Forecasting Methodologies

Baseline forecasting methodologies were selected

based on literature search, model strengths and

limitations.

A. Autoregressive Integrated Moving Average

(Arima)

ARIMA (Autoregressive Integrated Moving

Average) model is selected for its characteristics

of being well-suited for forecasting time series

data that exhibits trends and seasonality. It is

deemed to be effective in forecasting a variety of

real-world phenomena, which has good

applicability for COVID-19, showing greater

flexibility, accuracy, interpretability, and

robustness. The parameters of the ARIMA model

are defined as follows: p is the lag order, which

represents the number of lag observations

incorporated in the model, d is the degree of

differencing, which denotes the number of times

raw observations undergo differencing, and q is
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the order of the moving average, which indicates

the size of the moving average window [41].

B. Prophet

The Facebook Prophet algorithm is an

open-source software developed by Facebook’s

core Data Science Team. If the time series data

has strong seasonal effects, this model works the

best. It is a regression model for forecasting,

specifically designed to forecast time series data

that exhibits trends, seasonality, and coverage for

holidays. It is also fast and scalable, and similar

to ARIMA, this model is interpretable, robust,

flexible, and accurate [42].

C. Long Short-Term Memory (LSTM)

LSTM Model is a neural network model that can

learn long-term dependencies in time series data,

handle nonstationary and noisy data, as well as

leverage additional features. It is also accurate,

flexible, and scalable [43, 83].

1) Double Hybrid Forecasting Model: Sarima-

Bidirectional LSTM

Review of published literature showcases the use

of different forecast models and enhancements in

COVID-19 research, demonstrating better

accuracy and performance in forecasting by

hybrid models. For example, ARIMA-LSTM

hybrid model was used to predict future

COVID-19 transmissions in China where

ARIMA-LSTM model was paralleled by weight of

regression coefficient performing better than

ARIMA alone [45]; the same group also looked at

COVID-19 prediction using data from Germany

and Japan and utilized three enhanced hybrid

models: PSO-LSTM-ARIMA, MLR-LSTM-

ARIMA, and BPNN-LSTM-ARIMA. The research

showed that BPNN-LSTM-ARIMA had the best

prediction accuracy [46]. Priya and colleagues

compared time series forecasting models utilizing

ARIMA, Facebook Prophet, Holt-Winters Model,

and Hybrid ARIMA-ANN (to take advantage of

the unique characteristics of ARIMA and ANN

models in linear and nonlinear modeling). The

Hybrid model showed better accuracy and root

mean square error [47]; Morais looked at

forecasting daily Covid-19 cases with a hybrid

ARIMA and neural network model to capture the

linear and non-linear structures of daily Covid-19

cases (MLP-ARIMA) [48]; and Nawi researched a

hybrid ARIMA-SVM model [49]. Borges looked

at COVID-19 ICU demand forecasting utilizing

Prophet-LSTM approach vs a stand-alone

approach in Brazil, confirming better

performance of the hybrid model [50], and Long

researched an efficient forecasting tool for

Monkeypox outbreak in the US using ARIMA,

Prophet, Neural Prophet, stacking model, and

LSTM models. NeuralProphet achieved the

optimal performance [51]. In addition, Guha, in

his paper, presented two recurrent neural

network-based approaches to predict the daily

confirmed COVID-19 cases, daily total positive

tests and total individuals vaccinated using LSTM

and gated recurrent unit (GRU) [25]; Shastri

looked at time series forecasting of Covid-19

using deep learning models: the recurrent neural

network based variants of long-short term

memory (LSTM) such as Stacked LSTM,

Bi-directional LSTM and Convolutional [52];

Devaray utilized ARIMA, LSTM, Stacked LSTM

(SLSTM) and Prophet approaches [53]; Zhenyu

Li researched convolutional neural network

combined with the stacked long-short-term-

memory network model (CNN-Stack BiLSTM)

[54]. The Stacked LSTM (SLSTM) model was also

researched by Maaliw [55] and Ali, who also use

the bidirectional enhancement to create a stacked

Bi-directional long short-term memory (Stacked

Bi-LSTM) network that forecasts COVID-19 more

accurately [56]. Sah compared different

COVID-19 forecasting models, Prophet, ARIMA,

LSTM, and stacked LSTM-GRU models

demonstrating better prediction results with the

hybrid stacked LSTM-GRU model [57]. Other

researchers looked at the Ensemble Empirical

Mode Decomposition and Deep Learning creating

an EEMD-LSTM hybrid model [58] and EEMD

method with the Autoregressive Integrated

Moving Average Exogenous inputs (ARIMAX)

method, which they called EEMD-ARIMAX [59].

Hybrid models for this research were selected

based on the literature search, strengths, and

limitations of the individual components for

forecasting performance, available enhancements
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to address limitations, and for their specific

complementary characteristics that land them

well for hybrid application. SARIMA-

Bidirectional LSTM hybrid model combines the

strengths of two powerful forecasting techniques,

ARIMA enhanced with a seasonality component

(the S) in SARIMA and enhancing the LSTM

model to analyze data in both directions

(Bidirectional component). This hybrid combines

a linear and non-linear model, benefits from

forecasting time series data that exhibits trends

and seasonality and at the same time, an ability

to learn long-term dependencies in time series

data, as well as capture both forward and

backward dependencies. SARIMA-Bidirectional

LSTM complements the strength of each model

and is expected to achieve better forecasting

accuracy than either model individually [44].

2) Triple Hybrid Forecasting Model: Sarima-

Prophet-Bidirectional LSTM

The triple hybrid SARIMA-Prophet-Bidirectional

LSTM forecasting model enhances the previously

mentioned hybrid model with a Facebook

Prophet forecasting model that is specifically

designed to forecast time series data that exhibits

trends, seasonality, and holidays. The new triple

hybrid combines the strengths of all three

forecasting techniques with an ability to capture

short-, medium-, and long-term dependencies,

handle non-stationary and noisy data, and

leverage additional features. Due to the

complementary nature of the hybrid model

components and a better fit for the data being

researched, it would be expected that the new

models would achieve better forecasting accuracy

than either model individually.

3) Accuracy and Performance Assessment

Accuracy and performance assessment was

conducted across all the models (foundational

and hybrid models) evaluating vaccination and

case fatality rates: Mean Absolute Error (MAE),

Mean Squared Error (MSE), Root Mean Squared

Error (RMSE) and Entropy, relative to the actual

data. In addition, the accuracy of the forecasting

results of each model was compared with actual

historical data from the Our World in Data

dataset, specifically, to the actual time needed to

reach the vaccination inflection points for each

country.

4) Anomaly and Volatility Analyses

Anomaly and Volatility analysis and assessments

were conducted across all-time series analysis

and forecasting models utilizing Isolation Forest

and Generalized Autoregressive Conditional

Heteroskedasticity (GARCH) models, both

well-studied in this field. These methodologies

were selected based on the review of published

literature that showcase their good performance

as well as being valuable algorithms for anomaly

and volatility detection in the context of

COVID-19 vaccination forecasting [60]. The

results obtained upon performing anomaly and

volatility detection were used to select the best

performing model for forecasting the time to

COVID-19 vaccination inflection point for each

country.

A. Isolation Forest

The last part of the research was focused on the

assessment of anomaly and volatility detection

analysis across the time series analysis models.

These analyses were conducted to identify

unusual or unexpected patterns in data, to

prevent overfitting, improve the accuracy,

performance, and reliability of machine learning

models and complex systems. It is often used in

Systems Engineering to detect unusual activity in

system logs, performance bottlenecks in systems,

and anomalous patterns in system data and to

improve overall reliability, efficiency, and

security of complex systems. The first algorithm

used in this research is Isolation Forest.

Isolation Forest can detect anomalies in an

unsupervised manner. This model is used to

compare the accuracy of different forecasting

models and considered to be efficient, scalable,

and robust to outliers. It works by randomly

selecting features and splitting values to create

partitions of the data. This process is repeated

until isolation of the anomalies. It is particularly

well-suited for high-dimensional data, which is

the case with COVID-19 vaccination data, which

includes features such as vaccination rate, case
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fatality rate, population density, and

socio-economic factors. It is also relatively

insensitive to outliers, which can be a problem for

other anomaly detection algorithms. Isolation

Forest can be used to detect anomalies in the

vaccination and case fatality rates. This can be

useful for identifying periods where the

vaccination and CFR rate are significantly higher

or lower than expected, adjusting, or improving

the forecasts for the vaccination inflection point

[61].

Isolation Forest measured three parameters:

Precision, Recall, and F1-score. Precision

measures the proportion of detected anomalies

that are actually true anomalies, where high

precision (closer to 1) is very accurate in its

anomaly detections, with few false positives. A

good threshold for Isolation Forest is 0.7 or

higher. Recall measures the proportion of true

anomalies that are correctly identified by the

model, high recall (closer to 1) means the model

is sensitive and can capture most anomalies. A

good threshold for Isolation Forest is 0.7 or

higher. F1-score combines precision and recall

into a single metric, balancing their trade-off. A

high F1-score (closer to 1) indicates a good

balance between precision and recall, suggesting

a reliable anomaly detector. Isolation Forest

results at 0.7 or higher for all parameters are

considered to be good results [61].

B. Generalized Autoregressive Conditional

Heteroskedasticity (Garch)

The second algorithm used to compare the

accuracy of different forecasting models is the

Generalized Autoregressive Conditional Heteros-

kedasticity (GARCH) model. The GARCH model

is a powerful tool employed to capture and model

volatility patterns in the residuals. This model

considers the conditional variance and accounts

for the time-varying volatility and is especially

well suited for time-series analysis, which is the

case with COVID-19 vaccination and case fatality

rate data.

The GARCH model was used to forecast the

volatility of the COVID-19 vaccination and CFR

rate. This helped to identify periods where the

vaccination and CFR rates are likely to increase

or decrease more rapidly than expected. If the

model detects anomalies, this could indicate that

the vaccination and CFR rates are not following

the expected patterns [62].

Isolation Forest and GARCH models are both

well-suited for anomaly and volatility detection,

respectively, in the context of COVID-19

vaccination inflection point forecasting. They are

both efficient, important for anomaly and

volatility detection in large datasets, and robust

to outliers. This can be a problem in COVID-19

vaccination data due to factors such as data entry

errors and reporting delays. These models are

also flexible, due to ease of adaptation to a variety

of different anomaly detection tasks. The GARCH

model also has several limitations, such as

sensitivity to the choice of parameters, less robust

performance for very short time series datasets,

and the inability to capture all types of anomalies.

The GARCH model measures three parameters:

Volatility Persistence, Relative Importance of

ARCH Term, and Relative Importance of GARCH

Term. Volatility Persistence represents the degree

to which shocks to volatility persist over time,

with an acceptable range between 0.7 and

1. Values below 1 are considered

acceptable, ensuring stationarity of the volatility

process. However, values closer to or exceeding 1,

indicate stronger persistence, meaning shocks

have longer-lasting impacts on volatility and

might suggest issues like integrated volatility or

model misspecification. The range that is typical

and acceptable for Relative Importance of ARCH

Term is 0 to 0.4. Relative Importance of GARCH

Term captures the persistence of volatility shocks

over time with an acceptable range of 0.3 to 0.9

[62].

1. Vaccination Inflection Point Score

Vaccination Inflection Point score was developed

to categorize countries based on their actual time

to achieving secondary vaccination inflection

point, representing the time of the most

significant CFR reduction post vaccination, and

therefore, identifying the critical threshold

signaling the turnaround in the pandemic.

Countries were categorized into three groups
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corresponding to scores 1, 2, and 3, with a score

of 1 indicating that the country needed the

shortest amount of time to reach their secondary

vaccination inflection point. This tool can help

with the interpretation of changes in the

pandemic dynamic, serve as a learning tool for

the importance of the contribution of vaccination

to achieving faster herd immunity, and improving

the overall pandemic risk of countries.

III. RESULTS

3.1 Correlation Analysis Results

The correlation analysis was performed using

Ordinary Least Squares Multifactor Regression

Methodology. These analyses were performed as

aggregate analysis with 14 variables. The

correlation was assessed first with the

vaccination rate as the target variable, followed

by the case fatality rate. The top four variables

most correlated with vaccination rate were:

stringency_index, life_expectancy, positive_

rate, and total_deaths. The top four variables for

the case fatality rate were: stringency_index,

aged_65_older, life_expectancy, and positive_

rate. The top four variables that are the most

correlated with both vaccination and case fatality

rates together were derived by using the ranking

order of variables across both vaccination and

case fatality rates. The final ranking order of the

four variables was: stringency_index, aged_

65_older, life_expectancy, and positive_ rate,

representing the exogeneous variables that were

used in the primary and secondary vaccination

inflection point forecasting analyses. The

stringency index and positive rate were variables

representing the PSI index and aged 65 and older

and life expectancy represented the PHI index.
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Figure 1: Correlation Analysis for Vaccination Rate (Aggregate Analysis)



Figure 2: Correlation Analysis for Case Fatality Rate (Aggregate Analysis)

3.2 Forecasting Analysis Results
The summary of the conducted analyses is

presented in Table 4, first as an aggregate and

then per GDP per capita category (>$50,000,

$35,000-$50,000, and <$35,000). Overall, all

countries started their vaccination campaigns

within the 43 days, starting with Latvia on

December 4, 2020, and ending with the UK

starting on January 10, 2021. Countries with the

higher GDP initiated their vaccination efforts

faster than the other countries (15 days vs 26 and

35 days), however, countries with the mid-range

GDPs reached the PVIP and SVIP faster than the

other two groups, with high and low GDP per

capita. PVIP was reached in 37.5 days vs 76 and

131.7 days, and SVIP in 299.2 days vs 336.5 and

380.4 days.

Similar results were observed when median

numbers were used, with the mid-range GDP

countries again performing better, with the

shortest time needed to reach both PVIP (34 days

vs 80.5 and 82 days) and SVIP (316 days vs 343.5

and 365 days), and with the highest achieved

vaccination rate (74.7% vs 70.6% and 63.3%), for

GDP mid-range, high-range, and low-range

respectively. Overall, all countries reached an

average vaccination rate of 67.8% (mean) and

71.25% (median) at the time they observed the

significant CFR drop post-vaccination (SVIP).

The highest vaccination rate was achieved in

Portugal (89%) and the lowest in Bulgaria (28%).

Analysis of vaccinations by age group in Our

World in Data (except for three countries)

showed similar distribution by age [20]. The

elderly population (60-70, 70-80, and 80+ years

of age) achieved the highest vaccination rates in

all, but three countries (Latvia, Romania, and

Bulgaria), followed by the middle age group

(18-24, 25-59). The smallest vaccination rates

were observed in the youngest age group (0-17).

The data for the US and UK were not available in

the Our World in Data dataset, however, data

from official government sites demonstrated the

same patterns observed with the rest of the

countries [81, 82], supplement Tables S10, S11,

and S12. There were no official records available

for Serbia at the time of this research. This

confirms earlier statements that most countries

prioritize elderly and frail populations in their

vaccination campaigns. Looking at the countries

based on their GDP per capita grouping, the

mid-range group on average achieved higher

vaccination rates of the elderly population than

the countries with higher and lower GDP per

capita. These findings support the better

performance of the countries in the mid-range
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GDP group, demonstrating the importance of

prioritizing the needs of the elderly population

(age 65 and older and life expectancy) in a

pandemic setting. It should be assumed that

other factors, such as acceptance and robustness

of the vaccination campaign and vaccination

mandates imposed by governments played a

significant role as well [71].

Table 5 presents the ranking order of the

countries based on the time to reach SVIP. The

UK observed the SVIP in the shortest amount of

time, at 161 days (CFR 3.3%, vaccination rate

63.8%), while Romania reached the same point in

560 days (CFR 2.2%, vaccination rate 41.6%).

Supplemental Tables (Table S1, S2A-B, S3A-B)

present all results of all forecasting models, the

three foundational (ARIMA, PROPHET, LSTM)

and the two hybrid forecasting models (double

hybrid: SARIMA-Bidirectional LSTM, and triple

hybrid: SARIMA-Prophet-Bidirectional LSTM).

The baseline data for each country, as well as the

actual historical data from the COVID-19

pandemic are also documented in these

supplemental tables.

Table 4: Summary of Results Across 26 Countries

*PVIP: Primary vaccination inflection point

**SVIP: Secondary vaccination inflection point

Table 5: Ranking of the Countries based on the Time to Reach SVIP

Rank Country
Time (days) to

reach SVIP

Vaccination

start date

Date SVIP

reached

Vaccination

rate at SVIP

1 United Kingdom 161 days Jan 10 2021 Jun 20 2021 63.88%

2 Iceland 201 days Dec 30 2020 Jul 19 2021 71.64%

3 Denmark 274 days Dec 8 2020 Sep 8 2021 73.99%

4 Belgium 292 days Dec 28 2020 Oct 16 2021 74.77%

5 Netherlands 293 days Jan 8 2021 Oct 28 2021 69.99%

6 Ireland 296 days Dec 28 2020 Oct 20 2021 76.58%

7 Italy 316 days Dec 27 2020 Nov 8 2021 79.32%

8 Portugal 319 days Jan 1 2021 Nov 16 2021 89.10%

9 France 323 days Dec 27 2020 Nov 15 2021 76.88%

10 Switzerland 329 days Dec 21 2020 Nov 15 2021 66.42%

11 Finland 333 days Jan 3 2021 Dec 2 2021 77.16%

12 Spain 337 days Jan 4 2021 Dec 7 2021 80.84%

13 Cyprus 353 days Jan 6 2021 Dec 25 2021 71.53%

14 Sweden 358 days Jan 3 2021 Dec 27 2021 72.39%

15 Luxembourg 358 days Dec 28 2020 Dec 21 2021 70.99%

16 Serbia 361 days Jan 8 2021 Jan 4 2022 48.20%

17 Estonia 362 days Dec 27 2020 Dec 24 2021 63.29%

18 United States 363 days Dec 13 2020 Dec 11 2021 70.30%
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19 Bulgaria 365 days Dec 29 2020 Dec 29 2021 28.08%

20 Canada 370 days Dec 14 2020 Dec 19 2021 81.80%

21 Austria 371 days Dec 27 2020 Jan 2 2022 75.10%

22 Czechia 372 days Dec 27 2020 Jan 3 2022 65.12%

23 Slovenia 374 days Dec 27 2020 Jan 5 2022 59.07%

24 Slovakia 386 days Jan 3 2021 Jan 24 2022 45.73%

25 Latvia 395 days Dec 4 2020 Jan 3 2022 71.06%

26 Romania 560 days Dec 27 2020 Jul 10 2022 41.64%

In the dataset used for this research, 65% of

countries started their vaccination efforts in

December 2020, and 35% started in January

2021. The primary vaccination inflection point

representing the first observed reduction in the

CFR post vaccination was reached at 83.27 days

(mean, range 15-367 days), with 42% of countries

seeing the initial impact in less than 50 days,

38.4% in 50-100 days, and 19.2% above 100 days

(Figure 3). This reduction was achieved with the

initial vaccination rate of 31.1% (mean, range

0.1% to 50%), with 27% of countries reaching the

vaccination rate of >25%, 15.3% reaching the rate

between 11-25%, and 57.7% reaching the rate of

<10% (Figure 4). Finland observed the fastest

PVIP in only 15 days (CFR 1.6%, vaccination rate

of 1.1%), while Romania had the longest wait to

first reduction at 367 days (CFR 3.2%,

vaccination rate 27.8%).

The secondary vaccination inflection point

(SVIP), representing the most significant

reduction in CFR post vaccination, signaling the

start of the continuous CFR reduction and

turnaround in the pandemic, was reached at

339.31 days (mean, range 161-560 days), with

23.1% of countries observing this impact in less

than 300 days, 53.8% from 300-370 days, and

23.1% in more than 370 days (Figure 5). This

reduction was achieved with the cumulative

vaccination rate of 67.8% (mean, range 8%-89%),

with 50% of countries reaching the vaccination

rate between 50-75% (Figure 6). Most of the

countries reached a significant drop in the CFR in

2021 (73%), out of which 61.5% reached it in the

4
th

quarter of 2021, 11.5% in the 3
rd

quarter of

2021, and 27% in early 2022. The highest

vaccination rate at this inflection point was

achieved in Portugal (89%) on November 16,

2021.

Figure 3: Percentage of Countries Reaching PVIP Per Time Category
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Figure 4: Percentage of Countries Per Vaccination Rate Categories (PVIP)

Figure 5: Percentage of Countries Reaching SVIP Per Time Category
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Figure 6: Percentage of Countries Per Vaccination Rate Categories (SVIP)

Overall, at the time of the SVIP, all countries with

the exception of three, showed a reduction in the

CFRs relative to the CFRs at the beginning of the

vaccination. The highest CFR at the time of the

SVIP was in Bulgaria (4.1%), followed by the UK

(3.32%), and Italy (2.75%). Belgium and Romania

had the CFRs that were > 2.0%, and the

remaining countries had the CFRs <2.0%. The

lowest CFRs were documented in Cyprus (0.42%)

and Iceland (0.45%). Bulgaria, Latvia and

Slovakia had the CFRs at the SVIP that were

higher than the CFR at the vaccination start date,

however, all three countries showed a reduction

in the CFRs from the PVIP to the SVIP, indicating

a positive impact of the vaccination.

3.3 Accuracy and Performance Assessment
Accuracy and performance assessment was

conducted across all the models (foundational

and hybrid models) evaluating vaccination and

case fatality rates: Mean Absolute Error (MAE),

Mean Squared Error (MSE), Root Mean Squared

Error (RMSE) and Entropy, relative to the actual

data. Tables 6-7 showcase the mean and median

results for all calculated metrics indicating the

superior performance of the triple hybrid model

SARIMA-Prophet- Bidirectional LSTM.

3.4 Anomaly and Volatility Analysis Results
Anomaly and Volatility analysis and assessments

were conducted across all time-series-analysis

and forecasting models utilizing Isolation Forest

and Generalized Autoregressive Conditional

Heteroskedasticity (GARCH) models. In the

Isolation Forest model, precision, recall, and

F1-score values above 0.7 indicate good

performance. As presented in Tables 8 and 9,

both mean and median values were above 0.7,

indicating that all forecasting methodologies are

performing well and accurately, validating

performance of all forecasting models. In the

GARCH model, Volatility Performance between

0.7-1, Relative Importance ARCH Term between

0-0.4, and Relative Importance of GARCH Term

between 0.3 - 0.9, indicate good performance.

Tables 10 and 11 presented that both mean and

median values are within typical and acceptable

ranges for all three indicators, suggesting that all

forecasting methodologies are performing well
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and accurately, validating performance of all

forecasting models.

Table 6: Vaccination Rate Forecasting Metrics

Table 7: Case Fatality Rate Forecasting Metrics

Metric Country ARIMA Prophet LSTM

SARIMA-Bidi

rectional

LSTM Double

Hybrid

SARIMA-Prophet-B

idirectional LSTM

Triple Hybrid

Mean Absolute

Error (MAE)

Mean: 0.423921554 0.240282 0.243192654 0.240685426 0.059632661461538

Median: 0.271977023 0.211509 0.206126957 0.163648243 0.033323647

Mean Squared

Error (MSE)

Mean: 0.430524623 0.225626 0.165527034 0.147206818 0.008526044

Median: 0.106648124 0.213829 0.0766076 0.062206746 0.001274246

Root Mean

Squared Error

(RMSE)

Mean: 0.500104124 0.275272 0.271744391 0.303519309 0.063672814

Median: 0.326569872 0.273384 0.2643577545 0.258133644 0.037807365

Entropy
Mean: 0.199711931 0.19532 0.083534021 0.042455902 0.034290933

Median: 0.217112239 0.193974 0.0327498355 0.009875701 0.0095256035

Table 8: Isolation Forest: Anomaly Detection for Vaccination Rate

Isolation Forest-Anomaly Detection Results (Vaccination Rate Forecasting)

Country Precision Recall F1 Score

United States 0.957 0.739 0.8007

Austria 0.9117 0.8159 0.9772

Serbia 0.7469 0.9786 0.8216

Canada 0.9969 0.8121 0.7191

Belgium 0.7331 0.9941 0.8332

Bulgaria 0.7079 0.8811 0.7067

Czechia 0.9397 0.8437 0.7551

Denmark 0.9514 0.8081 0.7378

Estonia 0.7033 0.9454 0.9022

Finland 0.8061 0.8942 0.7076

France 0.7569 0.9209 0.7978

Iceland 0.7113 0.7931 0.7926

Metric Country ARIMA Prophet LSTM

SARIMA-Bidire

ctional LSTM

Double Hybrid

SARIMA-Prophet

-Bidirectional

LSTM Triple

Hybrid

Mean

Absolute

Error (MAE)

Mean: 0.273440346 0.269496 0.246185113 0.197624417 0.04688918

Median: 0.2801870395 0.264832 0.190341017 0.091510384 0.008675794

Mean

Squared Error

(MSE)

Mean: 0.147081 0.185847 0.184565242 0.12681021 0.022887863

Median: 0.104444003 0.161433 0.076258508 0.0723305005 0.0000841

Root Mean

Squared Error

(RMSE)

Mean: 0.333789454 0.321616 0.298212928 0.210208282 0.053976834

Median: 0.327567389 0.322921 0.31088121 0.187344609 0.009161993

Entropy
Mean: 0.197672158 0.172476 0.093079818 0.111602614 0.10330825

Median: 0.157320015 0.181081 0.02683001 0.0245333975 0.02033074

L
on

d
on

 J
ou

rn
al

 o
f 

E
n

gi
n

ee
ri

n
g 

R
es

ea
rc

h

©2024 Great Britain Journals PressVolume 24 | Issue 3 | Compilation 1.016

Reaching Pandemic Milestones with Country Primary and Secondary Vaccination Inflection Points:  An Assessment of Foundational and
Hybrid Forecasting Methodologies



Ireland 0.8135 0.8411 0.7034

Italy 0.7614 0.8705 0.8592

Latvia 0.7289 0.8352 0.786

Luxembourg 0.7961 0.7753 0.8538

Netherlands 0.7212 0.7771 0.9907

Portugal 0.8517 0.9156 0.8336

Romania 0.9704 0.7877 0.7137

Slovakia 0.7616 0.904 0.9632

Slovenia 0.8737 0.7902 0.7825

Spain 0.8443 0.868 0.9747

Sweden 0.8305 0.7749 0.973

Switzerland 0.9417 0.7178 0.7002

United Kingdom 0.915 0.8303 0.8497

Cyprus 0.8723 0.9244 0.7774

Mean: 0.8309 0.8476 0.8197

Median: 0.822 0.8382 0.7993

Table 9: Isolation Forest: Anomaly Detection for Case Fatality Rate

Isolation Forest-Anomaly Detection Results (Case Fatality Rate Forecasting)

Country Precision Recall F1 Score

United States 0.8875 0.7503 0.857

Austria 0.926 0.7301 0.8791

Serbia 0.9929 0.8165 0.8089

Canada 0.797 0.9341 0.7126

Belgium 0.9709 0.7439 0.8172

Bulgaria 0.7817 0.9051 0.9914

Czechia 0.9896 0.9788 0.7884

Denmark 0.8408 0.9157 0.7323

Estonia 0.8036 0.8121 0.8191

Finland 0.9038 0.8677 0.8376

France 0.8538 0.9745 0.7094

Iceland 0.9427 0.9422 0.9627

Ireland 0.8745 0.7822 0.769

Italy 0.9391 0.907 0.9095

Latvia 0.9576 0.9067 0.7518

Luxembourg 0.8179 0.7254 0.996

Netherlands 0.747 0.8287 0.8018

Portugal 0.7876 0.918 0.8372

Romania 0.8899 0.752 0.7196

Slovakia 0.9771 0.9905 0.9455

Slovenia 0.921 0.9264 0.7131

Spain 0.7366 0.9903 0.7089

Sweden 0.7791 0.9988 0.8754

Switzerland 0.8953 0.7339 0.7227

United Kingdom 0.7583 0.7996 0.8798

Cyprus 0.9981 0.7523 0.7227

Mean: 0.8757 0.8609 0.818

Median: 0.8887 0.8864 0.8131
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Table 10: GARCH: Volatility Detection for Vaccination Rate

GARCH-Volatility Detection Results (Vaccination Rate Forecasting)

Country
Volatility

Persistence

Relative Importance of ARCH

Term

Relative Importance of

GARCH Term

United States 0.8282 0.2504 0.852

Austria 0.7063 0.1871 0.6404

Serbia 0.8652 0.3208 0.8104

Canada 0.8244 0.026 0.8845

Belgium 0.714 0.0902 0.4021

Bulgaria 0.7451 0.1982 0.3019

Czechia 0.8241 0.1447 0.5649

Denmark 0.7312 0.0737 0.3504

Estonia 0.8505 0.069 0.6422

Finland 0.7691 0.2895 0.4325

France 0.7524 0.1025 0.4491

Iceland 0.8171 0.063 0.63

Ireland 0.7553 0.0197 0.8928

Italy 0.7087 0.2291 0.3192

Latvia 0.7707 0.1126 0.7709

Luxembourg 0.7432 0.1899 0.4111

Netherlands 0.7774 0.0394 0.5235

Portugal 0.75 0.0377 0.7828

Romania 0.8011 0.0934 0.3291

Slovakia 0.7535 0.0961 0.6822

Slovenia 0.7218 0.2805 0.3256

Spain 0.7524 0.3012 0.4183

Sweden 0.7409 0.1956 0.8429

Switzerland 0.7716 0.1138 0.4444

United

Kingdom
0.8017 0.0097 0.7839

Cyprus 0.7527 0.3958 0.6299

Mean: 0.7703 0.1511 0.5814

Median: 0.7544 0.1132 0.5974

Table 11: GARCH: Volatility Detection for Case Fatality Rate

GARCH-Volatility Detection Results (Case Fatality Rate Forecasting)

Country
Volatility

Persistence

Relative Importance of ARCH

Term

Relative Importance of

GARCH Term

United States 0.7459 0.055 0.5546

Austria 0.7973 0.295 0.6177

Serbia 0.7003 0.1989 0.4148

Canada 0.7955 0.0907 0.5704

Belgium 0.837 0.1485 0.5992

Bulgaria 0.7926 0.1119 0.4248

Czechia 0.8525 0.2854 0.815

Denmark 0.8412 0.0142 0.5472

Estonia 0.7639 0.2216 0.5843

Finland 0.7499 0.1335 0.3002

France 0.8511 0.2473 0.8511



3.5 Vaccination Inflection Point Score Results

Vaccination Inflection Point score was developed

to categorize countries based on their actual time

to achieving secondary vaccination inflection

point, representing the time of the most

significant CFR reduction post vaccination.

Countries were categorized into three groups

with scores 1, 2, and 3, with a score of 1 indicating

the country needing the shortest amount of time

to reach their secondary vaccination inflection

point.

Table 12 and Figure 7 present the distribution of

countries per VIP score. This data indicates that

the majority of countries (53.8%) reached the

SVIP between 300-370 days (score 2). While

there is a broad range in the achieved vaccination

rates across different countries, the median

values show numerically higher vaccination rates

in the countries with the shortest time to SVIP,

score 1 (72.75%), over score 2 (71.75%), and score

3 countries (62%).

Table 12: Distribution of Countries per SVIP Score

SVIP

Score

Days to

SVIP
Distribution of Countries

% of

Countries

Vaccination

Rate Range

1 < 300
Denmark, Belgium, Iceland, Ireland,

Netherlands, UK (6)
23.10%

63.8-76%.

median 72.75%

2 300-370

US, Serbia, Canada, Bulgaria, Estonia,

Finland, France, Italy, Luxemburg,

Portugal, Spain, Sweden, Switzerland,

Cyprus (14)

53.80%
28-89%.

median 71.75%

3 >370
Austria, Czechia, Latvia, Romania,

Slovakia, Slovenia (6)
23.10%

41.6-75.1%.

median 62%
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Iceland 0.7068 0.2207 0.3123

Ireland 0.7093 0.3246 0.6198

Italy 0.8087 0.0608 0.8999

Latvia 0.7109 0.0828 0.3823

Luxembourg 0.8555 0.3423 0.6214

Netherlands 0.8424 0.1738 0.3842

Portugal 0.809 0.216 0.7016

Romania 0.7274 0.1294 0.3674

Slovakia 0.8668 0.1789 0.4596

Slovenia 0.846 0.3062 0.7968

Spain 0.8044 0.3552 0.3832

Sweden 0.7273 0.3213 0.602

Switzerland 0.7126 0.3562 0.6668

United Kingdom 0.8057 0.3061 0.5669

Cyprus 0.7119 0.356 0.3568

Mean: 0.7835 0.2128 0.5539

Median: 0.7964 0.2184 0.5687



Figure 7: Percentage of Countries per days to reach SVIP

IV. DISCUSSION

The significant negative impact of the COVID-19

pandemic highlighted the need for better

preparedness of countries and more sophisticated

tools to guide the efforts of public health officials

and governments. A wealth of data collected

during the COVID-19 pandemic and advanced AI

methodologies are allowing researchers to

expand our collective knowledge and guide these

efforts. This paper builds on the research that

highlighted the importance of the non-pandemic

predictors in the assessment of pandemic risk

[35]. It expands into pandemic predictors and

utilizes COVID-19 actual data to refine

forecasting tools for future outbreaks. This

research was conducted to identify the

vaccination inflection points and the time needed

to reach the critical cumulative vaccination rate

thresholds to observe continuous decrease of the

case fatality rates. It was conducted both at the

aggregate and country levels, signaling the

turnaround point in the pandemic.

The analysis of the actual COVID-19 historical

data shows that all of the countries, in aggregate,

had the highest fatality rates during the first year

of the pandemic. Implementation of the

pandemic measures, such as masks, social

distancing, school and workplace lockdowns, and

testing, had a significant impact on the initial

lowering of the case fatality rates. With the

introduction of first vaccines in December of

2020, the case fatality rates decreased even

further, often reflected as steep downward slopes

in graphs. Several types of vaccines were

available at the time of the initial vaccination:

genetically engineered messenger RNA, viral

vector vaccines, and protein subunit vaccine [63].

The initial vaccinations were delivered as single

dose or 2-dose vaccines, followed by single dose

booster vaccines to improve already established

immunity. The first booster dose was approved

for use in the third quarter of 2021, followed by

two in 2022, and one in 2023, for a total of four

booster doses, in developed countries [16]. As of

today, there are approximately 40 different

vaccines that were approved by regulatory

agencies for full emergency use authorization

across different countries [36].

In the dataset used for this research, 65% of

countries started their vaccination efforts in

December 2020, and 35% started in January

2021. On average, looking at the mean values, the

time to reach the primary vaccination inflection

point, the first reduction in the case fatality rate

post vaccination, was on day 83.27 at the

vaccination rate of 31%. The secondary

vaccination inflection point, representing the

most significant and continuous CFR drop post

vaccination, was reached at day 339.31 at the

average vaccination rate of 67.8%. All four

parameters had a very large range, signalizing the

presence of outliers. Median values indicate a

shorter time to reach the PVIP (57.5 days), lower

vaccination rate at PVIP (6.05%), a longer time to

reach the SVIP (355.5 days) and a higher overall

vaccination rate at SVIP (71.25%). Countries with

the mid-level GDP per capita implemented their
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vaccination campaigns in the most successful

way, securing the shortest times to reach both

vaccination inflection points looking at both

mean and median values. Regarding the

individual countries, Finland was the first

country to reach the PVIP in only 15 days with the

vaccination rate of 1.1%, while Romania had the

longest wait, reaching the PVIP in 367 days with

a vaccination rate of 27.8%. The UK observed the

most significant CFR reduction (SVIP) in the

shortest amount of time in 161 days (vaccination

rate 63.8%), while Romania reached the same

point in 560 days (vaccination rate 41.6%). The

highest vaccination rate at SVIP was achieved in

Portugal (89%) on November 16, 2021. The SVIP

score was developed to categorize countries based

on their actual time to achieving secondary

vaccination inflection point. The majority of

countries reached the SVIP between 300-370

days, while the countries with the lowest score

(shorter time to SVIP) had the highest median

vaccination rates. This tool can help with the

interpretation of changes in the dynamics of the

pandemic.

Looking specifically at the US (Supplement Table

S1), PVIP was achieved after 94 days

post-vaccination, at a vaccination rate of 24.8%

and CFR of 1.8%. The most significant reduction

in CFR (SVIP) was achieved at 363 days after the

vaccination start date or 269 days after the PVIP

date. The vaccination threshold at the SVIP was

70.3% with the CFR of 1.59%. The CFR reduced

from 1.82 at the time of start of vaccination to

1.59 at the time when it reached the SVIP. In

most countries, including the US, priority for

COVID-19 vaccination was given to health care

workers, residents and personnel of long-term

care facilities, elderly patients, and patients with

certain comorbidities. The US was grouped with

Switzerland, Luxembourg, and Ireland in the

high GDP per capita countries (>$50,000).

Within this group, the US was the first country to

start the vaccination campaign; however, it

needed a longer time than other countries to

reach both vaccination inflection points. These

results were most likely influenced by the impact

of widespread anti-vaccine campaigns, scientific

misinformation, and overall lack of readiness of

certain parts of the population to support

government efforts [21, 22, 23].

It is important to recognize that the impact of

vaccination is dependent on many factors, such

as speed of implementation of the campaign,

availability of vaccines, acceptance of the vaccine

by the targeted population, and others. The direct

impact of vaccination at the population level will

often lag and the data may show some initial

misalignment that can be explained. For

example, the most significant reduction in CFR in

the US was observed in December 2021, signaling

the turnaround of the pandemic in the US, with

the steady decline of the ratio of total infections

and death cases. However, in the next few

months in 2022 there was a significant increase

in new infections and deaths [20]. While the

vaccination rate in the US at that time was

reaching 70%, it can be assumed that the increase

in new cases was caused by several factors, such

as the delay in immunity development post

vaccination, breakthrough infections, lack of

booster vaccination, higher vulnerability of the

unvaccinated population, relaxation of pandemic

measures and, most significantly, the emergence

of new variants with limited immunity coverage

from existing vaccines (e.g., omicron variant

BA.2.86 that emerged in Nov of 2021).

To understand the findings and applications of

this research, it is important to examine the

potential variables that may have influenced the

results. This research indicates that there are four

most important factors that influence the

vaccination, and the case fatality rates in any

country. Two are non-pandemic variables (not

immediately influenced by the pandemic):

percentage of people in the population who are

65 years of age or older, and the life expectancy of

the population. An additional two variables are

pandemic variables: percentage of people who

had a confirmed COVID-19 infection with testing,

and the level and scope of the pandemic

measures that were implemented. The final

ranking order of importance of the four variables

was: stringency_index, aged_65_older, life_

expectancy, and positive_rate. It would be

expected that the same factors would be the most

important in a potential new pandemic as well,
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due to the increased vulnerability of the elderly

and sick patient populations to any infectious

disease, and the importance of the infection

transmission rates and the speed of

implementation of response measures. Simply

put, if the vaccines were available at the outbreak

of COVID-19 and campaigns were implemented

fast in targeted populations, the world would not

have a pandemic. This is critical learning

highlighting the need to take care of the most

vulnerable parts of the populations and

implementing appropriate procedures for testing,

vaccination, and other public health measures.

This research may have been influenced by the

inherited challenges of the vaccination process.

Published literature highlights the challenges

introduced by the disparity in the distribution of

COVID-19 vaccines, where the majority of the

vaccines were initially delivered to high – and

upper middle-income countries vs lower-income

countries [64]. This was evident by the

differences in times to first vaccination inflection

point, demonstrating that lower-income

countries had a higher case fatality rate and

needed a longer time to observe the CFR

reduction as a result of vaccinations, than the

higher-income countries. Lack of availability of

sufficient doses of vaccines, less organized

execution of vaccine campaigns, including the

order of vaccination (elderly and

immunocompromised population) may have also

influenced the results across countries. In

addition, factors affecting vaccination acceptance,

confidence in safety and efficacy and the risk of

side effects, preference for natural immunity,

scientifically sounding misinformation, as well as

different cultures and political systems, also

played a role in the observed vaccination

patterns, spread of infection, and mortality of

COVID-19 [65, 66, 67, 68, 69, 70].

All foundational forecasting methodologies

utilized in this research (ARIMA, Prophet, and

LSTM) showed good accuracy and precision, with

only small numerical differences in results,

relative to the actual values. They performed well

and continue to be a true foundational platform

for time series forecasting. Utilization of

enhancement features to improve limitations of

foundational models is already an established

approach, and customizing enhancement based

on specificities of data allows for more robust

analyses. Combining models into hybrids of

foundational or foundational with enhancement

models is a newer approach requiring validation.

The two hybrid forecasting models (double

hybrid: SARIMA-Bidirectional LSTM, and triple

hybrid: SARIMA-Prophet- Bidirectional LSTM)

utilized in this research are both novel models

and their validation was conducted by comparing

them to foundational models alone, to each other,

and to the actual historical data. They both

performed well with high accuracy and precision,

and better than the foundational models.

However, the performance and accuracy of the

triple hybrid SARIMA- Prophet-Bidirectional

LSTM model was superior to other models. In

addition, the anomaly and volatility detection

analyses, conducted using Isolation Forest and

GARCH models, validated performance of all

forecasting methodologies, reporting all

indicators within the typical and acceptable

ranges. In summary, all foundational and hybrid

models used for forecasting showed comparable

results at the primary and secondary vaccination

inflection timepoints and performed with high

accuracy relative to the actual data. The best

performance was observed with the novel triple

hybrid SARIMA-Prophet-Bidirectional LSTM,

indicating that hybrid models, combining models

with enhanced capabilities, can result in higher

accuracy and greater sophistication in analysis.

Ability to predict the vaccination inflection point

and measure its immediate, as well as the most

pronounced impacts, allows for a deeper

understanding of the dynamics between the

vaccination and case fatality rates. In addition, it

is important to remember that the data for this

research was trained based on the specificities of

the COVID-19 pandemic. For the use of these

forecasting models for future pandemics, they

may need to be re-trained with the data specific

to the new pandemic.

The results of this research can guide countries in

the assessment of the pandemic risk and inform

public health policy makers in creating measures

to minimize the impact of any potential infectious
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disease pandemic on the people, environment,

and socio-economic systems. It is determined

that countries can achieve a maximum

vaccination rate of 70% with milder measures,

and that 90% can be reached only with strict

mandates imposed by governments [71]. This

highlights the need to plan, organize and execute

efficient vaccination campaigns, and improve

surveillance and monitoring to substantially

reduce morbidity and mortality and avoidance of

breakdown of health care systems in countries to

control potential new pandemics [72, 73, 74, 75,

76, 77, 78, 79, 80].

V. CONCLUSION AND FUTURE
RESEARCH

In conclusion, the research conducted in this

paper will add to the knowledge base in the areas

of machine and deep learning, and public health.

It demonstrates that the novel hybrid time series

forecasting models, combining foundational

models with enhanced features, provides better

performance and higher accuracy over traditional

foundational models. The performance and

accuracy of the triple hybrid SARIMA-Prophet-

Bidirectional LSTM model was superior to other

models and was successfully validated with

anomaly and volatility detection analyses. In

addition, it shows that 42% of countries had seen

an immediate effect of vaccination in <50 days,

and 23.1% of countries reached the most

pronounced impact in <300 days, suggesting the

need for improvements. Applying advanced AI

methodologies to forecast time to country specific

vaccination inflection points, and assessing the

vaccination rates relative to the case fatality rates,

can provide another useful tool to guide countries

in their pandemic risk preparedness.

This paper has several limitations that can be

utilized to guide further research, such as: (1)

inherited limitations and variabilities of the

vaccination campaigns in different countries

(supply, distribution, new variants reducing the

effectiveness of current vaccines; (2) differences

in the health system infrastructures, speed and

scope of implementation of other pandemic

measures across countries; (3) limitations of the

Our Word In Data dataset (e.g., size,

completeness, and accuracy, due to the voluntary

data reporting and possible underreporting of

infection and death cases; and (4) selection of

machine and deep learning methodologies and

enhancements.
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