

CrossRef DOI of original article:

1 Electroencephalography in Determining Mood in Animals

2

3 *Received: 1 January 1970 Accepted: 1 January 1970 Published: 1 January 1970*

4

5 **Abstract**

6

7 *Index terms—*

8 **1 INTRODUCTION**

9 From the moment of their existence, animals exhibit innate and acquired behaviors. Innate behavior; is an
10 instinctive stereotyped movement pattern or reflex-type behavior that occurs due to a stimulus without the need
11 for experience (Aydemir and Bilge 2022). For example, the female animal suckling her young after pregnancy.
12 Apart from this, it is observed that animals exhibit behaviors such as the defense of the area, competition
13 behaviors, and communication in social groups.

14 It is observed that they exhibit various behaviors for temporary periods that occur under the influence of illness,
15 pain, and medication. But; as a result of factors such as anxiety and stress, they exhibit abnormal behaviors
16 such as phobia (Aydemir and Bilge 2022). Such behaviors are passed down through generations through genes
17 specific to the species.

18 In many behaviors, it can be acquired later with environmental adaptations (Aydemir and Bilge 2022).
19 Apart from the normal behavior typical of all animals species; aggression behaviors in line with environmental
20 effects such as fear, different light wavelengths, different sound frequencies, heat, stress (status-related attack,
21 intermale attack), predatory attack, idiopathic anger attack (idiopathic rage), fear-based attack (fear-induced),
22 territorial and instinctive attack (maternal), environmentally damaging behaviors, coprophagia, social behavior
23 and agonistic behaviors, urination or defecation outside the designated place, urine marking, wool (cloth) sucking,
24 abnormal behaviors such as aggression are exhibited ??Sambraus 1998 Thanks to the electroencephalography
25 obtained from these behavioral disorders, it is possible to comment on the relations between the species.

26 **2 III. DISCUSSION**

27 When many studies on animals and humans are examined; is observed that there is a close relationship between
28 the emotional states of animals and humans. As an indicator of this close relationship; is stated that facial
29 expressions in mice reflect internal emotional states, just like facial expressions in humans ??Dolensek et

30 **3 Mood**

31 **4 Brittlebank et al. (1993) in the results of a study;**

32 In the case of depression, people are prejudiced against overgeneralization; reported that animals exhibit simple
33 behaviors such as avoidance and approach as an indicator of their internal emotional state. In the results of
34 another study, Grandjean et al. (2016) determined that increased amygdala-PFC functional connectivity and
35 white matter structural changes in the cingulum showed similarity in mice and humans against chronic stress.
36 The results of a study by Xunxun Chu (2019) reported that the naturally induced depression models in macaques
37 are very similar to the human depression model.

38 **5 Sleeping Disorder**

39 When examining studies on sleep disorders, Gadad et al. (2013) and Crawley (2012) reported in the results of
40 the study that there is a similarity between the symptoms of sleep disorders between animal models and humans.
41 According to ??aramillo et Andersen and Tufik (2003), in the results of the studies against a living thing that
42 affects from the outside; observed that they exhibit temporary or permanent changes in behavior. Moreover; they

11 IV. CONCLUSIONS

43 also found that their mice showed sleep disorders. Armitage (2007) found in a study that electroencephalography
44 findings were more than 80% of patients with depression and that these people had sleep disorders.

45 6 Epilepsy

46 7 Genetic

47 Among the factors affecting behavior in model animals; genetic factors, age, gender, physiological, and hormonal
48 conditions are included. In the results of a study using mice as model animals, ??ambiaghi et al. (2012)
49 reported that tuberous sclerosis complex caused by benign tumors in different organs and serious neuropsychiatric
50 symptoms such as epilepsy, intellectual disability, autism, anxiety, and depressive behavior can be determined by
51 EEG method. Also, ??ambiaghi et al. (2012) found that anxiety and depression were reduced in mutant mice
52 treated with rapamycin in their EEG power spectrum results. ??arter (1978) reported that it produced a trance-
53 like stupor in all monkeys associated with marked EEG changes and hypothermia in adult and preadolescent
54 rhesus monkeys. Researchers have also found that characteristic EEG and behavioral changes are age-related.
55 In another study, Cai et al. (2020) examined expression networks, locomotive, and cognitive behaviors, and
56 EEG and gene-circuit-behavior analyses in genetically modified monkeys. The results of the study; reported
57 that decreased ?-synchronization in front-parietal-occipital networks was associated with abnormal locomotive
58 behaviors. Blackburn-Munro (2004), who conducted a study on genetically manipulated animals, stated that
59 there are many pathological changes similar to various chronic pain in humans in animal models of chronic pain,
60 using it together with classical physiological and biochemical measurements according to EEG results. Moreover;
61 reported that the evaluation of pain and stress with the EEG method in animals is an alternative method.

62 Tuberous sclerosis Complex is a multisystem genetic disorder caused by mutations in the Tsc1 or Tsc2 genes
63 that lead to hyperactivation of the London Journal of Engineering Research

64 8 22

65 Electroencephalography in Determining Mood in Animals They also stated that low alpha synchronization due
66 to thirst after drinking, which is created not only by water consumption but also by surrogate m TOR pathway,
67 a key signaling pathway for synaptic plasticity.

68 9 Pain

69 Joyce and David (2019), who conducted a study on rats, mice, and monkeys, examined the electroencephalography
70 of acute and chronic pain.

71 In the results of the study, the researchers observed that the transition from acute pain to chronic pain resulted
72 in significant changes in brain function.

73 Moreover; they reported that brain activations in acute pain are related to the sensory aspect of noxious
74 stimuli, including the primary somatosensory cortex, insula, cingulate cortex, thalamus, retrosplenial cortex, and
75 periaqueductal gray. In the results of the study, they stated that the human acute pain model can be applied
76 to sheep and that these electroencephalogram changes can provide a good measure for acute pain in sheep.
77 They reported that these relationships are a frugal indicator between EEG data and behavior. They found a
78 slight but significant reduction in theta and alpha mean dominant frequency (MDF) with behavioral changes
79 in rapamycin-treated wild-type mice, suggesting a mild brain dysfunction associated with the drug treatment
80 studies by Salinsky et al. (2004), Leocani et al., (2000Leocani et al., (, 2010)), Klimesch (1999), and Klimesch,
81 (1997). They reported that this resulted in a mild brain dysfunction associated with drug therapy.

82 They also observed that EEG slowing in humans is associated with neurological disorders or even lower working
83 memory, IQ or drug-induced lethargy, and cognitive impairment in healthy subjects.

84 10 Dependence

85 Howard (2000) examined the electroencephalography of the brain functioning in various animal models with
86 alcohol dependence. The researcher reported that there are physiological and behavioral advantages and
87 disadvantages to alcohol withdrawal syndrome. The researcher also stated that it may affect enhanced autonomic
88 nervous system activation, sensory hyperreactivity, convulsions, anxiety, and dysphoria.

89 When other similar studies are examined, Walker and Zornetzer (1974), Ehlers and Chaplin (1991), Poldrugo
90 and Snead (1984), and Perrin et al. (1975) reported that EEG abnormalities were associated with alcohol
91 withdrawal in various model animals, including mice, rats, cats, and primates.

92 11 IV. CONCLUSIONS

93 There are various behaviors that they exhibit depending on the various moods observed in humans and various
94 model animals. ¹

¹ Electroencephalography in Determining Mood in Animals

Figure 1:

Figure 2:

All these behaviors exhibited are a psychological indicator of the emotional state of the animal (Bilge and Aydemir 2022; Aydemir and Bilge 2022; Aydemir et al. 2021). These psychological indicators are very similar to humans. For example; Behaviors such as depression, social avoidance, anhedonia, passive coping, and learned helplessness observed in humans are similar to the behaviors exhibited in animals (Tye

2018; Muir et al. 2018). Moreover; is observed that many model animals such as mice and monkeys exhibit similar behaviors in many diseases such as depression, chronic stress, sleep disorders, and epileptic seizures observed in humans (Brittlebank et al. 1993; Grandjean et al. 2016; Gadad et al. 2013) and Crawley 2012; According to Jaramillo et al. 2016; Dhamne et al. 2017; Citraro et al. 2019; Roebuk et al. 2020; According to Cai et al. 2020; According to Gandal et al. 2010; Dringenberg 2000). This gives information about the behavior between humans and animals. Various behavioral tests, biomarkers, and Electroencephalograms are used to measure this information (Roach et al. Mathalon, 2008; Koenig et al., 2005). Electroencephalograms (EEG) are a non-invasive technique that allows the measurement of electrical brain activity in a human or model animal. It can also record brain signals thanks to its high temporal resolution (Ward 2003; Lopes and MEG 2013). These recorded signals are a good source for obtaining information about the neurological status of the model creature (Saminu et al., 2021).

II. ELECTROENCEPHALOGRAPHY (EEG) IN MODEL ANIMALS

Electroencephalography in model animals is a method used to functionally examine the electrical signals produced as a result of neurological

activities in the brain (Ward 2013-2015; Bear et al. 2016; Lopes and MEG 2013). Thanks to this method, information is obtained about normal and abnormal functioning in the brain.

Electroencephalography reflects the total slow dendritic potentials of many cortical pyramidal neurons. EEG rhythms in different frequency bands arise from dynamic interactions between populations of neurons and are associated with several different cognitive processes. With this association, EEG recordings show abnormalities in brain functioning (Ward 2013-2015; Bear et al. 2016; Lopes and MEG 2013).

It has also been used in the diagnostic criteria of

various **psychiatric disorders** schizophrenia, bipolar disorder, sleep disorder, attention-deficit/hyperactivity disorder (ADHD), and Alzheimer's disease, especially in recent years (Roach et al. Mathalon, 2008; They observed that repetiti

deficits, decreased activity, anxiety, learning problems, reduced fear conditioning, olfactory disorders, hyperactivity, and various autistic-like

behavioral disorders occur in the model animal (Jaramillo et al. 2016; Dhamne et al. 2017; Balzamo). et al. 1998; Gadad et al. 2013; Crawley 2012

(2003),

Figure 4:

Neurodevelopmental disorders, mood disorders, olfactory disorders, visual attention dysfunction, sleep disorders, brain dysfunction, learning disorders, various adjustment, and autistic-like

London
Jour-
nal
of
En-
gi-
neer-
ing
Re-
search

behavior disorders, autism, attention deficit, hyperactivity, anxiety, aging, traumatic brain injury in various model animals. It has been observed that various behaviors such as repetitive grooming, social deficits, decreased activity, anxiety, fear conditioning, calmness, staring, anxiety, fear, learning disability, intermodal recognition memory and depression are exhibited.

23Electroencephalography in Determining Mood in Animals It has been observed that these behaviors closely resemble each other among various species of electroencephalography.

Figure 5:

95 [] , 10.1111/j.1751-0813.1997.tb1006. p. 193.

96 [Roach and Mathalon ()] , B J Roach , D H Mathalon . 2008.

97 [Bilge and Aydemir ()] , ? Bilge , E Aydemir . 2022.

98 [Saminu et al. ()] 'A Recent Investigation on Detection and Classification of Epileptic Seizure Techniques Using
99 EEG Signal'. S Saminu , G Xu , Z Shuai , I Abd El Kader , A H Jabire , Y K Ahmed , I A Karaye , I S
100 Ahmad . *Brain Sciences* 2021. p. 668.

101 [Monassi ()] *A subpopulation of rats show social and sleep-waking changes typical of chronic neuropathic pain
102 following*, C R Monassi . 2003.

103 [Yordanova et al. ()] 'Abnormal early stages of task stimulus processing in children with attention-deficit
104 hyperactivity disorder-evidence from event-related gamma oscillations'. J Yordanova , T Banaschewski , V
105 Kolev , W Woerner , A Rothenberger . *Clin. Neurophysiol* 2001. 112 (6) p. .

106 [Barry et al. (2009)] 'Acute atomoxetine effects on the EEG of children with attention-deficit/ hyperactivity
107 disorder'. R J Barry , A R Clarke , M Hajos , R Mc Carthy , M Selikowitz , J M Bruggemann . *Neuro-
108 pharmacology* 2009 Dec. 57 p. .

109 [Walker and Zornetzer ()] 'Alcohol withdrawal in mice: Electroencephalographic and behavioral correlates'. D
110 W Walker , S Zornetzer . *Electroencephalography and Clinical Neurology* 1974. 36 p. .

111 [Jaramillo et al. ()] 'Altered striatal synaptic function and abnormal behaviour in Shank3 Exon4-9 deletion
112 mouse model of autism'. T C Jaramillo , H E Speed , Z Xuan , J M Reimers , S Liu , C M Powell .
113 10.1002/aur.1529. *Autism Res* 2016. 9 p. .

114 [Dringenberg ()] 'Alzheimer's disease: more than a 'cholinergic disorder'-evidence that cholinergic-
115 monoaminergic interactions contribute to EEG slowing and dementia'. H C Dringenberg . *Behav. Brain
116 Res* 2000. 115 (2) p. .

117 [Blackshaw ()] 'An overview of types of aggressive behaviour in dogs and methods of treatments'. J K Blackshaw
118 . *Appl. Anim. Behav. Sci* 1991. 30 p. .

119 [Aydemir and Bilge ()] *Animal Psychology-BEHAV?OR AND TEM-PERAMENT IN CATS AND DOGS*, E
120 Aydemir , ? Bilge . 2022. LAP LAMBERT Academic Publishing -ISBN. p. .

121 [Sambraus ()] 'Aufgaben der Angewandten Ethologie bei Landwirtschaftlichen Nutztieren fr her und heute'. H H
122 Sambraus . *Gumpensteiner Tagung "Nutztierhaltung im Wandel der Zeit*, (A-8952 Irdning) 2002. p. .

123 [Brittlebank ()] 'Autobiographical memory in depression: state or trait marker?'. A D Brittlebank . *Br. J.
124 Psychiatry* 1993. 162 p. .

125 [Ong et al. ()] 'Behavioural and EEG changes in sheep in response to painful acute electrical stimuli'. R Ong , J
126 Morr? , J O'dwyer , J Barnett , P Hemsworth , I Clarke . *Australian Veterinary Journal* 1997. 75 (3) .

127 [Cambiaghi et al. ()] 'Behavioural and EEG effects of chronic rapamycin treatment in a mouse model of Tuberous
128 Sclerosis Complex'. M Cambiaghi , M Cursi , L Magri , V Castoldi , G Comi , F Minicucci , L Leocani .
129 *Neuropharmacology* 2013. 67 p. .

130 [García-Gutiérrez ()] 'Biomarkers in psychiatry: concept, definition, types and relevance to the clinical reality'.
131 M S García-Gutiérrez . *Front. Psychiatry* 2020. 11 p. 432.

132 [Morton et al. ()] 'Brain imaging of pain: state of the art'. D L Morton , J S Sandhu , A K Jones . *J Pain Res*
133 2016. 9 p. .

134 [Grandjean ()] 'Chronic psychosocial stress in mice leads to changes in brain functional connectivity and
135 metabolite levels comparable to human depression'. J Grandjean . *Neuroimage* 2016. 142 p. .

136 [Weber ()] 'Circuit-based interrogation of sleep control'. F Weber , Dan , Y . 10.1038/nature19773. *Nature* 2016.
137 538 p. .

138 [Roebuck et al. ()] 'Cognitive Impairments in Touchscreen-based Visual Discrimination and Reversal Learning
139 in Genetic Absence Epilepsy Rats from Strasbourg'. A J Roebuck , L An , W N Marks , N Sun , T P Snutch
140 , J G Howland . *Neuroscience* 2020. 430 p. .

141 [Kim et al. ()] *Competing roles of slow oscillations and delta waves in memory consolidation versus forgetting*, J
142 Kim , T Gulati , K Ganguly . 2019. 179. (514.e3-526.e3)

143 [Stephenson et al. ()] 'Complex interaction of circadian and non-circadian effects of light on mood: Shedding new
144 light on an old story'. K M Stephenson , C M Schroder , G Bertschy , P Bourgin . 10.1016/j.smrv.2011.09.002.
145 *Sleep Medicine Reviews* 2012. 16 (5) p. .

146 [De Vries et al. ()] 'Consensus clinical guidelines for the assessment of cognitive and behavioural problems in
147 tuberous sclerosis'. P De Vries , A Humphrey , D Mccartney , P Prather , P Bolton , A Hunt . *Eur. Child.
148 Adolesc. Psychiatry* 2005. 14 p. .

11 IV. CONCLUSIONS

149 [Pereira et al. ()] 'Contactless monitoring of heart and respiratory rate in anesthetized pigs using infrared
150 thermography'. C B Pereira , H Dohmeier , J Kunczik , N Hochhausen , R Tolba , M Czaplik . *PLoS
151 ONE* 2019. 14 p. 224747.

152 [Koenig et al. ()] 'Decreased EEG synchronization in Alzheimer's disease and cognitive impairment'. T Koenig ,
153 L Prichep , T Dierks , D Hubl , L O Wahlund , E R John , V Jelic . *Neurobiol. Aging* 2005. 26 (2) p. .

154 [Viscardi et al. ()] 'Development of a Piglet Grimace Scale to Evaluate Piglet Pain 81. Using Facial Expressions
155 Following Castration and Tail Docking: A Pilot Study'. A V Viscardi , M Hunniford , P Lawlis , M Leach ,
156 P V Turner . *Front. Vet. Sci* 2017, 4, 51.

157 [Klimesch ()] 'EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis'.
158 W Klimesch . *Brain Res. Cogn. Brain Res. Rev* 1999. 29 (2e3) p. .

159 [Ehlers and Chaplin ()] 'EEG and ERP response to chronic ethanol exposure in rats'. C R Ehlers , R I Chaplin
160 . *Psychopharmacology* 1991. 104 p. .

161 [Lopes Da Silva ()] 'EEG and MEG: Relevance to Neuroscience'. F Lopes Da Silva . *Neuron* 2013. 80 p. .

162 [Cajochen et al. ()] 'EEG and subjective sleepiness during extended wakefulness in seasonal affective disorder:
163 circadian and homeostatic influences'. C Cajochen , D P Brunner , K Krauchi , P Graw , A Wirz-Justice .
164 *Biol Psychiatry* 2000. 1 (7) p. .

165 [Klimesch ()] 'EEG-alpha rhythms and memory processes'. W Klimesch . *Int. J. Psychophysiol* 1997. 26 p. 340.
166 (IQ)

167 [Gavalas et al. ()] 'Effect of low-level, low-frequency electric fields on EEG and behavior in Macaca nemestrina'.
168 R J Gavalas , D O Walter , J Hamer , W Rossadey . 10.1016/0006-8993(70)90132-0. *Brain Research* 1970. 18
169 (3) p. .

170 [Van Lier et al. ()] 'Effects of diazepam and zolpidem on EEG beta frequencies are behaviour-specific in rats'. H
171 Van Lier , W H Drinkenburg , Y J Van Eeten , A M Coenen . *Neuropharmacology* 2004. 47 p. .

172 [Salinsky et al. ()] 'Effects of oxcarbazepine and phenytoin on the EEG and cognition in healthy volunteers'. M
173 Salinsky , D Spencer , B Oken , D Storzbach . *Epilepsy Behav* 2004. 5 p. .

174 [Poldrugo and Snead ()] 'Electroencephalographic and behavioral correlates in rats during repeated ethanol
175 withdrawal syndromes'. F Poldrugo , O C Snead . *Psychopharmacology* 1984. 83 p. .

176 [Leocani et al. (2000)] 'Electroencephalographic coherence analysis in multiple sclerosis: correlation with clinical,
177 neuropsychological, and MRI findings'. L Leocani , T Locatelli , V Martinelli , M Rovaris , M Falautano ,
178 M Filippi , G Magnani , G Comi . *J. Neurol. Neurosurg. Psychiatr* 2000. Aug. 69 (2) p. .

179 [Leblanc et al. ()] *Electroencephalographic signatures of pain and analgesia in rats*, B W Leblanc , P M Bowary
180 , Y C Chao , T R Lii , C Y Saab . 2016. 157 p. .

181 [Perrin et al. ()] 'Electroencephalographic signs of ethanol tolerance and physical dependence in the cat'. R G
182 Perrin , H Kalant , K E Livingston . *Electroencephalography and Clinical Neurology* 1975. 39 p. .

183 [Hallaschmid et al. ()] 'Electroencephalography in Determining Mood in Animals 39. Howard C. B., 2000. Animal
184 Models Of Alcohol Withdrawal'. M Hallaschmid , M Mölle , S Fischer , J Born . *Alcohol Research & Health*
185 2002. 113 p. . (Clinical Neurophysiology.)

186 [Barrett et al. ()] 'Emotional expressions reconsidered: Challenges to inferring emotion from human facial
187 movements'. L F Barrett , R Adolphs , S Marsella , A M Martinez , S D Pollak . *Psychol. Sci. Public
188 Interest* 2019. 20 p. .

189 [Citraro et al. ()] 'Evaluation of the effects of liraglutide on the development of epilepsy and behavioural
190 alterations in two animal models of epileptogenesis'. R Citraro , M Iannone , A Leo , C De Caro , V Nesci ,
191 M Tallarico , E Russo . 10.1016/j.brainresbull.2019.08.001. *Brain Research Bulletin* 2019. 153 p. .

192 [Event-related EEG time-frequency analysis: an overview of measures and an analysis of early gamma band phase locking in schizophrenia].
193 'Event-related EEG time-frequency analysis: an overview of measures and an analysis of early gamma band
194 phase locking in schizophrenia'. *Schizophr. Bull* 34 (5) p. .

195 [Dolensek ()] 'Facial expressions of emotion states and their neuronal correlates in mice'. N Dolensek . *Science*
196 2020. 368 p. .

197 [O'donnell et al. ()] 'From pillow to podium: a review on understanding sleep for elite athletes'. S O'donnell , C
198 M Beaven , M W Driller . 10.2147/nss.s158598. *Nat. Sci. Sleep* 2018. 10 p. .

199 [Fedor et al. ()] 'Hippocampal dysfunction after lateral fluid percussion injury'. M Fedor , R F Berman , J P
200 Muizelaar , B G Lyeth . *J. Neurotrauma* 2010. 27 p. .

201 [Bilge and Aydemir ()] 'Interpretation Of The Relationship Between The Effects Of Different Colors Wavelength
202 Light Application And Sound Frequency In Japanese'. ? Bilge , E Aydemir . *Quails By Spectral Analysis.
203 Techno-Science* 2021. 4 p. .

204 [Japonaises (2022)] Comportement Et Adaptation Avec Le Son Animal-Cailles Japonaises . *Editions Notre*

205 *Savoir*, 2022-04-27.

206 [Kheirbek and Hen ()] M A Kheirbek , R Hen . www.scientificamerican.com/article/new-neurons-in-the-brain-keep-anxiety-at-bay/ *New neurons in the brain keep anxiety at bay. Sci. Am. Published online July*, 2014.

207 [Glickman et al. ()] 'Light therapy for seasonal affective disorder with blue narrow-band light-emitting diodes (LEDs)'. G Glickman , B Byrne , C Pineda , W W Hauck , G C Brainard . *Biol Psychiatry* 2006. 15 (6) p. .

211 [Cai et al. ()] 'MECP2 Duplication Causes Aberrant GABA Pathways, Circuits and Behaviors in Transgenic Monkeys: Neural Mappings to Patients with Autism'. D.-C Cai , Z Wang , T Bo , S Yan , Y Liu , Z Liu , Z Wang . *The Journal of Neuroscience* 2020. 40 (19) p. .

214 [Beersma ()] 'Model of human sleep regulation'. D G Beersma . *Sleep: physiology, investigations and medicine*, Billiar Dm (ed.) (New York) 2003. Kluwer Academic/Plenum Publishers. p. .

216 [Nasca ()] 'Multidimensional predictors of susceptibility and resilience to social defeat stress'. C Nasca . *Biol. Psychiatry* 2019. 86 p. .

218 [Strong et al. ()] 'Narrow-band blue-light treatment of seasonal affective disorder in adults and the influence of additional nonseasonal symptoms'. R E Strong , B K Marchant , F W Reimherr , E Williams , P Soni , R Mestas . *Depress Anxiety* 2009. 26 (3) p. .

221 [Tye ()] 'Neural circuit motifs in valence processing'. K M Tye . *Neuron* 2018. 100 p. .

222 [Kheirbek ()] 'Neurogenesis and generalization: a new approach to stratify and treat anxiety disorders'. M A Kheirbek . *Nat. Neurosci* 2012. 15 p. .

224 [Joyce et al. ()] 'Neuroimaging of pain in animal models: a review of recent literature'. T Da Joyce , David Silva , Seminowicz . *Pain Reports* 2019. 4 (4) p. 732.

226 [Cao et al. ()] 'Neuroligin 2 regulates absence seizures and behavioral arrests through GABAergic transmission within the thalamocortical circuitry'. F Cao , J J Liu , S Zhou , M A Cortez , O C Snead , J Han . *Nat. Commun* 2020. 11 p. 3744.

229 [Liu et al. ()] 'Neuroligin 3 R451C mutation alters electroencephalography spectral activity in an animal model of autism spectrum disorders'. J J Liu , K P Grace , R L Horner , M A Cortez , Y Shao , Z Jia . *Mol. Brain* 2017. 10 p. .

232 [Radyushkin et al. ()] 'Neuroligin-3-deficient mice: model of a monogenic heritable form of autism with an olfactory deficit'. K Radyushkin , K Hammerschmidt , S Boretius , F Varoqueaux , A El-Kordi , A Ronnenberg . 10.1111/j.1601-183x.2009.00487. *Genes Brain Behav* 2009. 8 p. .

235 [Gadad et al. ()] 'Neuropathology and animal models of autism: genetic and environmental factors'. B S Gadad , L Hewitson , K A Young , D C German . *Autism Res. Treat* 2013. 2013. p. 731935.

237 [Leocani et al. ()] 'Neurophysiological correlates of cognitive disturbances in multiple sclerosis'. L Leocani , J J Gonzalez-Rosa , G Comi , Nov . *Neurol. Sci* 2010. 31 p. . (Suppl. 2)

239 [Bear et al. ()] 'Neuroscience: Exploring the Brain'. M F Bear , B W Connors , M A Paradiso . *Neuroscience: Exploring the Brain: Fourth Edition* 2016. Philadelphia: Wolters Kluwer. 223 p. .

241 [Videman et al. ()] 'Newborn Brain Function Electroencephalography in Determining Mood in Animals Is Affected by Fetal Exposure to Maternal Serotonin Reuptake Inhibitors'. M Videman , A Tokariev , H Saikkonen , S Stjerna , H Heiskala , O Mantere , S Vanhatalo . 10.1093/cercor/bhw153. *Cerebral Cortex* 2016. p. 153.

245 [Boulos et al. ()] 'Normal polysomnography parameters in healthy adults: a systematic review and meta-analysis'. M I Boulos , T Jairam , T Kendzerska , J Im , A Mekhail , B J Murray . *Lancet Respir. Med* 2019. 7 p. .

248 [Blackburn-Munro ()] 'Pain-like behaviours in animals -how human are they?'. G Blackburn-Munro . *Trends in Pharmacological Sciences* 2004. 25 (6) p. .

250 [Peripheral nerve injury Eur. J. Neurosci] 'Peripheral nerve injury'. *Eur. J. Neurosci* 17 p. .

251 [Lambert and Carder ()] 'Positive and negative emotions in dairy cows: Can ear postures be used as a measure?'. H Lambert , G Carder . *Behav. Process* 2019. 158 p. .

253 [Chu ()] 'Preliminary validation of natural depression in macaques with acute treatments of the fast-acting antidepressant ketamine'. Xunxun Chu . *Behavioural Brain Research* 2019. (360) p. .

255 [Zeng et al. ()] 'Rapamycin prevents epilepsy in a mouse model of tuberous sclerosis complex'. L H Zeng , L Xu , D H Gutmann , M Wong . *Ann. Neurol* 2008. 63 p. .

257 [Dhamne et al. ()] 'Replicable in vivo physiological and behavioral phenotypes of the Shank3B null mutant mouse model of autism'. S C Dhamne , J L Silverman , C E Super , S H T Lammers , M Q Hameed , M E Modi . *Mol. Autism* 2017. 8 p. 26.

11 IV. CONCLUSIONS

260 [Balzamo et al. ()] 'Scoring of sleep and wakefulness by behavioral analysis from video recordings in rhesus monkeys:comparison with con-ventional EEG analysis'. E Balzamo , P Van Beers , D Lagarde . *Electroencephalogr. Clin. Neurophysiol* 1998. 106 (3) p. .

261

262

263 [Armitage ()] 'Sleep and circadian rhythms in mood disorders'. R Armitage . *Acta Psychiatrica Scandinavica* 2007. s433. 115 p. .

264

265 [Baumann et al. ()] 'Sleep EEG changes after middle cerebral artery infarcts in mice: different effects of striatal and cortical lesions'. C R Baumann , E Kilic , B Petit , E Werth , D M Hermann , M Tafti , C L Bassetti . *Sleep* 2006. 29 p. .

266

267

268 [Andersen and Tufik ()] 'Sleep patterns over 21-day period in rats with chronic constriction of sciatic nerve'. M L Andersen , S Tufik . *Brain Res* 2003. 984 p. .

269

270 [Colas et al. (2005)] 'Sleep wake profile and EEG spectral power in young or old senescence accelerated mice'. D Colas , R Cespuglio , N Sarda . *Neurobiol. Aging* 2005 Feb. 26 (2) p. .

271

272 [Carter (July 1)] *Snead Gamma Hydroxybutyrate ?n The Monkey, I., 1978. Electroencephalographic, Behavioral, And Pharmacokinetic Studies Neurology*, O Carter . July 1. First Published.

273

274 [Stringer ()] 'Spontaneous behaviors drive multidi-mensional, brainwide activity'. C Stringer . *Science* 2019. 364 p. 255.

275

276 [Magri et al. ()] 'Sustained activation of mTOR pathway in embryonic neural stem cells leads to development of tuberous sclerosis complex-associated lesions'. L Magri , M Cambiaghi , M Cominelli , C Alfaro-Cervello , M Cursi , M Pala , A Bulfone , J M Garcia-Verdugo , L Leocani , F Minicucci . *Cell Stem Cell* 2011. 9 p. .

277

278

279 [Bilge and Aydemir ()] 'T?me-Frequency Analys?s And Exam?nat?on Of Responses To D?fferent Color Waves Depend?ng On Sex In Japanese Qua?ls'. ? Bilge , E Aydemir . Behav?or And Adaptat?on W?th An?mal Sound 2022. Lap Lambert Academic Publishing.

280

281

282 [Graversen et al. ()] 'The analgesic effect of pregabalin in patients with chronic pain is reflected by changes in pharmaco-EEG spectral indices'. C Graversen , S S Olesen , A E Olesen , K Steimle , D Farina , O H Wilder-Smith , S A Bouwense , H Van Goor , A M Drewes . *Br. J. Clin. Pharmacol* 2012. 73 (3) p. .

283

284

285 [Mogil et al. ()] 'The development and use of facial grimace scales for pain measurement in animals'. J S Mogil , D S Pang , G G S Dutra , C T Chambers . *Neurosci. Biobehav. Rev* 2020. 116 p. .

286

287 [Sawangjit et al. ()] 'The hippocampus is crucial for forming non-hippocampal long-term memory during sleep'. A Sawangjit , C N Oyanedel , N Niethard , C Salazar , J Born , M Inostroza . 10.1038/s41586-018-0716-8. *Nature* 2018. 564 p. .

288

289

290 [Wang ()] 'The recent progress in animal models of depression'. Wang . *Prog. Neuro-Psychopharmacol. Biol. Psychiatry* 2017. 77 p. .

291

292 [Ward ()] *The Student's Guide to Cognitive Neuroscience*, J Ward . 2015. Sussex: Psychology Press. p. . (3rd Ed)

293

294 [Cannas et al. ()] *Thermography as a Non-Invasive Measure of Stress and Fear of Humans in Sheep*, S Cannas , C Palestini , E Canali , B Cozzi , N Ferri , E Heinzl , M Minero , M Chincarini , G Vignola , E D Costa . 2018. 8 p. 146.

295

296

297 [Crawley ()] 'Translational animal models of autism and neurodevelopmental disorders'. J N Crawley . *Dialog. Clin. Neurosci* 2012. 14 p. .

298

299 [Gandal et al. ()] 'Validating ? oscillations and delayed auditory responses as translational biomarkers of autism'. M J Gandal , J C Edgar , R S Ehrlichman , M Mehta , T P Roberts , S J Siegel . *Biol. Psychiatr* 2010. 68 (12) p. .

300

301

302 [Ward ()] L M Ward . *Synchronous Neural Oscillations and Cognitive Processes*, 2003. 7 p. .

303

304 [Muir ()] 'Wiring the depressed brain: optogenetic and chemogenetic circuit interrogation in animal models of depression'. J Muir . *Neuropsychopharmacology* 2019. 44 p. 1013.