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I. INTRODUCTION

Operational Transfer Functions (TFs) or

Frequency Response Functions (FRFs) of

mechanical structures play a vital role in

understanding the dynamic characteristics of the

systems and in solving general vibration problems

during the operational process. They constitute an

effective tool aiding the extraction of modal

parameters. Estimating the transfer functions of a

mechanical system has thus become an important

task in many engineering applications. Different

representations of transfer functions are crucial in

the description and analysis of system properties.

In industrial applications, a measurement of the

transfer functions defining the structure

properties in the frequency domain can be

implemented using vibration instrumentations.

Different methodologies are proposed in the

literature with the aim of estimating operational

transfer functions, with the most common

applying the Fourier analysis. The Empirical

Transfer Function Estimate (ETFE) is a natural

nonparametric method that identifies transfer

functions by taking the ratios of the Fourier

transform of the outputs to those of the inputs [1].

However, this method requires more data points

and raw ETFE estimates are generally not

accurate enough. With these estimates, the

variance does not decrease as the number of data

points increases because they contain no

information compression feature. Researchers

have conducted various experimental studies on

structural dynamics under operational conditions.

In [2], the FRFs of a flexible joint industrial

manipulator with a serial kinematic were

identified based on a non-parametric closed loop.

However, due to the nonlinearities of the robot,

the method faced a challenge in eliminating

disturbances in the estimated FRFs. Operational

Modal Analysis (OMA) is another approach for

identifying the modal properties of the structure

using vibration data obtained under operating
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This paper describes an efficient approach for

model order determination, which allows

identifying the dynamical behavior of the

mechanical system by using observation input-

output data. The concept based on the minimum

means square error of the estimated transfer

functions, which can effectively tackle

measurement noise and modeling errors to

identify appropriate low-order transfer functions

of the structures via an Auto-Regressive Moving

Average eXogenous (ARMAX) model. The

effectiveness of the proposed method is validated

exclusively using experimental data obtained

from a grinding test of an industrial manipulator

SCOMPI robot. Some other criteria, such as the

Akaike Information Criterion (AIC), the Bayesian

Information Criterion (BIC), and the Noise Order

Factor (NOF), are investigated to verify the

performance of the proposed methodology. The

results demonstrated that the present technique

is cost-effective in terms of optimal model order

determination, and the ARMAX model turns out

to be the most appropriate representation for

feature extraction at the low order. Thanks to its

flexibility in handling model disturbance, the

proposed optimization strategy can capture all

the dominant oscillation modes of the structure

at the low orders, and system modal properties

are efficiently and automatically determined. In

contrast, the performance of the ARX model is

shown to be less efficient when working at the

low orders.



conditions. Yili Peng et al. [3] identified

in-process FRFs based on the OMA and

Experimental Modal Analysis (EMA), which uses

the natural frequencies and damping ratios to

build FRFs under operating conditions. A

simulation of a three-degree-of-freedom-mass-

spring-damper system and experiments on a

machine tool are adopted to verify the proposed

method. Similarly, Zaghbani et al. [4] used OMA

in the identification of the dynamics of a milling

machine under a cutting process work. At the

same time, another method was presented in [5]

to generate FRFs from identified poles and zeros

in the low-frequency domain. Recently, Coppotelli

et al. [6] proposed an approach for estimating

FRFs from operational data by changing different

mass and stiffness distributions. This method also

allows evaluating the modal parameters of the

structure via operational modal testing.

Conversely, Özşahin et al. [7] introduced a new

technique to calculate the variation in tool point

FRFs under different working conditions by using

an inverse analysis of self-excited chatter

vibration. In their method, chatter frequencies

were experimentally determined and applied to

estimate tool point FRFs on 5-axis milling

machine via the relation between the measured

force inputs and acceleration outputs. However,

the tool point FRFs are not well estimated at high

spindle speeds due to the presence at those speeds

of a low signal-to-noise ratio and the bandwidth

limitation of the dynamometer. Another in-

process FRF identification approach of the spindle

structure was presented in [8]. In that case, the

tooltip FRFs were identified under operational

conditions based on an inverse solution of critical

stability limits. The method is helpful for

predicting the stability of the tool holders when

the direct measurement of the tool point FRFs is

uncompromised. Parametric estimation methods

constitute another system identification class. In

these methods, it is suggested to use time series

modeling for the mathematical description of the

transfer functions. It combines the advantage and

information obtained from both measurements

and theoretical modeling. Depending on the

availability of the measurement signals, the Auto

Regressive model (AR) [9, 10] or the Auto

Regressive Moving Average model (ARMA) [11]

can be used if only the output is available. In [12,

13], a modal analysis was conducted in different

industrial structures based on three Auto-

Regressive Moving Average methods, namely, the

recursive least-square, output error, and corrected

covariance matrix methods to determine the

optimal model order. Conversely, in the case of

measurable or identifiable excitation forces, the

Auto-Regressive eXogenous (ARX) model [14] can

exploit, by assuming that the model’s errors and

disturbances are white noise. However, because

of the unavoidable noise contaminated in the

measured signals, the quality of estimated FRFs

can be adversely affected by noise originating

from the test environment. When the system

operates in an industrial condition with a lot of

disturbance, identifying the transfer functions of a

complex structure may become difficult.

In this paper, we present an original method

designed for automatically extracting the modal

parameters from identified transfer functions

based on the concept of the optimal ARMAX

model. Particular attention is paid to selecting

optimal model orders, which can closely reflect

the dynamic system. The work contributes to the

determination of a model order based on the

estimated transfer functions, by using the

framework of the ARMAX model. The proposed

method is experimentally applied to a robot

during its grinding operation, and the results are

compared to those of the original ARX model. The

measured grinding forces may be considered the

exogenous inputs excitation, and the disturbances

of the system are taken into account by adding the

Moving Average part into the model. The

estimated orders are verified based on the most

common selection criteria, such as the Akaike

Information Criteria (AIC) [15], the Bayesian

Information Criteria (BIC) [16], and the Noise

Order Factor (NOF) [17]. In this study, the

ARMAX model is expressed in a convenient way

for computation at the low orders, which gives a

more parsimonious representation and helps

improve the modeling performance, with less

computational complexity. We have organised the

rest of this paper in the following way. The

motivation for the research is established in

Section 2 through a detailed description of the

time series modeling, with a focus on the ARX and

ARMAX models. Section 3 proposes an original

method to determine an optimal model order of
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conducted on the flexible manipulator, SCOMPI,

under grinding operation to validate the proposed

methods in Section 4, followed by the

identification procedure and the results. We end

by drawing several conclusions from this research.

II. TIME SERIES MODELING

System identification is the art of modeling a

dynamical system from raw time series data. We

consider the problem of estimating a dynamic

system model based on the measurement of an N

points input-output data, which will be

pre-classified into input and

output

(1)

Various representations of linear time series such

as Auto-Regressive (AR), Auto-Regressive Moving

Average (ARMA), Auto-Regressive eXogenous

(ARX), and Auto-Regressive Moving Average

eXogenous (ARMAX) can be employed to extract

dynamic parameters [18]. Since there are various

time series data types, we should choose an

appropriate model. In general, such models are

based on an Auto-Regressive (AR) part or output,

an eXogenous (X) part or input, or a Moving

Average (MA) part or error term, depending on

the situation. The AR model is the simplest time

series representation, which linearly depends on

output data (the vibration responses). In the

availability of both input (the measurable and

known excitation force) and output data, the ARX

model is usable. It is possible to combine these

models with the MA term and produce the ARMA

representation for the output-only cases and the

ARMAX model for the input-output conditions.

Once the most appropriate modal structure is

selected, we can apply a model to the

measurement by minimizing certain criteria:

(2)

where θ is the unknown parameter vector of the

parametric model structure.

In automatic control applications, given the

current state and input signal, the model can be

applied to predict the output of the system by

choosing a cost function in the form.

(3)

L(q) represents a filter that removes

unwanted properties in the measurement data,

and l(.) is a convex function.

The following quantity is the prediction error.

is the one - step - ahead predictor

representing the model of the system:

(4)

A common representation of the Linear

Time-Invariant (LTI) system can be expressed in

the from of the linear transfer function model:

(5)

where q is the forward shift operator, that is,

q
-k

.y(t) = y(t-k). Here, y(t) is a ny dimensional

vector of output, u(t) is a nu dimensional vector of

input, and w(t) is the disturbance sequence with

an appropriate dimension and assumed to be an

independent and identically distributed stochastic

process, respectively. Furthermore, the transfer

functions G(q,θ) and H(q,θ) are rational

functions in the backward shift operator q, and

the coefficients are given by the elements of the

parameter vector θ.

The  predictor  associated  with  the  output  is  given  by  [18]

(6)

where

(7)

This model structure is quite general, but we can

develop some special cases. A simple case is the

ARX model structure, which is:

(8)

that can be rewritten in a more general

polynomial form as:

where
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( ) ( )( ) 1
, NN

t
t t

=
=Z u y

( )ˆ argmin , N
N N θ=θ V Z

( ) ( ) ( )( )
1

1, ,
N

NN
N

t
l q tθ θ

=
= ∑V Z L

( ) ( ) ( )ˆ, 1,t t t tθ θ= − −ε y y

( ) ( ) ( ) ( ) ( ), ,t q t q tθ θ= +y G u H w

( ) ( ) ( ) ( ) ( )q t q t t= +A y B u w

u (t) ∈ ℝ, t = 1, …, T
y (t) ∈ ℝ, t = 1, …, T.:

( )ˆ 1,y t t θ−

( ) ( ) ( ) ( ) ( )( ) ( )1 1ˆ 1, , , 1 ,t t q q t q tθ θ θ θ− −− + −y H G u H y≜

( ) ( ) ( )1 , 1/ ,q q tθ θ−H H u≜



(9)

where

(10)

(11)

are autoregressive and exogenous matrix

parameters, with I denoting the identity matrix.

na, nb, and nk are the orders of the ARX model, na

is equal to the number of poles and nb is the

number of zeros, while nk is the pure time delay in

the system. Since and

, the predictor of the output can

be written as:

(12)

where

(13)

(14)

When the noise is assumed to be a white Gaussian

process with zero means, which is uncorrelated

with the regressors, the model parameters θ are

estimated via the Least-Square (LS) estimator

[19]:

(15)

The variance represents the

remaining un-modelled behavior of the data.

The corresponding transfer function is

However, in this case, only the deterministic part

of equation (1) is estimated by considering no

noise . If a noise model is sought,

additional steps are needed, assuming that the

noise is described by a Moving Average process

C(q), which results in an ARMAX structure:

(16)

and its polynomial form

(17)

where

(18)

is the polynomial of order nc which represents for

Moving Average term.

In contrast with the simpler ARX model, this

presentation form offers a noisy transfer function

which allows representing

different types of noise characteristics through a

proper choice of the MA polynomial term. In

engineering applications, it is unavoidable when

environmental noise contaminated in measured

data. Therefore, a parametric system

identification algorithm should be adopted to

identify the modal parameters from the noisy

data. Under this condition, the ARMAX model

with real-time identification proves to be efficient.

Figure 1 presents the structures of both ARX and

ARMAX models.

( )
2

1

1
argmin ( ) ( )

N
LS T

N
t

t t
N


=

= − y φ θ

( ) ( )Tt t−y φ θ

Fig. 1: Model structures of ARX (a) and ARMAX (b) [18]
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( ){ } [ ] [ ]{ } [ ] [ ]{ } ( ){ }
1 1

1
n na b

k k k
k k

t t k t n k t
= =

+ − = − − + +∑ ∑y A y B u w

( ) 1 2
1 1

na
naq I a q a q a q−− −= + + +A 

( ) 11 2
0 1 2

n nk b
nbq b b q b q b q− − +− −= + + +B 

( ) ( ) ( ) ( )( ) ( )ˆ ( 1, ) 1 Tt t q t q t tθ− = + − =y B u A yφ θ

( ) ( )( 1) ( ) ( 1) ( ) T
a bt y t y t n u t u t n− − − − − −φ  

( )1 1
T

na nba a b bθ   

( )1 1
T

na nba a b bθ  

( ) ( ) ( ) ( ) ( ) ( )q t q t q t= +A y B u C w

( ){ } [ ] [ ]{ } [ ] [ ]{ } [ ]{ } ( ){ }
1 1 1

1 [ ]
n n na b c

k k k k
k k k

t t k t n k t k t
= = =

+ − = − − + + − +∑ ∑ ∑y A y B u C e w

( ) 1 2
1 21 nc

ncq c q c q a q−− −= + + +C 

≜

≜

( ) ( ) ( ), /q q qθ =G B A
( ) ( ), 1 /q qθ =H A ,

( ) ( ) ( ), /q q qθ =H C A , 

( ) ( ) ( ), /q q qθ =G B A .(15-a)

( ),q θH



[20], the authors showed that under reasonable

conditions,

(19)

where

(20)

and is prediction error and defined in

equation (4). According to [21, 22], with this

definition of , it is possible to split the total

estimation error between the true frequency

response function and the estimated one

into two parts as follows:

(21)

As we can see in equation (21), the errors in the

estimated FRF have two components. The first

contribution is the bias

contribution, a deterministic quantity due to the

modeling error. If the selected model has a lower

or a higher complexity than the true system, this

bias error will be present at some frequencies.

Choosing the model order should be flexible

enough to allow a good fit to the measurement

data but adequately constrained so that noise does

not invoke unsuitable models. Consequently,

selecting an optimal model order respecting this

compromise is an important issue in system

identification. This concern is analyzed in the

following section to select the optimal model

orders of an ARMAX model. The second

contribution represents the

noise or variance errors, which are due to noise in

the measured input and output data. It is a

random variable that will disappear if there is no

noise or if the number of data tends to infinity.

III. A MODEL ORDER DETERMINATION
APPROACH

When time series modeling ARX or ARMAX

models employed, the performances may be

affected by selecting the model order. Choosing a

sufficient and correct model order has always

been a challenging issue. Once the model orders

are properly selected, the models successfully

represent the underlying phenomenon with the

lowest complexity. This method aims not only to

find a model capable of describing a specific set of

data but is also helpful for the validation of the

inference procedures. Consequently, there is a

need to develop a reliable method to identify the

orders of AR, MA, and eXogenous polynomials. In

general, most of the mechanical structures are

operated in the low-frequency range with limited

bandwidth. Having a model with orders that are

too high may lead to an overfitting problem as it

includes too much irrelevant oscillation

information and generates high computational

costs, and a model with orders that are too low

will not be solid enough to capture the underlying

physical system dynamics. For its part, a model

with an appropriate order can precisely describe

the dynamic characteristics of the system. Because

If only the ARX model is use, the noise model is

described as , where is also

used as the denominator of describing the

dynamic model. This model implies that the

polynomial form must be an average estimate of

the poles of and However, the noise

model can be better estimated using the ARMAX

model, as described by the numerator polynomial

term When parametric methods use for

model estimation, the transfer functions to be

estimated are defined as a function of a parameter

vector For the

identification of the value , and

are closest to , and In

Nθ ( ), Nq G

( ), Nq H

*
N N→θ θ

( ), Nq G

( ) ( ) ( ) ( ) ( ) ( )* *, , , ,N N N Nq q q q q q      − = − + −
   

G G G G G G

( ) ( )*, ,N Nq q  −
 
G G

of its important role in system identification,

model order determination has attracted much

attention in the literature, with researchers

proposing different criteria for order

determination [23]. The final prediction error

(FPE) criterion was originally proposed by Akaike

[24] for determining the AR order and was

extended to the ARMA model by [25]. After

adding the inflating effects of estimated

coefficients, the optimal order was chosen by

minimizin the one - ste - ahead mean s uareq

forecast error. A method based on the eigenvalues

of a modified covariance matrix, which is robust
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θN≜ (𝑎𝑎1 …𝑎𝑎𝑛𝑛𝑎𝑎 𝑏𝑏1 …𝑏𝑏𝑛𝑛𝑏𝑏 𝑐𝑐1 … 𝑐𝑐𝑛𝑛𝑐𝑐)T.

( ), Nq θG ( ), .Nq θH

( ) ( )*, Nq q θ − G G



to noise levels, was proposed in [12, 13] for

determining the model order. Some other concept

as information theory like Akaike’s Information

Criterion (AIC) [15], Bayesian Information

Criterion (BIC) [16] or Minimum Description

Length (MDL) [26] were developed to produce an

estimate model order. Among these techniques,

the AIC is a heuristic approach, which has

attracted much attention in the literature. His

technique penalizes the likelihood of the number

of parameters in the model by attempting to

choose the most suitable model order.

Considering an N-dimensional time-series data,

the AIC is given by equation (22):

(22)

where N denotes the number of data points, (z) is

a dimension associated with the vector of

unknown parameters to be estimated and

(23)

is the covariance matrix of the innovation

sequence associated with the estimated

coefficients, the w[t] is innovation square, or the

model error.

When the AIC value is at a minimum, we obtained

the most suitable order. A minimum AIC is

theoretically situated at a sufficient value of (z)

that best represents the dimension of the

unknown parameters. For an ARMAX (na, nb, nc,

nk)(p) model, (z) would typically be equal to

(na+nb+nc+nk), with na, nb, nc and nk orders for its

AR, MA, eXogenous components and time delay,

respectively, while p represents the number of

orthonormal functions by which each of these

components is multiplied. Here, it should be

noted that although there would be many possible

combinations of na, nb, nc and nk that can produce

the same adequate value of (z), only the right

combination would yield the smallest AIC value.

The z value may be defined as:

(24)

The AIC corresponding to an ARMAX (na, nb, nc,

nk)(p) model is written here as:

(25)

where z is the number of scalar parameters in the

ARMAX model.

However, in many cases, AIC does not give an

optimal order. [27] showed empirical evidence

that AIC tends to pick models which are

over-parameterized. The BIC overcomes this

shortcoming by including an additional term that

penalizes the model complexity and enhances the

procedure, which are based on the same concepts

governing the AIC but are better suited for large

data sequences. The BIC criterion has the

following general form:

(26)

In this paper, it is written as:

(27)

These criteria rely on the evolution of the error

covariance, which monotonically diminishes

concerning the model order. It asymptotically

chooses the correct order model if the underlying

multiple time series has high dimensions but

tends to overestimate the model order as the data

length increases. Thus, selected model orders can

be greater than the optimal model orders.

However, attention has recently shifted to the

equally important problem of bias resulting from

under-modeling. Wahlberg and Ljung [28] have

conducted excessive research on the distribution

of bias and variance in the estimated transfer

function.

In this paper, we present an improved approach

to determining time series model orders based on

means square errors of the estimated transfer

function. This approach is different from

traditional criteria such as AIC and BIC. We

transformed an averaged frequency means square
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t
t t

=
Σ = ∑w w

( )( )a b c kz n n n n p= + + +

( )( ) ( ) ( )( )ˆ, , , N ln det | | 2a b c k a b c kn n n n p n n n n p= Σ + + + +AIC
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N

z z= Σ +BIC
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error on the estimated transfer function into a

mean square output prediction error criterion.

The proposed method allows extracting the modal

residuals with a sufficient order that guarantees

the extraction of uncorrelated residual samples

and the avoidance of an overfitting problem. The

selection of the optimal order is based on a

minimal variance of the total mean square error

between the true and

estimated transfer functions based on N

observation data. As we mentioned in the

previous section, the means square error between

and is shown to be the sum of two

terms, which both depend on the order of the

estimated model, namely, a bias term that

decreases with the model order and a variance

term which increases with this order. We defined

Poptimal as the optimal order of the structure while

assuming that both input and output data are

available. The criteria can be formulated as

follows:

(28)

where is the estimated Means Square

Error (MSE) between the true and estimated

transfer functions, . The input

u(t) is assumed to be a quasi-stationary sequence

with zero time average and denotes the

Power Spectrum Density (PSD) of the input.

The optimal order obtained when:

(29)

The aim of this technique is converting the bias

error into a random variable by ascribing a prior

distribution to it. Consequently, we obtain an

estimate for the average characteristics of the total

errors. We assume that the transfer function

represented by is a stochastic process

indexed by the variable ω, and given some value

of θ0, it can be decomposed as the sum of a

parameterized plus the residual

(30)

where is a zero-mean stochastic process:

(31)

Each system will provide one realization and

analogous to the embedding of the single noise

realization in a stochastic process. In the

framework of an ARMAX model, for ease of

implementation, we restrict our consideration to

the linear model structures of the Single Input

Single Output (SISO) case. The question of

computing asymptotic variance expressions in the

presence of under-modeling for transfer function

prediction errors in frequency domain

identification is addressed in this paper. The

discrete linear transfer function of the ARMAX

model can be expressed in the following form:

(32)
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( )po
E

∆=

(34)( ) ( ) ( )   
2
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q q  = − =E G G Q

The means square error between the true and estimated transfer function in (28) is calculated

by the following equations:

where

(35)

(36)
( )

( ) ( ){ }
( ) ( ){ }

Re ,

Im ,

T N

T N

q q
g q

q q

θ
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G G
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( ) ( ) ( )0,T Tq q qθ ∆= +G G G

( ){ } 0qε ∆ =G

( )qG

( )T qG

( )0,T q θG ( )q∆G :

( )q∆G

The true transfer function can be expressed by the relationship between the measured input and output

of the system:

(33)



methods. The optimal model will be tested by the

quality of the residuals, the histogram, and

autocorrelation functions.

IV. INDUSTRIAL APPLICATION ON A
SCOMPI ROBOT

4.1  Description of the test structure

Flexible manipulators are employed in the

maintenance of large hydro electronic equipment

as they represent an effective solution for repair

jobs [29]. Despite their attractive properties,

controlling lightweight robot manipulators is still

a challenging task. Their flexibility induces

structure vibration that deteriorates the trajectory

tracking accuracy and may lead to instability

issues. In this part, the present method is adopted

to identify the dynamic behavior of a light,

portable, track-based multi-process manipulator

named SCOMPI (Super-COMPact Ireq) [30, 31].

The dynamical transfer functions and modal

parameters must be monitored during the

grinding process to control vibrations. Figure 2

presents the working envelop and the

construction of the robot, with its links and joints.

Fig. 2 Structure of SCOMPI robot [29-31]

4.2   Experimental procedure

The tool contact point Frequency Response

Functions (FRFs) and their modal parameters

represent the key for solving the dynamics

analysis. In this paper, the actual grinding forces

are used as the input excitations in estimating the

FRFs. The grinding test is performed at the 3225

rpm rotating speed with an average 0.08 mm

axial depth of grinding cut. The grinding work is

realized on a hard steel EN31-64HNC workpiece

with the dimensions of 150 x 7 x 48 mm. During

the cutting operation, cutting forces are measured

with a type CH8408 3-axis Kistler dynamometer,

which is directly attached under the workpiece to

record the normal force direction (Fx), the

tangential force direction (Fy) and the axial force

direction (Fz). At the same time, three

PCB-352C34 piezoelectric sensors with a

sensitivity of 5.29 mV/G are used to measure

accelerations at the robot’s end-effector (S1 - S3) to

capture the vibration in three directions. The

measurement is conducted through the LMS data

acquisition system for 10 s at a 512 Hz sampling

:

This index is an effective criterion since it includes

the stochastic participation in the denominator by

adding an input power spectral density

We converted a average frequency means square

error criterion on the estimated transfer functions

into a mean square output prediction error

criterion. Due to the presence of measurement

errors, the proposed method is adopted to

determine the optimal model orders and proved

its robustness to parameter uncertainties. This

modification bridged the connection between

classical variable selection criteria such as AIC

and BIC and the non-concave penalized likelihood

methodology that allows greater flexibility in

choosing the desired models. The goodness of its

performance will be assessed in the next section

through a comparison with traditional validation

frequency. Figure 3 shows the actual experimental

setup of the SCOMPI robot under a real grinding

operation. An LMS test lab system was used for

acquiring the data in real-time during

experiments, as well as for calculating averaged

FRFs, which were used to validate the estimated

results of the proposed approach.

Lo
nd

on
 Jo

ur
na

l o
f E

ng
in

ee
ri

ng
 R

es
ea

rc
h

Volume 22 | Issue 1 | Compilation 1.028  © 2022 London Journals Press

Optimal ARMAX Model Order Identification of Dynamic Systems

( ).u ωD



Fig. 3 Experimental setup for SCOMPI robot during grinding operation

The structure is excited through a grinding

operation, during which all the effects related to

the rotating tool or the grinding process are

considered. FRFs are obtained during the cutting

operation through the relations of the cutting

forces and the vibration responses. The measured

cutting forces are taken as the excitation sources

of the system. In this paper, the operational FRFs

are determined from the relation between the

cutting forces and responses through the time

series ARMAX modeling. The detailed

experimental description is provided in Table 1.

Table 1 Grinding conditions of the SCOMPI test

No. Experimental description Information Units

1 Grinding cup (Norton BuleFire) diameter 12.7 cm

2 Workpiece material AISI 1081 -

3 Density of AISI 1081 7.87 g/cm
3

4 Workpiece dimensions 20.32 x 25.4 x 2.54 cm

5 Grinding direction Normal direction -

6 Power 500 – 3400 W

7 Length of cut 16.2 – 18.5 cm

8 Width of cut 1 – 1.55 cm

9 Depth of cut 0.0158 – 0.00165 cm

10 Rotation speed 3225 rpm

11 Angle of grinding cup 5-10 degree

The measured grinding forces and the acceleration responses in each direction are shown in Figure 4.

:
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Fig. 4 Measured data on SCOMPI robot

5.1   Model orders estimation

The parametric identification of the structural

dynamics is based on force and response signals

with a 10s sample length. The modeling strategy

consists of the successive fitting of the ARMAX

(na, nb, nc, nk) model. First, the model orders are

selected based on the Akaike Information

Criterion (AIC) and the Bayesian Information

Criterion (BIC). Figure 5 plots result from the AIC

and BIC techniques respectively obtained by

directly fitting the ARMAX model of increasing

orders p = 1– 60 to the different sets of

experimental data.

Fig. 5 Model order selection based on AIC and BIC criteria for different sets of data:

(a) X data, (b) Y data, (c) Z data

:
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V.    IDENTIFICATION PROCEDURE
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By dividing the experiment into different test

directions based on the operation of the robot, we

can decompose and characterize the dynamical

behavior of the system for each direction. From

Figure 5, both the AIC and BIC methods decrease

with the model order, and a minimum may be

assumed close to 47. However, the main

limitation of using such techniques is that they

may suggest different model orders and not

determine the optimal orders. Thus, these values

must be judged carefully.

By applying the proposed method in selecting an

optimal model order, the orders for which all

curves lead to a stable value are identified. Figure

6 illustrates an optimal order, defined as the

smallest order value. The point of convergence

starts at around order of 10 in all three directions.

Fig. 6 Model orders selection based on the proposed approach for different sets of data:

(a) X data, (b) Y data, (c) Z data

To compare the efficiency of the present method,

Vu et al. [17] proposed a technique for

determining an efficient model order peff based on

the analysis of the Noise-to-Signal Ratio (NSR).

The estimated is given in equation (37) based

on the trace norm part of the error covariance

matrices and the estimated deterministic .

(37)

A Noise-ratio  Order  Factor  (NOF)  is  calculated  as

a  variation of  the  NSR between two successive

orders:

(38)

The NOF is a representative factor for the

convergence of the NSR, which changes

dramatically at low orders and converges at high

orders. Since this criterion is positive and close to

zero, the convergence may be assumed close to 10,

considered as an efficient model order (Figure 7).

M K

Trace ( )ˆNSR (%)
Trace ( )

=
M

K
or 10

Trace ( )ˆNSR 10log (dB)
Trace ( )

=
M

K

:
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Fig. 7 NOF evolution and efficient model orders selection for different sets of data:

(a) X data, (b) Y data, (c) Z data

Theoretically, the modeling of a complex structure

like the SCOMPI robot should result in a

high-order model. Based on the AIC and BIC

criteria, a 47-order model should be selected as a

suitable choice. However, a lower order could be

chosen with all essential characteristics of the real

system preserved. By comparison, the

Noise-to-Signal Ratio and the proposed method

are selected with a model order of around 10.

However, in the case of the complex ARMAX

model, it is characterized by three different

orders, the model order estimation is not

straightforward. In experimental modal analysis,

the orders na, nb, and nc depend on the model

parameterization. According to [32, 33], the

choice of nb is a function of the type of response

measurements used and the inter-sample

behavior of the data. Moore et al. [34] suggest an

ARMAX (p,p,p) model in which p = na = nb = nc,

for the case of a vibration acceleration

measurement, or ARMAX(p, p - 1, p), for the case

of a vibration displacement or velocity

measurement with an appropriate time delay. As

can be noted, since structural vibrations are

usually measured in terms of acceleration rather

than displacement and velocity in actual

experiments, we would choose poptimal = na = nb =

10.

The Moving Average order is initially set equal to

the Auto Regressive part since the resulting noise

model has the flexibility of representing several

stochastic processes, including white noise. There

is some experimental evidence in the structural

systems [34, 35], which indicates that for low

noise levels, the required MA order is often

smaller or equal to the AR one. The order nc of the

MA matrix and time delay order nk are dependent

on the noise present in the system, and generally,

no information on the nature of this disturbance

is available. Therefore, the extracted required

value of the MA order, as well as an appropriate

time delay order, will be carefully examined in

this study. This can be done by initially setting na

= nb = 10, and then selecting the best model by

using a proposed criterion to test the effectiveness

of changing nc and nk from the set of {1, 2, …, 20},

resulting in the estimated results presented in

Figure 8.
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Fig. 8 Moving average order (a) and time delay order (b) selection

Based on these results, the set of orders

(10,10,8,2) is chosen as consisting of the smallest

order values, which can be applied to fit the data

with a negligible discrepancy and can be

effectively utilized for modal analysis. However, a

further step needs to be validated to assess the

adequacy of the estimated model. Several

diagnostic checks can be used to decide whether

the ARMAX model is adequate based on the

residuals, which characterized by an uncorrelated

sequence. Figures 9 and 10 display the histogram,

Quantile-Quantile (QQ) plot, Autocorrelation

Function (ACF), and Partial Autocorrelation

Function (PACF) of the residuals of the ARMAX

model. The histogram is unit-modal and

symmetric around zero. From the QQ-plot, the

residual approximately fit a straight line, and this

can be assumed normal. The values of both ACF

and PACF are located roughly between the upper

and lower bounds of a confidence interval.

Therefore, the residual can be assumed

independent, and the selected orders can be used.

Fig. 9 Residual errors histogram and normal probability plot of an estimated ARMAX (10,10,8,2)

model

:

:

Fig. 10 Autocorrelation function (ACF) and Partial Autocorrelation Function (PACF) of the residual

ARMAX (10,10,8,2)

:
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Fig. 11 Estimated Frequency Response Function FRFxx

Fig. 12 Estimated Frequency Response Function FRFxy

The above identification procedure leads to an

optimal ARMAX (10,10,8,2) model, which is

selected as an adequate model for structural

analysis, and for the extraction of modal

parameters. The next section evaluates the

performance and effectiveness of this dominant

reduced model, in which all the essential

characteristics of the real system can be retained.

5.2  Frequency Response Functions identification

Based on the discussion above, once the excitation

and vibration measurement data have been

selected with the appropriate orders, an ARMAX

model needs to be estimated within the model

structure. In this section, the two parametric

transfer function estimators for assessing the

dynamic flexible manipulator are analyzed. The

FRFs estimation is performed using two

parametric models, ARX (na, nb, nk) and ARMAX

(na, nb, nc, nk), based on data records from the

structure. A scalar Single Input – Single Output

(SISO), ARX and ARMAX models are used at a

time. The input signals to each model are the force

signals, and the output signals are measured

accelerations, respectively. The assessments of an

ARX model, and an ARMAX model, are

undertaken based on an experimental SCOMPI

structure during the grinding operation. Figures

11-19 demonstrate the estimated Frequency

Response Functions obtained by the ARX and

ARMAX models, which are compared to those

measured by the LMS system.
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Fig. 13 Estimated Frequency Response Function FRFxz

Fig. 14 Estimated Frequency Response Function FRFyx

Fig. 15 Estimated Frequency Response Function FRFyy

Fig. 16 Estimated Frequency Response Function FRFyz
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Fig. 17 Estimated Frequency Response Function FRFzx

Fig. 18 Estimated Frequency Response Function FRFzy

Fig. 19 Estimated Frequency Response Function FRFzz

In comparing the ARX and ARMAX models’

performance with different measurement data, it

can be observed that the ARMAX model achieves

much better fit than the ARX counterpart at low

orders, where all frequencies of the system are

clearly revealed. Conversely, at the same model

orders, the ARX model proves inadequate in

providing accurate estimated FRFs compared to

the measured one. The ARMAX method was both

economic and effective in accurately identifying

the frequency response functions of the structure

based on input-output experimental data

corrupted by noise. This model also gives a more

parsimonious representation and precision. These

results matching those of [35]. The model orders

of the ARMAX model are related to the number of

structural modes in a given frequency range.

Meanwhile, in the ARX model, the number of

degrees of freedom devoted to the description of

the system dynamics is limited due to the fact that

the system dynamics and the noise are partially

described by the same polynomial A(q). For this

reason, larger complexities are needed to achieve

good adherence to the true system. Consequently,

:
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considering the noise present in the

measurements.

5.3   Extraction of modal parameters

The estimated Frequency Response Functions

(FRFs) representing the structural dynamic

will be applied to distinguish the

actual structural modes from the extraneous

modes, based on the construction of the

stabilization diagram, and will be used for the

extraction of the modal parameters. Each transfer

function representing a scalar excitation and

response pair is evaluated directly from the

estimated discrete ARMAX model. Complete

model information such as natural frequencies,

damping factors, and mode shapes can be

obtained. Their global parameters can be

extracted as follows:

(39)

(40)

In the above expression, fnl denotes the l
th

natural

frequency in (hz) unit, ζl represents the

corresponding damping ratio, is the l
th

discrete complex conjugate eigenvalue pair, and T

is the sampling period.

To determine the extraction mode, a particular

discrete-to-continuous transformation must be

performed for determining continuous-time

residues. The l
th

mode shape ϕl is then obtained

as:

(41)

where m represents the estimated number of

structural degrees of freedom and Rijl is the ij
th

element of the l
th

(l=1, 2, …, m) residue matrix Rl

of the continuous-time receptance transfer

matrix.

In modal analysis, knowledge of the model order

is necessary but insufficient. It is important to

understand that with noisy data, the optimal

model order is typically smaller than the existing

order. When evaluating the parameters with the

minimum order model, it is hard to obtain all the

modes if the measurements are corrupted by

experimental noise. Previous studies [12, 13, 17]

have shown that it is more difficult to identify the

damping rates than the natural frequency from

ambient vibration data due to a higher sensitivity

to measurement noise. Therefore, to obtain all the

modes and construct a stabilization diagram, a

value higher than the minimum required order to

establish the convergence must be set. However,

the advantage of the ARMAX modeling is that it

includes the Moving Average part, which is

already accounted for the noise present in the

system. Consequently, there is no need to go up to

a very high order, as in the case of AR or ARX

models. To prevent the contamination of more

numerical modes and avoid the overfitting

problem, a computational model order should not

be too much higher than the optimal one. In this

paper, order 50 was selected for visually

establishing stabilization diagrams and

distinguishing between the structural and the

spurious modes, and the identified low-order

FRFs in the previous section were applied to

extract the modal properties. The results

computed by both the ARX and ARMAX models

are illustrated in Figures 20-23.
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Fig. 20 Stabilization diagram by the ARX model

Fig. 21 Stabilization diagram based on average estimated FRFs in X direction by the ARMAX model

Fig. 22 Stabilization diagram based on average estimated FRFs in Y direction by the ARMAX model

:

:

:

Lo
nd

on
 Jo

ur
na

l o
f E

ng
in

ee
ri

ng
 R

es
ea

rc
h

Volume 22 | Issue 1 | Compilation 1.0218  © 2022 London Journals Press

Optimal ARMAX Model Order Identification of Dynamic Systems



Fig. 23 Stabilization diagram based on average estimated FRFs in the Z direction by the ARMAX model

As can be seen from Table 2, all modal parameters obtained by two different methods are identified.

Table 2 Comparison of estimated modal parameters between ARMAX and ARX models

Modes
ARMAX model ARX model (Least Squares)

Frequency (Hz) Damping ratio (%) Frequency (Hz) Damping ratio (%)

1 27.54 1.28 26.51 2.55

2 53.21 0 53.27 0

3 93.76 0.15 93.93 0.14

4 106.40 0 106.4 0

5 146.96 0.13 147.0 0.07

6 158.56 0 159.7 0

7 186.75 0.27 187.5 0.59

8 202.90 0.31 200.3 0.22

9 212.80 0 212.9 0

10 239.13 0.23 240.5 0.28

The stabilization diagrams help to distinguish

between spurious modes and vibration ones.

Since the frequency response function is

considered converging to the optimal order poptimal

= 10, all the natural frequencies in the measured

range start to show up on the stabilization

diagrams, meaning that the optimal order poptimal

is the minimum value from which all available

physical modal properties are revealed. The

assessments of both the ARX model and of the

ARMAX model are undertaken based on an

experimental SCOMPI structure. As the results

indicate in Table 2, both models are effective for

modal identification, but using different

approaches. In the case of the ARMAX model, the

harmonic frequencies, the natural frequencies,

and damping ratios are extracted directly from the

estimated low-order frequency response

functions. In contrast, the ARX model is based on

the minimum Least Square method [19] at the

higher orders. The ARMAX model exhibits the

lowest complexity, while the ARX method

requires many model parameters to extract the

modal properties. As can be seen in Figure 20,

due to an applied higher order up to 100 in the

case of the ARX model, the stabilization diagram

exhibits a lot of irrelevant oscillation information,

which results in an overfitting problem and heavy

computation. Meanwhile, the stabilization

diagrams of an ARMAX model with different

measurement data sets revealed all the

frequencies, without overfitting problems and

with less computational time. In general, the

ARMAX model is better at capturing the

significance of the mismatches introduced and

provides satisfactory results in terms of

frequencies and damping coefficients estimation.

The model offers easy computation, with

sufficient low-order performance despite the

noise contamination in the experimentally

:
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measured data. However, in the case of the ARX



VI. CONCLUSION

To summarize, this paper presents an effective

identification technique for computing optimal

ARMAX model orders based on experimental

measurement data. The present method allows

selecting of a minimum order of the mechanical

system in a given frequency range, which correctly

incorporates the effect of modeling error and

measurement noise under the expression of a

minimum error variance of the identified transfer

functions. The estimated results were validated

with other common criteria, such as AIC, BIC, and

NOF, to ensure that the selected model extracted

uncorrelated residuals and simultaneously

prevented overfitting. The search for the best time

delays is also addressed in this paper. The

proposed optimization strategy was successfully

applied on an industrial application, namely, the

flexible SCOMPI manipulator robot under

grinding operation. The relationship between the

actual structural and disturbance dynamic is

formulated in the discrete form of an ARMAX

representation, which helps to improve the

modeling performance and to gain flexibility in

handling the residual error caused by

environmental noises. Further validation was

carried out by comparing model predictions with

actual measurements of transfer functions from

the LMS Test Lab system and the original ARX

technique. Comparative results show that the

identified ARMAX model is economic and

appropriate for structural identification and

achieves better results. The low-order transfer

functions estimated by the present technique were

scientifically closer to the measured values, and

are proposed for use in automatic modal

extraction. Results show that the approach is

successful and superior to a state-of-the-art order

determination technique in obtaining a sufficient

order and can accurately capture all the dominant

oscillation modes with fewer discrepancies. The

proposed method is expected to be a useful tool

for capturing the transfer functions of

difficult-to-measure structures such as rotating

grinding systems. The determined low-order FRFs

may eventually be used in the feedback controller

design of the manipulator or in constructing a

Stability Lobe Diagram (SLD) for determining

operating and natural frequencies.
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