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ABSTRACT

This paper describes an efficient approach for
model order determination, which allows
identifying the dynamical behavior of the
mechanical system by using observation input-
output data. The concept based on the minimum
means square error of the estimated transfer
functions, which can effectively tackle
measurement noise and modeling errors to
identify appropriate low-order transfer functions
of the structures via an Auto-Regressive Moving
Average eXogenous (ARMAX) model. The
effectiveness of the proposed method is validated
exclusively using experimental data obtained
from a grinding test of an industrial manipulator
SCOMPI robot. Some other criteria, such as the
Akaike Information Criterion (AIC), the Bayesian
Information Criterion (BIC), and the Noise Order
Factor (NOF), are investigated to verify the
performance of the proposed methodology. The
results demonstrated that the present technique
is cost-effective in terms of optimal model order
determination, and the ARMAX model turns out
to be the most appropriate representation for
feature extraction at the low order. Thanks to its
flexibility in handling model disturbance, the
proposed optimization strategy can capture all
the dominant oscillation modes of the structure
at the low orders, and system modal properties
are efficiently and automatically determined. In
contrast, the performance of the ARX model is
shown to be less efficient when working at the
low orders.
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. INTRODUCTION
Operational Transfer Functions (TFs) or
Frequency Response Functions (FRFs) of

mechanical structures play a vital role in
understanding the dynamic characteristics of the
systems and in solving general vibration problems
during the operational process. They constitute an
effective tool aiding the extraction of modal
parameters. Estimating the transfer functions of a
mechanical system has thus become an important
task in many engineering applications. Different
representations of transfer functions are crucial in
the description and analysis of system properties.
In industrial applications, a measurement of the
transfer functions defining the structure
properties in the frequency domain can be
implemented using vibration instrumentations.
Different methodologies are proposed in the
literature with the aim of estimating operational
transfer functions, with the most common
applying the Fourier analysis. The Empirical
Transfer Function Estimate (ETFE) is a natural
nonparametric method that identifies transfer
functions by taking the ratios of the Fourier
transform of the outputs to those of the inputs [1].
However, this method requires more data points
and raw ETFE estimates are generally not
accurate enough. With these estimates, the
variance does not decrease as the number of data
points increases because they contain no
information compression feature. Researchers
have conducted various experimental studies on
structural dynamics under operational conditions.
In [2], the FRFs of a flexible joint industrial
manipulator with a serial kinematic were
identified based on a non-parametric closed loop.
However, due to the nonlinearities of the robot,
the method faced a challenge in eliminating
disturbances in the estimated FRFs. Operational
Modal Analysis (OMA) is another approach for
identifying the modal properties of the structure
using vibration data obtained under operating
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conditions. Yili Peng et al. [3] identified
in-process FRFs based on the OMA and
Experimental Modal Analysis (EMA), which uses
the natural frequencies and damping ratios to
build FRFs under operating conditions. A
simulation of a three-degree-of-freedom-mass-
spring-damper system and experiments on a
machine tool are adopted to verify the proposed
method. Similarly, Zaghbani et al. [4] used OMA
in the identification of the dynamics of a milling
machine under a cutting process work. At the
same time, another method was presented in [5]
to generate FRFs from identified poles and zeros
in the low-frequency domain. Recently, Coppotelli
et al. [6] proposed an approach for estimating
FRFs from operational data by changing different
mass and stiffness distributions. This method also
allows evaluating the modal parameters of the
structure via operational modal testing.
Conversely, Ozsahin et al. [7] introduced a new
technique to calculate the variation in tool point
FRFs under different working conditions by using
an inverse analysis of self-excited chatter
vibration. In their method, chatter frequencies
were experimentally determined and applied to
estimate tool point FRFs on 5-axis milling
machine via the relation between the measured
force inputs and acceleration outputs. However,
the tool point FRFs are not well estimated at high
spindle speeds due to the presence at those speeds
of a low signal-to-noise ratio and the bandwidth
limitation of the dynamometer. Another in-
process FRF identification approach of the spindle
structure was presented in [8]. In that case, the
tooltip FRFs were identified under operational
conditions based on an inverse solution of critical
stability limits. The method is helpful for
predicting the stability of the tool holders when
the direct measurement of the tool point FRFs is
uncompromised. Parametric estimation methods
constitute another system identification class. In
these methods, it is suggested to use time series
modeling for the mathematical description of the
transfer functions. It combines the advantage and
information obtained from both measurements
and theoretical modeling. Depending on the
availability of the measurement signals, the Auto
Regressive model (AR) [9, 10] or the Auto
Regressive Moving Average model (ARMA) [11]
can be used if only the output is available. In [12,

13], a modal analysis was conducted in different
industrial structures based on three Auto-
Regressive Moving Average methods, namely, the
recursive least-square, output error, and corrected
covariance matrix methods to determine the
optimal model order. Conversely, in the case of
measurable or identifiable excitation forces, the
Auto-Regressive eXogenous (ARX) model [14] can
exploit, by assuming that the model’s errors and
disturbances are white noise. However, because
of the unavoidable noise contaminated in the
measured signals, the quality of estimated FRFs
can be adversely affected by noise originating
from the test environment. When the system
operates in an industrial condition with a lot of
disturbance, identifying the transfer functions of a
complex structure may become difficult.

In this paper, we present an original method
designed for automatically extracting the modal
parameters from identified transfer functions
based on the concept of the optimal ARMAX
model. Particular attention is paid to selecting
optimal model orders, which can closely reflect
the dynamic system. The work contributes to the
determination of a model order based on the
estimated transfer functions, by using the
framework of the ARMAX model. The proposed
method is experimentally applied to a robot
during its grinding operation, and the results are
compared to those of the original ARX model. The
measured grinding forces may be considered the
exogenous inputs excitation, and the disturbances
of the system are taken into account by adding the
Moving Average part into the model. The
estimated orders are verified based on the most
common selection criteria, such as the Akaike
Information Criteria (AIC) [15], the Bayesian
Information Criteria (BIC) [16], and the Noise
Order Factor (NOF) [17]. In this study, the
ARMAX model is expressed in a convenient way
for computation at the low orders, which gives a
more parsimonious representation and helps
improve the modeling performance, with less
computational complexity. We have organised the
rest of this paper in the following way. The
motivation for the research is established in
Section 2 through a detailed description of the
time series modeling, with a focus on the ARX and
ARMAX models. Section 3 proposes an original
method to determine an optimal model order of
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the mechanical system. Experiments are then
conducted on the flexible manipulator, SCOMPI,

under grinding operation to validate the proposed
methods in Section 4, followed by the
identification procedure and the results. We end
by drawing several conclusions from this research.

Il TIME SERIES MODELING

System identification is the art of modeling a
dynamical system from raw time series data. We
consider the problem of estimating a dynamic
system model based on the measurement of an N
points input-output data, which will be
pre-classified into input u (t) eR, t=1,..,T and
output y(t) e R, t=1, ..., T.:

Z" = (u(t).y (1), (1)

Various representations of linear time series such
as Auto-Regressive (AR), Auto-Regressive Moving
Average (ARMA), Auto-Regressive eXogenous
(ARX), and Auto-Regressive Moving Average
eXogenous (ARMAX) can be employed to extract
dynamic parameters [18]. Since there are various
time series data types, we should choose an
appropriate model. In general, such models are
based on an Auto-Regressive (AR) part or output,
an eXogenous (X) part or input, or a Moving
Average (MA) part or error term, depending on
the situation. The AR model is the simplest time
series representation, which linearly depends on
output data (the vibration responses). In the
availability of both input (the measurable and
known excitation force) and output data, the ARX
model is usable. It is possible to combine these
models with the MA term and produce the ARMA
representation for the output-only cases and the
ARMAX model for the input-output conditions.
Once the most appropriate modal structure is

selected, we can apply a model to the
measurement by minimizing certain criteria:

0, =argminV, (H,ZN ) (2)

where 6 is the unknown parameter vector of the
parametric model structure.

In automatic control applications, given the
current state and input signal, the model can be
applied to predict the output of the system by
choosing a cost function in the form.

Vy (Q,ZN)zﬁt%I(L(q) (t6)) (3)

where L(q) represents a filter that removes
unwanted properties in the measurement data,
and [(.) is a convex function.

The following quantity is the prediction error.
y(tt-16) is the one- step - ahead predictor
representing the model of the system:

e(t,0)=y(t)-y(tft-10) 4)

A common representation of the Linear
Time-Invariant (LTI) system can be expressed in
the from of the linear transfer function model:

y(t)=G(a,0)u(t)+H(a.0)w(t) (5)

where q is the forward shift operator, that is,
g y(t) = y(t-k). Here, y(t) is a n, dimensional
vector of output, u(f) is a n, dimensional vector of
input, and w(t) is the disturbance sequence with
an appropriate dimension and assumed to be an
independent and identically distributed stochastic
process, respectively. Furthermore, the transfer
functions G(q,0) and H(q,0) are rational
functions in the backward shift operator g, and
the coefficients are given by the elements of the
parameter vector 6.

The predictor associated with the output is given by [18]

§(th-1,0)2H"(9,6)G(q,0)u(t)+(1-H™(a,0))y(1) (6)
where A(q)y(t)=B(q)u(t)+w(t) (8)
H™(0,0)21/H(q.0)u(t) ) that can be rewritten in a more general

This model structure is quite general, but we can
develop some special cases. A simple case is the
ARX model structure, which is:

polynomial form as:
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YO ZAY[t-K]} = 2 (B fult -~k 1)+ w(v)

where

A(q): | +alq_1-i-alq—z..._|_anaq—na (10)
B(q):bo +b1q_1+b2q_2---+ban_nk‘”b+l (11)
are autoregressive and exogenous matrix

parameters, with I denoting the identity matrix.
n, n,, and ny are the orders of the ARX model, n,
is equal to the number of poles and n, is the
number of zeros, while n, is the pure time delay in

the system. Since G(q,0)=B(q)/A(q) and
H(q,0)=1/A(q),, the predictor of the output can
be written as:

5(tft-100) = B(q)u(t)+ (- A(@)y () = (0 (2)

where

o(t)2 (~y(t-1--—yt—ny) ut-1--uit-n,))’ (13)

(14)

(-)é(al...ana '“bnb)T

b

(O} LAy [-K])

=

=1
where

C(a)=1+cq +cq 2+, g (18)

is the polynomial of order n, which represents for
Moving Average term.

In contrast with the simpler ARX model, this
presentation form offers a noisy transfer function
H(q.0)=C(a)/A(a), which allows representing
different types of noise characteristics through a

London Journal of Engineering Research

nZ[Bk]{u[t—nk —k+1]}+kz

(9)

When the noise is assumed to be a white Gaussian
process with zero means, which is uncorrelated
with the regressors, the model parameters 6 are
estimated via the Least-Square (LS) estimator
[19]:

2

0% = argmin% % (y(t) —o(t)T 0) (15)

t=1

The variance Y(®-0t)'0 represents the

remaining un-modelled behavior of the data.

The corresponding
G(a,0)=B(q)/A(q).(15-3)

transfer function is

However, in this case, only the deterministic part
of equation (1) is estimated by considering no
noise H(q,6). If a noise model is sought,
additional steps are needed, assuming that the
noise is described by a Moving Average process
C(q), which results in an ARMAX structure:

A(a)y(t)=B(a)u(t)+C(a)w(t) (16)
and its polynomial form
n;[ck]{e[t—k]}+{w(t)} (17)

proper choice of the MA polynomial term. In
engineering applications, it is unavoidable when
environmental noise contaminated in measured
data.  Therefore, a  parametric system
identification algorithm should be adopted to
identify the modal parameters from the noisy
data. Under this condition, the ARMAX model
with real-time identification proves to be efficient.
Figure 1 presents the structures of both ARX and
ARMAX models.

w(® w(®
(@ T ®) e
A(q) A(q)
5 A
u(t) e { é— YO u o E (+ )—0

Fig. 1: Model structures of ARX (a) and ARMAX (b) [18]
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If only the ARX model is use, the noise model is
described as H(q)=1/A(q) , where A(q) is also
used as the denominator of G(q) describing the
dynamic model. This model implies that the
polynomial form must be an average estimate of
the poles of G(q) and H(q). However, the noise
model can be better estimated using the ARMAX
model, as described by the numerator polynomial
term C(q). When parametric methods use for
model estimation, the transfer functions to be
estimated are defined as a function of a parameter

vector On2 (A ..yy by by €1 o Cre) For the

identification of the value 8y , G(q,6,) and
H(a,6y ) are closest to G(q,6y)-and H(g,6y). In

G(a)-G(a.6y)=| G(a)-G(a.6

As we can see in equation (21), the errors in the
estimated FRF have two components. The first
contribution [G(q)—G(q,@K, )] is the bias
contribution, a deterministic quantity due to the
modeling error. If the selected model has a lower
or a higher complexity than the true system, this
bias error will be present at some frequencies.

Choosing the model order should be flexible
enough to allow a good fit to the measurement
data but adequately constrained so that noise does
not invoke unsuitable models. Consequently,
selecting an optimal model order respecting this
compromise is an important issue in system
identification. This concern is analyzed in the
following section to select the optimal model
orders of an ARMAX model. The second

contribution [G (q, o )—G (q, N )} represents the
noise or variance errors, which are due to noise in
the measured input and output data. It is a
random variable that will disappear if there is no
noise or if the number of data tends to infinity.

.~ AMODEL ORDER DETERMINATION
APPROACH

When time series modeling ARX or ARMAX
models employed, the performances may be
affected by selecting the model order. Choosing a
sufficient and correct model order has always
been a challenging issue. Once the model orders
are properly selected, the models successfully

[20], the authors showed that under reasonable
conditions,
Oy — By (19)

where

N . R
0, =arg m'”ﬁgf{gk (0)}

(20)

and ¢€(t,6) is prediction error and defined in
equation (4). According to [21, 22], with this

definition of 6y , it is possible to split the total
estimation error between the true frequency

response function G(q) and the estimated one

G (q, O ) into two parts as follows:

)] [e(adi)-c(ao)] (21)

represent the underlying phenomenon with the
lowest complexity. This method aims not only to
find a model capable of describing a specific set of
data but is also helpful for the validation of the
inference procedures. Consequently, there is a
need to develop a reliable method to identify the
orders of AR, MA, and eXogenous polynomials. In
general, most of the mechanical structures are
operated in the low-frequency range with limited
bandwidth. Having a model with orders that are
too high may lead to an overfitting problem as it
includes too much irrelevant oscillation
information and generates high computational
costs, and a model with orders that are too low
will not be solid enough to capture the underlying
physical system dynamics. For its part, a model
with an appropriate order can precisely describe
the dynamic characteristics of the system. Because
of its important role in system identification,
model order determination has attracted much
attention in the literature, with researchers
proposing  different  criteria  for  order
determination [23]. The final prediction error
(FPE) criterion was originally proposed by Akaike
[24] for determining the AR order and was
extended to the ARMA model by [25]. After
adding the inflating effects of estimated
coefficients, the optimal order was chosen by
minimizin the one-ste-ahead mean square
forecast error. A method based on the eigenvalues
of a modified covariance matrix, which is robust
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to noise levels, was proposed in [12, 13] for
determining the model order. Some other concept
as information theory like Akaike’s Information
Criterion (AIC) [15], Bayesian Information
Criterion (BIC) [16] or Minimum Description
Length (MDL) [26] were developed to produce an
estimate model order. Among these techniques,
the AIC is a heuristic approach, which has
attracted much attention in the literature. His
technique penalizes the likelihood of the number
of parameters in the model by attempting to
choose the most suitable model order.

Considering an N-dimensional time-series data,
the AIC is given by equation (22):
AIC(z)=NIn(det|i|)+2(z) (22)
where N denotes the number of data points, (z) is
a dimension associated with the vector of
unknown parameters to be estimated and

o 1N oo
=Y W[t]Ww' [t] (23)

N =1

£ is the covariance matrix of the innovation
sequence associated with the estimated

where z is the number of scalar parameters in the
ARMAX model.

However, in many cases, AIC does not give an
optimal order. [27] showed empirical evidence
that AIC tends to pick models which are
over-parameterized. The BIC overcomes this
shortcoming by including an additional term that

London Journal of Engineering Research

In this paper, it is written as:

BIC(n,,ny.ne. N )(P) = In(det‘i‘)+(na +n,+n.+n)(p)

These criteria rely on the evolution of the error
covariance, which monotonically diminishes
concerning the model order. It asymptotically
chooses the correct order model if the underlying
multiple time series has high dimensions but
tends to overestimate the model order as the data
length increases. Thus, selected model orders can
be greater than the optimal model orders.

However, attention has recently shifted to the
equally important problem of bias resulting from

AIC(ng,ny, 0,0 )(P) = Nln(det|ﬁ|)+2(na+nb+nc+nk)(p)

coefficients, the w[t] is innovation square, or the
model error.

When the AIC value is at a minimum, we obtained
the most suitable order. A minimum AIC is
theoretically situated at a sufficient value of (z)
that best represents the dimension of the
unknown parameters. For an ARMAX (n,, n, n,,
n)(p) model, (z) would typically be equal to
(n,+ny+n.+ny), with n,, n,, n. and n, orders for its
AR, MA, eXogenous components and time delay,
respectively, while p represents the number of
orthonormal functions by which each of these
components is multiplied. Here, it should be
noted that although there would be many possible
combinations of n,, n;, n, and n, that can produce
the same adequate value of (z), only the right
combination would yield the smallest AIC value.
The z value may be defined as:

z=(n, +n, +ng +n)(p) (24)

The AIC corresponding to an ARMAX (n,, n;, n,,
n,)(p) model is written here as:

(25)

penalizes the model complexity and enhances the
procedure, which are based on the same concepts
governing the AIC but are better suited for large
data sequences. The BIC criterion has the
following general form:

BIC(z)= In(det‘i‘)+(z)$ (26)

In(N)

(27)

under-modeling. Wahlberg and Ljung [28] have
conducted excessive research on the distribution
of bias and variance in the estimated transfer
function.

In this paper, we present an improved approach
to determining time series model orders based on
means square errors of the estimated transfer
function. This approach is different from
traditional criteria such as AIC and BIC. We
transformed an averaged frequency means square

Optimal ARMAX Model Order Identification of Dynamic Systems
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error on the estimated transfer function into a
mean square output prediction error criterion.

The proposed method allows extracting the modal
residuals with a sufficient order that guarantees
the extraction of uncorrelated residual samples
and the avoidance of an overfitting problem. The
selection of the optimal order is based on a
minimal variance of the total mean square error

~ ]2

8{‘G(q)_G(q’9N )‘ } between the true and
estimated transfer functions based on N
observation data. As we mentioned in the
previous section, the means square error between
G(q) and G(a.6y)is shown to be the sum of two
terms, which both depend on the order of the
estimated model, namely, a bias term that
decreases with the model order and a variance
term which increases with this order. We defined
P,pima @s the optimal order of the structure while
assuming that both input and output data are
available. The criteria can be formulated as
follows:

s>

P iiépo (0)Dy (w)de (28)

where Ep, (@) is the estimated Means Square
Error (MSE) between the true and estimated

~ 4|2
transfer functions, ¢ {‘G(Q)—G(Qﬂr\l )‘ } The input
u(t) is assumed to be a quasi-stationary sequence

with zero time average and D,(w) denotes the
Power Spectrum Density (PSD) of the input.

The optimal order obtained when:

)
o8]
—_

0,0) bo+bg ™ +b,q - +by g

(1T
Poptimal = arg mm(g [ Ep, (@)Dy (w)d@ j (29)
P -

0=12....
The aim of this technique is converting the bias
error into a random variable by ascribing a prior
distribution to it. Consequently, we obtain an
estimate for the average characteristics of the total
errors. We assume that the transfer function
represented by G;(q) is a stochastic process
indexed by the variable w, and given some value
of 6,, it can be decomposed as the sum of a
parameterized Gy (q,6,) plus the residual G, (q):

Gr(9)=Gr (0.6))+Ga() (30)

where G,(q) is a zero-mean stochastic process:

£{Ga(a)}=0 (31)
Each system will provide one realization and
analogous to the embedding of the single noise
realization in a stochastic process. In the
framework of an ARMAX model, for ease of
implementation, we restrict our consideration to
the linear model structures of the Single Input
Single Output (SISO) case. The question of
computing asymptotic variance expressions in the
presence of under-modeling for transfer function
prediction errors in frequency domain
identification is addressed in this paper. The
discrete linear transfer function of the ARMAX
model can be expressed in the following form:

—ny —np+1

l+aq ™ +aq?-+a, q "

The true transfer function can be expressed by the relationship between the measured input and output

of the system:

The Ep, (®) means square error between the true and estimated transfer function in (28) is calculated

by the following equations:

where

Q; 2( (7 @ (35)

Ep, (@)= g{‘G (q, N )—GT (q)‘z; = Trace{Qg}

Optimal ARMAX Model Order Identification of Dynamic Systems
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This index is an effective criterion since it includes
the stochastic participation in the denominator by
adding an input power spectral density D, (o).

We converted a average frequency means square
error criterion on the estimated transfer functions
into a mean square output prediction error
criterion. Due to the presence of measurement
errors, the proposed method is adopted to
determine the optimal model orders and proved
its robustness to parameter uncertainties. This
modification bridged the connection between
classical variable selection criteria such as AIC
and BIC and the non-concave penalized likelihood
methodology that allows greater flexibility in
choosing the desired models. The goodness of its
performance will be assessed in the next section
through a comparison with traditional validation
methods. The optimal model will be tested by the
quality of the residuals, the histogram, and
autocorrelation functions.

V. INDUSTRIAL APPLICATION ON A
SCOMPI ROBOT

4.1 Description of the test structure

Flexible manipulators are employed in the
maintenance of large hydro electronic equipment
as they represent an effective solution for repair
jobs [29]. Despite their attractive properties,
controlling lightweight robot manipulators is still
a challenging task. Their flexibility induces
structure vibration that deteriorates the trajectory
tracking accuracy and may lead to instability
issues. In this part, the present method is adopted
to identify the dynamic behavior of a light,
portable, track-based multi-process manipulator
named SCOMPI (Super-COMPact Ireq) [30, 31].
The dynamical transfer functions and modal
parameters must be monitored during the
grinding process to control vibrations. Figure 2
presents the working envelop and the
construction of the robot, with its links and joints.

Fig. 2: Structure of SCOMPI robot [29-31]

4.2 Experimental procedure

The tool contact point Frequency Response
Functions (FRFs) and their modal parameters
represent the key for solving the dynamics
analysis. In this paper, the actual grinding forces
are used as the input excitations in estimating the
FRFs. The grinding test is performed at the 3225
rpm rotating speed with an average 0.08 mm
axial depth of grinding cut. The grinding work is
realized on a hard steel EN31-64HNC workpiece
with the dimensions of 150 x 7 x 48 mm. During
the cutting operation, cutting forces are measured
with a type CH8408 3-axis Kistler dynamometer,
which is directly attached under the workpiece to
record the normal force direction (F,), the
tangential force direction (F,) and the axial force
direction (F,). At the same time, three

PCB-352C34 piezoelectric sensors with a
sensitivity of 5.29 mV/G are used to measure
accelerations at the robot’s end-effector (S, - S,) to
capture the vibration in three directions. The
measurement is conducted through the LMS data
acquisition system for 10 s at a 512 Hz sampling
frequency. Figure 3 shows the actual experimental
setup of the SCOMPI robot under a real grinding
operation. An LMS test lab system was used for
acquiring the data in real-time during
experiments, as well as for calculating averaged
FRFs, which were used to validate the estimated
results of the proposed approach.

Optimal ARMAX Model Order Identification of Dynamic Systems
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Moving track

Kistler table

SCOMPI robot

Workpiece

Fig. 3: Experimental setup for SCOMPI robot during grinding operation

The structure is excited through a grinding
operation, during which all the effects related to
the rotating tool or the grinding process are
considered. FRFs are obtained during the cutting
operation through the relations of the cutting
forces and the vibration responses. The measured

cutting forces are taken as the excitation sources
of the system. In this paper, the operational FRFs
are determined from the relation between the
cutting forces and responses through the time
series ARMAX modeling. The detailed
experimental description is provided in Table 1.

Table 1. Grinding conditions of the SCOMPI test

No. Experimental description Information Units
1 Grinding cup (Norton BuleFire) diameter 12.7 cm
2 Workpiece material AISI 1081 -

3 Density of AISI 1081 7.87 g/cm?®
4 Workpiece dimensions 20.32 X 25.4 X 2.54 cm

5 Grinding direction Normal direction -

6 Power 500 — 3400 \

7 Length of cut 16.2 — 18.5 cm
8 Width of cut 1—1.55 cm
9 Depth of cut 0.0158 — 0.00165 cm
10 Rotation speed 3225 rpm
11 Angle of grinding cup 5-10 degree

The measured grinding forces and the acceleration responses in each direction are shown in Figure 4.
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Fig. 4: Measured data on SCOMPI robot

V. IDENTIFICATION PROCEDURE

5.1 Model orders estimation

The parametric identification of the structural
dynamics is based on force and response signals
with a 10s sample length. The modeling strategy
consists of the successive fitting of the ARMAX
(n,, n, n., n,) model. First, the model orders are

the
Criterion (AIC) and the Bayesian Information
Criterion (BIC). Figure 5 plots result from the AIC
and BIC techniques respectively obtained by
directly fitting the ARMAX model of increasing

selected based on Akaike Information

orders p = 1— 60 to the different sets of

experimental data.
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Fig. 5: Model order selection based on AIC and BIC criteria for different sets of data:
(a) X data, (b) Y data, (¢) Z data
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By dividing the experiment into different test
directions based on the operation of the robot, we
can decompose and characterize the dynamical
behavior of the system for each direction. From
Figure 5, both the AIC and BIC methods decrease
with the model order, and a minimum may be
assumed close to 47. However, the main
limitation of using such techniques is that they
may suggest different model orders and not

determine the optimal orders. Thus, these values
must be judged carefully.

By applying the proposed method in selecting an
optimal model order, the orders for which all
curves lead to a stable value are identified. Figure
6 illustrates an optimal order, defined as the
smallest order value. The point of convergence
starts at around order of 10 in all three directions.

(@ 1.0 . . . ®) 10 . .
-
. 0.8t & 0.8 E
T osl L oos
.8 o
w
W04 9N 04
= —
= Poptimal =10 Poptimal =11
0.2 0.2
0.0 0.0 n .
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Model order Model order
c
© 1.0 T T T T
0.8+ E
i
L 0.6 |
©
w L |
(é) 0.4
02l Poptimal =10 |
0.0 . = dumsalanaad
0 10 20 30 40 50 60
Model order

Fig. 6: Model orders selection based on the proposed approach for different sets of data:
(a) X data, (b) Y data, (c) Z data

To compare the efficiency of the present method,
Vu et al. [17] proposed a technique for
determining an efficient model order p.4 based on
the analysis of the Noise-to-Signal Ratio (NSR).

3R = Trace (M)

~ Trace (K) () o

A Noise-ratio Order Factor (NOF) is calculated as
a variation of the NSR between two successive
orders:

NOFP = NSR® — NSR(P*) (38)

The NOF is a representative factor for the
convergence of the NSR, which changes
dramatically at low orders and converges at high
orders. Since this criterion is positive and close to

The estimated NSR is given in equation (37) based
on the trace norm part of the error covariance
matrices M and the estimated deterministic K.

Trace (M)

NSR =10log;y ————=
%10 Trace (K)

(4B) (37)

zero, the convergence may be assumed close to 10,
considered as an efficient model order (Figure 7).
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Fig. 7: NOF evolution and efficient model orders selection for different sets of data:
(a) X data, (b) Y data, (c) Z data

Theoretically, the modeling of a complex structure
like the SCOMPI robot should result in a
high-order model. Based on the AIC and BIC
criteria, a 47-order model should be selected as a
suitable choice. However, a lower order could be
chosen with all essential characteristics of the real
system  preserved. By comparison, the
Noise-to-Signal Ratio and the proposed method
are selected with a model order of around 10.

However, in the case of the complex ARMAX
model, it is characterized by three different
orders, the model order estimation is not
straightforward. In experimental modal analysis,
the orders n, n,, and n., depend on the model
parameterization. According to [32, 33], the
choice of n, is a function of the type of response
measurements used and the inter-sample
behavior of the data. Moore et al. [34] suggest an
ARMAX (p,p,p) model in which p = n, = n, = n,,
for the case of a vibration acceleration
measurement, or ARMAX(p, p - 1, p), for the case
of a vibration displacement or velocity
measurement with an appropriate time delay. As
can be noted, since structural vibrations are
usually measured in terms of acceleration rather
than displacement and velocity in actual
experiments, we would choose p,ima = N, = 1, =
10.

The Moving Average order is initially set equal to
the Auto Regressive part since the resulting noise
model has the flexibility of representing several
stochastic processes, including white noise. There
is some experimental evidence in the structural
systems [34, 35], which indicates that for low
noise levels, the required MA order is often
smaller or equal to the AR one. The order n, of the
MA matrix and time delay order n, are dependent
on the noise present in the system, and generally,
no information on the nature of this disturbance
is available. Therefore, the extracted required
value of the MA order, as well as an appropriate
time delay order, will be carefully examined in
this study. This can be done by initially setting n,,
= n, = 10, and then selecting the best model by
using a proposed criterion to test the effectiveness
of changing n. and n, from the set of {1, 2, ..., 20},
resulting in the estimated results presented in
Figure 8.
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Fig. 8: Moving average order (a) and time delay order (b) selection

Based on these results, the set of orders
(10,10,8,2) is chosen as consisting of the smallest
order values, which can be applied to fit the data
with a negligible discrepancy and can be
effectively utilized for modal analysis. However, a
further step needs to be validated to assess the
adequacy of the estimated model. Several
diagnostic checks can be used to decide whether
the ARMAX model is adequate based on the
residuals, which characterized by an uncorrelated
sequence. Figures 9 and 10 display the histogram,

Quantile-Quantile (QQ) plot, Autocorrelation
Function (ACF), and Partial Autocorrelation
Function (PACF) of the residuals of the ARMAX
model. The histogram is unit-modal and
symmetric around zero. From the QQ-plot, the
residual approximately fit a straight line, and this
can be assumed normal. The values of both ACF
and PACF are located roughly between the upper
and lower bounds of a confidence interval.
Therefore, the residual can be assumed
independent, and the selected orders can be used.

Fig. 9: Residual errors histogram and normal probability plot of an estimated ARMAX (10,10,8,2)
model
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Fig. 10: Autocorrelation function (ACF) and Partial Autocorrelation Function (PACF) of the residual
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The above identification procedure leads to an
optimal ARMAX (10,10,8,2) model, which is
selected as an adequate model for structural
analysis, and for the extraction of modal
parameters. The next section evaluates the
performance and effectiveness of this dominant
reduced model, in which all the essential
characteristics of the real system can be retained.

5.2 Frequency Response Functions identification

Based on the discussion above, once the excitation
and vibration measurement data have been
selected with the appropriate orders, an ARMAX
model needs to be estimated within the model
structure. In this section, the two parametric
transfer function estimators for assessing the

dynamic flexible manipulator are analyzed. The
FRFs estimation is performed using two
parametric models, ARX (n,, n;, n,) and ARMAX
(n, ny, n., n), based on data records from the
structure. A scalar Single Input — Single Output
(SISO), ARX and ARMAX models are used at a
time. The input signals to each model are the force
signals, and the output signals are measured
accelerations, respectively. The assessments of an
ARX model, and an ARMAX model, are
undertaken based on an experimental SCOMPI
structure during the grinding operation. Figures
11-19 demonstrate the estimated Frequency
Response Functions obtained by the ARX and
ARMAX models, which are compared to those
measured by the LMS system.
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Fig. 12: Estimated Frequency Response Function FRF,,
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Fig. 19: Estimated Frequency Response Function FRF,,

In comparing the ARX and ARMAX models’
performance with different measurement data, it
can be observed that the ARMAX model achieves
much better fit than the ARX counterpart at low
orders, where all frequencies of the system are
clearly revealed. Conversely, at the same model
orders, the ARX model proves inadequate in
providing accurate estimated FRFs compared to
the measured one. The ARMAX method was both
economic and effective in accurately identifying
the frequency response functions of the structure
based on input-output experimental data
corrupted by noise. This model also gives a more

parsimonious representation and precision. These
results matching those of [35]. The model orders
of the ARMAX model are related to the number of
structural modes in a given frequency range.

Meanwhile, in the ARX model, the number of
degrees of freedom devoted to the description of
the system dynamics is limited due to the fact that
the system dynamics and the noise are partially
described by the same polynomial A(g). For this
reason, larger complexities are needed to achieve
good adherence to the true system. Consequently,
the orders of the ARX model tend to be chosen
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greater than those of the ARMAX model when
considering  the the
measurements.

noise present in

5.3 Extraction of modal parameters

The estimated Frequency Response Functions
(FRFs) representing the structural dynamic
[B(q, 0 )/ A(q, 0 )] will be applied to distinguish the
actual structural modes from the extraneous
modes, based on the construction of the
stabilization diagram, and will be used for the
extraction of the modal parameters. Each transfer
function representing a scalar excitation and
response pair is evaluated directly from the
estimated discrete ARMAX model. Complete
model information such as natural frequencies,
damping factors, and mode shapes can be
obtained. Their global parameters can be
extracted as follows:

1 [ifad) Z(Cosl( Aii Nz
T2=n 2 2 [/1111* (39)

| e
(n(2.4)] +4.£cos-1[ A A B (40)

NP

6 =

==

In the above expression, f,; denotes the I'" natural
frequency in (hz) unit, { represents the
corresponding damping ratio, (/11 ,/11*) is the ™
discrete complex conjugate eigenvalue pair, and T
is the sampling period.

To determine the extraction mode, a particular
discrete-to-continuous transformation must be
performed for determining continuous-time
residues. The I mode shape ¢, is then obtained
as:

p :{& R_}

: (I=1,2,..., m)
Rill Rill

(41)

where m represents the estimated number of
structural degrees of freedom and Ry; is the i

element of the I (I=1, 2, ..., m) residue matrix R,
of the continuous-time receptance transfer
matrix.

In modal analysis, knowledge of the model order
is necessary but insufficient. It is important to
understand that with noisy data, the optimal
model order is typically smaller than the existing
order. When evaluating the parameters with the
minimum order model, it is hard to obtain all the
modes if the measurements are corrupted by
experimental noise. Previous studies [12, 13, 17]
have shown that it is more difficult to identify the
damping rates than the natural frequency from
ambient vibration data due to a higher sensitivity
to measurement noise. Therefore, to obtain all the
modes and construct a stabilization diagram, a
value higher than the minimum required order to
establish the convergence must be set. However,
the advantage of the ARMAX modeling is that it
includes the Moving Average part, which is
already accounted for the noise present in the
system. Consequently, there is no need to go up to
a very high order, as in the case of AR or ARX
models. To prevent the contamination of more
numerical modes and avoid the overfitting
problem, a computational model order should not
be too much higher than the optimal one. In this
paper, order 50 was selected for visually
establishing stabilization = diagrams  and
distinguishing between the structural and the
spurious modes, and the identified low-order
FRFs in the previous section were applied to
extract the modal properties. The results

computed by both the ARX and ARMAX models
are illustrated in Figures 20-23.
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As can be seen from Table 2, all modal parameters obtained by two different methods are identified.

Table 2: Comparison of estimated modal parameters between ARMAX and ARX models

ARMAX model ARX model (Least Squares)
Frequency (Hz) Damping ratio (%) Frequency (Hz) Damping ratio (%)

1 27.54 1.28 26.51 2.55
2 53.21 0 53.27 0
3 93.76 0.15 93.93 0.14
4 106.40 0 106.4 0
5 146.96 0.13 147.0 0.07
6 158.56 0 159.7 0
7 186.75 0.27 187.5 0.59
8 202.90 0.31 200.3 0.22
9 212.80 0 212.9 0
10 230.13 0.23 240.5 0.28

The stabilization diagrams help to distinguish
between spurious modes and vibration ones.
Since the frequency response function is
considered converging to the optimal order p,pimal
= 10, all the natural frequencies in the measured
range start to show up on the stabilization
diagrams, meaning that the optimal order p,pimal
is the minimum value from which all available
physical modal properties are revealed. The
assessments of both the ARX model and of the
ARMAX model are undertaken based on an
experimental SCOMPI structure. As the results
indicate in Table 2, both models are effective for
modal identification, but wusing different
approaches. In the case of the ARMAX model, the
harmonic frequencies, the natural frequencies,
and damping ratios are extracted directly from the
estimated  low-order  frequency  response
functions. In contrast, the ARX model is based on
the minimum Least Square method [19] at the

higher orders. The ARMAX model exhibits the

lowest complexity, while the ARX method
requires many model parameters to extract the
modal properties. As can be seen in Figure 20,
due to an applied higher order up to 100 in the
case of the ARX model, the stabilization diagram
exhibits a lot of irrelevant oscillation information,
which results in an overfitting problem and heavy
computation. Meanwhile, the stabilization
diagrams of an ARMAX model with different
measurement data sets revealed all the
frequencies, without overfitting problems and
with less computational time. In general, the
ARMAX model is better at capturing the
significance of the mismatches introduced and
provides satisfactory results in terms of
frequencies and damping coefficients estimation.

The model offers easy computation, with
sufficient low-order performance despite the
noise contamination in the experimentally
measured data. However, in the case of the ARX

Optimal ARMAX Model Order Identification of Dynamic Systems

© 2022 London Journals Press

Volume 22 | Issue 1 | Compilation 1.0

Magnitude

London Journal of Engineering Research




London Journal of Engineering Research

model, there is a need for higher orders. Under
such conditions, the time delay problem can also
be neglected, which results in a time-consuming
and higher computational burden.

VI.  CONCLUSION

To summarize, this paper presents an effective
identification technique for computing optimal
ARMAX model orders based on experimental
measurement data. The present method allows
selecting of a minimum order of the mechanical
system in a given frequency range, which correctly
incorporates the effect of modeling error and
measurement noise under the expression of a
minimum error variance of the identified transfer
functions. The estimated results were validated
with other common criteria, such as AIC, BIC, and
NOF, to ensure that the selected model extracted
uncorrelated residuals and simultaneously
prevented overfitting. The search for the best time
delays is also addressed in this paper. The
proposed optimization strategy was successfully
applied on an industrial application, namely, the
flexible SCOMPI manipulator robot under
grinding operation. The relationship between the
actual structural and disturbance dynamic is
formulated in the discrete form of an ARMAX
representation, which helps to improve the
modeling performance and to gain flexibility in
handling the residual error caused by
environmental noises. Further validation was
carried out by comparing model predictions with
actual measurements of transfer functions from
the LMS Test Lab system and the original ARX
technique. Comparative results show that the
identified ARMAX model is economic and
appropriate for structural identification and
achieves better results. The low-order transfer
functions estimated by the present technique were
scientifically closer to the measured values, and
are proposed for use in automatic modal
extraction. Results show that the approach is
successful and superior to a state-of-the-art order
determination technique in obtaining a sufficient
order and can accurately capture all the dominant
oscillation modes with fewer discrepancies. The
proposed method is expected to be a useful tool

the
difficult-to-measure structures such as rotating

for capturing transfer functions of

grinding systems. The determined low-order FRFs
may eventually be used in the feedback controller
design of the manipulator or in constructing a

Stability Lobe Diagram (SLD) for determining
operating and natural frequencies.
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