

CrossRef DOI of original article:

1 Poly Ionic Liquid based Aqueous Two-Phase Extraction Coupled
2 with UV Spectrophotometry for Separation/analysis of Allura
3 Red in Food

4

5 *Received: 1 January 1970 Accepted: 1 January 1970 Published: 1 January 1970*

6

7 **Abstract**

8 Poly ionic liquid was introduced as aqueous two-phase extraction (ATPE) sorbent
9 accompanied with UV spectrophotometry for Allura red (AR) separation in food
10 samples. Different parameters, like pH value, adsorption temperature and time, were studied.
11 the preconcentration factor for AR was 27. The linear range, detection limit (DL), correlation
12 coefficient (R) and relative standard deviation (RSD) were found to be 0.10-9.00 ?g/mL, 5.2
13 ?g/L, 0.9987 and 3.10

14

15 **Index terms—**

16 **1 I. INTRODUCTION**

17 Synthetic colorants are common food additives used in food industry, due to their stable nature, bright colors
18 and low price. Allura red (Fig. 1) is one of the eleven synthetic colorants which are allowed to be used within a
19 certain limit in food, such as ice cream, candies, pastries, beverages, jelly and hams [1]. The maximum usage of
20 AR in candies and beverages are 0.3 g/kg and 0.1g/kg, respectively; which are strictly regulated by the hygienic
21 standards for food additives of China.

22 Excessive use of safety AR as food additives has been questioned, because AR is potentially toxic and carcinogenic, especially harmful to the intellectual development of children [2]. The AR detection methods included
23 high performance liquid chromatography as a separation method [3], UV-vis spectrophotometry [4], differential
24 pulse polarography [5], voltammetry and Fluorescence spectrophotometry. Fluorescence spectrophotometry as
25 detection method has many advantages of lower-cost analysis, easier operation and better accuracy. Therefore,
26 this method was applied for separation of AR in food samples. Ionic liquid, also known as low-temperature
27 molten salt, is composed of all ions at room temperature material. Ionic liquids have the advantages of low
28 vapor pressure, good thermal stability, nonflammable and miscible with a variety of solvents. By changing
29 the ionic liquid anion-cation combination or the introduction of functional groups, we can get a large number
30 of functional ionic liquids that can meet the analytical needs and have adjustable performance. Common ionic
31 liquid functionalization methods include 1) improved ionic liquid lipophilicity and surface activity by introduction
32 of long alkyl chains; 2) improved ionic liquid polarity enhancement by incorporation of polar substituents; 3)
33 Hydrogen bond acceptors make London Journal of Engineering Research 99 ionic liquids and hydrogen bonds
34 stronger; 4) using biomolecules as ionic liquid raw materials to reduce the toxicity of ionic liquid environment.

35 Ohno's research team successfully prepared a series of amino acid functionalized hydrophilic ionic liquids
36 through ion exchange-neutralization reaction.

37 Polymerized ionic liquids, poly(ionic liquid)s or polymeric ionic liquids, all abbreviated as PIL is the polymeric
38 form of ionic liquids [6]. They have half of the ionicity of ionic liquids since one ion is fixed as the polymer moiety
39 to form a polymeric chain. PILs have a similar range of applications, comparable with those of ionic liquids but
40 the polymer architecture provides a better chance for controlling the ionic conductivity. They have extended the
41 applications of ionic liquids for designing smart materials or solid electrolytes.

42 Poly ionic liquid was used in food analysis/ separation and enrichment technology used to eliminate the
43 matrix interference and to improve the sensitivity. ?? ATPE is a two-phase system using a two-phase system

9 PROCEDURE FOR EXTRACTION

45 in a certain concentration, pH, temperature conditions formed by the two-phase extraction and separation
46 technology, compared with the traditional organic solvent extraction, the two-phase system has the advantages of
47 good performance in the biological Compatibility, small interfacial tension, mild operating conditions, adjustable
48 extraction performance and no volatile organic solvent residues, known as green separation technology. The
49 formation of a dual aqueous system [7] includes alcohol-salts, polymers, polymers-polymers, surfactants-salts and
50 the like. Rogers research group [8] for the first time using hydrophilic ionic liquids and K 3 PO 4 to form a
51 double aqueous phase. The strong polarity of ionic liquids and ionic liquids larger specific surface area, so that
52 the ionic liquid-based aqueous two-phase extraction is widely used in analytical chemistry [9].

53 2 II. EXPERIMENTAL SECTION

54 3 Reagents

55 All chemicals and reagents were at least of analytical reagent grade, unless otherwise stated. Allura red standards
56 were obtained from the Sigma-Aldrich (Shanghai, China). A standard stock solution was prepared by dissolving
57 10.0 mg of each standard in 100 mL of ethanol and stored in dark at 4?. N-methylimidazole (Darui Fine
58 Chemicals, Shanghai, China), 4-chloromethylstyrene and 2, 2-Azobis-2 methylpropionitrile (AIBN) were bought
59 from Chemical Reagent Co., Ltd (China). K 3 PO 4 , N, N-dimethylformamide (DMF), methanol, ethylether,
60 ethyl acetate (Sinopharm Chemical Reagent Co., Ltd., Shanghai, China)

61 4 Equipment

62 FTIR spectra were measured with a Bruker Tensor 27 spectrometer (Bruker Company, Germany). Samples were
63 pressed into KBr pellets and recorded at the frequencies from 500 to 4500 cm ⁻¹ with resolution of 4 cm ⁻¹ .
64 Centrifuge (Anke Scientific Instrument Factory Shanghai,China), timing multifunctional oscillator (Guohua Co.,
65 Ltd., China), digital constant temperature water-bath (Guohua Co., Ltd., China).UV-2550 spectrophotometer
66 (Shimadzu Corporation, Japan) was used.

67 5 Preparation of Aqueous Two-Phase Extraction (ATPE) Poly 68 Ionic Liquid (PILs) 2.3.1 Preparation of IL Monomer

69 1-methylimidazolium IL monomer was prepared through the reaction of 6.56 g of 1-vinylimidazole and 12.21g of
70 4-chloromethylstyrene in 30 mL of methanol at 60 ? C for 24 h under vigorous stirring, the product was dried
71 in the vacuum at 50 ? C to remove methanol then the product was washed by ethylether (4-5) times and with
72 distilled water 3 times the product was yellow viscous ionic liquid.

73 6 London Journal of Engineering Research

74 7 2.3.2

75 Preparation of Aqueous Two-Phase Extraction (ATPE) Poly Ionic Liquid 0.095g of 2, 2-Azobis-
76 2methylpropionitrile (AIBN) and 15 ml of N, N-dimethylformamide (DMF) were added to the product
77 at 60? for 24 h.Before the reaction N 2 was inflated to the solution for (20min). The product was poured slowly
78 into a little amount of ethyl acetate then the product was dried in the vacuum for 24 h at 45 ? C.

79 8 Phase Diagram Determination

80 Amino acid ionic liquids and K 3 PO 4 dual aqueous phase using the cloud point method [8] determination, the
81 specific measurement steps are: (1) accurately weighed 0.5000g pure ionic liquid placed in a test tube, the test
82 tube into a water bath, low temperature (2) adding a little water to dissolve the ionic liquid in the test tube and
83 stirring to make the solution clear and transparent;
84 (3) adding saturated K 3 PO 4 aqueous solution into the solution until the system just appears When turbidity,
85 record the volume of the inorganic salt solution added; (4) continue to add water dropwise to clarify the
86 cloudy system, and then add saturated K3PO4 aqueous solution to just appear cloudy, record the volume of
87 inorganic salt solution used: Repeatedly and repeatedly calculated the turbidity system ionic liquid and salt
88 mass percentage(Fig. 2.), you can get a more complete double junction line.

89 9 Procedure for Extraction

90 A 40.0 mL of the working solution or aqueous sample and 0.05 g of PIL, 0.05 g of K 3 PO 4 (pH=7.0) and 0.05
91 mL of allura red standard or sample solution were added and transferred into a centrifuge tube and subsequently
92 shaken for 15 min at room temperature. Then, the AR was analyzed using UV-2550-vis spectrophotometer at
93 246 nm.

94 10 Sample Preparation

95 1.000 g of Candy was weighed in a small beaker after grinding into powder. The powder was dissolved in 30 mL
96 distilled water at 60 °C ultrasonically extracted for 30 min and then filtered and was poured into 250.0 mL flask
97 then dissolved with distilled water.

98 5.000 g beverage(fruit juice) was transferred into a 100.0 mL volumetric flask and dissolved in deionized water.
99 The sample solution was put in the darkness at 4°C.

100 11 Characterization of PIL by FTIR

101 The FTIR spectra of PIL (Fig. ??) was significantly reduced due to the characteristic absorption of imidazole
102 groups, the transmittance at wave numbers 591 and 733 cm ⁻¹ was due to P-F stretching vibration in the PILs,
103 which showed that PILs were well immobilized on the surface of ATPE systems .

104 12 Fig. 3: FT-IR spectra of PIL

105 13 ATPE System Phase Diagram

106 Double junction of ATPE can provide the minimum concentration of ionic liquid and inorganic salt and the
107 volume ratio of upper and lower phases required to form a dual aqueous phase. The double junction line near the
108 coordinate axis has good phase-forming ability and can produce better Separation effect and enrichment multiple
109 [11]. According to the reported literature, P 4 O 3 -has a large free energy of hydration and possesses a good
110 capability of phase formation [12] 3. 3

111 14 III. RESULTS AND DISCUSSION

112 and azo in the structure of AR, so, its adsorption on PIL occurs mainly by ?? hydrophobic dispersion interaction
113 and weak dipolar force mechanisms. The pH range of the procedure was investigated and optimized between pH
114 8.0 and 12.0. As shown in (Fig. ??), the extraction efficiency of AR was varied with the pH value. It could be
115 concluded that the extraction efficiency of AR on PIL was increasing to 0.7 when the pH values were 8.0-9.0, then
116 it was approximately constant pH value at 8.0, it is highly possible that AR have been completely ionized(AR -
117) at these pH values and this because of negative charge of the pigment and repulsive force [13], the extraction
118 efficiency decreased to above 0.6 % between the pH value 11.0 and 12.0 and this due to the decrease of hydrogen
119 bonding interaction [14].

120 15 Effect of pH on Extraction Efficiency

121 16 Effect of K 3 PO 4 salt Amount

122 Fixed Allura red amount of 0.5 mL , PIL from 0.5g K 3 PO 4 salt was added 0.5-3.0g Results showed that the
123 extraction rate of PIL on allura red was the highest at 0.5g of K 3 PO 4 salt(88%), then it decreased to(80%) ,
124 then remained unchanged (Fig. ??). So 0.5g of K 3 PO 4 salt was used.

125 17 Effect of Salt Amount on Extraction Efficiency

126 London Journal of Engineering Research The extraction efficiency of AR on Fe 3 O 4 @SiO 2 @PIL MNPs at
127 various temperatures (5-60°C) were investigated (Fig. 6). The extraction efficiency of AR was increasing from 5°C
128 to 15°C and then it decreased and increasing from 20 °C to 60°C. The experiment was done at 25 °C.

129 18 Interference Effects

130 The effect of interferents which food samples may contain on separation of Allura red in the availability of
131 interferents was investigated. the tolerance limit for different interferents was as follow, for interferents Zn ²⁺ ,
132 Ca ²⁺ , Mg ²⁺ , the tolerance ratio was 102. for interferent Cu ²⁺ , tebuconazole ratio was 53, for 2-nitrophenol
133 ratio was 35 and it was 15 for Fe ³⁺ , NO
134 ,Carbendazim, 4-Nitrophenol, phenol. The results showed that most of the foreign substances had no
135 interference with Allura red.

136 19 Analytical Performance

137 Under optimum conditions described above, the preconcentration factor for AR was 27. The linear range, detection
138 limit (DL), correlation coefficient (R) and relative standard deviation (RSD) were found to be 0.10-9.00 µg/mL,
139 5.2 µg/L, 0.9987 and 3.10% (n=3, c=4.00 µg/mL).

140 20 Analysis of Sample

141 This method was introduced to determine the amount of AR in certain brands of some candies and beverages.
142 To further verify for the viability of the method, recovery experiments were carried out, and the AR could be
143 detected in these certain brands of candy and beverage. The obtained values of AR in candies and beverages

22 IV. CONCLUSION

144 were measured up to the national standard. To further verify the viability of the method, recovery experiments
145 were carried out (Table 1). The values obtained for unspiked and spiked samples were satisfactory [15].

146 London Journal of Engineering Research

147 21 Discussion of Mechanism

148 The adsorption mechanism could be discussed through extraction isotherms model. So as to describe extraction
149 capacities for AR by using $\text{Fe}_3\text{O}_4 @ \text{SiO}_2 @ \text{PIL}$ nanoparticles, the widely used extraction isotherms, Langmuir
150 and Freundlich ones, were introduced. The Langmuir adsorption equations are named as Eq (1).

151 (1) Langmuir :

152 (1) Freundlich model equation is named as Eq. (??):

153 (2) Freundlich : where q_{max} was the maximum extraction at monolayer coverage (mg g^{-1}), q_e is the AR
154 concentration on the $\text{Fe}_3\text{O}_4 @ \text{SiO}_2 @ \text{PIL}$ at equilibrium(mg g^{-1})

155), C_e was the concentration of AR in sample at equilibrium(mg L^{-1})

156), b is the Langmuir extraction equilibrium constant (L mg^{-1})

157), K_F and $1/n$ are the Freundlich characteristic constants, proving the capacity of adsorption and the extraction
158 intensity, respectively. The values of b and q_{max} were calculated by the linear plot of C_e/q_e versus C_e and
159 the values of K_F and $1/n$ can be obtained from the intercept and slope of the linear plot of $\ln q_e$ versus $\ln C_e$,
160 respectively. The results showed that the linear correlation coefficient for the Langmuir model 0.995 was more
161 than that for the Freundlich one 0.989 (Fig. 8). This proved that the Langmuir model fitted the extraction data
162 was better than the Freundlich one. The q_{max} for extraction of AR by the magnetic nanoparticles obtained by
163 the Langmuir isotherm model was 105.80 mg g^{-1} .

164 22 IV. CONCLUSION

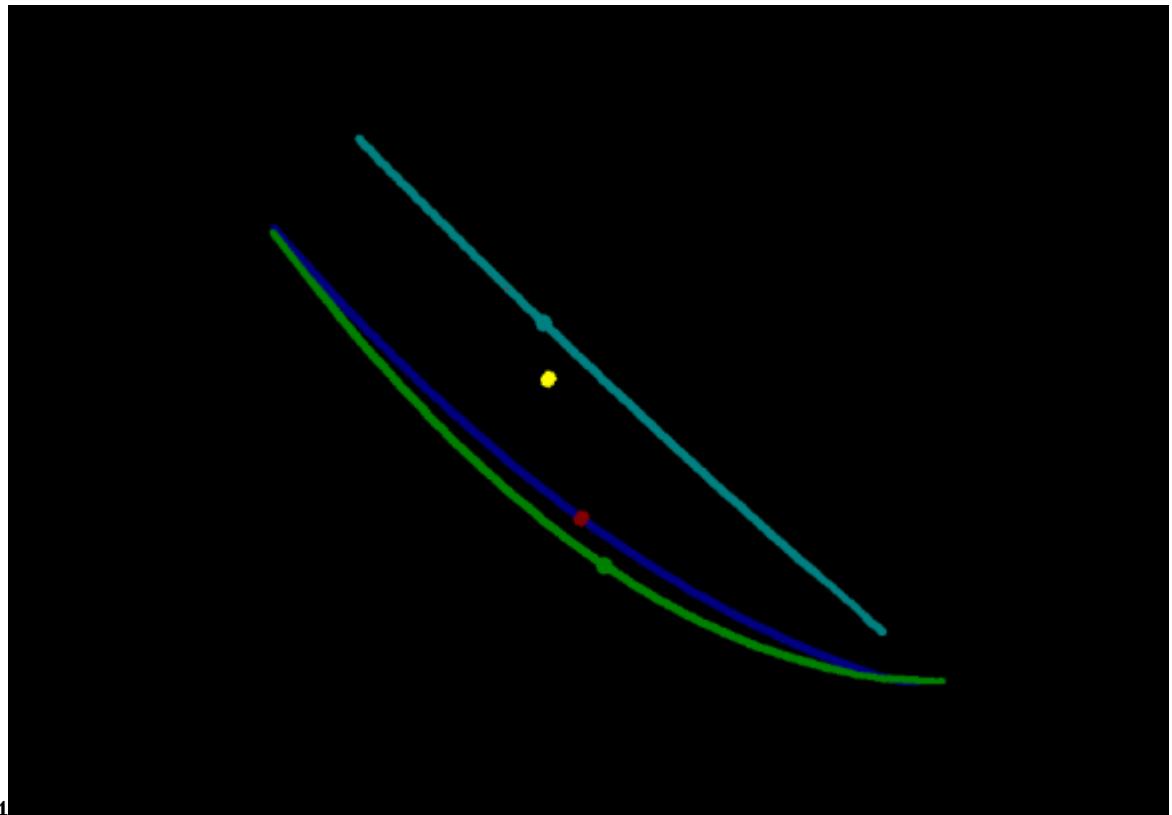
165 In this work, PIL was synthesized as aqueous two phase extraction sorbent coupled with UV spectrophotometry
166 to separate/determine AR in food samples. The magnetic separation greatly improved the separation rate and
167 reduced the analysis time. In conclusion, PIL aqueous two phase extraction could be considered as a promising
168 alternatives for the extraction of AR. This introduced method for the separation of allura red from real samples
was proved to be satisfactory. ^{1 2 3}

Figure 1: Fig. 1 :

169

¹ Poly Ionic Liquid based Aqueous Two-Phase Extraction Coupled with UV Spectrophotometry for Separation/analysis of Allura Red in Food || © 2023 Great] Britain Journals Press Volume 23 Issue 2 ?”? Compilation 1.0

² 15 || Volume 23 Issue 2 ?”? Compilation 1.0 © 2023 Great] Britain Journals Press Poly Ionic Liquid based Aqueous Two-Phase Extraction Coupled with UV Spectrophotometry for Separation/analysis of Allura Red in Food


³ || Volume 23 Issue 2 ?”? Compilation 1.0 © 2023 Great] Britain Journals Press Poly Ionic Liquid based Aqueous Two-Phase Extraction Coupled with UV Spectrophotometry for Separation/analysis of Allura Red in Food

13

Figure 3: 13

54

Figure 4: Fig. 5 :Fig. 4 :

$$\frac{C_e}{q_e} = \frac{C_e}{q_{\max}} + \frac{1}{q_{\max} b}$$

6

Figure 5: Fig. 6 :

$$\ln q_e = \frac{1}{n} \ln C_e + \ln K_F$$

7

Figure 6: Figure 7 :

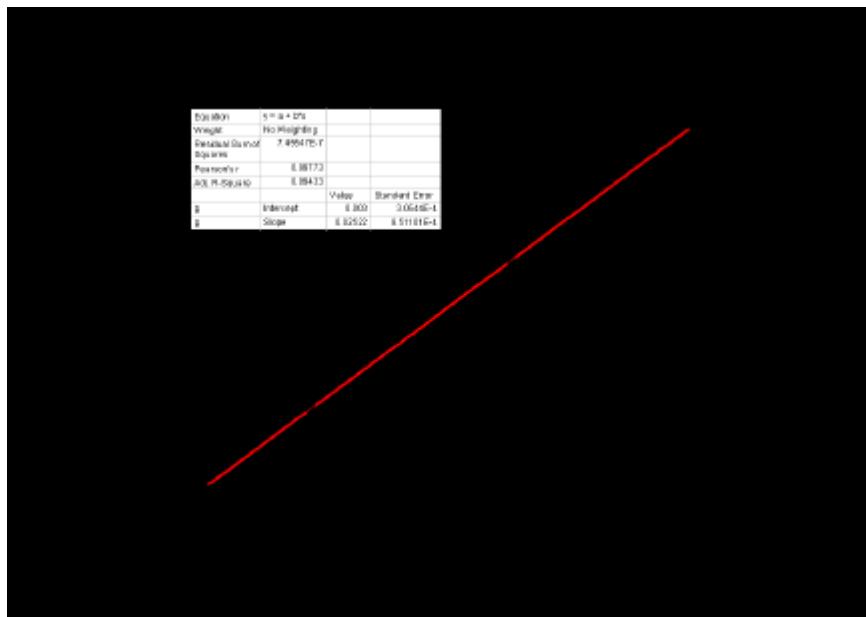


Figure 7:

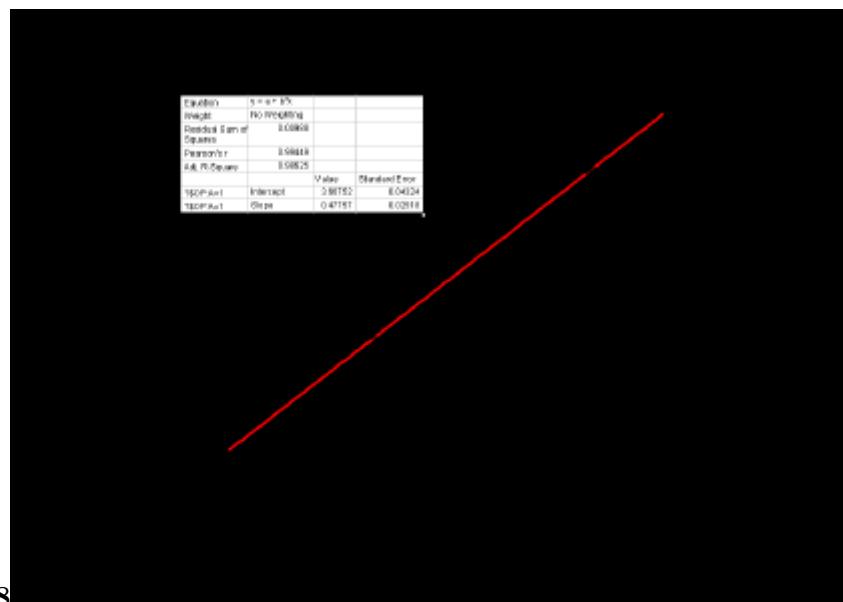


Figure 8: Fig. 8 :

London Journal of Engineering Research
12

| | © 2023 Great] Britain Journals Press Volume 23 Issue 2 ?”? Compilation
1.0 Poly Ionic Liquid based Aqueous Two-Phase Extraction Coupled with UV
Spectrophotometry for Separation/analysis of Allura Red in Food

Figure 9:

	Samples Added (?g mL ⁻¹)	Found (?g mL ⁻¹)	Recoveries (%)
	0.00	ND	-
	0.50	0.49	98.0
Candy	2.00	2.01	100.5
	4.00	4.13	103.2
	0.00	0.74	-
Beverage	0.50	1.25	102.0
	2.00	2.88	107.0

The separation/analysis of AR in real samples was compared with some reported methods, such as solid phase extraction coupled with high performance liquid chromatography, Cloud-point extraction spectrometry, Multi-wall carbon nanotube filmbased electrochemical sensor, solid phase extraction coupled with UV-spectrophotometry and solid phase

microextraction coupled with high performance liquid chromatography method were listed in

Table 2. Compared with other reported methods,

the method adopted in the present work is

obviously had good linear range and lower limit of

detection and standard deviation using new

detector . Moreover, the extraction procedure was

simpler and cheaper than that of SPE.

Figure 10: Table 1 :

2

Method	Detector	LR	LOD ?g/L	RSD (%)	Ref
SPME-HPLC	HPLC	0.05-10.0	9.3	7.8	[15]
Cloud-point extraction spectrometry	UV	0.02-1.40	7.8	3.9	[16]
MWCNT film-based electrochemical sensor	Electrochemical Workstation	0.50-6.00	25.0	NR	[17]
SPE-UV	UV	1.0-6.0	2.4	7.0	[18]
SPE-HPLC	HPLC	0.50-20.0	32.2	6.0	[19]
UV -Spectrophotometry	UV	0.10-9.00	5.2	3.10	This method

NR: Not Reported

Figure 11: Table 2 :

170 .1 ACKNOWLEDGEMENTS

171 Authors acknowledge financial supply of National Natural Science Foundation of China (21155001, 21375117)
172 and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

173 [London Journal of Engineering Research] , *London Journal of Engineering Research*

174 [Rosa et al. ()] 'Aqueous two-phase systems: A viable platform in the manufacturing of biopharmaceuticals'. P
175 A Rosa , I F Ferreira , A M Azevedo , M R Airesbarros . *Journal of Chromatography A* 2010. 1217 p. .

176 [Bagheri A R et al. ()] 'Comparative study on ultrasonic assisted adsorption of dyes from single system onto
177 Fe3O4 magnetite nanoparticles loaded on activated carbon: experimental design methodology'. Bagheri A R
178 , M Ghaedi , A Asfaram , A A Bazrafshan , R Jannesar . *Ultrasonics Sonochemistry* 2016. 34 p. .

179 [Bi?gin et al. ()] 'Comparison of Column Solid-Phase Extraction Procedures for Spectrophotometric Determina-
180 tion of E129 (Allura Red) in Foodstuff, Pharmaceutical, and Energy Drink Samples'. A T Bi?gin , M Uçan ,
181 I Narin . *Journal of AOAC International* 2015. 98 (4) p. .

182 [Rao et al. ()] 'Determination of allura red in food by spectrometry with magnetic separation and concentration'.
183 T D Rao , ChenS , H Zhang , L Y Fu , C . *Chin J Spectrosc Lab* 2012. 29 p. .

184 [Pourreza et al. ()] 'Determination of Allura red in food samples after cloud point extraction using mixed
185 micelles'. N Pourreza , S Rastegarzadeh , A Larki . *Food Chem* 2011. 126 p. .

186 [Shao et al. ()] 'Determination of allura red in salted and pickled vegetables by high performance liquidchromo-
187 matography'. S W Shao , X M Nie , S Wen , Y Wang , Y Chen , X Y Liu . *J Chin Health Lab Technol* 2010.
188 20 p. .

189 [Chanlon et al. ()] 'Determination of carmoisine, Allura red and Ponceau 4R in sweets and soft drinks by
190 differential pulse London Journal of Engineering Research polarography'. S Chanlon , L Joly-Pottuz , M
191 Chatelut , O Vittori , J L Cretier . *J Food Compos Anal* 2005. 18 p. .

192 [Wu et al. ()] 'Effect of anionic structure on the phase formation and hydrophobicity of amino acid ionic liquids
193 aqueous two-phase systems'. C Wu , J Wang , H Wang , Y Pei , Z Li . *Journal of Chromatography A* 2011.
194 1218 p. .

195 [Gutowski et al. ()] K E Gutowski , G A Broker , H D Willauer , J G Huddleston , R P Swatloski , J D H And , R
196 D Rogers . *Controlling the Aqueous Miscibility of Ionic Liquids: Aqueous Biphasic Systems of Water-Miscible
197 Ionic Liquids and Water-Structuring Salts for Recycle, Metathesis, and Separations*, 2003. 125 p. 6632.

198 [Li et al. ()] 'Ionic liquid-based aqueous two-phase systems and their applications in green separation processes'.
199 Z Li , Y Pei , H Wang , J Fan , J Wang . *Trac Trends in Analytical Chemistry* 2010. 29 p. .

200 [Yu ()] 'Magnetic solid-phase extraction coupled with HPLC for the determination of Allura Red in food and
201 beverage samples'. Y Yu , FanZ . *Food Additives & Contaminants: Part A* 2016. 33 (10) p. .

202 [Zhang et al. ()] 'Multi-wall carbon nanotube film-based electrochemical sensor for rapid detection of Ponceau
203 4R and Allura Red'. Y Zhang , X J Zhang , X H Lu , J Q Yang , K Wu . *Food Chem* 2010. 122 p. .

204 [Li et al. ()] 'Poly (N-isopropylacrylamide-co-N, N?-methylene bisacrylamide) monolithic column embedded with
205 ?-alumina nanoparticles microextraction coupled with high-performance liquid chromatography for the
206 determination of synthetic food dyes in soft drink samples'. W J Li , X Zhou , S S Tong , Q Jia . *Talanta*
207 2013. 105 p. .

208 [Wu et al. ()] 'Relative hydrophobicity between the phases and partition of cytochrome-c in glycine ionic liquids
209 aqueous two-phase systems'. C Wu , J Wang , Z Li , J Jing , H Wang . *Journal of Chromatography A* 2013.
210 1305 p. 1.

211 [Bonan et al. ()] 'Simultaneous determination of synthetic dyes in foodstuffs and beverages by high-performance
212 liquidchromatography coupled with diode-array detector'. S Bonan , G Fedrizzi , S Menotta , C Elisabetta .
213 *Dyes Pigm* 2013. 99 p. .

214 [Chen et al. ()] 'Simultaneous optimization of the ultrasound-assisted extraction for phenolic compounds content
215 and antioxidant activity of *Lycium ruthenicum* Murr. fruit using response surface methodology'. S Chen , Z
216 Zeng , N Hu , B Bai , H Wang , Y Suo . *Food Chemistry* 2018. 242 (1) .

217 [Soylak et al. ()] 'Spectrophotometric determination of trace levels of allura red in water samples after separation
218 and preconcentration'. M Soylak , Y E Unsal , M Tuzen . *Food Chem Toxicol* 2011. 49 (5) p. .

219 [Eftekhari and Seddiki ()] 'Synthesis and Properties of Polymerized Ionic Liquids'. A Eftekhari , O Seddiki .
220 *European Polymer Journal* 2017. 90 p. .

221 [Abramsson-Zetterberg and Ilbäck ()] 'The synthetic food colouring agent Allura Red AC (E129) is not genotoxic
222 in a flow cytometry-based micronucleus assay in vivo'. L Abramsson-Zetterberg , N G Ilbäck . *Food Chem
223 Toxicol* 2013. 59 p. .